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1. Introduction

Description of the nucleon-nucleon interaction, the basigedient of nuclear physics, di-
rectly from quantum chromodynamics (QCD) is a daunting.td$le breakdown of the pertubative
expansion in terms of the QCD gauge couplqgecessitates the use of alternative methods. One
such method proposed by 't Hooft in 1974 is to consider a Qk®+heory with the number of
colorsN; and the gauge groupU(N.), large N: QCD [B]. The observables in largd. QCD are
expanded in powers of/N, around thdarge N. limit, g — 0, N; — oo and finiteg?N.. In addi-
tion, it is assumedhat largeN. QCD is a confining theory and the asymptotic statesSiéN;)
singlets. Despite our inability at present to evaluate ahenleading order terms, a great deal
of insight comes from knowledge of the scaling of hadronisestsables in powers of/N.. The
phenomenological implications of lardfg QCD are essentially topological in nature.

The description of the meson and baryon observables in the N limit requires different
methods. Formally, it is due to the fact that the correlafiamctions in the meson sector have a
smooth expansion in powers ofld; while the correlation functions in the baryon sector dieeirg
the largeN; limit. Physically, it is due to the fact that as shown by 't Hipohe QCD in the large
N limit is a theory of an infinite number of stable non-intefagtmesons. The meson masses and
sizes are independent Bf. This picture is phenomenologically satisfactory sincthreal world
mesons interact weakly.

QCD is also a theory of strongly interacting baryons, théestaarrying quantum numbers of
the odd number of quarks. As was shown by Wit{gn [4], a comsisargeN. description of strongly
interacting baryons is possible. Remarkably, the sameareathich on the one hand makes an
analysis of the baryons in the larty limit far more challenging than that of mesons, on the other
hand allows one to apply a well-known method of nuclear ptsysthe semiclassical mean-field
theory. Indeed, as argued by Witten, baryons in the lakgimit contain N; quarks with n-quark
force scaling adll~". Thus, one can treat this weakly interacting many-bodyestad mean-field
approximation. Unfortunately, the explicit treatment rdyoavailable for heavy non-relativistic
quarks, in which case the mean-field treatment correspantte tHartree approximatiof)|[5]. The
picture that arises from such a treatment is that of a baryithavmass of order di; and a size
and shape which are independentNgf Despite the fact that explicit mean-field treatment in the
case of the light quarks is unknown, the lafgescaling for baryon observables is expected to be
valid.

Witten realized [[{] that the above scaling of mesons anddreryndicates that the baryons
in large N limit arise as quantized soliton-like configurations of s fields. A particular
model which satisfies the lardé. scaling is a well-known Skyrme modd] [6]. In this model the
baryons appear as quantized skyrmions, the topologiciabsslof a particular non-linear mesonic
lagrangiar[[r]. The stability of baryons as quantum sofitendue to the existence of conserved
topological currentJg]]9].

In addition to a single-baryon sector, it is of great intetesconsider baryon-baryon interac-
tion in the largelN; limit. Since the baryon mass diverges in the lakgdimit the baryon-baryon
scattering observables don’t have a smooth limit for sdatjeat fixed center-of-mass energy and
momentum transfer. For such momentuon;y- N¢, one instead focuses on the potential between

Ladditionally, the spectrum of larg. QCD contains glueballs with vanishing mixing to mesons
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two baryons which scales &k. In this context, the larghl. scaling rules had been used to analyze
the spin-flavor structure of the nucleon-nucleon poterffid]. In particular, it was shown that at
leading order the nucleon-nucleon potential is symmetniben contracte®U(4) spin-flavor sym-
metry [11]. In addition, one can also address a question n$istency of the meson-exchange
picture of the nucleon-nucleon potentifl][{2], 13].

The focus of the present talk is on the kinematic regime spoerding to a fixed center-of-
mass velocity. In this case, both the kinetic and potentiargy of two baryons are of ordél,
and thus one expects a smooth limit to exist for the scafeninss-section. As argued by Witten
[A], here, as in the case of the single-baryon sector, theopppte framework is the mean-field
description. However, in this case one has to ise dependentean-field theory (TDMFT).
As was shown in[]2], one can discuss the spin-flavor struatéitBe total nucleon-nucleon cross
section at leading order in larg® expansion. As in the case of the nucleon-nucleon potetttial,
emergent contracte8U(4) spin-flavor symmetry leads to certain relations betweeal fmioton-
proton and proton-neutron cross sections. It will be shawseictionB that these relations satisfy
the behavior of the experimental nucleon-nucleon crossosecat the center-of-mass energies of
order of a few GeV.

