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Abstract

On a disk deformed to a non-axisymmetric form, a set of oscillations can be excited

by their resonant interaction through the disk deformation (Kato et al. 2011). This

resonant instability process has been proposed to suggest a possible cause of the

high-frequency quasi-periodic oscillations (HF QPOs) observed in black-hole low-

mass X-ray binaries. In the present paper, we examine whether the above-mentioned

wave-wave resonant process can describe the tidal instability and superhump in dwarf

novae. The results show that the process seems to well describe the observations. If

this process is really the cause of the tidal instability and superhump, a two-armed

oscillation with high frequency roughly on the magnitude of three times the orbital

frequency is present on disks, although its expected amplitude may be small.

Key words: accretion, accrection disks — dwarf novae — oscillations — reso-

nance — superhump — tidal instability

1. Introduction

The origins of superoutbursts and superhumps observed in dwarf novae are now well

understood by the so-called tidal instability and precession of the eccentric disk deformation

(Osaki 1985, Whitehurst 1988a,b; Hirose & Osaki 1990; Lubow 1991a,b, 1992, 1994: for review

see Osaki 1996). The eccentric disk deformation and its precession were found by numerical

simulations by Whitehurst (1988a,b). The origin of the disk deformation was pointed out to be

due to a parametric resonance between disk rotation and binary revolution from a test-particle

approximation (Hirose & Osaki 1990) and later in the framework of hydrodynamics (Lubow

1991a). The precession of the deformation is found to be due to an one-armed global oscillation

(Osaki 1985; Hirose & Osaki 1993).

In a different field of astrophysics, i.e., in the field of black-hole low-mass X-ray binaries

(BH LMXBs), we know that high-frequency quasi-periodic oscillations (HF QPOs) whose fre-
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quencies are in the range of 100 to 450 Hz are observed in some sources (e.g., for review, see

van der Klis 2004 and Remillard & McClintock 2006). The origin of these HF QPOs has been

studied extensively, since clarification of the origin will give a powerful tool to know the inner-

most structure of relativistic accretion disks as well as the spin of the central black hole sources.

Inspite of many efforts there is still no consensus on the origin of HF QPOs. However, one

of possible models of HF QPOs is excitation of a set of oscillations by their resonant coupling

through disk deformation (Kato et al. 2011). In this model a deformation of unperturbed disks

from an axisymmetric state is essential, and it is a kind of catalizer for excitation of oscillations.

The above-mentioned process of excitation of disk oscillations is rather general. Hence,

a natural question is whether the tidal instability and superhump in dwarf novae can be in-

terpreted as a result of excitation of disk oscillations on tidally deformed disks by the above-

mentioned wave-wave resonant process. The purpose of this paper is to demonstrate this

possibility and to obtain some hints on refining the models of the HF QPOs.

2. Outline of Wave-Wave Resonant Excitation Process through Disk Deformation

Let us assume that oscillations in disks can be decomposed into normal modes. The time

and angular dependences of the displacement vector, ξ(r, t), associated with the oscillations

are factorized as ξ(r, t) = ξ̂(r,z)exp[i(ωt−mϕ)]. Here, r is the cylindrical coordinates (r,ϕ,z),

whose center is at the disk center and the z-axis is the axis of the rotating axis of the disk.

We consider two oscillations. The set of frequency and azimuthal wavenumber, i.e., (ω, m),

of each oscillation is denoted (ω1, m1) and (ω2, m2). Furthermore, we assume that the disk is

deformed to non-axisymmetric state with azimuthal wavenumber mD and the pattern rotates

with frequency ωD, i.e., the set of (ω, m) of the disk deformation is (ωD, mD). In the case of

tidal deformation, ωD and mD are related by

ωD =mDΩ
∗

orb
, (1)

where Ω∗

orb
is the orbital frequency of the secondary star around the primary star, observed from

the primary star. To avoid unnecessary complication, mD is taken to be a possitive integer,

i.e., mD = 1,2,3....

