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Abstract

We provide analytical O(αs) results for the three polarized decay structure functions

H++, H00 and H−− that describe the decay of a polarized W boson into massive

quark–antiquark pairs. As an application we consider the decay t → b + W+ in-

volving the helicity fractions ρmm of the W+ boson followed by the polarized de-

cay W+(↑) → q1q̄2 described by the polarized decay structure functions Hmm. We

thereby determine the O(αs) polar angle decay distribution of the cascade decay pro-

cess t → b+W+(→ q1q̄2). As a second example we analyze quark mass and off-shell

effects in the cascade decays H → W− + W ∗+(→ q1q̄2) and H → Z + Z∗(→ qq̄).

For the decays H → W− + W ∗+(→ cb̄) and H → Z + Z∗(→ bb̄) we find substan-

tial deviations from the mass-zero approximation in particular in the vicinity of the

threshold region.
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1 Introduction

The polarization of W± bosons produced in electroweak production processes is in gen-

eral highly nontrivial. Therefore, the W± bosons produced e.g. in pp(pp̄) → W± + X ,

pp(pp̄) → W+W− +X , e+e− → W+W−, W+W− +X and t → b+W+ in general have a

highly nontrivial polarization density matrix. Because of this, there is a rich phenomenol-

ogy of polarization effects in W production and decay to be explored in present and future

experiments. For example, one would want to compare the results of polarization mea-

surements with the predictions of the Standard Model (SM) or models beyond the SM.

The polarization of the W± bosons can be probed by decay correlations involving the

decay products of the polarized W± boson. Using such decay correlations, first measure-

ments of the W± polarization in pp → W± + X were reported by the CMS Collabo-

ration [1] and the ATLAS Collaboration [2]. Measurements of the W± polarization in

e+e− → W+W− were published in Refs. [3, 4]. Finally, results of W+-polarization mea-

surements in t → b+W+ were presented e.g. in Refs. [5, 6, 7, 8, 9, 10]. Ref. [11] provides a

survey of SM expectations for the polarization of W bosons in various production channels

at the LHC.

In the SM the W± boson decays into quark or lepton pairs. For unpolarized W±-boson

decays the NLO QCD and electroweak corrections to quark and lepton pair production,

resp., have been given in Ref. [12, 13]. The radiative corrections in Ref. [12, 13] include

also quark and lepton-mass effects. To our knowledge the radiative corrections to polarized

W±-boson decays including lepton and quark mass effects have not been done up to now.

This paper is devoted to the evaluation of the NLO QCD corrections to the decays

of polarized W± bosons into massive quark–antiquark pairs W±(↑) → q1 q̄2 where the

diagonal spin density matrix elements of the W± boson can be probed through the polar

angle decay distribution of the final-state quark pair. We augment our results such that

they can also be applied to the decay of polarized Z decays into massive quark pairs. In
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order to provide quick access to the importance of quark mass effects in the decays of the

W± and Z bosons we have provided a O(m2
qi
/m2

W ) quark mass expansions of our analytical

results in a separate paper [14]. In a sequel to the present paper we shall calculate the

corresponding NLO electroweak corrections to the polarized decay W+(↑) → ℓ+ νℓ [15].

In the limit mqi =: mi → 0 our results reduce to rather simple forms which agree with

previous NLO QCD results extracted from the corresponding calculation of (γ∗, Z)(↑) →

qq̄ [16, 17, 18, 19, 20]. Quark mass effects are non-negligible even for on-shell W bosons

with q2 = m2
W for the polarized decay W+(↑) → cb̄ but become even more important for

lower values of q2 as for the decays of off-shell W ∗± and Z∗ bosons as they appear e.g.

in the recently observed discovery channels H → W±W ∗∓ and H → ZZ∗ of a 126GeV

Higgs boson [21, 22]. Similarly one needs to retain mass effects in the calculation of

current–current correlators and their corresponding spectral functions which are needed

for all values of q2. Since there have been claims and counterclaims in the literature as

to the correctness of known results on radiative corrections to scalar (pseudoscalar) and

vector (axial-vector) current–current spectral functions, we have compared our unpolarized

results with previously published spectral function results.

As an illustration of our general decay analysis we consider the cascade decay process

t → b + W+ followed by W+ → q1 q̄2 where the (helicity frame) diagonal density matrix

elements of the W+ boson resulting from the decay process t → b + W+ have been well

studied in the literature. We thus provide results on the angular decay distribution for the

sequential cascade decay t → b +W+(→ q1 q̄2) for which we discuss NLO QCD radiative

corrections in the production process t → b +W+(↑) and in the decay process W+(↑) →

q1 q̄2. As a second example of much topical interest we take the cascade decay processes

H → W− +W ∗+(→ q1q̄2) and H → Z + Z∗(→ qq̄) where we discuss quark mass and W ∗

and Z∗ off-shell effects on rates and on angular decay distributions.

We also briefly comment on the nondiagonal density matrix elements of the W± bo-

son which can be probed by azimuthal correlations in the angular decay distribution. A
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Figure 1: Feynman diagrams for (a) the Born-term contribution and (b) the one-loop QCD

contribution to the decay process W+ → q1 q̄2

measurement of the azimuthal correlations requires the existence of a preferred transverse

direction which would be provided e.g. by the transverse polarization direction of the polar-

ized top quark in the decay t(↑) → b+W+(→ q1 q̄2). In a similar vein a transverse direction

can be defined in the large-pT W -boson production in the process pp(pp̄) → W +X .

2 Born-term results

Let us consider the quark–antiquark decay of the SM gauge boson W+

W+(q) → q1(p1) q̄2(p2) (1)

as depicted in Fig. 1. The LO Born-term amplitude is given by

M(Born) = Mµ(Born)εµ(q) = −i
gw√
2
Vij ū1(p1)γ

µ1− γ5
2

v2(p2) εµ(q), (2)

where gw is the electroweak coupling constant and the Vij are Kobayashi–Maskawa matrix

elements (q1 = i; q2 = j). We define a reduced matrix element M̃µ by splitting off the

common coupling factor −igWVij/
√
2 and the factor 1/2 from the chiral projector. The
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reduced Born-term tensor reads

Hµν(Born) = Nc

∑

quark spins

M̃µ(Born)M̃†ν(Born)

= Nc Tr ((p/1 +m1)γ
µ(1− γ5)(p/2 −m2)γ

ν(1− γ5))

= 8Nc

(
pµ1p

ν
2 + pν1p

µ
2 − p1p2 g

µν + iεµναβp1αp2β
)
. (3)

The Born-term amplitude (2) leads to the LO decay width for an on-shell W+ boson with

q2 = m2
W (g2w = 4πα/ sin2 θW , µi = m2

i /q
2),

Γ(Born) =
1

3

1

8π

|~p|
m2

W

g2w
2
|Vij|2NcHµν(Born)

(
−gµν +

qµqν
m2

W

)

=
mW

96π
g2W |Vij|2Nc

√
λ
(
2− µ1 − µ2 − (µ1 − µ2)

2
)
, (4)

where |~p | = mW

√
λ/2, and where λ is the value of the Källén function for the decay

process,

λ = λ(1, µ1, µ2) = 1 + µ2
1 + µ2

2 − 2µ1 − 2µ2 − 2µ1µ2. (5)

The rate expression (4) coincides with the Born-term result in Ref. [12].

The subject of this paper are the partial decays from states of the W+ boson with

definite m quantum numbers m = ±1, 0, i.e. we are interested in the polarized decay

structure functions

H±± = Hµν ε
µ(±)ε∗ν(±), H00 = Hµν ε

µ(0)ε∗ν(0). (6)

We evaluate the polarized decay functions defined in Eq. (6) in the rest frame of the W+

boson with the z′ direction defined by the antiquark q̄2.
1 The rest frame polarization

vectors and momenta are thus given by

εµ(±) =
1√
2

(
0;∓1,−i, 0

)
, qα =

(
mW ; 0, 0, 0

)
,

εµ(0) =
(
0; 0, 0, 1

)
, pα2 = (E2; 0, 0, |~p |), (7)

1We have chosen the antiquark direction to define the z′ axis in analogy to the antilepton ℓ+ in the

decay W+ → ℓ+νℓ. One can equally well choose the quark to define the z′ axis. The resulting changes in

the partial helicity rate functions will be discussed later on.

5



where E2 = mW (1− µ1 + µ2)/2 and |~p | =
√
q2
√
λ(1, µ1, µ2)/2.

It proves convenient to bring the rest frame projectors IPµν
±± = εµ(±)ε∗ν(±) and IPµν

00 =

εµ(0)ε∗ν(0) into a frame-independent covariant form. One has

IPµν
±± =

1

2

(
IPµν

U+L − IPµν
L ± IPµν

F

)
, IPµν

00 = IPµν
L , (8)

where

IPµν
U+L = −gµν +

qµqν

q2
,

IPµν
L =

q2

N2
P

(
pµ2 −

p2 · q
q2

qµ
)(
pν2 −

p2 · q
q2

qν
)
,

IPµν
F =

1

NP

iǫµναβp2αqβ , (9)

and where the normalization factor NP is given by N2
P = ((p2q)

2 − p22q
2). In the two-body

case the normalization factor is reduced to NP =
√
q2 |~p |. The covariant form of the pro-

jectors are particularly convenient in the NLO tree-graph calculation since the covariantly

projected integrands in the requisite phase space integrations are Lorentz scalars and can

thus be handled by the standard covariant methods.

Using either forms for the projectors (6) or (8), one obtains

H±±(Born) = 4Ncq
2(1− µ1 − µ2 ±

√
λ), H00(Born) = 4Ncq

2(1− µ1 − µ2 − λ). (10)

Note that the sum HU = H++ + H−− (U : unpolarized transverse) and HL = H00 (L:

longitudinal) are fed only by the parity-even V V and AA current products. The difference

HF = H++−H−− (F : forward–backward asymmetric) is fed by the parity-odd VA current

product.

At threshold, where q2 → (m1 + m2)
2, with

√
µ1 +

√
µ2 → 1 and λ → 0, one has

H−−(Born) = H00(Born) = H++(Born) = 8Ncm1m2. All three partial helicity rates

are equal to one another at threshold. This can be understood from the fact that, at

threshold, only the vector current-induced LS amplitude (LS) = (01) survives. This leads

to the equality of the partial helicity rates using simple Clebsch–Gordan algebra. As we

6



shall see in the next section, at threshold one loses the analyzing power of the two-fermion

decay mode, i.e. the angular decay distribution becomes flat at threshold irrespective of

the polarization of the W+ boson.

In the massless quark limit µ1 = µ2 = 0 one has H++(Born) = 8Ncq
2 6= 0 and

H00(Born) = H−−(Born) = 0 as expected from the left-chiral nature of the SM current

(2). The finite mass corrections to the LO helicity structure functions are of O(µi) for H++

and H00, i.e. H++(Born) = 8Ncq
2(1−µ1−µ2+ . . .) and H00(Born) = 4Ncq

2(µ1+µ2+ . . .),

and of O(µ2
i ) for H−−, i.e. H−−(Born) = 4Ncq

2(µ1µ2 + . . .). For the sum of the three

polarized decay functions denoted by HU+L one obtains

HU+L(Born) = H−−(Born) +H00(Born) +H++(Born)

= 12Ncq
2 (1− µ1 − µ2 − λ/3) . (11)

For the sake of completeness we also define a scalar structure function Htt through

Htt = Hµν ε
µ(t)ε∗ν(t) where εµ(t) = (1; 0, 0, 0) is the rest-frame time-component (scalar)

polarization vector of the off-shell W+ boson. The corresponding covariant projector on

the scalar structure function reads

IPµν
S =

qµqν

q2
. (12)

For the LO scalar structure function one obtains

Htt(Born) = HS(Born) = 4Ncq
2 (1− µ1 − µ2 − λ) . (13)

Note that, at the Born-term level, one has Htt(Born) = H00(Born). Htt(Born) vanishes

for zero quark masses as expected from current conservation in the mass-zero limit.

