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In the light of their relationships with renormalization, in this paper we associate the scaling
transformation with nonlocal interactions. On one hand, the association leads us to interpret the
nonlocality with locally symmetric method. On the other hand, we find that the nonlocal inter-
action between hadrons could be test ground for scaling transformation if ascribing the running
effects in renormalization to scaling transformation. First we derive directly from group theory the
operator/coordinate representation and unitary/spinor representation for scaling transformation,
then link them together by inquiring a scaling-invariant interaction vertex mimicking the similar
process of Lorentz transformation applied to Dirac equation. The main feature of this paper is
that we discuss both the representations in a sole physical frame. The representations correspond
respectively to the spatial freedom and the intrinsic freedom of the same quantum system. And
the latter is recognized to contribute to spin angular momentum that in literature has never been
considered seriously. The nonlocal interaction Lagrangian turns out to vary under scaling trans-
formation, analogous to running cases in renormalization. And the total Lagrangian becomes scale
invariant only under some extreme conditions. The conservation law of this extreme Lagrangian
is discussed and a contribution named scalum appears to the spin angular momentum. Finally a
mechanism is designed to test the scaling effect on nonlocal interaction.

I. INTRODUCTION

Nowadays, on account of the developments of string theory [1, 2], Lattice QCD [3] and the necessity to describe
nonperturbatively the intermediate strong interaction between extended hadrons [4], the construction of a consistent
nonlocal theory is still called for [5–20]. The pioneering study of nonlocal interaction dates back to the 1930’s [21]
when quantum field theory was in its infancy. And the phenomenology of nonlocal interaction commenced with the
primary attempts to describe the interaction between extended particles (such as hadrons [22, 23]), whilst to cope
with the divergence appearing in local quantum field theories (LQFT). The development afterward purported mainly
to give a consistently convergent theory in order to underlie the named ”effective field theory”, whereof some form
factors were usually employed [5–9, 24–36]. Whereas in such context one encounters the difficulty of unitarity and
causality in formulating the S matrix [26, 36], no matter the Feldman-Yang [37] method or conventionally canonical
quantization method [26]. Some promising progresses on this issue [6, 7, 9, 32, 33, 38–43] in one way or another showed
their accordance with the renormalization methods [44–47]. In this paper we try to use the scaling transformation
(dilatation of space-time), which is inspired by renormalization and assumed effective in nonlocal description of hadron
physics, to unveil part of running effects in nonlocal interaction.

More often than not, previous investigations on nonlocal interaction tried to fit certain results to those of renor-
malization [6, 9, 32, 33]. Reversely, in this paper we phenomenologically extract a scaling transformation from
renormalization for nonlocal interaction based on their similar physical picture. With afterthought, the achievements
of finding that nonlocal interaction are linked with renormalized interaction vertex may in one aspect owe to their
common characteristic of effectively using form factors. For instance, in QED, the momentum-space vertex with
renormalization is [48, 49]

Γµ(p′, p) = γµF1(q
2) +

iσµνqν
2m

F2(q
2) . (1)

where q = p′ − p, with F1(q
2) and F2(q

2) known as Dirac and Pauli form factors respectively. Similarly, the nonlocal
interaction has its general form factors in coordinate-space [35, 36],

LI = −g

∫ ∫

d4ξd4ηF (ξ, η)Aµ(x)ψ̄(x+ η)Γµψ(x + ξ) . (2)

Here the vertex Γµ could be the usual vector γµ, tensor like iσµνqν , or other forms to be determined. Its form in
momentum-space then is

LI = −gAµ(q
2)ψ̄(p)F (p, p′)Γµψ(p′).
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where q = p′ − p, ψ(p′) is the spinor in momentum space and the expansion like ψ(x+ ξ) =
∑

p
ψ(p)eip(x+ξ) has been

implicit. The F (p, p′) is defined as the Fourier transform of F (ξ, η)

F (p, p′) =

∫ ∫

d4ξd4ηeipηF (ξ, η) e−ip
′ξ . (3)

The renormalization group method (RGM) has its intrinsic relationship with scaling transformation if viewing the
differentiating operator µ d

dµ in group equation as scaling operator. In RGM, for a function Λ that represents a vertex

function, a wave function or a propagator, its renormalized form and unrenormalized form are linked as [46]

Λ = ZFΛR ,

whence the form factor F (p, p′) may be (approximately) viewed as just the collection of these ZF s, which are obtained
by loop corrections. Differentiating the above equation with respect to renormalization parameter µ, and in view of
that unrenormalized Λ is independent of µ, one immediately gets

µ
dΛR
dµ

+ γF ΛR = 0 , (4)

where γF is the anomalous scaling dimension defined by

γF = µ
d

dµ
lnZF .

In the next section one may note that the operator µ d
dµ is just the scaling operator in its spatial representation,

apart from a coefficient i. The eq. (4) is a special form of renormalization group equation, and the well known form
is [50, 51]

[M
∂

∂M
+ β(λ)

∂

∂λ
+ nγ(λ)]G(n)({xi};M,λ) = 0

which is for any Green’s function of massless φ4 theory. Supposes the function ΛR has a dimension γF with respect
to a scale parameter µ, then by such transformation µ→ λµ, the ΛR yields

ΛR(µ, other parameters) = λγF ΛR(
µ

λ
, other parameters) ,

that is the essence of RGM. Besides the obvious application of spatial scaling-transformation to the nonlocal form factor
F (p, p′), in this paper we will focus on how it affects spinors consistently while involving its unitary-representation.

The scaling transformation, i.e. a freedom added to Poincare group to formWely group [52], belongs to a larger group
called 4-dimension Conformal Group, which in mathematical side has been investigated thoroughly from different
aspects, and its application to physics especially to quantum field once was also widely considered. However the
application is not so satisfactory because hitherto no other perfect quantum system than photon field [53, 54] has
been found so that the corresponding Lagrangian is scaling invariant, i.e. demanding the mass of involved particles
to be null [55–60]. Furthermore, one inference of the scale invariance is that according to Noether’s theorem, if
a Lagrangian is invariant under scaling transformation, then the trace of the energy-momentum tensor should be
null [56, 58]. These two factors become obstacles to apply the scaling transformation to most material fields. Other
efforts were also experienced to search for invariant fermion equation or scattering amplitude [57, 59, 61], and even
to apply it to nonlocal action [62, 63]. None of the results is pertinent to known material fields. In this paper we
investigate the application by trying two new tentative methods. One is to consider the unitary representation and
the coordinate representation of conformal group simultaneously. The other is to apply the scale transformation to
hadron physics since, the hadrons have their own sizes with which the interactions between them to some extent vary.
Accordingly the test bed for conformal transformation might be nonlocal interaction between hadrons. However, here
the scaling transformation works not for invariance, but for running. The running effects of nonlocal interaction are
just like those in renormalization.