The above two oscillations can non-linearly interact through the disk deformation, if the

following resonant conditions are satisfied, i.e.,

ω2 = ω1±ωD and m2 =m1 ±mD, (2)

where the sign of + or − is possible. Kato et al. (2011) showed that the above two oscillations

grow simultaneously if both oscillations satisfying conditions (2) overlap in their propagation

regions, and have opposite signs of E/ω, i.e., (E1/ω1)(E2/ω2) < 0. Here, E is the wave energy

defined by, e.g.,

E1 =
1

2
ω1

[

ω1〈ρ0ξ
∗

1
ξ
1
〉− i〈ρ0ξ

∗

1
(u0 · ∇)ξ

1
〉
]

2



Fig. 1. Schematical diagram showing resonant amplification of two oscillations with opposite signs of

ω−mΩ, i.e., (ω1 −m1Ω)(ω2 −m2Ω) < 0 through disk deformation. The additional necessary conditions

for resonance amplification are ω2 = ω1 ±ωD, m2 =m1 ±mD, and n2 = n1 ±nD.

∼
ω1

2

〈

(ω1−m1Ω)(ξ
∗

1,rξ1.r + ξ∗
1,zξ1,z)

〉

, (3)

where u0(r) is the velocity on the unperturbed disk, i.e., u0(r) = (0, rΩ(r),0) and the asterisk

shows the complex conjugate. The condition, (E1/ω1)(E2/ω2) < 0, is roughly equal to (ω1 −

m1Ω)(ω2−m2Ω) < 0.1 This resonant amplification process is shown schematically in figure 1.

This wave amplification comes from an important general characteristic of coupling

terms between two oscillations through disk deformation. The characteristic is the commutative

relations given by equation (3) of Kato et al. (2011) or equation (83) of Kato (2008). Explicit

expressions for the coupling terms are given by equations (5), (6) and (82) of Kato (2008).

It is noted here that for the resonance to be realized an additional condition is necessary.

It is a relation among node mumbers, say n’s, of oscillations in the vertical direction. This is

related to the fact that in the normal mode oscillations, oscillations with different node numbers

are orthogonal with a certain weighting function.2 In the present paper, however, we are only

interested in the fundamental mode of oscillations in the vertical direction, i.e., n1 = n2 = 0.

Furthermore, the tidal wave is assumed to have no node in the vertical direction, i.e., nD = 0.

Since all n’s are zero, such an additional condition is automatically satisfied and no additional

condition is necessary here.

1 In Kato et al. (2011), instead of the condition, (E1/ω1)(E2/ω2)< 0, opposite signs of wave energies of two

oscillations, i.e., E1E2 < 0, is sometimes emphasized as the resonant instability condition, since they are

interested in oscillations with positive frequencies, i.e., ω1> 0 and ω2> 0. In some cases of disk deformations,

like the case of the present paper, one of ω1 and ω2 becomes negative. Hence, (ω1−m1Ω)(ω2−m2Ω)< 0 is

more general than E1E2 < 0.

2 For vertically isothermal disks see, for example, Okazaki et al. (1987) and for vertically polytropic disks

see Silbergleit et al. (2001).
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3. Application to Tidally Deformed Disks

3.1. Tidally Deformed Disks

In the case of dwarf novae, the disk of the primary (central) star is deformed by tidal

force of a secondary star. The time-averaged part of the tidal potential, Φ̄, is given by

Φ̄(r) =−
GMs

4D3
r2, (4)

where r is the radial distance from the central star, D is the binary separation, and Ms is the

mass of the secondary star. If the pressure force is neglected, the angular velocity of rotation

of the disk gas, Ω(r), is given by

Ω2r =
GM

r2

(

1−
1

2
q
r3

D3

)

, (5)

where M is the mass of the central star and q = Ms/M . Since we are interested in the case

where q is smaller than unity and in the radial region of r/D < 1, we have approximately

Ω = ΩK

(

1−
1

4
q
r3

D3

)

, (6)

where ΩK is the Keplerian angular velocity of rotation given by ΩK(r) = (GM/r3)1/2. In this

disk, the epicyclic frequency defined by

κ2 = 2Ω
(

2Ω+ r
dΩ

dr

)

(7)

is approximately given by

κ= ΩK

(

1− q
r3

D3

)

. (8)

In addition to the above-mentioned axisymmetric deformation from the Keplerian one,

the disk of the central star is deformed by non-axisymmetric tidal waves. The set of (ωD, mD)

of the deformation is given by (mDΩ
∗

orb
, mD).