The scalar–longitudinal interference term needed later on is projected by

IPµν
t0 =

1

NP
qµ
(
pν2 −

p2 · q
q2

qν
)
, (14)

such that

H0t(Born) = Ht0(Born) = −4Ncq
2 (µ1 − µ2)

√
λ. (15)
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3 Angular decay distribution and

the cascade decay t → b +W+(→ qi q̄j)

Consider the rest frame decay of a polarized W+ with the diagonal spin density matrix

elements (ρ++, ρ00, ρ−−) given in an unprimed coordinate system (x, y, z). Then rotate the

coordinate system (x, y, z) around the y axis by an angle θ to a primed coordinate system

(x′, y, z′). Under this rotation the diagonal density matrix elements transform according

to ρ′m′m′(θ) = ρmm d1mm′(θ)d1mm′(θ). The angular decay distribution is then determined by

the product of the decay probability Hm′m′ for the decay W+(m′) → q1 q̄2 and the relevant

diagonal elements of the spin density matrix elements ρ′m′m′(θ), all evaluated in the primed

system.

While a decay analysis in the W+ rest system is the optimal choice to probe the density

matrix elements of the W+ boson, the polarization of the W+ boson can also be detected

in other coordinate systems. As an example take the cascade decay t → b+W+(→ ℓ+ νℓ).

When analyzed in the top quark rest system, the polarization of the W+ will affect the

energy spectrum of the final lepton, i.e. leptons from ρ−− will be more energetic than those

from ρ++.

Returning to the analysis in theW+ rest frame we mention that the choice of the z and z′

axes is a matter of convention and convenience and may be dictated by the physics at hand.

For example, in the process pp(pp̄) → W+ +X followed by W+ → ℓ+ν several unprimed

rest frame coordinate systems have been discussed in the literature (Collins–Soper frame,

recoil frame, target frame, beam frame) whereas the z′ direction is conventionally fixed by

the lepton direction.2

In the example discussed further on (t → b+W+(→ q1 q̄2)) the z direction is fixed by

the momentum direction of the W+ in the top quark rest system (helicity system), and

the z′ direction is determined by the momentum direction of the antiquark q̄2.

2NLO results on W polarization effects in pp̄ → W +X can be found in Refs. [23, 24].
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It is convenient to work in terms of normalized spin density matrix elements defined by

ρ̂mm = ρmm/
∑

m′ ρm′m′ with ρ̂++ + ρ̂00 + ρ̂−− = 1 and normalized decay functions given by

Ĥmm = Hmm/
∑

m′ Hm′m′ such that Ĥ++ + Ĥ00 + Ĥ−− = 1. According to what was said

before, the normalized decay distribution is given by

Ŵ (θ) =
3

2

∑

m,m′=0,±

ρ̂mm d1mm′(θ) d1mm′(θ) Ĥm′m′

=
3

8
(1 + cos2 θ) (ρ̂++ + ρ̂−−) (Ĥ++ + Ĥ−−) +

3

4
cos θ (ρ̂++ − ρ̂−−) (Ĥ++ − Ĥ−−)

+
3

4
sin2 θ (ρ̂++ Ĥ00 + ρ̂00 Ĥ++ + ρ̂00 Ĥ−− + ρ̂−− Ĥ00) +

3

2
cos2 θ ρ̂00 Ĥ00

=
3

8
cos2 θ (ρ̂++ − 2ρ̂00 + ρ̂−−)(Ĥ++ − 2Ĥ00 + Ĥ−−)

+
3

4
cos θ(ρ̂++ − ρ̂−−) (Ĥ++ − Ĥ−−)

+
3

8

(
(ρ̂++ + 2ρ̂00 + ρ̂−−)(Ĥ++ + 2Ĥ00 + Ĥ−−)− 4ρ̂00Ĥ00

)
. (16)

The distribution (16) is a second-degree polynomial in cos θ and therefore has the form of

a parabola. Integrating over cos θ one obtains

∫
Ŵ (θ) d cos θ = 1. (17)

For unpolarized W+ decay one has ρ̂−− = ρ̂00 = ρ̂++ = 1/3 which results in a flat decay

distribution Ŵ (θ) = 1/2. Similarly, one obtains a flat decay distribution at threshold

where Ĥ−− = Ĥ00 = Ĥ++ = 1/3, i.e. Ŵ (θ) ∝ (ρ̂−− + ρ̂00 + ρ̂++)/2 = 1/2 irrespective of

the polarization of the W boson.

In the zero quark mass limit and to leading order in αs (where Ĥ++(Born) = 1 and

Ĥ00(Born) = Ĥ−−(Born) = 0) the angular decay distribution (16) reduces to

Ŵ (θ) =
3

8
(1 + cos θ)2 ρ̂++ +

3

8
(1− cos θ)2 ρ̂−− +

3

4
sin2 θ ρ̂00, (18)

a form quite familiar from the analysis of the cascade decay t → b +W+(→ νµ µ
+) [5, 6,

7, 8, 9].

Let us now turn to the αs corrections to the polarized decay functions Hmm where we

include quark mass effects. Surprisingly it turns out that the quark mass corrections to
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the leading NLO term set in linearly and carry rather large coefficients. This has to be

contrasted with the LO and the NLO unpolarized decay term where the mass corrections

set in quadratically. In fact, expanding the O(αs) polarized decay functions Hmm listed in

Sec. 7 up to O(
√
µi), one obtains (see also Ref. [14] where the expansion is carried out to

O(µi))

H++ = 8Ncq
2
[
1 +

αs

6π

(
1 + (π2 + 16)

√
µ2

)
+ . . .

]
,

H00 = 8Ncq
2
[
0 +

αs

6π

(
4− 2π2√µ2

)
+ . . .

]
,

H−− = 8Ncq
2
[
0 +

αs

6π

(
1 + (π2 − 16)

√
µ2

)
+ . . .

]
. (19)

The NLO linear mass corrections are proportional to the antiquark mass m2 and are thus

maximally asymmetric in the quark masses.3 It is apparent that the NLO linear mass

terms cancel in the sum H++ +H00 +H−−. We mention that the leading order O(µ0
i ) αs

contributions can also be extracted from the corresponding calculation of (γ∗, Z)(↑) → qq̄

in Refs. [16, 17, 18, 19, 20] when the quark masses are set to zero in these calculations.

As concerns the leading order αs contributions, the largest contribution occurs for H00

and amounts to 2αs/(3π) = 2.5% with αs(m
2
W ) = 0.117. The αs corrections can be seen

to sum up to H++ + H00 + H−− ∼ (1 + αs/π), a result which is well familiar from e+e−

annihilation into mass-zero quark pairs.

The NLO linear mass corrections have rather large coefficients. For example for W+ →

cb̄ and for the polarized structure function H++, which is the only polarized structure

function with a sizeable LO contribution, the linear mass correction amounts to 155%

(with mb = 4.8GeV and mW = 80.399GeV). However, the large mass corrections are tem-

pered when one calculates the normalized decay functions Ĥmm which enter the normalized

3When one chooses the z′ direction along the quark direction (called system I in Ref. [14]), the linear

mass corrections are proportional to the quark mass m1. As discussed in Ref. [14], the polarized decay

functions HI
mm

in this system are obtained from the present results by the substitution HII
±±(1, 2) →

HI
∓∓(2, 1) and HII

00 (1, 2) → HI
00(2, 1) where, using the notation of Ref. [14], the polarized decay functions

described in this paper are denoted by HII
mm(1, 2).
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angular decay distribution. In fact, one obtains (Ĥ++ + Ĥ00 + Ĥ−− = 1)

Ĥ++ = 1 +
αs

6π

(
−5 + (π2 + 16)

√
µ2

)
+ . . .

Ĥ00 = 0 +
αs

6π

(
4− 2π2√µ2

)
+ . . .

Ĥ−− = 0 +
αs

6π

(
1 + (π2 − 16)

√
µ2

)
+ . . . (20)

where we have used a small αs expansion for the ratiosHmm/HU+L. ForW
+ → cb̄ the linear

NLO quark mass effects now amount to only O(35%) of the leading NLO contribution.

The reason for the reduction of the linear mass effects is that the largest linear mass

effect resides in the (unnormalized) polarized decay function H++ which has a sizeable LO

contribution.

The normalized angular decay distribution (16) can be characterized by the convexity

parameter (see e.g. Ref. [14])

cf =
d2Ŵ (θ)

d(cos θ)2
=

3

4
(ρ̂++ − 2ρ̂00 + ρ̂−−)(Ĥ++ − 2Ĥ00 + Ĥ−−). (21)

When cf is negative (positive), the angular decay distribution is described by a downward

(upward) open parabola. As a second global measure we introduce the forward–backward

asymmetry of the decay distribution defined by

AFB =
W (F )−W (B)

W (F ) +W (B)
=

3

4
(ρ̂++ − ρ̂−−)(Ĥ++ − Ĥ−−), (22)

where W (F ) = W (0 ≤ θ ≤ π/2) and W (B) = W (π/2 ≤ θ ≤ π). If there is an extremum

of the angular decay distribution in the physical range −1 ≤ cos θ ≤ 1, the extremum is

given by

cos θ
∣∣∣
extr

= −AFB

cf
= − (ρ̂++ − ρ̂−−)

(ρ̂++ − 2ρ̂00 + ρ̂−−)

(Ĥ++ − Ĥ−−)

(Ĥ++ − 2Ĥ00 + Ĥ−−)
. (23)

The three measures are not independent since cos θ
∣∣∣
extr

= −AFB/cf .

In the small αs expansion and neglecting quark mass effects one has

cf =
3

4
(1− 3ρ̂00)(1− 12

αs

6π
), (24)
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AFB = −3

4
(ρ̂++ − ρ̂−−)(1− 6

αs

6π
), (25)

cos θ
∣∣∣
extr

=
(ρ̂++ − ρ̂−−)

(1− 3ρ̂00)
(1 + 6

αs

6π
). (26)

The largest αs correction occurs for the convexity parameter cf . Using αs(m
2
W ) = 0.117

one finds a 7.5% reduction of cf through the radiative corrections, i.e. the radiatively

corrected angular decay distribution becomes flatter by that amount. This flattening is

clearly discernible in the plot of the cos θ distribution of the decay shown in Sec. 8.

Let us now for illustrative purposes turn to a specific example, namely the cascade decay

t → b+W+(→ q1 q̄2). This process is particularly interesting since the NLO radiative QCD

corrections factorize into initial- and final-state corrections, i.e. there is no NLO cross talk

between top quark decay and W decay because of colour conservation [25].

The spin density matrix elements of the W+ in the decay process t → b+W+ are well

studied. At LO one has [26]

ρ̂++(Born) = 0 → 0.0007,

ρ̂00(Born) =
1

1 + 2x2
= 0.696 → 0.6887,

ρ̂−−(Born) =
2x2

1 + 2x2
= 0.304 → 0.3106, (27)

where x = mW/mt. For the numerical values we use the central values of mW = 80.399±

0.025GeV and mt = 172.0 ± 0.9 ± 1.3GeV provided by the Particle Data Group [27].

At leading order the density matrix element ρ̂++ is not populated because of angular

momentum conservation in the two-body decay process. In Eq. (27) we have also given

the NLO QCD results indicated by arrows (cf. Refs. [28, 29, 30, 31]).4 The correction to

ρ̂++ is very small. The absolute corrections to ρ̂00 and ρ̂−− amount to 0.73% and 0.66%

and are thus considerably smaller than the final-state mass-zero corrections to Ĥ++ and

Ĥ00 given in Eq. (20).