2. Time Dependent Mean Field Theory Framework

The goal here is to show that time-dependent mean-fieldfH@@MFT) framework valid in
the largeN. limit, and contractedSU(2N¢) symmetry, wheré\s is the number of light quark fla-
vors, to make model-independent predictions about theispspin structure of the total nucleon-
nucleon cross sections. As discussed above, TDMFT treatmem valid framework for the
nucleon-nucleon scattering when the center-of-massfenamomentum ip ~ N. Since the nu-
cleon size and hence the size of the interaction region acdsfr of N0, the scattering in this
kinematic regime is semi-classical.

The description of interaction by TDMFT methods requiresetiaveraging over all field con-
figurations consistent with the initial state of two nucleohis precludes one from being able
to calculate the S-matrix elemenfs][{4] 15]. However, asvshia [g], there are certain inclusive
nucleon-nucleon observables which can be evaluated in TDivdmework. One such observable
can be formed from conserved baryon current whose expectasilue in the initial two-nucleon
state can be in principle evaluated. The expectation valtidge baryon current can be related to
the inelastic differential cross section.

In TDMFT framework each quark and gluon field of two nucleor@/min a time-dependent
field created by all other quarks and gluons. These equagiesot known explicitly. As a result,
one can not determine the nucleon-nucleon cross sectiam iavihe largeN; limit. However,
it is possible to determine the spin-isospin dependencheottoss section using the contracted
SU(4) symmetry valid in the larg®\; limit. Since the focus here on spin-isospin dependence of
the nucleon-nucleon scattering, one can use the Skyrmelmhiteh encapsulates the spin-flavor
structure of largeN; baryons [1B].

In the Skyrme model the nucleon dynamics is described inderhtlassical soliton config-
urations built out of pion fields. A convenient form for sucls@liton is given bySU(2)-valued
matricesUn(F) = exp(iTAF(r)), wheret? are Pauli matricesy = ¥/r andF(r) is the magnitude
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of the pion field,F(r) = |7i(r)| [[fl. Such classical configurations impose correlationsvbeh
spacial and isospin rotations and they are referred teedgehogs The baryons appear after the
guantization of classical hedgehogs. This is done by cziagtihe slow rotation of the hedgehog
in isospin spaceA’(t)Un(F)A(t), given by the time-dependeBt(2) matrix A(t). These rotations
describe the slow collective degrees of freedom of the Heotgethe zero-mode§ J1[7,]18]. After
guantization, the generators of these vibrations propuoatitoTr (TaA(t)AT(t)) correspond to the
spin and isospin quantum numbers of the the ground-stat dfsstates| =J =1/2,3/2,...N;/2

in the largeN. limit. The first two states correspond to nucleon &rohryons. The masses of these
states are degenerate up to the terths-1) /Mg ~ 1/N.. This is a representation of the contracted
spin-flavor symmetrySU(4) in the context of the Skyrme model. The spin-isospin depecele
of the wave-function of these states is given by Wigner mesD! ), (A) wherem,m' are the
third components of spin and isospin respectively. NotEtﬂr{aWignér matrices are functions of
parameters of collective rotatiodsand not ofA(t).

A crucial consequence of the above semi-classical anatysfre single-baryon sector in the
Skyrme model is the appearance of the scale separation dyttzenics of the collective degrees of
freedom described by the Wigner matrio‘:é{ﬁ_rfY (A) at leading order in AN; and intrinsic degrees
of freedom which describe all other non-collective exaitas which include excited states of the
ground states baryons and mission of virtual and real mes®he frequency of the collective
excitations are of order /N, while that of theintrinsic excitations are of ordeN?. This scale
separation enables an adiabatic or treatment of the deedegrees in the context of TDMFT
treatment of the nucleon-nucleon scattering analogoulset®@brn-Openheimer approximation in
the context of the rotational and vibrational excitatiofisnmlecules. There the slow degrees of
freedom correspond to vibrations of atomic nuclei in theraged field produced by electrons
whose motion represent the intrinsic excitations.

To obtain an observable describing the nucleon-nucledtesitay one can start with a function
which describes the initial state of two well separated eédgs corresponding to the initial state
of two nucleons. As discussed iff [2], in the context of the rBley model it is convenient to
choose a conserved baryon curréh T’,t;Al,Az,v,B, ﬁ?. In the Skyrme model it is a topological
invariant. The dependence of the current on the collectgraks of freedom are described by the
variablesAl,Az,v,B, f whereAl,Az,v,B, fi define the spin and isospin configuration, the center-of-
mass speed, impact parameter and the unit vector alongréetidn separating the centers of the
two hedgehogs at the initial moment. The initial distancadsindicated. Such parametrization
corresponds to the semi-classical description of the ex@iadt which as discussed above is valid
in the largeN. limit. The functional dependence of this current can onlydb&ermined once the
explicit form of TDMFT equations is known. However, as shdvatow one does not need to know
these equations to determine the spin-isospin structuteeaforresponding scattering observable.
This structure is determined by transformational propsrtif the current under the spin and isospin
rotations which is determined by the contracted sin-flayonraetry.