3.2. One-Armed Low-Frequency Oscillation with ω−mΩ< 0

Since the disk rotation is slightly deviated from the Keplerian one by the tidal force [see

eq. (6)], an one-armed (m=1) p-mode oscillation on the disk is global and has a low frequency

(Osaki 1985, see also Kato 1983). The dispersion relation for local oscillations [see, e.g., Kato

2001 and Kato et al. 2008] shows that the radial propagation region of such low frequency

oscillation [the frequency and azimuthal wavenumber of the oscillation are are denoted ω1 and

m1(= 1), respectively] is specified by

ω1 < Ω−κ. (9)

Since Ω−κ is given by [see equations (6) and (8)]

Ω−κ =
3

4
qΩK

(

r

D

)3

, (10)
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and increases outwards, the propagation region of the oscillation with frequency ω1 is bounded

inside. The inner edge, rc, of the propagation region where ω1 = Ω−κ is given by

ω1 = (Ω−κ)c =
3

4
qΩK(rc)

(

rc
D

)3

. (11)

The outer edge of the propagation region is the outer edge of the disk, rt, which will be specified

as the radius where the disk is truncated by wave-wave resonant instability.

The low-frequency one-armed oscillation with frequency ω1 is thus trapped in the radial

region of rc < r < rt. The region is schematically shown in figure 2. It is noted that in this

propagation region, ω1−m1Ω is negative, i.e., ω1−m1Ω< 0.

3.3. High-Frequency Oscillation with ω−mΩ> 0 and Efficiency of Coupling

As the counterpart of the ω1-oscillation described above, we consider here an oscillation

with ω−mΩ > 0 which satisfies the resonance conditions (2). The oscillation is taken to be

a p-mode. Its frequency and azimuthal wavenumber are denoted, respectively, ω2 and m2,

and are determined later. A p-mode oscillation with given ω2 and m2 has two propagation

regions of ω2 >m2Ω+ κ and ω2 <m2Ω− κ (e.g., Kato 2001, Kato et al. 2008). In the former

propagation region we have ω2 −m2Ω> 0, while in the latter we have ω2−m2Ω < 0. Hence a

p-mode oscillation in the former region is our concern here.

As will be found later, the resonant instability occurs for oscillations with m2 = −2.

Thus, m2Ω+κ < 0, and as is shown schmatically in figure 2, the ω2-oscillation has ω2 < 0 and

is trapped between the inner edge, rs, of the disk and the radius rL (the Lindblad resonance)

specified by

ω2 =m2ΩL + κL, (12)

where the subscript L denotes the value at r = rL. Outside of rL the oscillations are spatially

damped. For trapping to occur, a relation among rs, rL, and ω2 is necessary as a trapping

condition. In the present problem, however, we need not to pay particular attention on such

a condition by the following reason. Near to rs, the ω2-oscillation has very short wavelength

in the radial direction, since the difference between ω2 and (m2Ω+ κ)L becomes large there

and the difference must be compensated by the radial wavelength becoming short (consider

the dispersion relation of p-mode oscillations.) In other words, the oscillation with ω2 is one of

high ovetones and near to frequency ω2 there are many eigen-frequencies densely. This means

that in practice any ω2 can become a eigen-frequency and no relation between rs, rL, and ω2 is

unnecessary here.

For the resonant coupling between two oscillations with (ω1, m1) and (ω2, m2) through

disk deformation to occur, the resonant conditions (2) are necessary as mentioned before.

In addition, for the coupling to be efficient, the position of rL must be in the propagation

region of the ω1-oscillation, since the coupling efficiency is determined by volume integrations

of some linear products of displacement vectors ξ1, ξ2, and ξD, they being displacement vectors
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associated with the ω1- and ω2-oscillations and with the ωD disk deformation (Kato et al.

2011). For the coupling terms to become large, i) the region where ξ1 has a large amplitude

and that where ξ2 has a large amplitude must overlap, and ii) both ξ1 and ξ2 in the overlapped

region do not vary in the radial direction with short wavelength. The latter requirement comes

from the fact that if ξ
2
, for example, changes in the radial direction with short wavelength a

volume integration of products among ξ1, ξ2, and ξD becomes small by cancellation. The above

consideration concerning the coupling efficiency suggests that the resonant couplng occurs most

strongly in the case of rL ∼ rt by the following reasons. The amplitude of the low-frequency

one-armd oscillation is large around r = rt (see section 5 and also figure 3 by Hirose & Osaki

1993). Hence, if rL > rt, the ω2-oscillation has short wavelength around r∼ rt and the coupling

term resulting from the volume integration becomes small. On the other hand, if rL < rt,

the amplitude of the ω2-oscillation is small around r ∼ rt, since the region around rt is the

evanescent region of the ω2-oscillation. Based on these considerations, we adopt rL = rt and

take3

ω2 =m2Ωt + κt, (13)

where the subscript t denotes the value at r = rt.