In this paper we shall use the scaling feature of RGM, but we free us from the detail calculation of renormalization.
Since we are looking for a transformation method to interpret the running effect in nonlocal interaction, once we
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already got an effective form of Lagrangian or Hamiltonian, we would just use tree-level form to do calculations.
The further loop calculation will double count something, Born approximation is fine for most cases of interest. The
calculation resembles that used in deep inelastic scattering, though we are involved just elastic processes. In summary,
in the whole paper we focus more on the properties of scaling transformation/conformal group, and on how to apply
them to nonlocal fields.

The rest of the paper is arranged as follows. Sect. II is dedicated to introducing the two representations of
scale transformation, i.e. the coordinate/operator representation and spinor/unitary representation. In Sect. III we
establish the physical relationship between the two representations, on condition that a scale invariant vertex exists.
Subsequently in Sect. IV we discuss the conservation law for the derived scaling-invariant vertex, and the possibility
that it relates to the nucleon’s polarizations is posed. In Sect. V according to the characteristics of applying the
general vertex-form γµ(a + bγ5) to polarized scattering, a mechanism is proposed to examine the predictions on
nonlocality. Conclusions and discussions are presented finally.

II. THE SPATIAL AND SPINOR REPRESENTATIONS FOR SCALING TRANSFORMATION BASED

ON GROUP THEORY

It is well known that the scaling transformation belongs to a larger Conformal Group [52, 56], therefore next we
will learn first the properties of 4-dimensional Conformal Group, including its spatial/operator representation and
unitary/spinor representation, as well as commutations among their generators. At the end of this section, we will
understand the role of operator µ d

dµ in the conformal group. The spatial representation is mainly referencing to that

of Ref. [52, 64] and the unitary representation is derived by applying Cartan method [65] to SO(6)−SU(4) transform.
The unitary representation is the focus of this section, and of this paper as well.
Mostly the scaling transformation in 4-dimension is discussed as a subset of conformal group, and in previous

literature its applications are seldom considered independently [56]. Here we start with the null vector space (Euclidean
space),

η21 + η22 + η23 + η24 + η25 + η26 = 0 . (5)

reserving which gives the popular definition of conformal group [65]. A special expression of the differential forms in
4-dimension spatial representation can be derived directly from the above equation. In derivation we need to apply
the following variables [52]

xµ =
ηµ
K

, where K = η5 + i η6 , where µ = 1, 2, 3, 4 (6)

together with the differential form

∂

∂ηa
=

1

K
{[δaµ − (δa5 + iδa6)xµ]

∂

∂xµ
+ (δa5 + iδa6)K

∂

∂K
} , where a = 1, 2, · · · , 6 (7)

to the definition of 6-dimensional angular-momentum

Mab = i(ηa
∂

∂ηb
− ηb

∂

∂ηa
), where a, b = 1, 2, · · · , 6 . (8)

Then one gets the following generators for conformal group [52] [of which in eq. (56)]

D = iM56 = −(η5
∂

∂η6
− η6

∂

∂η5
) = i(xµ

∂

∂xµ
−K

∂

∂K
),

Pµ = M5µ + iM6µ = i
∂

∂xµ
, Kµ =M5µ − iM6µ = i{−x2

∂

∂xµ
+ 2xµxν

∂

∂xν
− 2K xµ

∂

∂K
}, (9)
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The projected form (making K as constant boundary of Minkowski space[66]) with Minkowski convention then is

D = i xµ
∂

∂xµ
, Mµν = i(xµ

∂

∂xν
− xν

∂

∂xµ
),

Pµ = i
∂

∂xµ
, Kµ = −i(x2

∂

∂xµ
− 2xµx

ν ∂

∂xν
), (10)

where Mµν represent the components of conventional angular momentum in 4-dimension. The corresponding com-
mutation relation can be obtained by direct computation,

[Mµν ,Mρσ] = i(gνρMµσ + gµσMνρ − gµρMνσ − gνσMµρ),

[Mµν , Pρ] = i(gνρPµ − gµρPν),

[D,Pµ] = −iPµ, [D,Kµ] = iKµ,

[D,Mµν ] = 0

· · · · · · · · · · · · (11)

Before using Cartan method to achieve the unitary representation of Conformal Group, let’s review first the steps
of Cartan method with SO(3)− SU(2) mapping as an example [65][of which in pp. 41-48]. To keep the invariance of
x21 + x22 + x23 = 0, one defines the matrix

X =

(

x3 x1 − i x2
x1 + i x2 −x3

)

. (12)

The trace Tr(X†X) is x21 + x22 + x23. With U as an element of SU(2) group, we define

X ′ = U−1XU , (13)

immediately we have

Tr(X ′†X ′) = Tr(X†X) , (14)

thus SU(2) group keeps the trace invariant, and by this way the group also keeps the metric x21 + x22 + x23. With the
knowledge that the SO(3) group directly reserves the metric x21 + x22 + x23, we conclude that Cartan matrix X acts as

a mapping between SO(3) and SU(2). By the Cartan Matrix X , one can define spinor

(

ξ0
ξ1

)

by

X

(

ξ0
ξ1

)

= 0 , (15)

with the solution ξ0 = ±
√

x1−i x2

2 and ξ1 = ±
√

−x1−i x2

2 , and the reverse yields

x1 = ξ20 − ξ21
x2 = i (ξ20 + ξ21)

x3 = −2ξ0ξ1 , (16)

which automatically satisfies x21 + x22 + x23 = 0 from which we can define the spinor reversely.
From the above Cartan matrix X we can extract the Pauli matrices σ1, σ2, σ3 separately from the coefficients of

x1, x2, x3. Meanwhile Pauli matrices σ1, σ2, σ3 act as the generators of SU(2) group mentioned above. Furthermore
it is easy to test that SU(2) group reserves the metric

| ξ0 |2 + | ξ1 |2= Ξ†Ξ . (17)

And coincidentally the n−vectors form (defined in eq. (24)) based on Pauli matrices don’t generate new matrices,
neither the multiplications nor the commutations among them, they themselves are closed. Now in what follows we
would find the corresponding Cartan matrix from SO(6) to SU(4)/SU(2, 2), namely the spinor representation for
4-dimension Conformal group.
To achieve its unitary/spinor representation in 4-dimension, mimicking the relationship between the metric x21 +

x22 + x23 and that in Eq. (17), we shall associate the metric in Eq. (5) with the invariant quadratic form

| z1 |2 + | z2 |2 + | z3 |2 + | z4 |2= Z†Z , (18)
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by the following matrix [67],

A =







0 x1 + i x2 x3 + i x4 x5 + i x6
−(x1 + i x2) 0 x5 − i x6 −x3 + i x4
−(x3 + i x4) −x5 + i x6 0 x1 − i x2
−(x5 + i x6) x3 − i x4 −x1 + i x2 0






. (19)

Count the degrees of freedom of the groups that conserv separately Eq. (5) and Eq. (18), one finds they are both
15. Next we only need to extract the coefficients before xi’s to get the unitary matrices as generators of SU(4), just
like the method used in three dimension example Eqs. (11-16). If we want to get the generators of SU(2, 2) we need
only to change the signs before x1 and x2 and those ahead of corresponding matrices, which would change the eqs.
(5) and (18) to

− x21 − x22 + x23 + x24 + x25 + x26 = 0 . (20)

and

− | z1 |2 − | z2 |2 + | z3 |2 + | z4 |2= Z†Z . (21)

the latter falls into Dirac spinor like

ψ̃ = (z1, z2, z3, z4) .