As shown in [IL[R], the classical current can be turned intdffardntial cross section by
integrating the current (f,t;Al,Az,v,B, ﬁ) over time and the impact parameters,

A%inc(M A1 A2,6.0) _ iy 2 [ gby(2mmh) /

) lim A A dtf(0,¢)-J (Rr(Q),t;Al,Az,v,b,n>, (2.1)
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The above equations gives the probability for one hedgetiegnerge in a cone with a solid angle
dQ around a direction given by polar anglésand@. The current in Eq[(2]1) is normalized as to
give the total baryon number two. The time: 0 in Eq. (2.]1) corresponds to the time at which two
hedgehogs have the smallest separation. The integral if2Ek.can be explicitly evaluated only
when TDMFT equations are known. It is also important to nbte the probability in Eq[(2.1) is
integrated over all outgoing meson degrees of freedom.dfiial analysis it will give the inelastic
cross section.

To turn the probability in EqJ[(2 1) into a nucleon-nuclesnss section one needs to evaluate
an expectation value algi,;/dQ in an initial two-nucleon state described by spin and isospi
projectionsml,m'1 and rr12,rr1'2 on the direction given by the unit vector Tt can be done due
to the scale separation between the collective and intridsgrees of freedom discussed above.
Indeed, the semiclassical quantization of the baryon otiireEq. (2.]1) leads the appearance of
the terms proportional td? /My andl?/My, whereMy is the nucleon mass. These terms represent
coupling between the collective and intrinsic excitatiodswever, as discussed above these terms
are of order IN. and do not contribute at leading order in théNi expansion. This result allows
one to find expectation values of the inclusive cross seaiging the superposition of the initial
hedgehogs described by the collective variaBleand A, weighted by the corresponding Wigner
D-matrix. In other words, the spin-isospin part of the noolgvave function in the initial state with
given quantum numbers,m' is

I, m >:/dAD1/2

m,ml

(A)|A>, (2.2)

where |A > represents a hedgehog with particular orientation in gwpsin spaceD/? is the
Wigner D-matrix describing spin-isospin coordinates @ tlucleon, and the integral is taken over
the space of the collective coordinates.

Using Eq[2.R one can find the inclusive (integrated over aoms in the final state) nucleon-
nucleon differential cross section at leading order iNdexpansion,

do(mmhmet) (v 6, ¢
dQ

2 do-mc(v, A17A2; 97 (p)
dQ ’

where thedainc(v, A1, Az; 0, 9)/dQ is given in Eq. [2]1). In Eq.[(@.3)m,m|,m,m, are the spin
and isospin components of two nucleons along the directiohiCh can be taken as the beam axis.

It is possible now to find a general form of the inclusive diffietial cross section at leading
order in /N by integrating over the impact parameter space in Eq. (2d)SdJ(2) measure in
Eqg. (2.8). The resulting expression found|ih [1] is

)~ [ dmdnlDl2, (APIDY2, () (2.3)

|
|'T117m1

do(mTh M) (1,6, ) /dQ =
(v, 0,9) +bi(v,0,9) (01-0G2) (T1-T2) +¢i(v,0,9) (01-1) (T2-1) (T1-T2) (2.4)

whereo' and 2 are the spin and isospin Pauli matrices corresponding towthénitial nucleons,
and the functiongg, by andc, encode the leading order behavior at lageIn obtaining the result
in Eq.[2.3 the following identity of the Wigneéd-matrices was used,

(D) = (=)™ "D . (2.5)
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Equation [2}4) represents an inclusive differential ceesgion at leading order iry N; expan-
sion. However, more readily available is the data for tatalastic nucleon-nucleon cross section.
To obtain the total cross section one should integrate tifierelitial cross section over the whole
solid angle. In doing so one obtains the following exprasgsio

o (MLMMM) () — Ag(v) + By (V) (81 G2) (T1-T2) +Ci (V) (81 -) (G- 1) (T1- To) (2.6)
where
Ao(V) = 1/2/ano(V: 6,9), Bi(v) = 1/2/de| (v;6,9), Ci(v) = 1/2/dQc| (v;6,9).

The factor of ¥2 in the above equations are due to the normalization of thehacurrent.

However, while formally integrating over the solid angletsiain Eq. [2]6) we did not consider
that as discussed above the TDMFT treatment from which ffereintial cross section in Ed. (2.3)
was derived strictly holds only in the semiclassical linis is well-known, [1P] the semiclassical
approximation breaks down for small forward angles for wrfic< 1/Rpy, whereR~ NQ is a size
of the interaction potential which is of the order of the marl size, anghy ~ N is the center-of-
mass momentum. Thus, the forward angle at which the sersicédspproximation breaks down
is of order of /N in the kinematic region of interest here. However, the totaks section in
Eqg. (2.6) includes both forward and backward angles for e semiclassical approximation
breaks down.