4. Equation Describing Tidal Truncation Radius rt

As resonant conditions which lead to realistic cases, we adopt

ω2 = ω1−ωD and m2 =m1 −mD. (14)

Then, substituting ω1= (Ω−κ)c, m1 =1, ωD=mDΩ
∗

orb
, and equation (13) into the first relation

of equations (14), we have as the condition of wave-wave resonant instability

(mD − 2)Ωt =mDΩ
∗

orb
− (Ω−κ)t− (Ω−κ)c, (15)

where the subscript c denotes the value at r = rc, and (Ω−κ)t and (Ω−κ)c are obtained from

equation (10):

(Ω−κ)c =
3

4
qΩK(rc)

(

rc
D

)3

,

(Ω−κ)t =
3

4
qΩK(rt)

(

rt
D

)3

. (16)

The growth rate of the wave-wave resonant instability depends on magnitudes of coupling terms

and disk deformation (for a general expression for growth rate, see Kato et al. 2011).

If the difference between Ω and κ is neglected, equation (15) gives

Ωt =
mD

mD − 2
Ω∗

orb
. (17)

3 A rigorous way to know the relation among rL, rt and other quantities is to calculate the coupling terms and

the resulting growth rate of oscillations for various sets of rL, rt and rc and to combine this procedure with

that determining rt and rc in the following sections. This is, however, beyond the purpose of this paper.
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Fig. 2. Schematic diagram showing frequencies and propagation regions of the ω1- and ω2-oscillations.

The scales of coordinates are arbitrary, and are not linear. The ω1-oscillation is trapped between rc and

rt. The inside of rc is the evanescent region. The ω2-oscillation has a negative frequency and propagates

between the inner edge of the disk and rL. (Here, rL and rt are taken to be equal.) The propagation

region is rather wide, but this does not mean that the ω2-oscillation is observed with large amplitude,

since the oscillation has very short radial wavelength except near to rt.

This is the results known as the parametric resonance, i.e., the 3 : 1 resonance in the case of

mD = 3, and the 2 : 1 resonance in the case of mD = 4. It is noted that in the above cases of

mD = 3 and mD = 4, both of ω2 and m2 are negative.

If we have a relation between rt and rc, equation (15) gives rt and rc (and thus ω1

and ω2) as functions of q. The relation between rt and rc is obtained by considering that the

ω1-oscillation is trapped between rc and rt. That is, the relation is obtained by imposing the

trapping condition, which is a relation among rc, rt and acoustic speed, cs. Thus, parameters

to solve equation (15) are q and cs.

5. Trapping of One-Armed Low-Frequency Global Oscillation

The one-armed low-frequency p-mode oscillation with frequency ω1 is trapped in the

region of rc < r < rt. The purpose here is to derive a relation between rc and rt by solving

the eigenvalue problem, introducing acoustic speed in the disk. This problem has already been

examined by Hirose & Osaki (1993) by using vertically integrated hydrodynamical equations.

In different contexts, similar problems have been examined, i.e., by Okazaki (1991) for V/R

variations of Be stars, and by Silbergleit et al. (1990) and others for c-mode oscillations

in relativistic disks. Here, we consider the simplest situations that the radial wavelength of

perturbations (on the order of rt−rc) is so short that the characteristic radial scale of variations

of unperturbed quantities in disks can be neglected except when we consider the radial variation

of ω−(Ω−κ). In this case the wave equation describing the trapped oscillation is (see Appendix)
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(

d2

dr2
+Q

)

ur = 0, (18)

where

Q(r) =
(ω−Ω)2−κ2

c2
s

. (19)

Equation (18) is now solved by the WKBJ method. In the region of rc < r < rt, the

approximate solution can be written as

ur =Q−1/4exp
[

± i
∫

Q1/2dr
]

. (20)

The radius rc is the turning point of Q, where Q = 0. Near rc, the solution of equation (18)

thus can be expressed in terms of the Bessel functions of the order of ±1/3 (Morse & Feshbach

1953). The asymptotic dependence of the solution for r ≫ rc can be arranged so that it can

be expressed in the form of equation (20). Furthermore, by taking only the solution whose

amplitude spatially damps in the region of r < rc (the evanescent region of oscillations), we

have (Morse & Feshbach 1953)

ur ∼Q−1/4
[

cos
(

w−
5

12
π
)

+cos
(

w−
1

12
π
)]