It can be examined that the matrix A in Eq. (19) meets the invariant expression

Tr(A†A) = 4(x21 + x22 + x23 + x24 + x25 + x26) (22)

just like the above 3-dimension example, while the SU(4) group keeps the above trace x21 + x22 + x23 + x24 + x25 + x26 =
constant, it simultaneously reserves the metric Eq. (18). The above method of linking real metric to a matrix is
closely analogous to the Cartan method of constructing a spinor representation in any real space. Actually, the true
spinor space for 4-d conformal group following Cartan method should be of 8-dimension instead of 4-dimension [65][of
which in pp. 88-89]. In what follows we would take over the process of deriving all of the n-vectors along the Cartan
method [65][of which in pp.81-83], though we work in 4-dimension rather than 8-dimension. First we extract the
matrices before xi’s in Eq. (19) , i.e.1−vectors,

B1 =

(

i σ2 0
0 i σ2

)

, B2 =

(

− σ2 0
0 σ2

)

,

B3 =

(

0 σ3
− σ3 0

)

, B4 =

(

0 i I
−i I 0

)

,

B5 =

(

0 σ1
− σ1 0

)

, B6 =

(

0 −σ2
− σ2 0

)

. (23)

where σi’s are Pauli matrices. The definition of k-vector is

Bk−vector =
∑

P

(−1)PBn1
Bn2

· · ·Bnk
, (24)

where P denotes different permutations. Apply the above fomula to 2-vector, and use the corresponding subscripts
to denote the 1-vectors involved, then

B12 = B1B2 −B2B1 =

(

i σ2 0
0 i σ2

)(

− σ2 0
0 σ2

)

−

(

− σ2 0
0 σ2

)(

i σ2 0
0 i σ2

)

= 0 .

Similarly, let’s exhaust all possibilities, then obtain other nontrivial 2-vectors

B13 = 2

(

0 − σ1
σ1 0

)

, B15 = 2

(

0 σ3
− σ3 0

)

,

B35 = 2i

(

σ2 0
0 σ2

)

, B36 = 2i

(

σ1 0
0 −σ1

)

,

B46 = −2i

(

σ2 0
0 −σ2

)

, B24 = 2i

(

0 σ2
σ2 0

)

,

B23 = −2i

(

0 σ1
σ1 0

)

. (25)
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We note that the new ones which are independent of Bi’s are just B23 and B36. The same line can be followed to
carry out the 3-vectors. Ignoring the repeating ones, we find the new 3-vectors independent of both 1-vectors and
2-vectors are

B123 ∼

(

0 σ3
σ3 0

)

, B134 ∼

(

σ1 0
0 σ1

)

,

B145 ∼

(

σ3 0
0 σ3

)

, B245 ∼

(

σ3 0
0 − σ3

)

,

B345 ∼

(

0 σ2
− σ2 0

)

, B146 ∼

(

I 0
0 −I

)

,

B124 ∼

(

0 I
I 0

)

. (26)

Computing the 4-vectors and the higher ones would not give new independent matrices. Finally, we can rearrange all
above k-vector-produced matrices as follows [67],

Ui =
1

2

(

σi 0
0 σi

)

Vµ = −
1

2

(

σµ 0
0 −σµ

)

Wµ =
i

2

(

0 σµ
σµ 0

)

Yµ =
1

2

(

0 σµ
−σµ 0

)

(27)

where σi, i = 1, 2, 3 are normal Pauli matrices and σ0 =

(

1 0
0 1

)

. The convention can be changed from Minkowski to

Euclidean spaces while instead requiring σ2
µ = −1, i.e. making σ0 = i and replacing definition of σi by those in [67].

The route of inquiring the concrete matrices following Cartan method as above could be a shortcut that rarely
mentioned in literature. It is can be checked that the commutations among Ui, Vµ, Wµ, Yµ are just those for
conformal group [52, 64], accordingly the mapping from these matrices to corresponding differential-forms turns out
to be

Ui ↔ γiγj −→ i(xj
∂

∂xk
− xk

∂

∂xj
) −→Mjk

Wi ↔ γ0γi −→ i(xi
∂

∂x0
− x0

∂

∂xi
) −→M0k

W0 ↔ γ5 −→ i xµ
∂

∂xµ
−→ D

Vµ + Yµ ↔ γµ(1± γ5) −→ i
∂

∂xµ
−→ Pµ

Vµ − Yµ ↔ γµ(1∓ γ5) −→ −i(
1

2
xνx

ν ∂

∂xµ
− xµxν

∂

∂xν
) −→ Kµ. (28)

We use −→ to represent the accurate mappings and ↔ the equivalence, and the commutations have been examined
by computer. Now we recognize that the role of operator µ d

dµ (or xµ
∂
∂xµ

) in the conformal group is equivalent to the

scaling operator D, with its unitary form γ5.

III. THE PHYSICAL RELATIONSHIP BETWEEN THE TWO REPRESENTATIONS OF SCALING

TRANSFORMATION

Enlightened by Lorentz transformation, in this section we try to link physically the spatial form of scaling transfor-
mation with its spinor/unitary form, the former representing the realistic expansions and contractions of space-time
(dilatation and shrinkage means the same), the latter representing the intrinsic freedom very like spin angular mo-
mentum. Considering both representations in a sole frame is the main feature of this paper.
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As for a nonlocal interaction F (q2)Aν(q2)ψ̄(p)γνψ(p
′), besides knowing that the form factor F (q2) runs with scaling

parameter as described Eq. (4), we are also curious about how a nonlocal interaction vertex γµ varies with scale. Before
drawing any conclusion, let’s first find the invariant vertex Γµ under the scaling transformation by mimicking the
method of utilizing Lorentz transformation to Dirac equation. In this way we link its spatial form with its spinor form.
As for Lorentz transformation, the transformation matrix

(

Λνµ
)

for jµ(y) = ψ̄(y)γµψ(y) corresponds to a complex

transformation S for ψ(y) so that the effect of the transformed result ψ̄(y)S−1γµSψ(y) is equivalent to ψ̄(y)Λµνγ
νψ(y).

Referencing the case of Lorentz transformation, our goal in this section is to search for the corresponding vertex-form
Γµ so that it links with transformation S′ by S′−1ΓµS′ = Λ′µ

νΓ
ν , where S′ = e

u
2
γ5 , γ5 is the spinor representation of

the scaling operator D, and Λ′µ
ν represent tensor’s components of scaling transformation.