However, as shown in details ifj [1] the contribution to thlteross section from the forward
anglesf < 1/N. vanishes as /I\; in the largeN. limit provided the scattering cross section is not
anomalously peaked in a vanishingly small forward directidhe latter would require large elastic
contribution. Thus, the total cross section given in X% valid up to corrections of ordé;.

The key result of the above discussion is the form of totalearcnucleon cross section given
in Eqg. (2.6) which is valid up to corrections of ordefNe. While the Skyrme model has been used
in the derivation, the result is independent of the detdikhe model and are valid in the largé
limit. All the details of the dynamics for which the explidDMFT equations have to be used are
in the functionsA(Vv), Bo(v) andCp(v) which are of order one in the lardé limit. These functions
can not be determined explicitly at present time. Neveegglthe form of the total cross section in
Eqg. (2.5) does contain testable predictions. Note thatribtshe most general form which can be
obtained based on parity and time reversal invariance. Xample, it does not contain such terms
asA (T1-T2) andBy (01 - G2). These terms do not appear at leading order/iN;1 This result
does not depend on the details of the Skyrme but follows ftamtbontracted spin-flavor symmetry
SU(4) applied to the two-nucleon sector.

This result can be tested against the existing experimedatalfor total nucleon-nucleon cross
sections. This is done in the next sectifin [1].

3. Comparison with experimental data

The experimental data exists for the total spin-independad polarized proton-proton and
proton-neutron cross sectior[s][20]. The kinematic regimesich the result obtained above is
expected to be valid corresponds to the center-of-mass momeabove GeV.
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Figure 1. Spin-averaged proton-proton and neutron-proton totasceection as a function of beam mo-
mentum (Bugg et al., 1996).

The total nucleon-nucleon cross section given in [Eq] (2@}ains the total nucleon-nucleon
cross sections for isosinglet and isotriplet initial state

| o(=0 0
O'(m17m17m27m|2)(v):< S

Using projection operatorél — Ty - T2) /4 and (3— Ty - T2) /4, one can extraot'=% and g('=Y
cross sections. Then one obtains the total proton-prai8f = o('=Y, and neutron-proton cross
sections,o"? = 1 (0(!=Y 4 ¢(1=0)). Thus, at leading order in/N; one has the following expres-
sions,

o(PP) = Ag+ B, (G1-32) +C (G1-7) (G2- 1)
O.(np) = Ap— B, (5'1'6'2)—CI (6-1ﬁ)(_)2ﬁ) . (31)

Recall that in the above equationisepresents the beam axis. Using §q.](3.1) and averaging over
the spin-polarization of the beam and target nucleons, aneobtain spin-averaged total cross
sections. Thus, at leading order we have the following iat

alP? = al™ (14 6(1/N)) | (3.2)

where gg's are the spin-averaged total cross sections. This predidbllows from the large-
N¢ analysis anccannotbe obtained simply from isospin invariance. This laMgeresult is well
satisfied by the experimental data shown in Fjg. 1.

The total cross sections for the case when beam and targebnsare transversely polarized
relative to the beam direction can also be obtained. Two gordtions are possibld; and 1.
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Figure 2: Aot for neutron-proton (Fonteine et al., 1991) and protongmdDitzler et al., 1983; Lesikar, J.
D. 1981) scattering, anfloy for proton-proton (Auer et al., 1978), and neutron-prot8hgrov et al., 2008)
scattering as functions of beam momentum.

These can be combined into an observable; = — (o(11) — o(1])) referred to aglelta sigma
transverse

Analogously, for the the longitudinally polarized beam aadjet nucleons one can extract an
observableAo, = — (0(=) — o(=)), thedelta sigma longitudinal

The largeN, analysis, Eq.[(3]1), predicts the following results forst@bservables,

Aol = —Aci™ (14 6(1/Ny)) |
8™ = —n0™ (1+ 6(1/Ne)). 33)

Experimental data for these observables is shown in Fig.a2(d [2(d). One may conclude
from Figs.[2(d) and[ 2(b) that the lardé results given in Eq.[(3.3) are not satisfied by data.
However, the results are valid within corrections of ortgr Indeed, according to Ed._(2.6) both
0o andAor andAgy are of the same order in/l.. Experimentally howeveAor andAg; are
much smaller themyp. The latter are about 48bwhile the former are consistent with zero. The
suppression ofAor and Aoy are for reasons not predicted by lafge-analysis. Nevertheless,
qualitatively the predictions are valid sinderr andAgi are small for bothpp andnp scattering.
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