, (21)

where

w(r) =
∫ r

rc
Q1/2dr. (22)

Next, we impose a boundary condition at r = rt. Since in this paper rt is taken to be

the outer edge of the disks, the vanishing of the Lagrangian variation of pressure, i.e., δp = 0,

will be relevant. This is approximately equal to h1 = 0 (see Appendix for definition of h1), and

thus to dur/dr = 0 at r = rt. From the differentiation of the terms in the brackets of equation

(21) with repect to r, we have (see also Silbergleit et al. 2001)

wt ≡
∫ rt

rc
Q1/2dr =

(

n+
1

4

)

π (23)

as the condition determining the wave trapping,4 where n=0,1,2,3.... Since we are considering

the fundamental mode in the radial direction, we adopt hereafter n= 0, and wt = π/4.

We now perform the integration of Q1/2 by using expression (19) for Q. Considering

that (ω−Ω)2 −κ2 ∼−2Ω[ω− (Ω− κ)], and further that ω = ω1 = (Ω−κ)c and Ω− κ is given

by equation (10), we have

Q =
3

2

(

GM

Dc2
s

)

q

D2

[

1−
(

rc/D

r/D

)3/2]

. (24)

4 If we adopt ur = 0 at r = rt as the boundary condition, we have

wt ≡

∫ rt

rc

Q1/2dr =

(

n+
3

4

)

π.
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Fig. 3. The q - rt/D and q - rc/D relations calculated by our model. The former relation is drawn for

cs/(GM/D)1/2 = 0.02, which is almost free from the value of cs/(GM/D)1/2. The latter relation is drawn

for three cases of cs/(GM/D)1/2 =0.01, 0.02, and 0.04. The region between rt and rc is the trapped region

of the ω1-oscillation. The trapped region becomes wide as cs increases. For comparison, the maximum

radial size of periodic orbit of a test particle in the binary potential calculated by Paczński (1977) is ploted

for some values of q by black circles. The tidal instability occurs for q < 0.22.

Here, we consider that (rt − rc)/rc ≪ 1 (the WKBJ method is still valid since GM/Dc2
s
is a

large quantity). Then, we can approximately perform the integration of equation (22) to have

wt =
(

GM

Dc2
s

q
)1/2 (rt/D)3/2− (rc/D)3/2

(rc/D)1/2
, (25)

which is changed to

rt
D

=
rc
D

+
2

3

wt

q1/2
cs

(GM/D)1/2
. (26)

This is a relation between rt/D and rc/D with dimentionless parameters cs/(GM/D)1/2 and q.

6. Numerical Calculations

Substitution of equations (16) and (26) into equation (15) gives the disk truncation

radius rt as a function of q and cs/(GM/D)1/2. The q - rt relation for cs/(GM/D)1/2 = 0.02 is

shown in figure 3. The q - rt relation depends little on cs/(GM/D)1/2. The q - rc relation, on the

other hand, depends on cs/(GM/D)1/2, and the relation in three cases of cs/(GM/D)1/2=0.01,

0.02, and 0.04 are also shown in figure 3. The region between rt and rc is the trapped one of

the ω1-oscillation. As is expected, the width increases with increase of cs/(GM/D)1/2.

Paczyński (1977) estimated the maximum size of accretion disks in a binary system by

calculating the maximum size of periodic orbit of a test particle. One of such radii, e.g., rmax

in his paper, is also shown in figure 3, for comparison, for some values of q. The comparison

shows that the disk size is limitted by the tidal instability in the case where q < 0.22.

The observed superhump frequency ωsh is related to Ωorb and ω1 by (Osaki 1985)

9



Fig. 4. The q - ǫ relation calculated for three cases of cs/(GM/D)1/2 = 0.01, 0.02, and 0.04. These curves

are superposed on the diagram plotting observed q - ǫ relation (figure 34 of T. Kato et al. 2009). The

names of nine sources in this figure are listed in table 6 of T.Kato et al. (2009).

ωsh = Ωorb −ω1, (27)

where Ωorb is the binary orbital frequency in the inertial frame [i.e., Ωorb=Ω∗

orb
(1+q)1/2]. Then,

the dimensionless quantity defined by ǫ ≡ Psh/Pobr − 1, where Psh and Porb are the period of

superhump and the orbital period (in the inertial frame), respectively, is written as

ǫ=
ω1/Ωorb

1−ω1/Ωorb

. (28)

Here, in our present model, ω1/Ωorb is given by [see eq. (11)]

ω1

Ωorb

∼
3

4

q

(1+ q)1/2

(

rc
D

)3/2

. (29)

The q - ǫ relation calculated by using the above relations (28) and (29) is drawn in figure 4 for

three cases of cs/(GM/D)1/2 = 0.01, 0.02 and 0.04. In order to compare with observations, the

curves are superposed on the q - ǫ plot by T.Kato et al.(2012) for recently observed sources.