Usually we perform the spatial Lorentz transformation on the vectors Aµ and γµ. Obviously this combination
brings about invariant formalism like Aν(q2)ψ̄(p)γνψ(p

′). We follow the convention that the same set of {γµ} is used
in different coordinate systems, which naturally yields an equivalence transformation S satisfying [68, 69]

S−1γµS = Λµνγ
ν = γ′µ, (29)

where Λµν stand for the tensors’ components of the Lorentz transformation. Substituting the Eq. (29) into
Aµ(x)ψ̄(x)γ

µψ(x) yields

A′
µ(y)ψ̄

′(y)S−1γµSψ′(y) = A′
µ(y)ψ̄(y)γ

′µψ(y) . (30)

While looking for Γµ we would follow the same convention as that in the above paragraph, i.e., in different coordinate
system we use the same set of {Γµ}. Then analogously, we use the form of the above formula Eq. (29) for scaling
transformation as

S′−1ΓµS′ = Λ′µ
νΓ

ν , (31)

where formally we have used Λ′µ
ν to represent the scaling transformation to every coordinate component [57, 59], [61][of

which eq.(2)] instead of using the usual form e−α[64]. Slightly different from the operator µ d
dµ appearing in renormal-

ization group equation, here the operator D has the usual form D = i xν∂ν , being a hermit one. With the relation
e−i αDpµe

i αD = e−αpµ, i.e. [D, pµ] = −i pµ[64], we have

(Γµpµ)
′
scaling transform = S′−1ΓµS′Λ′ν

µ pν = S′−1ΓµS′ e−i αDpµe
i αD. (32)

Now let’s submit S′ = e
u
2
γ5 obtained from the last section, where u is the infinitesimal parameter. Formally we get

S′−1ΓµS′Λ′ν
µ pν = e−

u
2
γ5Γµe

u
2
γ5(pµ)

′
scaling transform

= e−
u
2
γ5Γµe

u
2
γ5e−i αDpµe

i αD

= e−
u
2
γ5Γµe

u
2
γ5e−αpµ

.
= e−

u
2
γ5Γµe

u
2
γ5pµ(1− α) . (33)

From the experience of calculating γ−matrix and the following relations

e−
u
2
γ5γµe

u
2
γ5 ≃ (1−

u

2
γ5)γ

µ(1 +
u

2
γ5) ≃ γµ + u γµγ5 , (34)

e−
u
2
γ5γµγ5e

u
2
γ5 ≃ (1−

u

2
γ5)γ

µγ5(1 +
u

2
γ5) ≃ γµγ5 + u γµ , (35)

e−
u
2
γ5γµ(1 ± γ5)e

u
2
γ5 ≃ (1−

u

2
γ5)γ

µ(1 ± γ5)(1 +
u

2
γ5) ≃ (1± u )γµ(1± γ5) , (36)

we find out a possible form of Γµ

Γµ = γµ(1± γ5) while α ∼ u . (37)

The coefficients (1 ± u ) of Eq. (36) can be contracted now to be 1 with coefficients (1 ∓ u ) that come from the
transformation of pµ. And we note that the infinitesimal parameters u and α are not independent. By this way we
set up the relationship between the operator D and its unitary counterpart S′ = e

u
2
γ5 directly.
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The key element of linking the two operators D and S′ = e
u
2
γ5 is the scale-invariant vertex Γµ. One notes that

S′ = e
u
2
γ5 is responsible for acting on Dirac spinor as expected, or equivalently on the vertex Γµ. And the operator

D is responsible for acting on the real vector coupling to Γµ. Thus the scaling invariance holds true for interaction
vertex ΓµAµ, as well as for Γµ pµ. The resultant vertex Γµ = γµ(1 ± γ5) is different from that of Ref. [61] due
to the choice of γ5, since we have followed the convention of Quantum Field Theory. All in all, we have extended
transformation, interaction vertex and spinor space simultaneously, which is reasonable from the viewpoint of entirety.

Now we are interested in what if we perform the scaling transformation S′ succeedingly N times upon the vector
vertex-form γµ. How the vector vertex form γµ varies with scaling is the starting point as well as the end of this
research. Different from Eqs. (34, 35, 36), now we employ the following formulism without approximation

(e−
u
2
γ5)Nγµ(e

u
2
γ5)N = γµ coshNu+ γµγ5 sinhNu , (38)

from which one notes that the vector vertex arrives at its limits γµ(1 ± γ5) only if coshNu
sinhNu → ±1, i.e. Nu → ±∞.

Nu → ±∞ means one carrying out enough steps of inflating or shrinking transformation. We call such states that
involve interaction vertices γµ(1 ± γ5) as extreme states, which evolve from the interaction vertex γµ after the scale
constantly changing. And the variation of coupling constant is assumed to be absorbed into F (q2). It turns out that
such scaling transformation doesn’t conserve the vector-dominant interaction, or alternatively, the transformation
tends to transform the relating spinor from a normal one to a chiral one.

Apart from these two extremes, the true vertex-form for nonlocal interaction would mostly be of mixture form like
aγµ + b γµγ5 after carrying finite steps of scaling transformation. The physics picture could be understood as follows
[Fig.1]. Initially, the pure vector-form γµ plays a rough role in describing the interaction between a point particle and
an extended particle. As for the extended particle, while the interaction is very weak i.e. the interaction energy is very
low, obviously it looks approximately like a point particle, i.e. not a physical particle. So γµ marks initially the rough
interaction between two point-particles. Now let’s zoom in, i.e. improving the energy (momentum) of interaction,
then we can imagine that the extended particle becomes gradually sizable in contrast to original point-like. ”Zooming
in” is equivalent to, as we propose here, many steps of scaling transformation. After finite steps of transformation,
the initial vertex γµ would somehow evolve to a mixture form aγµ+ b γµγ5, with which one can use local vertex-form
and form factor to interpret nonlocal interaction on certain energy scale. And the additional coefficient a is assumed
to be part of the form factor F (q2) of vector interaction, thus equivalent to the running of coupling constant. This
picture coincides with that of renormalization. The conclusion of the above paragraphes also tells that while the
initial interaction between points being γµ ± γµγ5, then while we zooming in, the interaction between the point and
the true extended particle would not change. The extreme form γµ ± γµγ5 between points are the particular cases
that seldom occur. The weak interaction between neutrinos and leptons belongs to such category.

