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We present a detailed study of intermittency in the velocity and magnetic field fluctuations of com-
pressible Hall-magnetohydrodynamic turbulence with an external guide field. To solve the equations
numerically, a reduced model valid when a strong guide field is present is used. Different values for
the ion skin depth are considered in the simulations. The resulting data is analyzed computing field
increments in several directions perpendicular to the guide field, and building structure functions
and probability density functions. In the magnetohydrodynamic limit we recover the usual results
with the magnetic field being more intermittent than the velocity field. In the presence of the Hall
effect, field fluctuations at scales smaller than the ion skin depth show a substantial decrease in the
level of intermittency, with close to monofractal scaling.

I. INTRODUCTION

The properties of small scales structures in magneto-
hydrodynamic (MHD) and Hall-magnetohydrodynamic
(HMHD) turbulence have been the subject of conflicting
results and of several debates. In particular, much at-
tention has been paid in the literature to the geometrical
properties of current sheets in HMHD, as these struc-
tures are associated with magnetic flux reconnection and
magnetic energy dissipation, processes of uttermost im-
portance in astrophysics and space physics @@]

While some numerical simulations indicate that cur-
rent sheets affected by the Hall effect are wider than
in MHD (see, e.g., ﬁ,), others observe thinner struc-
tures ﬂa] In all cases, the geometry of the currents sheets
is changed, displaying the so-called X-type structure
and reminiscent of the Sweet-Parker configuration in the
MHD case ﬂ], and changing to a double wedge shape
reminiscent of the Petschek configuration when the Hall
effect is relevant B] In simulations of turbulent HMHD,
it was observed that the peak of the spectrum of the cur-
rent density was located at a wavenumber corresponding
to the inverse of the ion skin depth Eﬂ] Since this
peak can be associated with an average thickness of the
current sheets, the effect was interpreted as a thickening
of the current sheets as the Hall effect was increased ﬂﬂ]
The result is in good agreements with experiments that
indicate that the thickness of the current sheet in the
presence of the Hall effect is given by the ion skin depth

Ref. [5] provides a possible answer to these conflict-
ing results. In simulations of turbulent HMHD with a
guide field, the authors observe that although the cur-
rent sheet widens as the ion skin depth is increased, it
also fragments internally into smaller filaments.

The case in which thinner structures were observed ﬂa]
suggests that HMHD is more intermittent than MHD.
This is also the case in some observations in the so-
lar wind turbulence using the Cluster magnetic data
ﬂﬂ, ] However, other observations in the solar wind
of high-frequency magnetic field fluctuations from the

same spacecraft indicate that while large scales are com-
patible with multifractal intermittent turbulence, small
scales show non-Gaussian monoscaling HE]

A quantification of the level of intermittency is impor-
tant to understand the geometrical distribution of dissi-
pation in a magnetofluid and a plasma, and it also can
provide constraints for theories of magnetic energy dis-
sipation and reconnection. While previous analysis of
intermittency in HMHD were mostly based on the differ-
ences observed in the geometry and size of current sheets,
or in the study of probability density functions (PDFs) of
field increments at different scales, a precise quantifica-
tion requires computation of both PDFs and of structure
functions.

The study of intermittency based solely on observa-
tions of individual structures has several shortcomings.
Although the formation of small scale structures can
point out to an increase in the level of intermittency,
there is more information that is needed to make such
claim. If there are thinner structures, are these struc-
tures spatially localized? Or do they occupy more space
than in the MHD case, thus being space filling? In the
former case, HMHD would be more intermittent, while
in the latter case intermittency would be decreased by
the Hall effect.

In this work we present a detailed study of intermit-
tency in the velocity and magnetic field fluctuations.
Considering the solar wind as a motivation, the data for
the analysis stems from numerical simulations of MHD
and HMHD turbulence with a guide field. We use the
reduced MHD %MHD, (17, 1§]) and reduced HMHD
(RHMHD, [19, [20]) models to generate data under the
approximation of a strong guide field. Then, structure
functions and PDFs of the fields are computed, for incre-
ments in the direction perpendicular to the guide field.
To reduce errors, an average of the structure functions for
several directions perpendicular to the guide field is com-
puted using the SO(2) decomposition [21,, 22]. Although
at small scales in the solar wind several kinetic effects
may play important roles, we found that a simple Hall
magnetofluid reproduces some of the the observations in
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[16], and that the presence of the Hall effect results in a
substantial decrease in the intermittency of the velocity

and magnetic fields at scales smaller than the ion skin
depth.