The calculated curve in the case of cs/(GM/D)1/2 = 0.02, which is cs/(DΩ∗

orb
), seems to be

close to observational results. The dimensionless value of cs/(GM/D)1/2 =0.02 will be relevant

observationally, since in accretion disks in cataclysmic variables, DΩorb ∼ 500km s−1 and cs ∼

10km s−1.

7. Discussions

The present wave-wave resonant excitation model well describes the tidal instability -

superhump phenomena in dwarf novae. This is not surprising, since the present excitation model

can be regarded just as a combination of the tidal instability model by Lubow (1991a) and the

precession of low frequency eccentric deformation by Osaki (1985) into a unified scheme. In the
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tidal instability model by Lubow (1991a), the precession of the disk deformation is not essential

in understanding the essence of the instability. The tidal torque and pressure force, however,

make the deformation precess (Lubow 1992, 1994). Hence, there is a connection between

the instability and eccentric precession, and much attention has been taken to the connection

(Goodchild & Ogilvie 2006, Ogilvie 2007, Lubow 2010). In these studies, the temperature

dependence of the precession has been examined (Lubow 2010). Here, we compare our results

with those by Lubow (2010). Figure 5 shows the ω1 - (H/r)t relation in the case of q = 0.1,

where H is the disk half-thickness and taken simply to be cs/ΩK and the subscript t denotes

the value at the disk truncation radius, rt. The results show that the precession rate decreases

with increase of (H/r)t, which agrees with results by Lubow (see figure 6 of Lubow 2010).

Quantitatively, however, there are some differences. These differences partially come from

differences of situations considered. In Lubow’s calculations the disk edge is taken at 0.5D,

while in our calculations it is taken at rt which is determined by relation (15) and smaller

than 0.5D, depending on (H/r)t. In Lubow’s calculations the rate of precession is taken to

become the gravitational precession rate of a free particle on an excentric orbit in the limit of

no temperature, while in our calculations it is taken to tend to (Ω−κ)t.

It is noted that in our wave-wave resonant instability model two small amplitude oscil-

lations are superposed on a steady deformed disk, and their resonant instability is considered.

In other words, in a stage where the disk deformation is growing rapidly with time, the model

cannot be applied. One of other important approximations involved in the present model is

that rt and rL are assumed to be equal. In the limit of no temperature, the ω2-oscillation is

localized sharply at rL (the radius of the inner Lindblad resonance), and thus the coupling

constants between the ω1- and ω2- oscillations are large only when rt and rL are equal. In

disks with finite temperature, however, the radial region where the coupling constants are large

becomes wide. As is mentioned in a footnote, to know a proper relation between rt and rL we

must calculate the radial distribution of the coupling coefficients, using the functional forms

of the oscillations. This is a complicated problem. This situation corresponds to the fact that

in disks with finite temperature the resonant region has a finite width (e.g., Meyer-Vernet &

Sicardy 1987).

In our model the presence of two oscillation modes with opposite signs of ω−mΩ are

essential for instability, and one of the oscillations excited (i.e., one-armed low-frequency oscilla-

tion with ω−mΩ< 0) brings about a precession of the deformation. The other oscillation with

ω−mΩ > 0 is not directly related to the superhump, but important for resonant instability.

This latter mode corresponds to the intermediate disk deformation mode in Lubow’s resonant

feedback process (Lubow 1991a). In our present model, |m2| = 2 like Lubow’s case, and its

frequency |ω2| changes with the change of ω1, since they are related by a resonance condition

as |ω2| = ωD −ω1. The frequency |ω2| of the oscillation is shown in figure 6 as a function of q

in the case of cs/(GM/D)1/2 = 0.02. The curve depends little on the value of cs/(GM/D)1/2,

11



Fig. 5. The temperature dependence of ω1 in the case of q=0.1. The rate of precession, ω1, is normalized

by Ωorb and the effects of temperature are measured by (H/r)t, where H is the disk half-thickness and

H/r is taken to be cs/ΩK. In the limit of zero temperature, ω1 tends to (Ω− κ)t in our model. For

comparison, Ω− κ at the radius of Ω = 3Ω∗

obs
is shown by a thin line.

but changes in the range of 3.0∼ 2.4Ωorb for change of q in the range of 0< q < 0.4.