4The NNLO corrections to the spin density matrix elements of the W+ have recently been calculated

in Ref. [32].
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If a transverse direction can be specified, one can also probe the nondiagonal spin

density matrix elements ρ̂mm′ with m 6= m′. The angular decay distribution is then given

by [33]

W (θ) =
∑

m,m′,m′′

ρ̂mm′ d1mm′′(θ) d1m′m′′(θ) Hm′′m′′ e−i(m−m′)φ, (28)

where φ denotes the azimuthal angle between the production and decay plane. For m′ 6= m

there will be the typical pattern of dispersive and absorptive (or CP violating) contribu-

tions proportional to cos(m−m′)φ and sin(m−m′)φ, respectively. We mention that, if one

generalizes the above example t → b+W+(→ q1 q̄2) to the decay of a polarized top quark

t(↑) → b+W+(→ q1 q̄2), a production plane can be defined with the help of the transverse

polarization of the top quark. The corresponding polar and azimuthal distributions are

given in Refs. [28, 30]. A further example where the nondiagonal density matrix elements

come into play is the much discussed decay H → f1f̄2f3f̄4 treated e.g. in Ref. [34, 35]

where one f f̄ plane provides the reference transverse direction needed for the definition of

the relative azimuthal orientation of the second plane.

4 One-loop contributions

For calculational reasons it is convenient to introduce linear combinations of the diagonal

helicity structure functions H++, H−− and H00 given by

H1 =
1

2
(H++ +H−−), H2 =

1

2
(H++ −H−−), H3 =

1

2
(H++ +H−− − 2H00). (29)

The inverse relations read H±± = H1 ± H2 and H00 = H1 − H3. Note that the linear

combinations H2 and H3 appear as coefficients of the cos θ and cos2 θ contributions in the

angular decay distribution (16).

The one-loop QCD correction to the decay process W+ → q1 q̄2 is shown in Fig. 1(b).

The vertex correction to the Born-term (V −A) vertex factor

− i
gw√
2
Vijγ

µ1− γ5
2

(30)
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can be written as −i(gW/
√
2)Vij∆Γµ

L. At NLO one finds

Γµ
L =

1

2
γµ(1− γ5) + ∆Γµ

L = (1 + AL)γ
µ1− γ5

2
+ ARγ

µ1 + γ5
2

+B1
Lp

µ
1

1− γ5
2

+B1
Rp

µ
1

1 + γ5
2

+B2
Lp

µ
2

1− γ5
2

+B2
Rp

µ
2

1 + γ5
2

(31)

where, as in the LO case, p1 and p2 are the four-momentum of the up-type quark and the

down-type antiquark, respectively. The UV and IR singular parts reside in the Born-term

like structure AL. In order to regularize the singularities, we use dimensional regulariza-

tion with D = 4 − 2ε. The UV singularity is removed by UV renormalization while the

IR singularity will be cancelled by the corresponding contributions from the tree-graph

contributions. The form factors are in general complex valued, i.e. they contain absorptive

parts as can be visualized from Fig. 1(b). For the present calculation we only consider

the diagonal helicity rate functions, and thus we only need the real parts of the one-loop

contributions. One has

ReAL = −αs

4π
CFΓ(1 + ε)

(
4πµ2

√
µ1µ2q2

)ε

×
[
2

ε
+ 2

µ1 + µ2 − (µ1 − µ2)
2

√
λ

ln
(
1− ṽ

1 + ṽ

)
+ 3

√
λ ln

(
1− ṽ

1 + ṽ

)
− (µ1 − µ2) ln

(√
µ1√
µ2

)

+
2√
λ
(1− µ1 − µ2)

((
1

ε
− ln

(
1− (

√
µ1 −

√
µ2)

2
))

ln
(
1− ṽ

1 + ṽ

)
+ ReL′

)
+ 4

]
,

ReAR =
αs

4π
CF

[
4

√
µ1µ2√
λ

ln
(
1− ṽ

1 + ṽ

)]
,

ReB1
L =

αs

4π
CF

2m1

q2

[
1− 2µ1 + (µ1 − µ2)

2

√
λ

ln
(
1− ṽ

1 + ṽ

)
+ (1− µ1 + µ2) ln

(√
µ1√
µ2

)
+ 1

]
,

ReB1
R = −αs

4π
CF

2m2

q2

×
[
1− µ1 − µ2 + (1 + µ1 − µ2)

2

√
λ

ln
(
1− ṽ

1 + ṽ

)
− (2 + µ1 − µ2) ln

(√
µ1√
µ2

)
+ 1

]
,

ReB2
L =

αs

4π
CF

2m1

q2

×
[
1− µ1 − µ2 + (1− µ1 + µ2)

2

√
λ

ln
(
1− ṽ

1 + ṽ

)
− (2− µ1 + µ2) ln

(√
µ2√
µ1

)
+ 1

]
,

ReB2
R = −αs

4π
CF

2m2

q2

14



W
+

q1

q2

G

W
+

q1

q2

G

Figure 2: Feynman diagrams for the NLO tree-graph contributions to the decay process

W+ → q1q̄2

×
[
1− 2µ2 + (µ1 − µ2)

2

√
λ

ln
(
1− ṽ

1 + ṽ

)
+ (1 + µ1 − µ2) ln

(√
µ2√
µ1

)
+ 1

]
(32)

where CF = (N2
c − 1)/2Nc = 4/3. We have introduced a velocity parameter ṽ defined by

ṽ =

√√√√1− (
√
µ1 +

√
µ2 )2

1− (
√
µ1 −

√
µ2 )2

. (33)

Per se the velocity parameter has no physical meaning except that it reduces to the usual

velocity v =
√
1− 4m2/q2 in the equal mass limit. The function ReL′ is given in Ap-

pendix A. The scale µ in ReAL has been introduced to keep the strong coupling constant

dimensionless in D = 4 − 2ε dimensions. The dependence on µ cancels in the sum of the

one-loop and tree-graph contributions. The one-loop contributions to the helicity structure

functions finally read

H1(loop) = 8Ncq
2(1− µ1 − µ2) ReAL + 16Ncq

2√µ1µ2ReAR,

H2(loop) = −8Ncq
2
√
λReAL,

H3(loop) = 8Ncq
2λReAL

+4Ncq
2λ
(
m1(ReB

1
L − ReB2

L) +m2(ReB
1
R − ReB2

R)
)
. (34)
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5 Tree-graph contributions

In accordance with the Lee–Nauenberg theorem, the IR singularities of the one-loop con-

tribution will have to cancel against the gluon-emission tree-graph contributions depicted

in Fig. 2. The result of the full phase-space integration can be expressed in terms of the

decay rate terms ℓ0, . . . , ℓ4, I
ℓ
z(0), S

ℓ
z(0), I

ℓ
1(0), S

ℓ
1(0), and Iℓ(0) listed in Appendix A. Again

we list our results in terms of the auxiliary expressions H1, H2 and H3 defined in Eq. (29).

One has

H1(tree) = N
[
4(1− µ1 − µ2)DS − 4µ1(1 + 7µ1 − µ2)I

ℓ
1(0)

− 2
√
µ1(1− 12µ1 − 2µ2 − 5µ2

1 + 4µ1µ2 + µ2
2)S

ℓ
1(0)

− 2µ1(6 + 4µ1 − 7µ2)ℓ1 + 2µ2(2 + 3µ1)ℓ2 − 2(1− 11µ1 + µ2)
√
λ
]
,

H2(tree) = N
[
− 4

√
λDI + 4(1− 3µ1 − 2µ2 − µ2

1 + µ2
2)I

ℓ(0)

− 2(2− µ1 + µ2 − µ2
1 + µ1µ2)ℓ0 − 8λℓ4

+ 4
√
λ(1 + 2µ1 − µ2)ℓ1 + 2

√
λ(2 + µ1 + µ2)ℓ2

+ (3 + 14
√
µ1 − 3µ1 + 3µ2)

(
(1−√

µ1)
2 − µ2

) ]
,

H3(tree) = N
[
4λDS − 12µ1(1 + 7µ1 − µ2)I

ℓ
1(0)

− 6
√
µ1(1− 12µ1 − 2µ2 − 5µ2

1 + 4µ1µ2 + µ2
2)S

ℓ
1(0)

− 2µ1(20 + 13µ1 − 24µ2 + µ2
1 + µ1µ2 + 4µ2

2)ℓ1

+ 2µ2(4 + 12µ1 − µ2 − 4µ2
1 − µ1µ2 − µ2

2)ℓ2

− 2(3− 36µ1 − µ2
1 + 8µ1µ2 − µ2

2)
√
λ
]
, (35)

where

N := αsNcCF q
2/(π

√
λ), (36)
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DS := (1− µ1 − µ2)
(
Dℓ + Sℓ

z(0)
)
− 2

√
λD

+
3

4

(
(1 + µ1 − µ2)ℓ1 + (1− µ1 + µ2)ℓ2 +

√
λ
)
,

DI := (1− µ1 − µ2)
(
Dℓ + Iℓz(0)

)
− 2

√
λD

+
3

4

(
(1 + µ1 − µ2)ℓ1 + (1− µ1 + µ2)ℓ2 +

√
λ
)
. (37)

We have isolated the IR singular parts in D and Dℓ given by

D := ln

(
λ√

Λµ1µ2

)
− 1,

Dℓ := ln

(
λ√

Λµ1µ2

)
lnα+ +

1

2
Li2(1− α+)−

1

2
Li2(1− α−) (38)

with α+ = (1 − µ1 − µ2 +
√
λ)/(1 − µ1 − µ2 −

√
λ) = α−1

− . The IR singularity has been

regularized by a small but finite gluon massmG =
√
Λq2. Since the one-loop calculation has

been done using dimensional regularization, one needs to convert the IR divergent piece of

the tree-graph contribution to the corresponding expression in dimensional regularization

by using the one-loop relation

lnΛ =

(
µ2

q2

)ε (
1

ε
− γE + ln(4π)

)
. (39)

6 Total NLO contribution

Because of the aforementioned Lee–Nauenberg theorem, the IR singularities cancel when

adding the one-loop and tree-graph contributions. Using the IR finite quantities

AS := DS +
q2

2N
ReAL

=
1

2
(1− µ1 − µ2)

(
tA + 2Sℓ

z(0)
)
−
√
λℓA +

1

2

(
1− µ1 − µ2 +

1

2
λ
)
ℓ3

+
1

4
(µ1 − µ2)

√
λℓB +

3

4

(
(1 + µ1 − µ2)ℓ1 + (1− µ1 + µ2)ℓ2 +

√
λ
)
,

AI := DI +
q2

2N
ReAL

=
1

2
(1− µ1 − µ2)

(
tA + 2Iℓz(0)

)
−
√
λℓA +

1

2

(
1− µ1 − µ2 +

1

2
λ
)
ℓ3

17



+
1

4
(µ1 − µ2)

√
λℓB +

3

4

(
(1 + µ1 − µ2)ℓ1 + (1− µ1 + µ2)ℓ2 +

√
λ
)

(40)

(ℓA, ℓB and tA are listed in Appendix A), the total results read

H1(αs) = N
[
4(1− µ1 − µ2)AS − 4µ1(1 + 7µ1 − µ2)I

ℓ
1(0)

− 2
√
µ1(1− 12µ1 − 5µ2

1 − 2µ2 + 4µ1µ2 + µ2
2)S

ℓ
1(0)

− 2µ1(6 + 4µ1 − 7µ2)ℓ1 + 2µ2(2 + 3µ1)ℓ2

− 8µ1µ2ℓ3 − 2(1− 11µ1 + µ2)
√
λ
]
, (41)

H2(αs) = N
[
− 4

√
λAI + 4(1− 3µ1 − µ2

1 − 2µ2 + µ2
2)I

ℓ(0)

− 2(2− µ1 − µ2
1 + µ2 + µ1µ2)ℓ0 − 8λℓ4

+ 4
√
λ(1 + 2µ1 − µ2)ℓ1 + 2

√
λ(2 + µ1 + µ2)ℓ2

+ (3 + 14
√
µ1 − 3µ1 + 3µ2)

(
(1−√

µ1)
2 − µ2

) ]
, (42)

H3(αs) = N
[
4λAS − 12µ1(1 + 7µ1 − µ2)I

ℓ
1(0)

− 6
√
µ1(1− 12µ1 − 5µ2

1 − 2µ2 + 4µ1µ2 + µ2
2)S

ℓ
1(0)

− 2µ1(20 + 13µ1 + µ2
1 − 24µ2 + µ1µ2 + 4µ2

2)ℓ1

+ 2µ2(4 + 12µ1 − 4µ2
1 − µ2 − µ1µ2 − µ2

2)ℓ2

+ λ
(
µ1 + µ2 − (µ1 − µ2)

2
)
ℓ3 − (µ1 − µ2)λ

√
λℓB

− 2(3− 36µ1 − µ2
1 + 8µ1µ2 − µ2

2)
√
λ
]
. (43)

For µ1 = µ2 we agree with our previous NLO QCD results on (γ∗, Z)(↑) → qq̄ [16, 17, 18,

19, 20].