II. REDUCED MHD AND HMHD MODELS

For a compressible flow, the HMHD equations can be
written (in dimensionless form) as
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In these equations, u is the velocity field, w is the vor-
ticity field, J is the current, b is the magnetic field, p is
the density of the plasma, and A and ¢ are respectively
the magnetic and electric potentials. A barotropic law
is assumed for the plasma, with the pressure given by
p = Cp?, where C' is a constant and v = 5/3. Equation
@) is the Coulomb gauge, which acts as a constraint that
fixes the electric potential in Eq. (). Control parame-
ters of the system are the sonic Mach number Mg, the
Alfvén Mach number My, the viscosities v and 0 (here
we consider v = §), and the resistivity 7. In our study,
the most important control parameter is the Hall coeffi-
cient € = p;; /L, where p;; is the ion skin depth and L is
the characteristic scale of turbulence. When € = 0, the
equations above result in the well known compressible
MHD equations.

In the presence of a strong guide field, the equations
above can be written using the reduced approximation
often used in magnetohydrodynamics (see, e.g., [17, [18]).
The approximation assumes that the magnetic field can
be written as

b=DByz+b, (5)

where By is the intensity of the guide field, and b’ is such
that |b’|/By < 1.

We assume, without loss of generality, that By = 1,
and we decompose the velocity and magnetic field fluc-
tuations in terms of scalar potentials as

u=V x(pz+ fX)+ Vi, (6)
and

b’ =V x (az + gX) . (7)

Equation (@) ensures that the magnetic fields remains
divergence free, while Eq. (@) gives us a compressible flow.
The potentials f and g allow for dynamical components
of the fields parallel to the guide field, and ¢ describes
an irrotational component of the velocity field.

Then, Egs. (i) can be written as (for the details see
[19) and [, b4, 4))
Ou  Ob 2
a_&+[@vu]_[avb]+yv U, (8)
Ow 0j . 9
E_ 8Z+[j7a] [Wasp]‘f‘Vv W, (9)
da  O0(p — eb) 9
w- 8. [p,a] — €[b,a] +nV7a, (10)

0b O(u — €j)

" :Bp + [@7b]+ﬂp[uaa]+

ot 0z
_Eﬂp [.]7 a] =+ WﬂpV%, (11)
where
w=—0,f, (12)
W= —Vi% (13)
b= —0y,9, (14)

and the notation [A, B] = 0, A9, B—030,BJ, A is employed
for the Poisson bracket. The potential ¢ was eliminated
from these equations using the equation for the pressure.
Finally, 5, = Bv/(1 + A7) is a function of the plasma
“beta”. As in the previous set of equations, these equa-
tions become the compressible RMHD equations when
e=0.

III. NUMERICAL SIMULATIONS

Simulations analyzed in this work are similar to those
described in Ref. ﬂﬂ] We use a standard parallel pseu-
dospectral code to evaluate the nonlinear terms and solve
numerically the equations ﬂﬂ] A second-order Runge-
Kutta time integration scheme is used. The magnetic
field fluctuations in all simulations are less than ten per-
cent of the external magnetic field value, so we are in the
range of validity of the RHMHD model.

Periodic boundary conditions are assumed in all direc-
tions of a cube of side 27 L (where L ~ 1 is the initial cor-
relation length of the fluctuations, defined as the length
unit). The runs performed throughout this paper do not
contain any magnetic or velocity external stirring terms,
so the RHMHD system is let to evolve freely.

To generate the initial conditions, we excite initially
Fourier modes (for both magnetic and velocity field fluc-
tuations) in a shell in k-space with wavenumbers 1 < k <



2, with the same amplitude for all modes and with ran-
dom phases. Ounly plane-polarized fluctuations (trans-
verse to the mean magnetic field) are excited, so the ini-
tial conditions are (low- to high-frequency) Alfvén mode
fluctuations with no magnetosonic modes.