Observational detection of the ω2-oscillation and its q-dependence is an interesting sub-

ject to judge whether the present wave-wave resonant instability model represents real situations

of tidal instability - superhump phenomena. Osaki (2003) pointed out that complex superhump

light curves for the 2001 outburst of WZ Sagittae can be interpreted as excitation of many oscil-

lation modes. Especially, he emphasizes the appearance of two armed oscillation with frequency

3Ωorb−ω1, and considers it as a support of Lubow’ mode-coupling model. Except for this case,

however, there seems to be no observational evidence which suggests the coexistence (with the

ω1-oscillation) of the ω2-oscillation in the superoutburst stage (private communication by T.

Kato). Osaki suggests that this is due to the fact that many sources with superhumps are

observed pole-on. In addition there will be following situations for difficulty of observations

of the ω2-oscillation. As mentioned before, the ω2-oscillation has short wavelength except in

the region near to rt, although its propagation region is wide. Hence, a large luminosity vari-

ation will not be expected, since various phases of the oscillation are superposed on observed

quantities. Furthermore, rL = rt adopted in this paper is an approximation. The outer part of

disks will be fluctuating with time in general, and this will introduce time fluctuations in the

relation between rL and rt. If so, the phase and frequency of the ω2-oscillation will be subject

to it, more than those of the ω1-oscillation. This will smear observational properties of the

ω2-oscillation.

So far, we have considered the so-called 3 : 1 resonance which occurs for mD = 3. In

this case the ω2-oscillation is a two-armed one (i.e., |m2|= 2) with frequency close to 3Ωorb as

mentioned above. For tidal deformation of mD = 4, on the other hand, the instability occurs

near 2 : 1 resonance [see equation (17)]. In this case, rt is larger than that in the case of the

12



Fig. 6. The q - |ω2| relation calculated for cs/(GM/D)1/2 = 0.02. The corresponding curves in the cases

of cs/(GM/D)1/2 = 0.01, and 0.04 are almost the same as that in the case of cs/(GM/D)1/2 = 0.02.

For reference, the frequency |ω2| in the case of the 2 : 1 resonance is also drawn as a function of q for

cs/(GM/D)1/2 = 0.02.

3 : 1 resonance. The ω2-oscillation in this case is three-armed (i.e., |m2|= 3) and its frequency

is close to 4Ωorb [see equation (14)]. As mentioned before, observational detection of the ω2-

oscillation is interesting to evaluate validity of the present wave-wave resonant model. Thus,

for reference, the frequency, |ω2|, in the case of the 2 : 1 resonance is also drawn in figure 5 as

a function of q.

We think that the high frequency quasi-periodic oscillations (HF QPOs) in microquasars

will result from a similar process considered here. Hence, detailed examinations how well the

present wave-wave resonant model can describe the superoutburst-superhump phenomena in

dwarf novae is helpful to consider more the excitation mechanism of HF QPOs in BH LMXBs.

The author thanks T. Kato for discussions on various observational aspects of super-

humps, and Y. Osaki for pointing out the presence of high frequency oscillation of Ωorb−ω1 in

an outburst stage of WZ Sagittae. The author also thanks the referee for pointing out recent

theoretical developments on disk precession and for many helpful suggestions.

Appendix: Wave Equation Describing Disk Oscillations

For simplicity, the disk is assumed to be vertically isothermal. Then, the vertical hydro-

static balance gives

ρ0(r,z) = ρ00(r)exp
(

−
z2

2H2

)

, (30)

where ρ0(r,z) is the density in the unperturbed disk and ρ00(r) is that on the equatorial plane.

The scale height in the vertical direction, H , is given by

H2(r) =
c2
s

Ω2
K

(

1+
1

2
q
r3

D3

)

≡
c2
s

Ω2

⊥

, (31)
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where cs(r) is the isothermal acoustic speed and Ω⊥ is the vertical epicyclic frequency in the

tidally deformed disks.