A further check can be done by comparing the sum of the partial helicity structure

functions HU+L = H++ +H00 +H−− = 3H1 −H3 with the corresponding results [12, 13].
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For the unpolarized decay function HU+L(αs) we obtain

HU+L(αs) = N
[
4(3(1− µ1 − µ2)− λ)AS

+ 2µ1

(
2 + µ1 + µ2

1 − 18µ2 + µ1µ2 + 4µ2
2

)
ℓ1

+ 2µ2

(
2− 18µ1 + 4µ2

1 + µ2 + µ1µ2 + µ2
2

)
ℓ2

− ((1− µ1 − µ2 − λ)λ− 6µ1µ2) ℓ3 + (µ1 − µ2)λ
√
λℓB

+ 2 (1− 5µ1 − 5µ2 − λ+ 6µ1µ2)
√
λ
]

(44)

in full agreement with Ref. [13].5

7 High-energy and threshold limit

Since our results are obtained in analytical form, one can study different limiting cases. In

the high-energy (or mass-zero) limit one needs to expand the Källén function up to O(µ2
i ).

One has

√
λ =

√
1 + µ2

1 + µ2
2 − 2µ1 − 2µ2 − 2µ1µ2 = 1− µ1 − µ2 − µ1µ2 +O(µ3

i ). (45)

The high-energy limit of the decay rate terms are given in Appendix B. One has

H++(αs) = H1(αs)−H2(αs) → 8Ncq
2
{
αs

6π

}
,

H00(αs) = H1(αs)−H3(αs) → 8Ncq
2
{
4αs

6π

}
,

H−−(αs) = H1(αs) +H2(αs) → 8Ncq
2
{
1 +

αs

6π

}
. (46)

This result has already been used in Sec. 3.

5We also find agreement with the final result in Ref. [12] after correcting two typos in Eq. (A.50) of

Ref. [12], namely after removing the denominator factors (1+w1) in two of the Spence functions in (A.50).

We thank A. Denner for a communication on these typographical errors.
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At threshold one has
√
µ1+

√
µ2 → 1 and thus λ → 0. Using the results of Appendix C

one obtains up to O(αs)

H++ = H00 = H−− = Htt → 8Ncq
2

{
√
µ1µ2 + 8π2 αs

3π
√
λ
µ1µ2

}
. (47)

At threshold, all four O(αs) helicity rate functions are equal to one another as is true

at LO (see the pertinent discussion in Sec. 2). Concerning the on-shell decay of the W+

involving the polarized decay functions H++ = H00 = H−− one thus has a flat angular

decay distribution at threshold also at NLO. The Coulomb singularity proportional to

1/
√
λ in Eq. (47) signals that perturbation theory breaks down close to threshold. One

has to use nonperturbative methods to analyze the region close to threshold similar to the

analysis of e+e− → γ, Z → tt̄ close to threshold discussed in Refs. [36, 37, 38].

8 Numerical results for off-shell and on-shell

polarized decay functions

In this section we present our numerical NLO results for the three helicity rate functions

Hmm for on-shell and off-shellW bosons. We choose the
√
q2 range to extend from threshold

√
q2 = mb+mc to the maximal energy

√
q2 = mt−mb attainable in the decay t → b+W+.

In order to highlight quark mass effects we take the decay channel with the highest quark

masses, namely the channel W+ → cb̄ proportional to (Vcb)
2 = (0.041)2. For the quark

masses we take the pole masses mt = 172.0GeV, mb = 4.8GeV and mc = 1.5GeV. We let

αs run with two-loop accuracy. At q2 = m2
W = 80.385GeV2 we have αs = 0.117.

In Figs. 3, 4 and 5 we display the
√
q2 dependence of the Born-term and O(αs) helicity

rate functions H00, H−− and H++ for the process W+ → cb̄. We choose to normalize our

results to the unpolarized Born-term rate function HU+L(Born) given in Eq. (11).

Fig. 3 shows that the ratio H00(Born)/HU+L(Born) rapidly approaches the appropriate

threshold value of 1/3 at the lower end of the spectrum. The corresponding NLO ratio
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Figure 3: Energy dependence of the normalized coefficient H00/HU+L(Born) for the (cb̄)

case in the interval [mb + mc, mt −mb] at LO (dashed lines) and NLO (solid lines). The

dotted vertical line in Figs. 3–6 marks the position of an on-shell W boson.
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Figure 4: Energy dependence of the normalized coefficient H−−/HU+L(Born) for the (cb̄)

case in the interval [mb +mc, mt −mb] at LO (dashed lines) and NLO (solid lines)

Figure 5: Energy dependence of the normalized coefficient H++/HU+L(Born) for the (cb̄)

case in the interval [mb +mc, mt −mb] at LO (dashed lines) and NLO (solid lines)
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quickly approaches +∞ at threshold because of the Coulomb singularity in the αs NLO

one-loop contribution. Towards the higher end of the
√
q2 spectrum the two ratios quickly

reach their respective asymptotic values of zero and 2αs/3π. For the maximal energy
√
q2 = mt − mb the results are already close to the high-energy limit. The Born-term

result approaches zero while the O(αs) result stays at a finite value 2αs/3π ≈ 0.02 (with

αs(mt−mb) ≈ 0.1). For H−−(Born) Fig. 4 shows that, at maximal energy, the high-energy

result αs/6π ≈ 0.005 is already obtained with high accuracy while the Born-term result

again approaches zero. Finally, for the normalized coefficient H++(Born) one sees from

Fig. 5 that the Born-term result approaches the value 1 at maximal energy.

All three plots show that the approach to the high-energy (or mass-zero) limit is rather

slow for the αs corrections. In particular one is not close to the asymptotic NLO values

H−−/HU+L(Born) ∼ (1 + αs/6π), H00/HU+L(Born) ∼ 4αs/6π and H++/HU+L(Born) ∼

αs/6π at the on-shell value
√
q2 = mW indicated by the dotted vertical lines in Figs. 3,

4 and 5. The large NLO mass effects even at the scale
√
q2 = mW have been discussed

before in Sec. 3 and in Ref. [14] where one can find an O(µi) expansion of the NLO mass

effects.

In Fig. 6 we leave out the Born-term contributions and show the NLO corrections to

Hmm(NLO), divided by the sum of these. It is obvious that, at threshold, the effect of

the Coulomb singularity drops out in this ratio and all three helicity structure functions

contribute with a relative factor 1/3. On the other end of the spectrum in Fig. 6 the curves

start their slow approach to the limiting values 1/6 (for H±±) and 4/6 (for H00).

In Fig. 7 we plot the cos θ distribution for Ŵ (θ). It is quite apparent that the distribu-

tion becomes flatter through the radiative corrections. Numerical values for the parameters

cf , AFB and cos θ |max can be found in Tab. 1. The negative value of the convexity param-

eter cf means that the angular decay distribution is given by a downward-open parabola.

Quark mass effects can be seen to be almost negligibly small for the W+ → cs̄ channel.

We assume that it would be experimentally feasible to flavour-tag bottom and charm
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Figure 6: Energy dependence of the NLO corrections to Hmm(NLO) (m = ±, 0), divided

by HU+L(NLO) = H−−(NLO) +H00(NLO) +H++(NLO) for the (cb̄) case in the interval

[mb +mc, mt −mb]
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Figure 7: Normalized angular decay distribution Ŵ (θ) = W (θ)/W at LO (dashed line)

and NLO (full line) for the on-shell decay t → b +W+(→ cb̄). The NLO result contains

both initial-state and final-state corrections
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Born mi = 0 Born mi 6= 0 O(αs) mi = 0 O(αs) mi 6= 0

W+ → cb̄

cf −0.8142 −0.8095 −0.7348 −0.7466
AFB −0.2280 −0.2276 −0.2234 −0.2253
cos θ |max −0.2800 −0.2811 −0.3040 −0.3018

W+ → cs̄

cf −0.8142 −0.8138 −0.7348 −0.7352
AFB −0.2280 −0.2280 −0.2234 −0.2235
cos θ |max −0.2800 −0.2801 −0.3040 −0.3039

Table 1: The measures cf , AFB and cos θ |max for LO and NLO results at q2 = m2
W for

the cascade process t → b +W+(→ cb̄, cs̄). Shown are massless results as well as results

where the quark masses (ms = 150GeV, mc = 1.5GeV and mb = 4.8GeV) are taken into

account.

quark jets, at least for a large fraction of the corresponding top quark decays. If the

hadronic flavour channel cannot be isolated, one has to take the appropriate flavour sums

using the unitarity of the Kobayashi–Maskawa matrix. Furthermore, in the untagged case,

the parity violating contribution proportional to cos θ would drop out and the angular decay

distribution would become symmetric in cos θ. The resulting polar decay distribution reads

Ŵut(cos θ) =
1

2

(
Ŵt(cos θ) + Ŵt(− cos θ)

)
(48)

where “t” and “ut” stand for “flavour tagged” and “flavour untagged”.

Finite W -width effects in top quark decays have been considered in Refs. [39, 40, 31]

(see also Ref. [41]). We have recalculated the finite width correction to the total top

quark width using the mass values of the present paper and find that the total width is

reduced by 1.55% by the finite width corrections. We also found that the longitudinal and

transverse widths are reduced by 1.35% and 1.99%, resp., similar to the corresponding

values found in Ref. [31]. Curiously enough, the respective finite width corrections are

almost completely cancelled by the positive contributions of the perturbative electroweak
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corrections [39, 40, 31] such that these corrections taken together will affect the angular

decay distributions only in a minor way.

9 The decays H → W− +W ∗+(→ q1q̄2)

and H → Z + Z∗(→ qq̄)

In this section we consider quark mass and off-shell effects in the polar angle distribution

of the decay W ∗+(↑) → q1q̄2 where the off-shell W ∗+ is produced in the Higgs decay

H → W− +W ∗+. We shall also briefly touch on the subject of the three-body decay H →

Z+Z∗(→ qq̄). The corresponding leptonic modes have recently been observed at the LHC

and are therefore adequately dubbed “Higgs discovery channels” [21, 22]. Off-shell effects in

these decays will lead to additional scalar and scalar–longitudinal interference contributions

in e.g. the off-shell decay W ∗+(↑) → q1q̄2 well familiar from neutron beta decay and from

the semileptonic decay Ξ0 → Σ+ + µ−ν̄µ [42], or from the decay B → D(∗) + τ−ν̄τ [43].

The scalar and scalar–longitudinal interference contributions are quadratic in the quark

masses and can thus be neglected at the scale q2 = m2
W . However, for the off-shell decay

H → W− + W ∗+ the scale is not set by m2
W but by the off-shellness of the W ∗+ which

extends from threshold q2 = (m1 +m2)
2 (maximal recoil point) to the zero recoil point at

q2 = (mH −mW )2, i.e. one has (mH = 126GeV)

(m1 +m2)
2 ≤ q2 ≤ (mH −mW )2. (49)

One will therefore have to carefully consider quark mass and W ∗+ off-shell effects in the

q2 region close to threshold.

The differential decay distribution for the decay H → W−W ∗+(→ q1q̄2) is given by

dΓ

dq2d cos θ
=

g4w
1024π3

|V12|2
|~pW ||~p|
m2

H

√
q2

1

(q2 −m2
W )2 +m2

WΓ2
W

2

3
Woff−shell(θ) (50)
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(g2w = 8m2
WGF/

√
2 = 0.4265) where the polar angle decay distribution reads

Woff−shell(θ) =
3

2

(
− gµµ

′

+
qµqµ

′

m2
W

)(
− gνν

′

+
qνqν

′

m2
W

)
ρµνHµ′ν′ , (51)

and where |~pW | = λ1/2(m2
H , m

2
W , q2) /2mH and |~p| =

√
q2λ1/2(1, µ1, µ2)/2 are the magni-

tudes of the momentum of the W in the H rest system and the momentum of the quarks

in the W ∗+ rest system, respectively.