In a first set of simulations, spatial resolution is 5122
grid points in the plane perpendicular to the external
magnetic field and 32 grid points in the parallel direc-
tion (this is possible because the structures that require
high resolution only develop in the directions perpen-
dicular to the field), allowing four different runs to be
done with four different Hall coefficients. The kinetic
and magnetic Reynolds numbers are defined respectively
as R = 1/v, Ry, = 1/n, based on unit initial r.m.s. ve-
locity fluctuation, unit length, and dimensionless values
for the viscosity and diffusivity. For all the rus, we used
R = R,, = 1600 (i.e., v = 1/1600, n = 1/1600). We also
considered a Mach number Mg = 1/4, and an Alfvén
Mach number M4 = 1.

For ¢, four values were considered, namely ¢ = 0 (run
A, MHD), 1/32 (run B), 1/16 (run C), and 1/8 (run D).
As the numerical domain used has size 27 (see above),
these values correspond respectively to ion skin depths
with associated wavenumbers k. = oo, 32, 16, and 8.
Data from these simulations is used for the analysis in
Sec. V1

To quantify the effect of spatial resolution in the level
of intermittency, runs A and D were computed also (with
the same parameters) on a larger grid, with spatial reso-
lution of 7682 x 32 grid points. This second set of simula-
tions (namely runs A2, with e = 0, and D2, with e = 1/8)
are considered later in Sec. [VIl

IV. MEASURES OF INTERMITTENCY

In order to characterize velocity and magnetic field
anisotropy, scaling laws and intermittency, we present in
the following sections power spectra, structure functions,
and PDFs of velocity and magnetic field increments.

The perpendicular total energy spectrum E(k, ) is de-
fined as usual, summing the power of all (velocity and
magnetic) modes in Fourier space over cylindrical shells
with radius k&, with their axis aligned with the direction
of the guide field.

To compute structure functions and PDFs, field incre-
ments must be first defined. Given the presence of the
external magnetic field, it is natural to consider an ax-
isymmetric decomposition for the increments. In general,
the longitudinal increments of the velocity and magnetic
fields are defined as:

Su(x,1) = [u(x +1) — u(x)] - ﬁ (16)
5b(x,1) = [b(x + 1) — b(x)] - ﬁ (17)

where the spatial increment 1 can point in any direction.
Structure functions of order p are then defined as

Sy (1) = (6u?(x, 1)), (18)
for the velocity field, and as
Sp(l) = (¥ (x,1)) , (19)

for the magnetic field. Here, brackets denote spacial av-
erage over all values of x.

These structure functions depend on the direction of
the increment. For isotropic and homogeneous turbu-
lence, it is a standard practice to average over several di-
rections, to obtain the isotropic component of the struc-
ture functions (see, e.g., ]) Due to the axisym-
metry associated with the external magnetic field, in our
case we will be interested instead only in the increments
perpendicular to 2. We denote increments in this di-
rection as 1, and we follow the procedure explained in
, ] to average over several directions of 1.

The method can be described as follows. Velocity and
magnetic field structure functions were computed from
Egs. (I8) and ([d9) using 24 different directions for the
increments 1, generated by integer multiples of the vec-
tors (1,0,0), (1,1,0), (2,1,0), (3,1,0), (0,1,0), (—1,1,0),
(15 27 O)? (_27 17 O)? (_17 27 0)7 (15 37 O)? (_37 17 0)7 and
(—1,3,0) (all vectors are in units of grid points in the
simulations), plus the 12 vectors obtained by multiply-
ing them by —1. Once these structure functions were
calculated, the perpendicular structure functions SY (1)

and Sg(l 1) were obtained by averaging over these 24 di-
rections in the zy plane.

For all runs, this procedure was applied to 9 snapshots
of the velocity and magnetic fields, centered around the
time of the peak of maximum dissipation (at ¢ ~ 4.5),
and separated by intervals At = 0.5.