IV. THE CONSERVATION LAW FOR THE SCALE-INVARIANT INTERACTION

A′

µ(x, y)ψ̄(y)γ
µ(1± γ5)ψ(y)

The necessity of studying the conservation law for the extreme vertices is that such vertices might exist for a
very short moment in some scattering processes. According to Eq. (38), to repeatedly perform the transformation
succeedingly until | Nu | becomes very large, the incident particle would approach to a very high energy (or a very low
energy) and its wave shrinks (inflates) to a very small scale (a very large scale). At such very high (low) energy scale, it
is hard for the particles to shrink (inflate) more, and its interaction vertex gets to the form Aµ(x, y)ψ̄(y)γ

µ(1±γ5)ψ(y).
This interaction vertex may appear to systems of two hadrons colliding at a very high (low) energy and exist just for
a very short instant of time, though not matching any true fundamental interactions. γµ(1 ± γ5) make their sense
relative to their original form γµ—they have evolved from the vertex-form γµ. γµ(1 ± γ5) describes the nonlocal
interaction between a point particle and an extended particle, whereas γµ underlies the local interaction between the
point particle and a point in extended hadron. The deviation of the vertex-form γµ(1 ± γ5) from vector γµ suggests
that a new conservative current may appear [70]. In what follows we will study what might be the conservation law
for the angular momentum of such a nonlocal system at its extreme state, as well as the impact of such conservation
law on scattering processes between extended particles.
From a classical point of view, while a ”soft” body (with definite mass m) rotating, its shrinkage or inflation (like

zooming in or out) would not alter its total orbital angular momentum. However for a quantum particle, its shrinkage
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or inflation occurs only when it absorbs or releases a certain amount of energy. Such kind of energy exchange of course
breaks the angular-momentum conservation by intuition. But this intuition is right only partially, since in what follows
we recognize that only spin part is varied, and the spatial angular momentum is not varied due to the commutation
[D,Mµν ] = 0 [61]. The case is similar to that when we extend three-dimensional rotation to four-dimensional rotation,
whereby we find the 3-dimensional orbital angular momentum is not a conservative quantity any longer, unless we
further include the spin angular momentum. Now with scaling transformation, we find the sum of orbital angular
momentum and the spin is not conserved any longer, so we have to include the named ”scalum” to find a conserved
quantity. The ”scalum” should be manifested by the transformation of spinors. In such sequence we call the scaling
transformation an extrapolation of Poincare group, and in fact it is the very Weyl group.
A newly similar consideration of the scaling symmetry appears in Ref. [17], in which the authors discuss the scaling

symmetry in 2-dimension system by using the light-cone quantum field method. And the work [44, 45] treat the
scaling transformation based on a first principle form from Wilsonian method, in which some of the renormalization
processes are repeated. Here we don’t follow it in details of renormalization. We focus more on the application of
scaling feature of renormalization to nonlocal interaction, and also on what we can infer based on such application.
Earlier before there had been other efforts to associate scaling transformation to quantum field theory. None of them
is satisfactory since, no perfect quantum system is found so that the corresponding Lagrangian is scaling invariant
unless, the mass of involved particles are null and, the trace of energy-momentum of the system becomes zero [55–60].
I think a reason is that they didn’t consider the spatial representation and spinor representation simultaneously. For
the same reason in what follows we derive a conservation law different from those in literature.
While discussing conservation law, in Lagrangian there are at least two other additional terms to be involved,

namely the kinetic term ψ̄γµpµψ and mass term mψ̄(y)ψ(y). As for the kinetic term of an extended particle in the
extreme condition, the momentum become light-cone like and the kinetic mass tends to zero since,

m2
kinetic = (Γµp

µ)(Γνp
ν) = γµ(1− γ5)p

µγν(1 − γ5)p
ν = p2(1 + γ5)(1 − γ5) = 0 , (39)

here the m2 = 0 may just have comparable meaning while its momentum is very large and its mass can be ignored
according to physics. For consistency we prefer to view the kinetic term as the form ψ̄Γµpµψ and now we know it
keeps invariant under scaling transformation. The invariance of net mass term is ensured by the following relation if
we prefer not to omit it,

mψ̄(y)ψ(y) = mψ̄(y)S′−1S′ψ(y) = mψ̄′(y)ψ′(y) . (40)

In summary the Lagrangian without mass term yields

L = ψ̄Γµpµψ − gF (q2)Aµ(q
2) jµ(p, p′). (41)

where jµ(p, p′) = ψ̄(p)Γµψ(p′), as the obtained vertex in the last section.
Here we mainly investigate the conserved angular momentum for Eq. (41) under the transformation set

{{e
u
2
γµγν

}, e
u
2
γ5}. First let’s recall the customarily conserved quantities (Eq. (42) to Eq. (48) ) under the usual

spatial transformation, i.e. the translations and rotations. These 4-dimensional spatial transformations with infinites-
imal forms are

xα → x′α = xα + δ xα = xα + εαβ x
β + δα , (42)

where δα is an infinitesimal displacement and εαβ is an infinitesimal antisymmetric tensor for rotation in 4-dimension,
εαβ = −εβα. This transformation guarantees the invariance of xαx

α while δα = 0. The above spatial transformation
corresponds to the transformation for quantum fields as

ψr(x) → ψ′
r(x

′) = ψr(x) +
1

2
εαβS

αβ
rs ψs(x) , (43)

in which the matrices elements Sαβrs are from the spinor representation of Lorentz group [69], and in the
second term both of the repeated indices stand for summations, and ψs(x)’s are components in ψT (x) =
(ψ1(x), ψ2(x), ψ3(x), ψ4(x)). Take δα = 0 and impose additionally the invariance of the Lagrangian

L (ψr(x), ψr, α(x)) = L (ψ′
r(x

′), ψ′
r, α(x

′)) , (44)

one gets a general conserved current (known as the Nöether current) [69] relating to angular momentum,

jα =
1

2
εβγ℘

αβγ , (45)
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where

℘αβγ =
∂L

∂ψr, α
Sβγrs ψs + [xβℑαγ − xγℑαβ ] , (46)

and

ℑαβ =
∂L

∂ψr, α

∂ψr(x)

∂xβ
− L gαβ . (47)

The current Eq. (45) leads to angular momentum operator in four dimensions by

Mαβ =

∫

d3x℘0αβ =

∫

d3x{[xαℑ0β − xβℑ0α] + πr(x)S
αβ
rs ψs(x)} , (48)

in which πr(x) =
∂L

∂ψ̇r(x)
is a conjugate field of ψr(x).

Since the orbital angular momentum is not affected by scaling transformation due to [D,Mµν ] = 0, we can only
add the new ingredient ε̄µν S̄

µν = 1
2ε γ5 (from S′ = e

u
2
γ5) into the total variation of field ψ in Eq. (43). Thus the

spinor part would vary with the change of Sβγrs , as εβγS
βγ
rs → εβγS

βγ
rs + ε̄βγS̄

βγ
rs . We name the latter part ”scalum”.