On the disks we impose small-amplitude isothermal perturbations. The perturbations

are assumed to be proportional to exp[i(ωt−mϕ)]. Then, hydrodynamical equations describing

the small-amplitude perturbations are

i(ω−mΩ)ρ1 +
∂

r∂r
(rρ0ur)− i

m

r
ρ0uϕ

+
∂

∂z
(ρ0uz) = 0, (32)

i(ω−mΩ)ur − 2Ωuϕ =−
∂h1

∂r
, (33)

i(ω−mΩ)uϕ +
κ2

2Ω
ur = i

m

r
h1, (34)

i(ω−mΩ)uz =−
∂h1

∂z
, (35)

where h1 is defined by

h1 =
p1
ρ0

= c2
s

ρ1
ρ0

. (36)

Here, (ur, uϕ, uz) are velocity perturbations over unperturbed one (0, rΩ, 0), and ρ1 and p1

are the density and pressure perturbations over the unperturbed ones, ρ0 and p0, respectively.

Hereafter, we consider perturbations whose radial wavelength is shorter than the char-

acteristic radial scales of unperturbed quantities in disks. Elimination of uϕ from equation (33)

and (34) then gives

[−(ω−mΩ)2+ κ2]ur =−i(ω−mΩ)
∂h1

∂r
. (37)

Furthermore, the continuity equation (32) is reduced to

i(ω−mΩ)
h1

c2
s

+
∂ur

∂r
+
(

∂

∂z
−

z

H2

)

uz = 0. (38)

Under the same approximation, elimination of uz from this equation by using equation (35)

gives

∂2h1

∂z2
−

z

H2

∂h1

∂z
+

(ω−mΩ)2

c2
s

h1 = i(ω−mΩ)
∂ur

∂r
. (39)

Equations (37) and (39) are the set of equations to be solved. As mentioned in the text,

we are interested in one-armed (m = 1) low-frequency oscillations, where ω ∼ Ω− κ. Hence,

the radial variation of (ω −Ω)2 − κ2 should be taken into account, but the radial variations

of other quantities are neglected. Then, operating ∂2/∂z2 − (z/H2)∂/∂z + (ω −mΩ)2/c2
s
on

equation (37) and eliminating h1 from the resulting equation by using (39), we have an partial

differential equation with respect to ur. After manipulations we have
(

∂2

∂z2
−

z

H2

∂

∂z

)

ur +
(ω−Ω)2

c2
s

ur
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+
(ω−Ω)2

(ω−Ω)2−κ2

∂2

∂r2
ur = 0, (40)

where m= 1 has been adopted.

This partial differential equation can be easily decomposed into two ordinary differential

equations. That is, decomposing ur(r,z) as ur(r,z) = g(z)f(r), we have
(

∂2

∂z2
−

z

H2

∂

∂z
+K

)

g(z) = 0 (41)

and
[

(ω−Ω)2

(ω−Ω)2−κ2

∂2

∂r2
+

(ω−Ω)2

c2
s

−K
]

f(r) = 0, (42)

where K is the separation constant, and can be determined by solving equation (41) with

relevant boundary conditions at z =±∞.

Equation (41) is the Hermite equation. Imposing that ρ
1/2
0 (z)g (which is proportional

to kinetic energy of perturbations) remains finite at z =±∞, we find that K should be zero or

a positive integer and g(z) is the Hermite polynomials (Okazaki et al. 1987):

K = n, n = 0,1,2, ... (43)

and

g(z) =Hn(z/H). (44)

In the present problem, we are interested in the fundamental p-mode oscillation, i.e.,

n = 0. Hence, equation (42) is reduced to
[

d2

dr2
+

(ω−Ω)2−κ2

c2
s

]

f(r) = 0. (45)

This is the equation which we treat in the text.
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Note added on Jan. 3, 2013

In the present paper, we have restricted our attention only to the resonances of ω2 = ω1±ωD

and m2 = m1 ±mD. If the resonances of ω = −ω1 ± ωD and m2 = −m1 ±mD are considered,

the instability condition in the latter cases is found to be (E1/ω1)(E2/ω2) > 0, different from

(E1/ω1)(E2/ω2) < 0 in the former cases of ω2 = ω1 ± ωD and m2 = m1 ±mD. If the latter

resonances are taken into account, we see that in addition to the ω2-oscillations considered in

this paper (i.e., ω2 = ω1 − ωD < 0 and m2 = m1 −mD < 0), the ω2-mode of oscillations with

ω2 =−ω1+ωD > 0 and m2 =−m1+mD > 0 is also excited. These two oscillations are, however,

the same, since both signs of ω and m are changed simultaneously. A detailed re-examination

of wave-wave resonant instability by Kato et al. (2011) will be made in a subsequent paper.
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