For large enough Reynolds number, the structure func-
tions are expected to show inertial range scaling, i.e.,

we expect that for some range of scales S ~ lip and

SZ ~ lip, where &, and ¢, are respectively the scaling ex-
ponents of order p of the velocity and magnetic field. As
sufficient scale separation is needed to determine these
exponents, in the following section we show scaling ex-
ponents for runs A (e = 0) and D (e = 1/8), as these
runs have well defined MHD (run A) or HMHD (run D)
inertial ranges. Runs B and C have the ion skin depth in
the middle of the inertial range, and each subrange (the
MHD subrange and the HMHD subrange) is not suffi-
ciently resolved to compute exponents.

The scaling exponents for each snapshot of the fields
are obtained from the structure functions S and Sg
using the least square method (extended self-similarity

,@] is not used to estimate the exponents). The val-
ues presented in the following section correspond to the
time average over the 9 snapshots of each field. As the
errors in the least square calculation are negligible when
compared with the variations for each snapshot, the er-
rors in the determination of the scaling exponents are



estimated by the statistical mean square error; e.g., for
the magnetic field scaling exponents the error is

(20)

where M = 9 is the number of snapshots of the field
used in the analysis, (,, is the slope obtained from a
least square fit for the i-th snapshot, and g is the mean
value averaged over all snapshots.

Finally, to complete the analysis, we consider PDFs
of longitudinal increments and of derivatives of the per-
pendicular velocity and magnetic fields. In all cases, the
PDFs are normalized by their variance, and will be shown
together with a Gaussian with unit variance as a refer-
ence.

V. RESULTS
A. Energy spectrum

Before proceeding with the analysis of intermittency,
we briefly present the total energy spectrum for all the
runs with spatial resolution of 5122 x 32 grid points. This
is important as determination of the inertial range based
on the spectrum and on the structure functions is needed
to compute the scaling exponents of the fields.

Figure [[l shows the perpendicular spectrum for the to-
tal energy (kinetic plus magnetic) in runs A, B, C, and D.
In run A, a range of wavenumbers following an approx-
imate power law can be identified, namely from k ~ 4
to k ~ 20. As a reference, we show a Kolmogorov slope.
However, it should be noted that determination of the
slope of the MHD energy spectrum is beyond the inter-
est of this work, and readers interested in the topic are
referred to detailed recent studies on the subject M]

As the value of € is increased (see runs B, C, and D in
Fig. ), the spectrum becomes steeper at wavenumbers
larger than k.. This has been observed before in simu-
lations ﬂE, @, @], and it has been argued that it can
result in an inertial range in the HMHD subrange of the
form E(k) ~ k~7/3 [15,[36). Run D has a HMHD sub-
range wide enough to compute structure functions and
scaling exponents, while runs B and C are intermediate
between run A and D and have two barely resolved sub-
ranges. However, these two intermediate runs will be
useful to study trends in the behavior of the PDFs and
of the structure functions as € is increased.

B. Structure functions and scaling exponents

We present here the results for the computation of
the axisymmetric structure functions for the longitudinal
component of the velocity and magnetic field for runs A,
B, C, and D.
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FIG. 1: (a) Perpendicular energy spectrum for runs A (solid),
B (dotted), C (dashed), and D (dash-dotted). Note how
the spectrum becomes steeper in the HMHD simulations for
wavenumbers larger than the inverse ion skin depth ke (re-
spectively 32, 16, and 8 for runs B, C, and D). The slope
indicates Kolmogorov scaling as a reference. (b) Perpendicu-

lar energy spectrum compensated by k~°/3 for the same runs.

Figure [ shows the structure functions for the mag-
netic field fluctuations up to sixth order for both runs.
The structure functions show a range of scales with ap-
proximately power law scaling at intermediate scales, and
at the smallest scales approach the ~ [P scaling expected
for a smooth field in the dissipative range. The veloc-
ity field structure functions (not shown) display a sim-
ilar behavior, at the same range of scales. The inertial
range identified in the energy spectrum E(k, ) is consis-
tent with the range of scales where S and Sg show an
approximate power law behavior.