We use the unitary gauge for the electroweak sector in which the numerator of the

gauge boson propagator takes the unitary form written down in Eq. (51). An identical

result is obtained in a general (‘t Hooft–Feynman) Rξ gauge where one has to consider also

Goldstone boson exchange. The issue of the gauge invariance of using the Breit–Wigner

form for the propagator numerator has been discussed in Refs. [44, 45]. The gauge invariant

complex mass scheme features such a Breit–Wigner form for the propagator denominator.

In addition, complex masses have to be used in the coupling factors of the HWW and

HZZ vertices (see e.g. Eq. (54)) as well as in the relation between the weak mixing angle

θW and the gauge boson masses. Numerically, these corrections to observable quantities

amount to less than one promille and are therefore not discussed any further.

In Eq. (50) we have integrated out a trivial azimuthal angle dependence. The polariza-

tion of the W ∗+ is encoded in the density matrix function ρµν which in turn is determined

from the decay H → W−W ∗+. The hadron tensor Hµν contains the decay dynamics of the

decay W ∗+ → q1q̄2 as described in Sec. 3.

One can separate the spin 1 and spin 0 parts of the propagators in Eq. (51) by writing6

(
− gµµ

′

+
qµqµ

′

m2
W

)
=
(
− gµµ

′

+
qµqµ

′

q2
− qµqµ

′

q2
(1− q2

m2
W

)
)
. (52)

Note that, in the product of the two off-shell propagators in Eq. (50), the scalar–longitudi-

nal interference term acquires an extra minus sign.

6In the analysis of Refs. [46, 47] only the spin 1 piece of the propagator is kept which is adequate for

the zero lepton mass case.
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The polar angle decay distribution of a spin 1 boson decaying into a quark pair described

in Sec. 3 will be augmented by the contribution of a scalar–longitudinal interference term

and a scalar contribution. One has

Woff−shell(θ) =
3

2

∑

m,m′=0,±

ρmm d1mm′(θ) d1mm′(θ) Hm′m′

−3

2

(
1− q2

m2
W

)
(ρt0Ht0 + ρ0tH0t) cos θ +

3

2

(
1− q2

m2
W

)2
ρttHtt. (53)

In the next step we calculate the density matrix elements of the off-shell W ∗+ in the

decay H → W−W ∗+(↑) where we sum over the three polarization states of the on-shell

W−. In the SM the Higgs particle couples to a pair of W bosons via the metric tensor, i.e.

the matrix element for H → W−W+ is given by

M = imW gw gµνε
∗µ
W−ε

∗ν
q , (54)

where εW− and εq denote the polarization vectors of the on-shell W− and the off-shell W ∗+

boson, respectively. On squaring and summing over the three spin states of the on-shell

W− one obtains the density matrix elements

ρmm′ = m2
W

(
−gµν +

pµWpνW
m2

W

)
ε∗qµ(m)εqν(m

′). (55)

The square of the coupling factor gw does not appear in Eq. (55) since we have taken the

freedom to absorb g2w in the overall factor in the rate formula (50).

We calculate the density matrix elements ρmm′ in the Higgs rest frame with the z axis

along the W ∗+ momentum q = pH − pW . Let us collect the relevant expressions for the

four-momentum and the polarization vectors of the W ∗+ boson. One has

qµ =
(
q0; 0, 0, |~pW |

)
, q0 =

1

2mH
(m2

H + q2 −m2
W ), εµq (±) =

1√
2

(
0;∓1,−i, 0

)
,

εµq (0) =
1√
q2

(
|~pW |; 0, 0, q0

)
, εµq (t) =

qµ√
q2

=
1√
q2

(
q0; 0, 0, |~pW |

)
. (56)

The propagation of the scalar degree of freedom can be made explicit by expanding the

propagator in terms of a complete set of polarization vectors (see e.g. Ref. [42, 43])

− gµν +
qµqν
m2

W

= −
∑

m,m′=t,±,0

εqµ(m)ε∗qν(m
′)gmm′ (57)
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where gmm′ = diag {A;−1,−1,−1} with A = (1 − q2/m2
W ). The scalar degree of freedom

proportional to εqµ(t)ε
∗
qν(t) propagates from the HWW vertex to the Wff̄ vertex. The

scalar degree of freedom only comes into play for nonzero fermion masses.

On evaluating Eq. (55) one obtains

ρ++ = ρ−− = m2
W , ρ00 = m2

W

(
1 +

m2
H

q2m2
W

|~pW |2
)
,

ρ0t = ρt0 = m2
W

mH |~pW |
2m2

W q2

(
m2

H −m2
W − q2

)
, ρtt = m2

W

m2
H

q2m2
W

|~pW |2. (58)

At threshold (maximal recoil) when q2 → (m1+m2)
2, and for mi → 0, the longitudinal and

scalar contributions ρ00 = ρtt = ρt0 = (m2
H −m2

W )2/4q2 become dominant. On the other

end of the q2 spectrum (zero recoil) where |~pW | = 0, one finds ρ++ = ρ00 = ρ−− = m2
W

and ρtt = ρt0 = 0.

Since the decay H → W−W ∗+ is parity-conserving, the transverse density matrix

elements ρ++ and ρ−− are identical to each other, i.e. one has ρ++ − ρ−− = 0. This means

that there is no parity-violating contribution to the cos θ coefficient in the (first) spin 1

part of Eq. (53) (see Eq. (16)). The second cos θ contribution in Eq. (53) does not have

a parity-violating origin but is a parity-odd effect. It arises from the scalar–longitudinal

interference contribution with JP properties (0+, 1−) (VV) and (0−, 1+) (AA), resulting in

a parity-odd contribution.

The polarized decay functions H±± and H00 have been calculated before. The LO and

NLO forms of the additional polarized decay functions Htt and Ht0 can be found in Sec. 2

and in Appendix D. For the convenience of the reader we list Htt and Ht0 together with

their O(µi) mass expansion. One has

Htt = 4Ncq
2
(
1− µ1 − µ2 − λ+H1

S(αs)
)

= 4Ncq
2
(
µ1 + µ2 + . . .+

αs

6π

(
18µ1 + 18µ2 + 12µ1 lnµ1 + 12µ2 lnµ2 + . . .

))
(59)

and

Ht0 = H0t = 4Ncq
2
(
−(µ1 − µ2)

√
λ+H1

0t(αs)
)
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Figure 8: Differential rate for the three body decay H → W− + W ∗+(→ cb̄). The three

curves correspond to (i) Born term (mi = 0) (dotted line) (ii) Born term (mi 6= 0) (dashed

line) and (iii) O(αs) with (mi 6= 0) (full line).

= −4Ncq
2
(
µ1 − µ2 + . . .

+
αs

6π

(
26µ1 − 14µ2 − 4π(µ1 − µ2) + 12µ1 lnµ1 + 12µ2 lnµ2 + . . .

))
. (60)

On integrating Eq. (50) over cos θ one obtains the differential q2 rate which is given by

dΓ

dq2
=

g4w
1024π3

|V12|2
|~pW ||~p |
m2

H

√
q2

1

(q2 −m2
W )2 +m2

WΓ2
W

× 2

3

(
(ρ++ + ρ00 + ρ−−)(H++ +H00 +H−−) + 3(1− q2

m2
W

)2ρttHtt

)
. (61)

In the zero quark mass limit mi → 0 where H++ +H00 +H−− = 8Ncq
2 and Htt = 0, the

Born-term rate calculated from Eq. (61) can be seen to agree with the result of Refs. [48, 49]

when Nc is set to one.7

In our numerical discussion we again concentrate on the mode H → W− +W ∗+(→ cb̄)

in order to highlight quark mass effects even if this mode is suppressed by |Vcb|2 = (0.041)2.

7As pointed out in Ref. [48], the corresponding result in Ref. [50] is too small by a factor of 3/4.
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In Fig. 8 we show the q2 dependence of the rate. Let us begin our discussion with the Born-

term contributions. In the threshold region, where the longitudinal W ∗+ dominates, the

mi 6= 0 differential rate clearly shows the appropriate threshold behaviour 2|~p |/
√
q2 =

λ1/2(1, µ1, µ2), i.e. the differential rate vanishes at threshold. This vanishing is not seen for

the mi = 0 curve. This can be understood by taking the mi → 0 limit of λ1/2(1, µ1, µ2)

keeping q2 small and fixed with the result λ1/2(1, µ1, µ2) → 1. For the q2 = 0 value of the

differential mi = 0 rate one then obtains

dΓ

dq2

∣∣∣∣
q2=0

=
g4w

1024π3
|V12|2

Nc

3

(m2
H −m2

W )3

m3
Hm

2
W (m2

W + Γ2
W )

= 9.554 · 10−11GeV−1. (62)

in agreement with Fig. 8. At higher values of q2 the difference between the mi = 0 and

mi 6= 0 Born-term curves becomes smaller and smaller. The radiative corrections are

largest in the threshold region. Away from the threshold region they amount to over

10% and are thus considerably larger than what would result from the simple estimate

αs/π ∼ 3.7%. We mention that the radiative corrections to the LO mi = 0 curve in Fig. 8

is simply given by multiplying the LO result by (1 + αs/π).

Fig. 8 also shows that the O(αs) mi 6= 0 rate does not go to zero at threshold. This can

be traced to the presence of the NLO chromodynamic Coulomb singularity at threshold.

The Coulomb singularity proportional to λ−1/2 (see Eq. (C4)) is cancelled by the overall

rate factor |~p | =
√
q2λ1/2/2 resulting in a finite contribution at threshold proportional to

αs. One can estimate the finite threshold value of the O(αs) rate by neglecting terms of

O(q2/m2
W ) in Eq. (61) whence one can express the finite threshold value in terms of the

LO mi = 0 contribution in Eq. (62). One then obtains

dΓ

dq2

∣∣∣∣
thresh

≈ αs
32π

3
µ1µ2

dΓ

dq2

∣∣∣∣
q2=0

. (63)

Using αs(q
2 = (4.8+1.5)2GeV2) = 0.165, one obtains approximate agreement with Fig. 8.

As has been emphasized before, perturbation theory cannot be trusted in the threshold

region and therefore the treatment of the decay W ∗+ → cb̄ requires a nonperturbative
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treatment including a resummation of the chromodynamic Coulomb singularity. The above

exercise leading to Eq. (63) merely serves to check on the consistency of our calculation.

In Fig. 9 we show a plot of the q2 dependence of the convexity parameter. The convexity

parameter is obtained from Eq. (61) by replacing (ρ+++ ρ00+ ρ−−)(H+++H00+H−−) by

3/4(ρ++ − 2ρ00 + ρ−−)(H++ − 2H00 + H−−), setting the scalar contribution to zero, and

then dividing by the differential rate (61). At threshold and at zero recoil the convexity

parameter can be seen to go to zero at both ends of the q2 spectrum because one has

H++ − 2H00 +H−− → 0 at threshold and ρ++ − 2ρ00 + ρ−− → 0 at zero recoil.

An interesting exercise is to calculate the LO convexity parameter in the threshold

region. Neglecting terms of O(q2/m2
Z), as before, one obtains

cf ∼ −3

2

(
λ

3− 3µ1 − 3µ2 − 2λ

)
. (64)

The expression (64) has the correct threshold behaviour. Keeping q2 fixed (and small), and

taking the limit mi → 0 one has µi → 0, λ → 1 and one obtains cf = −3/2 in agreement

with Fig. 9.

In Figs. 10–12 we decompose the total differential rate dΓ/dq2 in terms of the three

partial unpolarized transverse (U), longitudinal (L) and scalar (S) contributions dΓU/dq
2,

dΓL/dq
2 and dΓS/dq

2, where the three partial rates are defined by the contributions of the

density matrix elements ρ++ + ρ−−, ρ00 and ρtt, respectively. The total rate is then given

by dΓ/dq2 = dΓU/dq
2 + dΓL/dq

2 + dΓS/dq
2.