The conserved current varies correspondingly

j̃α =
1

2
εβγ℘

αβγ +
1

2
ε̄βγ℘̄

αβγ , (49)

with

ε̄βγ℘̄
αβγ =

∂L

∂ψr, α
ε̄µν S̄

µνψs =
∂L

∂ψr, α
(
1

2
ε γ5)rsψs . (50)

Since the part ε̄µν S̄
µν = 1

2ε γ5 is symmetric, to combine it with the anti-symmetric part εβγS
βγ
rs and extract a common

factor εβγ, we have to multiply a factor 1
6εβγε

βγ ahead of the ε̄µν S̄
µν . Then Eq. (49) yields

j̃α =
1

2
εβγ℘

αβγ +
1

24
εβγε

βγ ∂L

∂ψr, α
(ε γ5)rsψs , (51)

and we should caution that in the second term only the product of the constants εβγ and ε is equivalent to infinitesimal
constant εβγ in the first term, in despite of that they have the same denotations. The left constant εβγ is a normal
antisymmetric constant satisfying

εβγ = {
1 if β, γ are different
0 if β, γ are the same

, (52)

Thus apart from the infinitesimal parameter εβγ , the remaining tensor similar to Eq. (46) becomes

℘̃αβγ =
∂L

∂ψr, α
(Sβγrs +

1

12
w εβγ(γ5)rs)ψs + [xβℑαγ − xγℑαβ ] , (53)

the constant w is responsible for the quotient between the two constants εβγ and ε, which is assumed to be adjustable.
Now it is evident that the angular momentum Eq. (46) varies correspondingly with the transformation. In this

sense we conclude that the nonlocal interaction entails the new internal freedom and becomes the particle intrinsic
local property. Meanwhile it brings about the extrapolation of conventional spin angular-momentum. To put it
in other words, the particles with shape and those point-like seem to follow different conservation laws. For the
extensive particles it is necessary to involve this correction term ∂L

∂ψr,α

1
12w ε

βγ(γ5)rs in spin part [71]. Thus when an

extended particle (like proton) is smashed we shall not evaluate the polarizations of its initial state and its final state
(smashed shreds of proton) in conventional way, since the initial state (proton) and the final states (smashed proton)
all have their non-point size and thus the initial polarization might not be the sum of its final states (smashed proton)
[Fig.2]. Regarding this different conservation law may help us alleviate the spin crisis appearing in the polarized
electron-nucleon scattering experiment [72–78].
It has been a long-standing puzzle that how the nucleon spin originates from its constituent parts, namely, the

angular momentum of quarks and gluons. The conflict arose from the estimation of the total spin of proton based
on the experimental value of the antisymmetric structure function g1 [79–81]. The total spin Σ (defined to be
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Σ = ∆u + ∆d + ∆s, ∆u is the fraction of u quark in proton’s spin, and the same sense to ∆d and ∆s) of proton
relates to the structure function g1 by generalizing Bjorken’s sum rule [82], namely,

∫ 1

0

gp1(x,Q
2) =

1

12
[g

(3)
A +

1

3
g
(8)
A ] +

1

9
Σ , (54)

where g
(3)
A = ∆u−∆d, g

(8)
A = ∆u+∆d− 2∆s are separately the iso-vector, SU(3) octet. g

(3)
A , g

(8)
A have been very well

determined respectively from neutron β-decay and semi-leptonic hyperon decay [83]. After involving the radiative
correction in perturbative QCD, the above relation can be precisely interpreted as [84]

∫ 1

0

gp1(x,Q
2) =

c1(Q
2)

12
[g

(3)
A +

1

3
g
(8)
A ] +

c2(Q
2)

9
Σ , (55)

where the coefficients c1(Q
2) and c2(Q

2) come from QCD perturbative corrections. With above knowledge, hitherto
it has been well known that the value of Σ only amounts to 1/3 of total proton’s spin.
People once conceived gluons’ spin may contribute much to proton’s spin, but recent experimental analysis [85]

supports merely small fraction of gluon’s contribution. Another recent flurry has been the focus on the decomposition
of angular momentum of quark and gluon into spin part and orbital angular momentum part based on the gauge-
invariant QCD dynamics [77, 83, 86–91]. But the ways to treat angular momentum of bounded quarks are so
controversial that hitherto there has been no widely accepted scheme. In a very recent paper, Ji et al [75] refined the
sum rule using generalized parton distribution (GPD) method, which may improve further the evaluation of Σ.
Now let’s focus on the coefficients of c1(Q

2) and c2(Q
2) in Eq. (55), whose accurate values are based on the

perturbative calculation in QCD. For instance, the coefficients c1(Q
2) reads [82]

c1(Q
2) = 1− (

αs
π
)− 3.58333(

αs
π
)2 + · · · , (56)

in which αs(Q
2) may have a running value with respect to Q2, roughly around 0.1˜0.3. Because the scale transfor-

mation is somehow derived from the renormalization group, including the running of charges etc., one may be aware
of that the corrections in Eq. (56) are to some extent equal to the scaling transformation. And the corrections from
Eq. (56) might also be consistent with effect that interpreted by Eq. (53). Though the corrections have not made the
coefficients c1(Q

2) and c2(Q
2) deviate so much from 1, we know the corrections actually affect the value of Σ. When

the scale approaches to the nonperturbative regime and αs(Q
2) becomes larger, the expression of Eq. (56) however,

may lose its validation. Whereas we note our scaling transformation happens to be responsible for the shift between
the perturbative and nonperturbative regimes since the dilation (shrinkage) occurs accompanying with the loss (in-
jection) of energy. Nu → ±∞ may imply the coupling constant αs → ∞ according to our previous understanding of
the form factor, so the extreme states are really relevant. We thus speculate that the scaling transformation might be
helpful to transform the spin value from perturbative scale to nonperturbative scale, or vice versa. In this sense the
transformation method could be a way to find an explanation on the spin crisis of proton. And further investigation
is in progress. While the SU(3) group steps in, some unexpected effects may occur.

V. THE IMPACT OF VERTEX F (q2)Aµ(k)ψ̄(p)γ
µ(a+ b γ5)ψ(p) ON POLARIZED SCATTERING

In this section we will discuss that after finite steps of scaling transformations, what is the contribution of the
evolving vertex Aµ(k)ψ̄(p)γ

µ(a + b γ5)ψ(p) to the scattering processes. Analogous to the inelastic e-p scattering,
where the assumed vertex Aγµ + B σµνpν yields some observed structures Wµν in cross-section [92], here we are
concerned about what the structures the evolving vertex-form γµ(a+ b γ5) would lead to. Although we work following
the analogy, we should caution that we focus on elastic scattering, rather than inelastic scattering. At the end of this
section we arrive at the conclusions that the part b γµγ5 contributes nothing to the normal unpolarized cross-section
of elastic scattering, so effectively it doesn’t change the conventional structure form. However, for the polarized
scattering, there appears exceptional terms additional to the original structure function.
Firstly, let’s carry out the structure function of unpolarized cross-section by averaging over the initial spins and

summing over the final spins [92]. Without losing generality, let’s suppose that it is the very case for an electron (a
point fermion) incident on nucleon (an extended fermion) [Fig.3]. By conventional steps, one finds that the evolving
vertex-form γµ(a+ b γ5) yields the following scattering tensor,

W (p)
µν =

1

2
Tr[

q2 +M

2M
γµ(a+ b γ5)

p2 +M

2M
γν(a+ b γ5)] , (57)
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and apart from the coefficient 1
2 , the trace can be separated into four terms

W
(p)
µν =W

(1)
µν (a2) +W

(2)
µν (a b) +W

(3)
µν (b a) +W

(4)
µν (b2)

= 1
2a

2 Tr[ q2+M2M γµ
p2+M
2M γν ] +

1
2a bTr[

q2+M
2M γµ

p2+M
2M γνγ5]