Fig. 10 shows that the transverse rate is weighted toward higher q2 values, whereas

the longitudinal rate is more evenly distributed (Fig. 11). The scalar rate is considerably

smaller and shows a peak close to threshold (Fig. 12). The peak value is strongly enhanced

by the radiative corrections. The radiative corrections to the transverse rate are small.

The radiative corrections to the longitudinal rate can be seen to be quite pronounced close

to threshold which, in part, is due to the increase of αs due to running.

In Tab. 2 we present our numerical results for the integrated total rate and the in-
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Figure 9: Convexity parameter cf(q
2) as a function of q2. Labelling of curves as in Fig. 8

Figure 10: Differential rate dΓU/dq
2. Labelling of curves as in Fig. 8
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Figure 11: Differential rate dΓL/dq
2. Labelling of curves as in Fig. 8

Figure 12: Differential rate dΓS/dq
2. Labelling of curves as in Fig. 8
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tegrated partial rates for W+ → cb̄. One can see that the integrated longitudinal rate

ΓL slightly dominates over the integrated transverse rate ΓU . The scalar rate ΓS is quite

small and contributes to the total rate at the 2.9% level. The LO total rate is reduced by

5.8% through mass effects where the biggest reduction comes from the longitudinal rate

(11.7%). Radiative corrections increase the LO rates by 6.2%−7.8% except for the scalar

rate which is increased only by 2.1%. We also list the value of the forward–backward asym-

metry AFB which, as has been discussed before, is a parity-odd effect contributed to by the

parity-conserving scalar–longitudinal interference term. The forward–backward asymme-

try is positive (see Eqs. (53) and (60)) and receives its main contribution from the region

close to threshold. AFB is of the same order of magnitude as ΓS/ΓL. For comparison, in

Tab. 2 we also include results for the process W+ → cs̄ (|Vcs| = 0.97345± 00016 [27]).

Quark mass effects can be expected to play a larger role in e.g. the decay H → Z+Z∗(→

bb̄). First, the bb̄ threshold is higher than the cb̄ threshold, and second, the phase space is

reduced due to the larger mass of the Z boson, i.e. the physical q2 range becomes smaller.

An extra bonus is the fact that the decay Z∗ → bb̄ is not CKM suppressed. For the

differential decay distribution one obtains (sin2 θW = 0.23188)

dΓ

dq2
=

1

2

g4w
1024π3

1

cos4 θW

|~pZ ||~p |
m2

H

√
q2

1

(q2 −m2
Z)

2 +m2
ZΓ

2
Z

× 2

3

(
(ρ++ + ρ00 + ρ−−)

1

2
(v2fH

V V
U+L + a2fH

AA
U+L)

+ 3(1− q2

m2
Z

)2 ρtt(v
2
fH

V V
tt + a2fH

AA
tt )

)
, (65)

where the gauge boson momentum now is |~pZ | =
√
λ(m2

H , m
2
Z , q

2) /2mH , and ~pW , mW are

replaced by ~pZ , mZ in the expressions for ρmm′ in Eq. (58). The electroweak coupling

coefficients are given by

vf = 1− 8

3
sin2 θW , af = 1 for u, c, t

vf = −1 +
4

3
sin2 θW , af = −1 for d, s, b. (66)

In Fig. 13 we provide a plot of the differential q2 rate for H → Z + Z∗(→ bb̄) where we
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Figure 13: Differential rate for the three body decay H → Z + Z∗(→ b + b̄). Labelling of

curves as in Fig. 8.

use mZ = 91.1876 ± 0.0021GeV, ΓZ = 2.4952 ± 0.0023GeV [27]. Again the differential

LO rate shows the appropriate threshold behaviour for mb 6= 0, i.e. the differential rate

vanishes at threshold q2 = 4m2
b .

The corresponding mb = 0 LO rate shows no apparent vanishing at threshold for the

same reason as in the corresponding H → W−W ∗+ case. The differential rate at q2 = 0

and for mb = 0 is given by

dΓ

dq2

∣∣∣∣
q2=0

=
1

2

g4w
1024π3

1

cos4 θW

Nc

3

(m2
H −m2

Z)
3

m3
Hm

2
Z(m

2
Z + Γ2

Z)

1

2

v2f + a2f
2

= 0.56 · 10−8GeV−1. (67)

in agreement with Fig. 13.

As Fig. 13 shows, the NLO rate does not go to zero at threshold. As in the charged

current case this can be traced to the presence of the NLO chromodynamic Coulomb

singularity at threshold. One can estimate the finite threshold value of the O(αs) rate by

neglecting terms of O(q2/m2
Z) in Eq. (65) whence one can express the finite threshold value
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Figure 14: q2 dependence of the convexity parameter cf (q
2) for H → Z + Z∗(→ b + b̄).

Labelling of curves as in Fig. 8

in terms of the LO mb = 0 contribution in Eq. (67). One then obtains

dΓ

dq2

∣∣∣∣
thresh

≈ αs

(v2f + a2f)

(v2f + 3a2f )

16π

3
µ2 dΓ

dq2

∣∣∣∣
q2=0

. (68)

Note that the contribution proportional to 3a2f results from the scalar contribution in

Eq. (65). By a visual inspection of Fig. 13, the approximation can be seen to be quite

good. Similar to the calculation leading up to Eq. (64) one can calculate the LO convexity

parameter in the threshold region. Neglecting again terms of O(q2/m2
Z) one finds

cf = −3

2

(
1− 4µ

1 + 2µ

)
(69)

which is just the limiting case of Eq. (64) for µ1 = µ2 := µ. Curiously the intricate

dependence on the electroweak coupling parameters cf and af has dropped out when

taking the ratio. In the mass-zero case and at q2 = 0 one has exactly cf = −3/2.

In Fig. 14 we show a plot of the q2 dependence of the convexity parameter cf . In the

threshold region the convexity parameter behaves very differently for mb = 0 and mb 6= 0
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Figure 15: Polar angle distribution for Z∗(→ b+ b̄) at q2 = 150GeV2. Labelling of curves

as in Fig. 8

(the radiative corrections are quite small). This implies that the polar angle distributions

are very different for the two cases. In order to illustrate this effect we choose q2 = 150GeV2

and, in Fig. 15, plot the corresponding cos θ distribution. At this value of q2 one is well

outside of the nonperturbative threshold region. Since the convexity parameter is negative

(see Eq. (69)), one has a downward open parabola. Mass effects can be seen to be crucial

for the correct description of the m 6= 0 angular decay distribution which is much flatter

than the m = 0 distribution. The three curves correspond to convexity parameters of

cf = −1.154 (LO;mb = 0), cf = −0.388 (LO) and cf = −0.407 (NLO).

In Table 2 we have listed numerical values for the various integrated partial rates and

for the asymmetry parameter AFB for both Z∗ → bb̄ and for Z∗ → cc̄. Quark mass effects

and scalar contributions can be seen to be quite large in particular for the bb̄ case. In the

bb̄ case, mass effects decrease the LO rate by 20.1% where most of this reduction comes

from ΓL. The scalar contribution amounts to 8.6% of the total contribution. The radia-
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tive corrections increase all four rates by O(10%). The scalar–longitudinal interference

contribution sets in only at O(αs) since the Born-term contribution to H0t vanishes, i.e.

the forward–backward asymmetry is proportional to αs and therefore small. This is borne

out by the tiny numerical value of AFB listed in Table 2. The numbers in Table 2 for the

cc̄ case follow a similar pattern, though quark mass and off-shell effects are smaller.

In this section we have assumed one gauge boson to be on-shell and the other opposite-

side gauge boson to be off-shell. The on-shell approximation can be dropped by also

taking the on-shell gauge boson off its mass shell using, again, a Breit–Wigner form for

the propagator. We find upward corrections to the rate of 5.2% for H → WW and 19.9%

for H → ZZ.

In the present calculation we have used a factorized form for the opposite-side fermion

pair decays which is only justified when one does not have identical fermions in the final

state. If one has identical fermions in the final state as in H → Z∗Z∗(→ ff f̄ f̄), there

will be interference effects involving the pairs of identical fermions. In order to account

for such interference effects, a full-fledged calculation of H → Z∗Z∗ with subsequent four-

body decays is required, as has been done in Refs. [34, 35]. As shown in Ref. [51], these

interference effects can lead to a substantial reduction in rate. For example, for a 126GeV

Higgs boson interference effects reduce the branching ratio of H → eeµµ by 45% when

going to the decay H → eeee.

10 Summary and Conclusions

We have calculated the NLO QCD corrections to the polarized decay functions in the

decay of an off-shell and on-shell polarized W+ gauge boson into massive quark–antiquark

pairs W+(↑) → q1 q̄2, keeping the quark masses finite. Using these NLO results for the

decay process as well as previous results on the NLO corrections to the production process

t → b + W+ we have studied the NLO corrections to the polar angle decay distribution
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in the cascade decay t → b +W+ followed by W+ → q1 q̄2. We have found that the NLO

final-state corrections to the decay distribution are somewhat larger than the NLO initial

state corrections. Altogether we find that the NLO corrections lead to a flatter angular

decay distribution W (θ).

The decay analysis was done in the W+ rest frame which has the maximal sensitivity to

W+ polarization effects. Polarization effects of the W+ boson will be visible also in other

reference frames such as the laboratory frame. It is therefore always important to retainW+

polarization effects in radiative correction calculations (see e.g. Refs. [34, 35, 52, 53, 54, 55]).

We have presented our results in a general form involving the spin 0 and spin 1 pieces

of the (V V ), (AA), (V A) and (AV ) current contributions separately. Our results can thus

also be applied to on-shell Z decays and off-shell Z∗ decays (as in Sec. 9) and also to

extensions of the SM.

In this paper we have discussed the decaysW+ → q1 q̄2 of positively chargedW+ bosons.

The corresponding results for negatively charged bosons W− → q̄1 q2 can be obtained from

the CP invariance of the interaction. One finds [14]

Hmm(W
− → q̄1q2;µ1, µ2; z

′ ‖ q2) = Hmm(W
+ → q1q̄2;µ2, µ1; z

′ ‖ q1). (70)

From the experimental point of view, the leptonic decay of the W boson is the most

interesting one. In a sequel to this paper we shall calculate the corresponding NLO elec-

troweak corrections to the decay W+(↑) → ℓ+ νℓ.

As a further example of much topical interest we have discussed the Higgs decay modes

H → W− + W ∗+(→ cb̄, cs̄) and H → Z + Z∗(→ bb̄, cc̄) involving the off-shell W ∗+ and

Z∗ bosons. We find that quark-mass effects and scalar contributions affect the rate and

the angular decay distributions in these decays in a non-negligible way especially in the

vicinity of the threshold region. Quark mass effects are also non-negligible for the overall

rate. For example, nonzero quark masses induce a scalar contribution to the rate which

makes up 8.6% of the total rate for H → Z + Z∗(→ bb̄).
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It would be worthwhile to exploit the knowledge about charged and neutral current

spectral functions in the heavy quark sector which has been accumulating over the last

few decades for a precision analysis of the rates of the decays H → W− +W ∗+(→ bc̄) and

H → Z + Z∗(→ bb̄, cc̄).
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A Decay rate terms

In this appendix we present analytical expressions for the polarized decay functions intro-

duced in the main text. For the tree-graph contributions we define logarithmic decay rate

terms

ℓ1 = ln

(
1 + µ1 − µ2 +

√
λ

1 + µ1 − µ2 −
√
λ

)
, ℓ2 = ln

(
1− µ1 + µ2 +

√
λ

1− µ1 + µ2 −
√
λ

)
,

ℓ0 = ln

(
(1−√

µ1)
2

µ2

)
, ℓ4 = ln

(
(1 +

√
µ1)

2 − µ2√
µ1

)
(A1)

and the linear combination ℓ3 = ℓ1 + ℓ2. One further has dilogarithmic decay rate terms

given by

Iℓz(0) = Li2(−z+)− Li2(−z−) + Li2

(
z+ −√

µ1√
µ1z+ − 1

)
− Li2

(√
µ1z+ − 1

z+ −√
µ1

)
, (A2)

Sℓ
z(0) = Li2

(
1− µ1 − µ2 −

√
λ

1− µ1 − µ2 +
√
λ

)
+ Li2

(
1− µ1 + µ2 −

√
λ

1− µ1 + µ2 +
√
λ

)
+ Li2

(
1 + µ1 − µ2 −

√
λ

1 + µ1 − µ2 +
√
λ

)
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− π2

2
+

1

2
ln2

(
1− µ1 − µ2 −

√
λ

1− µ1 − µ2 +
√
λ

)
+ ln

(
λ

2µ1µ2

)
ln

(
1− µ1 − µ2 −

√
λ

1− µ1 − µ2 +
√
λ

)

+ 2 ln(2
√
µ1) ln(2

√
µ2)− 2 ln(1− µ1 + µ2 +

√
λ) ln(1 + µ1 − µ2 +

√
λ), (A3)

Iℓ1(0) = Li2(µ1)− Li2(
√
µ1z+)− Li2(

√
µ1z−)−

π2

6

+
1

2
Li2

(
(z− −√

µ1)
2

(1−√
µ1z−)2

)
+

1

2
Li2(z

2
−)− 2Li2

(√
µ1(

√
µ1 − z−)

1−√
µ1z−

)

+ ln

(
1− z2−
1− µ1

)
ln

(
z− −√

µ1

1−√
µ1z−

)
+ ln z− ln(z+ − z−), (A4)

Sℓ
1(0) = Li2(z−)− Li2(−z−)−

π2

4
+ ln z− ln

(
1− z−
1 + z−

)

− Li2

(
(1 +

√
µ1)(1− z−)

(1−√
µ1)(1 + z−)

)
+ Li2

(
−(1 +

√
µ1)(1− z−)

(1−√
µ1)(1 + z−)

)
, (A5)

Iℓ(0) = Li2(
√
µ1z+) + Li2(

√
µ1z−)− 2Li2(

√
µ1) + ln2 z− = Sℓ(0) (A6)

where

z+ =
1

2
√
µ1

(
1 + µ1 − µ2 +

√
λ
)
= z−1

− . (A7)

The decay rate terms originating from the loop corrections read

ℓA = 2 lnλ− 3 ln
√
µ1µ2, (A8)

ℓB = ln

(
µ1

µ2

)
, (A9)

tA =
(
ℓA − ln

(
1− (

√
µ1 −

√
µ2)

2
))

ℓ3

+ Li2(1− α+)− Li2(1− α−)− 2ReL′(µ1, µ2) (A10)

where

α+ =
1− µ1 − µ2 +

√
λ

1− µ1 − µ2 −
√
λ
= α−1

− . (A11)

The complex function L′(µ1, µ2) is given by

L′(µ1, µ2) = L(ṽ)− Li2

(
(
√
µ1 −

√
µ2)(ṽ + 1)

2
√
µ1

)
+ Li2

(
(
√
µ1 −

√
µ2)(ṽ − 1)

2
√
µ2

)

+ Li2

(
−(

√
µ1 −

√
µ2)(ṽ − 1)

2
√
µ1

)
− Li2

(
−(

√
µ1 −

√
µ2)(ṽ + 1)

2
√
µ2

)
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+ ln

(
(
√
µ1 +

√
µ2)− (

√
µ1 −

√
µ2)ṽ

(
√
µ1 +

√
µ2) + (

√
µ1 −

√
µ2)ṽ

)
ln

(√
µ1√
µ2

)
(A12)

where

L(ṽ) = Li2

(
2ṽ

1 + ṽ

)
− Li2

( −2ṽ

1− ṽ

)
+ iπ ln

(
1− ṽ2

4ṽ2

)
− π2 (A13)

and where the velocity parameter ṽ has been defined in Eq. (33). The dilogarithmic and

double-logarithmic terms in Eq. (A12) are real whereas L(ṽ) is a complex function with its

real part explicitly given in Eq. (A13). In the limit µ1 = µ2 = µ all dilogarithmic terms and

the double-logarithmic term in Eq. (A12) vanish and one remains with the contribution of

L(v) where v =
√
1− 4µ is the usual velocity of the quarks. Note that the term L′(µ1, µ2)

is a generalization of the equal-mass term (µ1 = µ2 = µ)

L(v) = Li2

(
2v

1 + v

)
− Li2

( −2v

1− v

)
+ iπ ln

(
1− v2

4v2

)
− π2 (A14)

appearing in e+e− → tt̄ (see e.g. Ref. [19]).

B Decay rate terms in the high-energy limit

In the high-energy or, equivalently, in the mass-zero limit one obtains

ℓ0 → − lnµ2,

ℓ1 → − lnµ1,

ℓ2 → − lnµ2,

ℓ3 → − lnµ1 − lnµ2,

ℓ4 → −1

2
lnµ1 (B1)

using the expansion (45). Further one has

z+ → 1√
µ1

, z− → √
µ1 (B2)
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or, more precisely,
√
µ1z+ → 1− µ2. Finally, in the tree-graph case, one obtains

Iℓz(0) → −π2

3
− 1

4
ln2 µ1 −

1

2
lnµ1 lnµ2 −

1

2
ln2 µ2,

Sℓ
z(0) → −π2

2
− 1

2
lnµ1 lnµ2 −

1

2
ln2 µ2,

Iℓ(0) → π2

6
+

1

2
ln2 µ1,

Sℓ(0) → π2

6
+

1

2
ln2 µ1,

Iℓ1(0) → −π2

3
− 1

4
ln2 µ1,

Sℓ
1(0) → −π2

2
. (B3)

For the decay rate terms deriving from the loop corrections one has

ℓA → −3

2
(lnµ1 + lnµ2),

ℓB → lnµ1 − lnµ2,

tA → π2 + ln2 µ1 + lnµ1 lnµ2 + ln2 µ2. (B4)

Finally, one obtains AS → 3/4 and AI → 3/4.

C Decay rate terms close to threshold

Close to threshold where
√
λ → 0 one has ℓ0, ℓ1, ℓ2, ℓ3 → 0 while ℓ4 → ln 4. Note, however,

that ℓ4 is always multiplied with λ and, therefore, does not give any contribution in this

limit. In order to calculate the dilogarithmic decay rate terms in this limit, one has

to expand
√
λ more carefully. To that end we define a small quantity κ where κ2 =

(1−√
µ1 −

√
µ2 ). On expanding in κ one obtains

√
λ (1, µ1, (1−

√
µ1 − κ2)2) =

√
8µ1(1−

√
µ1) κ+O(κ3). (C1)

Using the expansion (C1), one can verify that Iℓz(0), S
ℓ
z(0), I

ℓ
1(0), S

ℓ
1(0), I

ℓ(0) → 0. Finally,

the decay rate terms that originate from the loop corrections read

ℓA → 2 lnλ− 3 ln (
√
µ1(1−

√
µ1)) ,
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ℓB → ln

(
µ1

(1−√
µ1)2

)
,

tA → 2π2. (C2)

The term ℓA appears to be singular at threshold when λ → 0. However, ℓA is multiplied

with
√
λ in Eqs. (40) or ℓ3 in Eq. (A10). Therefore, one finds that AI and AS are finite,

AI , AS → 2π2√µ1(1−
√
µ1). (C3)

Note that the chromodynamic Coulomb singularity at threshold proportional to αs mani-

fests itself in the overall factor

N =
αs

π
√
λ
NcCF q

2. (C4)

D Comparison with spectral function results

There have been claims and counterclaims in the literature about the correctness of previous

results on vector and axial-vector spectral functions at O(αs). The present calculation

gives us the opportunity to check on previous results in the literature. According to the

decomposition

− gµν = −gµν +
qµqν

q2
− qµqν

q2
(D1)

we define the vector and axial-vector spectral functions (HV V (AA) = HV V (AA)
µν (−gµν))

HV V (AA) = H
V V (AA)
U+L −H

V V (AA)
S . (D2)

Following our previous work it is convenient to define the linear combinations (not to be

confused with the linear combinations H1 and H2 defined in Sec. 4)

H1
S =

1

2
(HV V

S +HAA
S ), H2

S =
1

2
(HV V

S −HAA
S ) (D3)

and, accordingly, for H1,2 and H1,2
U+L. At the Born-term level we obtain

H1(Born) = 4Ncq
2(1− µ1 − µ2), H2(Born) = 16Ncq

2√µ1µ2, (D4)
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H1
S(Born) = 2Ncq

2(1− µ1 − µ2 − λ), H2
S(Born) = −4Ncq

2√µ1µ2, (D5)

H1
U+L(Born) = 6Ncq

2(1− µ1 − µ2 − λ/3), H2
U+L(Born) = 12Ncq

2√µ1µ2. (D6)

The NLO corrections read

H1(αs) = N
[
4(1− µ1 − µ2)AS + 2µ1(1 + µ1)ℓ1 + 2µ2(1 + µ2)ℓ2

+ ((1− µ1 − µ2 − λ)λ− 8µ1µ2) ℓ3 − (µ1 − µ2)λ
√
λℓB − 2(1 + µ1 + µ2 − λ)

√
λ
]
,

H2(αs) = 4
√
µ1µ2N

[
4AS − (3− µ1 − 3µ2)ℓ1 − (3− 3µ1 − µ2)ℓ2 + 6

√
λ
]

(D7)

and

H1
S(αs) =

N

2

[
4(1− µ1 − µ2 − λ)AS − 2µ1(µ1 − µ2

1 + 16µ2 − µ1µ2 − 4µ2
2)ℓ1

− 2µ2(16µ1 − 4µ2
1 + µ2 − µ1µ2 − µ2

2)ℓ2 − 3 ((1− µ1 − µ2 − λ)λ− 6µ1µ2) ℓ3

+ 3(µ1 − µ2)λ
√
λℓB + 6(1− µ1 − µ2 − λ+ 2µ1µ2)

√
λ
]
,

H2
S(αs) =

√
µ1µ2N

[
− 4AS + (3− µ1 − 3µ2)ℓ1

+ (3− 3µ1 − µ2)ℓ2 − 6µ1µ2ℓ3 − 3(2 + µ1 + µ2)
√
λ
]
. (D8)

Finally,

H1
U+L(αs) =

N

2

[
4 (3(1− µ1 − µ2)− λ)AS + 2µ1(2 + µ1 + µ2

1 − 16µ2 + µ1µ2 + 4µ2
2)ℓ1

+ 2µ2(2− 16µ1 + 4µ2
1 + µ2 + µ1µ2 + µ2

2)ℓ2 − ((1− µ1 − µ2 − λ)λ− 2µ1µ2) ℓ3

+ (µ1 − µ2)λ
√
λℓB + 2(1− 5µ1 − 5µ2 − λ+ 6µ1µ2)

√
λ
]
,

H2
U+L(αs) = 3

√
µ1µ2N

[
4AS − (3− µ1 − 3µ2)ℓ1

− (3− 3µ1 − µ2)ℓ2 − 2µ1µ2ℓ3 + (6− µ1 − µ2)
√
λ
]
. (D9)

The normalization factor N has been defined in Eq. (36). The result on H1
U+L(αs) has

been listed before in the form 2H1
U+L(αs) = HU+L(αs) in Eq. (44).
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When comparing to previous results in the literature we want to remind the reader

that one uses a different terminology for the spectral function results in the QCD sum rule

community. What is called “longitudinal” there is called “scalar” here and what is called

“transverse” there we call “transverse + longitudinal (U + L)”.

We find agreement with the results of Ref. [56] which were given in terms of the corre-

lator functions ImΠ
+/−
L,T . These are related to our rate functions by

H1
S(αs) = −N

π
ImΠ+

L(s), H2
S(αs) = −N

π

√
µ1µ2 ImΠ−

L(s),

H1
U+L(αs) =

3N

π
ImΠ+

T (s), H2
U+L(αs) =

3N

π

√
µ1µ2 ImΠ−

T (s). (D10)

We find also agreement with Ref. [57], where the relevant relations are

16Ncs ρ
V/A(s) = − 3

4π2

√
λ(H1 ±H2),

16Ncs ρ
V/A
L (s) =

3

4π2

√
λ(H1

S ±H2
S) . (D11)

Taking into account the correction mentioned in the note added to Ref. [57] as well as the

erratum of Ref. [57], we could not find the obvious mistakes in the integrals J1 and J2

mentioned in Ref. [56].