+ 1
2b aTr[

q2+M
2M γµγ5

p2+M
2M γν ] +

1
2b

2 Tr[ q2+M2M γµγ5
p2+M
2M γνγ5] ,

(58)

and the result of the first term is well-known, it is

W (1)
µν (a

2) =
a2

2M2
[q2µp2ν + q2νp2µ − (q2 · p2 −M2)gµν ] , (59)

the second term is

W (2)
µν (a b) =

a b

M2
iεµνρσq

ρ
2p
σ
2 , (60)

and the third term results in the same

W (3)
µν (b a) =

a b

M2
iεµνρσq

ρ
2p
σ
2 . (61)

The last term has the same form as the first term, W
(1)
µν (a2), apart from the coefficient

W (4)
µν (b

2) =
b2

2M2
[q2µ p2ν + q2ν p2µ − (q2 · p2 −M2) gµν ] . (62)

We note the new structure functions are from Eqs. (60, 61), whose contribution however, would vanish since the
tensor εµνρσ are antisymmetric, while the tensor of lepton part Lµν coupled to them is symmetric with respect to
indices µ, ν.
Secondly, let’s consider the polarized cross-section. Now we do not fix the initial or the final spin states and leave the

spin operator in the potential. With the same marks as in Fig.3 and without the propagator, we write the polarized
amplitude (potential) by using the Dirac spinors as follows

MAV (~p, ~q,~k) = ψ̄1γ1µ(a+ b γ5)ψ1 ψ̄2γ
µ
2 (a+ b γ5)ψ2

= a2 ψ̄1γ1µψ1 ψ̄2γ
µ
2ψ2 + a b ψ̄1γ1µψ1 ψ̄2γ

µ
2 γ5ψ2

+b a ψ̄1γ1µ γ5ψ1 ψ̄2γ
µ
2ψ2 + b2 ψ̄1γ1µ γ5ψ1 ψ̄2γ

µ
2 γ5ψ2 ,

(63)

Only the terms with coefficients ab and ba (henceforth we denote the two terms as {ab} and {ba}) are new, and the
results for the other two terms {aa} and {bb} can be found in Ref. [93]. The term {ab} can be tidied up into

M{a b} = Ū(~p1)γ1µU(~q1)Ū(~p2)γ
µ
2 γ5U(~q2)

= Ū(~p1)γ10U(~q1)Ū(~p2)γ
0
2 γ5U(~q2)− Ū(~p1)~γ1U(~q1) · Ū(~p2)~γ2 γ5U(~q2) ,

(64)

where the indices 1, 2 represent respectively the first and the second particles. Substitute the concrete form of Dirac

spinor U(~p) =
√

E+m
2E

(

1
~σ·~p
E+m

)

and Ū(~p) = U †(~p)γ0 (where E =
√

~p2 +m2) into the above equation, and after

lengthy calculation, it yields

M{a b} = A{ ~σ2·~p2
E(~p2)+m2

+ ~σ2·~q2
E(~q2)+m2

+ ~σ1·~p1
E(~p1)+m1

~σ1·~q1
E(~q1)+m1

~σ2·~p2
E(~p2)+m2

+ ~σ1·~p1
E(~p1)+m1

~σ1·~q1
E(~q1)+m1

~σ2·~q2
E(~q2)+m2

− [ ~σ1·~p1
E(~p1)+m1

~σ1
~σ2·~p2

E(~p2)+m2

~σ2
~σ2·~q2

E(~q2)+m2

+ ~σ1·~p1
E(~p1)+m1

~σ1 · ~σ2 + ~σ1
~σ1·~q1

E(~q1)+m1

~σ2 + ~σ1
~σ1·~q1

E(~q1)+m1

~σ2·~p2
E(~p2)+m2

~σ2
~σ2·~q2

E(~q2)+m2

]} ,

(65)

here we use underlines to denote the inner product and

A =

√

E(~p1) +m1

2E(~p1)

E(~p2) +m2

2E(~p2)

E(~q1) +m1

2E(~q1)

E(~q2) +m2

2E(~q2)
≈ 1−

1

8m2
1

(~p21 + ~q21)−
1

8m2
2

(~p22 + ~q22) . (66)

The second step follows while using the approximation E(~p1) ≈ m1 +
~p2
1

2m1

and to the order of ~p2

m2 . With this
approximation, one further gets

M{a b} = A{ 1
2m2

~σ2 · (~p2 + ~q2)−
1

2m1

[~σ1 · ~p1~σ1 · ~σ2 − ~σ1~σ1 · ~q1~σ2]}

= A{ 1
2m2

~σ2 · (~p2 + ~q2)−
1

2m1

[(~p1 − ~q1) · ~σ2 − i(~σ1 × ~σ2) · (~p1 + ~q1)]} ,
(67)



13

in the second step of the above equation we have used the following relations

σiσj = δij + iεijkσk , (68)

and

(~σ · ~A)(~σ · ~B) = AiBjσiσj = ~A · ~B + i( ~A× ~B) · ~σ . (69)

Likewise, we obtain M{ba} as follows

M{ba} ≃ A{
1

2m1
~σ1 · (~p1 + ~q1)−

1

2m2
[(~p2 + ~q2) · ~σ1 + i(~σ1 × ~σ2) · (~p2 − ~q2)]} . (70)

We note that the terms M{a b} and M{ba} do not appear in those cross-sections derived from any single of five

Lorentz-invariant currents ψ̄(p)ψ(p), ψ̄(p)γµψ(p), ψ̄(p) γ5ψ(p), ψ̄(p)γ5γ
µψ(p), ψ̄(p)γµγνψ(p), unless some of them are

mixed. Thus we realize thatM{a b} andM{ba} can actually occur if the current is the weak current ψ̄(p)γµ(1− γ5)ψ(p),
for instance in the scattering of neutrino incident on electron. However, since the intermediate Z boson is very heavy
and thus the scattering involving weak interaction only appears in very high energy, we may avoid the case by testing
effects of nonlocality in somewhat lower energy regime. Moreover, mostly the vertex we meet in nonlocal current
must be ψ̄(p)γµ(a + bγ5)ψ(p) instead of pure extremes ψ̄(p)γµ(1 ± γ5)ψ(p), which leave coefficients a, b to adjust.
Unexpectedly, if the nonlocal extreme vertices were mixed or entangled with weak interaction and were evidenced by
experiments, then it must be a most intriguing topic deserving further investigation.
We would like to present a simple gedanken experiment to test nonlocal effect due to the handedness terms, which

are all proportional to helicity ~σ · ~p in one manner or another, as shown in Eqs. (67, 70). For the feasibility of the
experiment, we turn from hadron dynamics to molecular scale to test the prediction of Eqs. (67, 70). Imagine that an
electron scattered away from a simple atom like hydrogen, which stays in its ground state, so that no orbital angular
momentum is involved in the scattering processes. Meanwhile we should control the energy of incident electron to
be low enough so that other orbital states of hydrogen-atom are not involved. Maybe the energy should E ≤ 1eV or

several eV s (with wavelength less than 2
◦

A), which is largely lower than its first threshold of transitions. The electron’s
energy have to be controlled precisely to limit its wavelength less than hydrogen-atom diameter and meanwhile not
so short as to cause transition of hydrogen-atom. If actually the energy of the electron is not easy to control, we
may directly use the scattering between ground-state hydrogen atoms instead of the scattering between electron and
hydrogen-atom. In such scenario the total angular momentum of hydrogen atom is its spin, and the nucleon magnetic
moment is omitted for its small fraction in the total (about 1 in 2000). And the spreading electron cloud of hydrogen
atom meets the case of our nonlocal description. Such hydrogen atom could be good testing ground for nonlocal
predictions.
The proposed experiment is to use polarized electrons (or hydrogen atoms) colliding on polarized hydrogen-atom