We mention that the correlator functions in Ref. [56, 57] have been obtained by calcu-

lating the absorptive parts of the pertinent two-loop contributions. The resulting analytical

expressions for the correlator functions are somewhat simpler than our expressions. The

mutual agreement was checked numerically.

E O(αs) results in terms of V V , AA,

VA and AV contributions

When treating the decay W+ → q1q̄2 we have assumed a SM coupling form for the weak

decay symbolically written as (V − A)µ(V − A)ν = V µV ν + AµAν − V µAν − AµV ν . In
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the general case when the relative weight of the vector and axial-vector current is not as

simple as in the SM charged current transitions (as e.g. in Z → qq̄ or in SM extensions of

the charged current transitions), one wants to be able to avail of the corresponding O(αs)

expressions written in terms of their V V , AA, VA and AV contributions.

In this appendix we shall therefore collect all O(αs) expressions for the polarized decay

functions in terms of their V V , AA, VA and AV components. Extending the notation of

Eq. (D3) to

H1
α =

1

2
(HV V

α +HAA
α ), H2

α =
1

2
(HV V

α −HAA
α ),

H3
α =

i

2
(HVA

α −HAV
α ), H4

α =
1

2
(HVA

α +HAV
α ), (E1)

where α is any of U + L, U, L, F, S, tt, t0, 0t, 00,±± or 1, 2, 3 of Sec. 4, one obtains at LO

H1
1 (Born) = 2Ncq

2(1− µ1 − µ2), H2
1 (Born) = 4Ncq

2√µ1µ2,

H3
2 (Born) = 0, H4

2 (Born) = −2Ncq
2
√
λ,

H1
3 (Born) = 2Ncq

2λ, H2
3 (Born) = 0,

H1
tt(Born) = 2Ncq

2(1− µ1 − µ2 − λ), H2
tt(Born) = −4Ncq

2√µ1µ2 (E2)

H1
t0(Born) = −2Ncq

2(µ1 − µ2)
√
λ = H1

0t(Born), H2
t0(Born) = 0 = H2

0t(Born).

Using

HV V
±± = H1

1 +H2
1 , HAA

±± = H1
1 −H2

1 ,

HVA
±± = ±(H4

2 − iH3
2 ), HAV

±± = ±(H4
2 + iH3

2 ),

HV V
00 = H1

1 −H1
3 + (H2

1 −H2
3 ), HAA

00 = H1
1 −H1

3 − (H2
1 −H2

3 ),

HV V
tt = H1

tt +H2
tt, HAA

tt = H1
tt −H2

tt,

HV V
t0 = H1

t0 +H2
t0, HAA

t0 = H1
t0 −H2

t0,

HV V
0t = H1

0t +H2
0t, HAA

0t = H1
0t −H2

t0, (E3)

one obtains

HV V
±± (Born) = 2Ncq

2(1− µ1 − µ2 + 2
√
µ1µ2),
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HAA
±±(Born) = 2Ncq

2(1− µ1 − µ2 − 2
√
µ1µ2),

HVA
±±(Born) = ∓2Ncq

2
√
λ,

HV V
00 (Born) = 2Ncq

2(1− µ1 − µ2 − λ+ 2
√
µ1µ2),

HAA
00 (Born) = 2Ncq

2(1− µ1 − µ2 − λ− 2
√
µ1µ2),

HV V
tt (Born) = 2Ncq

2(1− µ1 − µ2 − λ− 2
√
µ1µ2),

HAA
tt (Born) = 2Ncq

2(1− µ1 − µ2 − λ+ 2
√
µ1µ2),

HV V,AA
t0 (Born) = −2Ncq

2(µ1 − µ2)
√
λ = HV V,AA

0t (Born). (E4)

Note that the amplitudes H1,2
2 do not contribute to the parity even pieces of H

V V/AA
±± .

The non-vanishing αs contributions are given by

H1
1 (αs) = N

[
2(1− µ1 − µ2)AS − 2µ1(1 + 7µ1 − µ2)I

ℓ
1

−√
µ1(1− 12µ1 − 5µ2

1 − 2µ2 + 4µ1µ2 + µ2
2)S

ℓ
1

−µ1(6 + 4µ1 − 7µ2)ℓ1 + µ2(2 + 3µ1)ℓ2

−4µ1µ2ℓ3 − (1− 11µ1 + µ2)
√
λ
]
,

H2
1 (αs) = N

√
µ1µ2

[
4AS + 4µ1I

ℓ
1 − 2

√
µ1(1 + µ1 − µ2)S

ℓ
1

−3(1− µ1 − µ2)ℓ1 − 3(1− µ1 − µ2)ℓ2 + 3
√
λ
]
,

H3
2 (αs) = 4Nπ

√
µ1µ2

√
λ,

H4
2 (αs) =

N

2

[
− 4

√
λAI + 4(1− 3µ1 − µ2

1 − 2µ2 + µ2
2)I

ℓ

−2(2− µ1 − µ2
1 + µ2 + µ1µ2)ℓ0 − 8λℓ4

+4
√
λ(1 + 2µ1 − µ2)ℓ1 + 2

√
λ(2 + µ1 + µ2)ℓ2

+(3 + 14
√
µ1 − 3µ1 + 3µ2)

(
(1−√

µ1)
2 − µ2

) ]
, (E5)

H1
3 (αs) =

N

2

[
4λAS − 12µ1(1 + 7µ1 − µ2)I

ℓ
1

−6
√
µ1(1− 12µ1 − 5µ2

1 − 2µ2 + 4µ1µ2 + µ2
2)S

ℓ
1
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−2µ1(20 + 13µ1 + µ2
1 − 24µ2 + µ1µ2 + 4µ2

2)ℓ1

+2µ2(4 + 12µ1 − 4µ2
1 − µ2 − µ1µ2 − µ2

2)ℓ2

+λ
(
µ1 + µ2 − (µ1 − µ2)

2
)
ℓ3

−(µ1 − µ2)λ
√
λℓB − 2(3− 36µ1 − µ2

1 + 8µ1µ2 − µ2
2)
√
λ
]
,

H2
3 (αs) = N

√
µ1µ2

[
12µ1I

ℓ
1 − 6

√
µ1(1 + µ1 − µ2)S

ℓ
1

+6µ1(1 + µ2)ℓ1 + 6µ2(1 + µ1)ℓ2 − 3(3− µ1 − µ2)
√
λ
]
, (E6)

H1
t0/0t(αs) = N

[
− 2(µ1 − µ2)

√
λAI

+2(µ1 − 5µ2
1 − µ3

1 − µ2 + µ1µ2 + µ2
1µ2 + 2µ2

2 + µ1µ
2
2 − µ3

2)I
ℓ

−(3µ1 − µ2
1 − 2µ3

1 − µ2 − 4µ1µ2 + 7µ2
1µ2 + µ2

2 + µ1µ
2
2)ℓ0 − 4(µ1 − µ2)λℓ4

+3(µ1 − µ2)
2
√
λℓ1 +

(
4(µ1 − µ2) + µ2(1− µ1 + µ2) + (µ1 − µ2)

3
)√

λℓ3

−(µ1 − µ2
1 + µ2 + 2µ1µ2 − µ2

2)λℓB ∓ (µ1 − µ2)λ
√
λπ −

(
(1−√

µ1)
2 − µ2

)

×
(
5µ1 − 8

√
µ1µ1 + 2µ2

1 − 2µ2 + 2
√
µ1µ2 − 10µ1µ2 + 2µ2

2

) ]
, (E7)

H2
t0/0t(αs) =

√
µ1µ2N

[
4µ1I

ℓ + 2(1− µ1 − µ2 + 3µ1µ2)ℓ0 − (1 + µ1 − µ2)
√
λℓ3 − λℓB

±4(µ1 − µ2)
√
λπ + 3

(
(1−√

µ1)
2 − µ2

)
(1− 2

√
µ1 − µ1 − µ2)

]
. (E8)

The overall normalization factor N has been defined in Eq. (36). Close to threshold
√
q2 = m1 +m2 the O(αs) results are given by

H1
±± = H2

±± = H1
00 = H2

00 = 4Ncq
2

{
√
µ1µ2

+
αs

3π

(
8π2

√
λ
µ1µ2 −

√
µ1µ2

(
16− 3(

√
µ1 −

√
µ2)(lnµ1 − lnµ2)

)
+O(

√
λ)

)}
,

H3
±± = 4Ncq

2
{
±4παs

3π

√
µ1µ2 +O(

√
λ)
}
,

H4
±± = 4Ncq

2

{
∓4π2αs

3π

√
µ1µ2 +O(

√
λ)

}
,

H1
0t = H1

t0 = 4Ncq
2

{
−4π2αs

3π

√
µ1µ2(

√
µ1 −

√
µ2) +O(

√
λ)

}
,
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H2
0t = −H2

t0 = 4Ncq
2
{
−4παs

3π

√
µ1µ2(

√
µ1 −

√
µ2) +O(

√
λ)
}
,

H1
tt = −H2

tt = 4Ncq
2

{
√
µ1µ2

+
αs

3π

(
8π2

√
λ
µ1µ2 −

√
µ1µ2

(
12− 3(

√
µ1 −

√
µ2)(lnµ1 − lnµ2)

)
+O(

√
λ)

)}
,

(E9)

where, again, identically vanishing contributions are not listed.
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Born mi = 0 Born mi 6= 0 O(αs) mi = 0 O(αs) mi 6= 0

W ∗+ → cb̄

Γ 2.43 · 10−7 2.30 · 10−7 2.55 · 10−7 2.45 · 10−7

ΓU 9.79 · 10−8 9.40 · 10−8 1.02 · 10−7 9.98 · 10−8

ΓL 1.45 · 10−7 1.29 · 10−7 1.52 · 10−7 1.39 · 10−7

ΓS 0 6.67 · 10−9 0 6.81 · 10−9

AFB 0 0.0194 0 0.0190

W ∗+ → cs̄

Γ 1.37 · 10−4 1.36 · 10−4 1.44 · 10−4 1.43 · 10−4

ΓU 5.52 · 10−5 5.50 · 10−5 5.77 · 10−5 5.76 · 10−5

ΓL 8.19 · 10−5 8.06 · 10−5 8.58 · 10−5 8.49 · 10−5

ΓS 0 7.46 · 10−7 0 6.53 · 10−7

AFB 0 −0.00433 0 −0.00339

Z∗ → bb̄

Γ 7.47 · 10−6 5.98 · 10−6 7.82 · 10−6 6.68 · 10−6

ΓU 3.03 · 10−6 2.51 · 10−6 3.16 · 10−6 2.77 · 10−6

ΓL 4.44 · 10−6 2.95 · 10−6 4.66 · 10−6 3.34 · 10−6

ΓS 0 5.11 · 10−7 0 5.72 · 10−7

AFB 0 0 0 0.000554

Z∗ → cc̄

Γ 5.79 · 10−6 5.65 · 10−6 6.06 · 10−6 5.99 · 10−6

ΓU 2.35 · 10−6 2.29 · 10−6 2.45 · 10−6 2.42 · 10−6

ΓL 3.45 · 10−6 3.20 · 10−6 3.61 · 10−6 3.42 · 10−6

ΓS 0 1.55 · 10−7 0 1.42 · 10−7

AFB 0 0 0 0.000424

Table 2: Integrated rates Γ,ΓU ,ΓL,ΓS and forward–backward asymmetry AFB for H →

W− +W ∗+(→ cb̄), H → W− +W ∗+(→ cc̄), H → Z + Z∗(→ bb̄) and H → Z + Z∗(→ cc̄).

All entries are given in units of GeV except for AFB.
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