(polarized by magnetic field). Different from the previous calculations on polarized electron-electron (e-e) scattering
[94]and e-H scattering [95–100], the main results there are shown in Eqs. (67, 70), which is characterized by terms
like i(~σ1 × ~σ2) · (~p2 − ~q2). Such term differs from the normal handedness term ~σ · ~p in that it permits the existence
of two perpendicular spins ~σ1 and ~σ2. Whereas the previous test-experiments on spin asymmetry [96] mainly focused
on the parallel or anti-parallel difference, as

A1s,1s(θ) =
σ↑↓ − σ↑↑
σ↑↓ + σ↑↑

, (43a)

or

A1s,1s(θ) =
σ⇒ − σ⇐
σ⇒ + σ⇐

, (43b)

where σ↑↓, σ↑↑, or σ⇒, σ⇐ mean the parallel or anti-parallel in common sense. However, in our case, we suggest a
new asymmetric parameter

A1s,1s(θ) =
σ→↑ − σ↑→
σ→↑ + σ↑→

, (43c)

which has never been investigated in previous theoretical study [95–100] or experiments [101–104]. But this term
may contribute even smaller fractions to total cross-section, since the sum of all spin-dependent terms have attributed
just minor fraction in total cross-section. The calculation details can follow the paper [94], concerning additionally

the present interaction. If any experiment gets a nontrivial parameter
σ→↑−σ↑→

σ→↑+σ↑→
then it proves our predictions. And

maybe each of the three parameters (
σ↑↓−σ↑↑

σ↑↓+σ↑↑
, σ⇒−σ⇐

σ⇒+σ⇐
, and

σ→↑−σ↑→

σ→↑+σ↑→
) would deviate from former evaluations in

literature if involving all of the handedness terms ~σ · ~p in Eqs. (67, 70).
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VI. CONCLUSIONS AND DISCUSSIONS

In this paper we have discussed elaborately the role of scaling transformation in nonlocal interaction. This trans-
formation pertains to describing the relationship of different energy/space-time scales in scattering between (fermion)
hadrons. The scaling transformation is recognized/constructed based on the conclusions of RGM and the popular
expressions of conformal group. The most significant feature of this paper is to combine its spinor representation γ5
and coordinate representation i xµ∂

µ together. To this end, we surmise there is a local vertex Γµ transforming as

S
′−1ΓµS′ = Λ′µ

νΓ
ν , in which S′ = e

u
2
γ5 , resembling Lorentz transformation acting on vector vertex, S−1γµS = Λµνγ

ν ,
where S corresponds to spinor representation of Lorentz transformation. In this way we obtain the scaling invariant
vertices Γµ = γµ(1 ± γ5), which means the invariance of interaction vertex Aµ(x)ψ̄(x)Γ

µψ(x) while performing the
scaling transformation.

Based on the knowledge that the transformation S′ is applied repeatedly to vector vertex e−
u
2
γ5γµe

u
2
γ5 ≃ γµ +

u γµγ5 = (1 − u )γµ + u γµ(1 + γ5) = (1 + u )γµ − u γµ(1 − γ5), one finds the varying coefficients ahead of γµ, which
matches the running coupling constant occurring in RGM. As for vertices γµ(1±γ5), here they are viewed as extremes
of normal vector vertex-form γµ after infinite steps of scaling transformation since, Nu→ ±∞, (e−

u
2
γ5)Nγµ(e

u
2
γ5)N =

γµ coshNu + γµγ5 sinhNu → γµ(1 ± γ5). We also call γµ(1 ± γ5) the vertices at extreme condition, which might
be the system of very high energy or at very low temperature. We further discuss the conservation law for these
extreme vertices, for which an extra intrinsic-degree named scalum is introduced into the total angular momentum.
Based on the experience from renormalization, the parameter µ is somewhat equivalent to such a degree of freedom.
It is natural for us to associate the results of conservation law with the spin crisis of nucleons, responding to the
appearance of the scalum.

The extreme states as well as the extreme vertex may not exist in nature. However, by the inquiring and inferring
process we recognize that the conformal group exists more like for running properties rather than for invariance of
quantum fields. For an extended particle involved in a scattering at certain energy, we have to make corresponding
scaling transformations to interpret locally its interaction vertex. Assume a nonlocal interaction interpreted ini-
tially/unphysically by exchanging vector bosons, then a general interaction-vertex γµ(a+ b γ5) exists, with which we
use local vertex-form to interpret the nonlocal interaction. The general interaction-vertex has effects on polarized
scattering rather than unpolarized scattering. Accordingly we propose a gedanken experiment to test our predictions
on nonlocal interaction. The experiment is based on the scattering between a charged point-particle and the ground
state of a hydrogen. That is recognized as a good method to test nonlocal interaction-vertex, since the cloud of
ground-state electron distributes around the nucleon so that it forms a nonlocal region, meanwhile all of its angular
momentum is the spin of the electron.

Although the dynamics used in this paper mostly stems from the perturbative dynamics, it opens a door for our
understanding to nonperturbative dynamics. There have been continuous efforts to study nonperturbative interaction
ever since the birth of renormalization [105, 106]. To apply somehow the scale parameter of renormalization to
intermediate-strong-interaction was the primary goal of this paper. Furthermore an even stronger motivation is to
develop an analytic non-perturbation method to understand such intermediate-strong-interaction. The motivation
has driven us to apply transformation instead of solely the scale parameter to nonperturbative interactions. Some
other nonlocal theories have made efforts to link the nonlocal interaction with renormalization, for instance in Ref.
[6, 9, 31, 32]. But none of them used transformation method, which was laid there years before [107, 108]. In our
results, the appearance of γ5 in both the scaling transformation and the nonlocal vertex-form gives us the confidence
that we might have unveiled a truth of nonperturbative dynamics. Since when a current quark gains its mass non-
perturbatively to become a constituent quark, the γ5 as well as the chiral-symmetry breaking would occur. Next if
possible we aim to construct a general description of nonperturbative systems based on their nonlocal properties.
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Captions

Fig1. The physics picture of performing finite steps of scaling transformation.

Fig2. Schematic diagram for the colliding process between a point particle and an extended particle.

Fig3. The Feynman graph for calculating the scattering cross-section for point particles, with vertex-form Aµγ
µ(a+

bγ5).
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