From the structure functions, the scaling exponents
can be computed. Exponents for the velocity and the
magnetic field up to sixth order in runs A and D are
shown in Fig. Bl For e = 0 (run A) the deviation of the
exponents &, and (, from a straight line are an indication
of intermittency and of multi-fractality. In the HMHD
case (e = 1/8, run D), the exponents are closer to a
straight line, indicating less intermittency. In fact, within
error bars and up to p = 4, the data is consistent with
& = &ip and ¢, = (1p, and therefore with monoscaling
as also observed for high-frequency magnetic fluctuations
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FIG. 2: Axisymmetric structure functions for the longitudinal
magnetic field up to six order for (a) run A (¢ = 0), and
(b) run D (e = 1/8). The order of the structure function is
indicated as follows: p = 1 (solid), 2 (dotted), 3 (dashed), 4
(dash-dotted), 5 (dash-triple-dotted), and 6 (long dashes).

in the solar wind [16].

The deviation from strict scale invariance (linear scal-
ing) can be quantified in terms of the intermittency ex-
ponents p* = 263 — & and pb® = 2¢3 — (5. The larger
these exponent, the more intermittent the fields. For run
A these exponents are p* = 0.57 + 0.07 for the velocity
field, and p® = 0.64 4 0.08 for the magnetic field. It is
interesting to point out that these values, that indicate
that the magnetic field is more intermittent than the ve-
locity field, are consistent with observations of large-scale
fluctuations in the solar wind (see, e.g., [37]), and with
numerical simulations of MHD turbulence at higher spa-
tial resolution [38].

The intermittency exponents are substantially reduced
for run D, with p* = 0.15+0.06 for the velocity field and
u? = 0.2140.03 for the magnetic field. This confirms that
intermittency is substantially decreased in the presence
of the Hall effect.

At the spatial resolution used in these runs, the lack of
sufficient scale separation in the MHD and HMHD sub-
ranges for intermediate values of € does not allow the cal-
culation of scaling exponents for runs B and C. However,
the structure functions for these runs show a behavior
intermediate between runs A and D, and consistent with
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FIG. 3: Scaling exponents (with error bars) as a function of
the order p up to sixth order, for the velocity (crosses), and
for the magnetic field (diamonds), (a) for run A (¢ = 0), and
(b) for run D (e = 1/8). Linear scaling of the exponents with
p/3 (corresponding to non-intermittent scaling with the sec-
ond order exponent consistent with the scaling of the energy
spectrum in Fig. [I) is indicated in both cases by the straight
line.
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FIG. 4: Fourth order structure function of longitudinal mag-
netic field increments for runs A (e = 0, solid line), B
(e = 1/32, dashed), C (¢ = 1/16, dash-dotted), and D
(e =1/8, dotted).



TABLE I: Skewness (S) and kurtosis (K) for the z-derivatives
of by and uy, for all runs with spatial resolution 5122 x 32 and
with different amplitudes of the Hall effect €. S(9.b,) and
K (0:bs) are, respectively, the skewness and kurtosis of the
magnetic field spatial derivatives, while S(9zuz) and K (9zus)
are the corresponding quantities for the velocity field deriva-
tives.

Quantity e=0 e=1/32 e=1/16 e=1/8
S(O,us) =018 —0.013 ~0.01 ~0.001
K (9auz) 19 8.1 5 4.9
S(D:bz) 0.36 0.17 0.11 0.07
K(92b2) 26 15.7 6.6 5.8

the behavior of the spectrum in Fig.[[} In other words, as
the Hall coefficient ¢ is increased, the structure functions
steepen at scales smaller than the ion-skin depth. As an
example of this behavior, Fig. @] shows the fourth order
structure function for the magnetic field for runs A, B,
C, and D. Note that runs B and C show a behavior con-
sistent with the behavior of run A at large scales (scales
larger than the ion-skin depth), and display a steeper
slope (compatible with that found for run D) at smaller
scales.

The results confirm that the presence of the Hall term
steepens the scaling of the energy spectrum (and con-
sistently, of the structure functions), and also show that
the Hall effect reduces intermittency in the velocity and
magnetic fields. The velocity and magnetic field scaling
exponents approach a linear behavior characteristic of a
self-similar (non-intermittent) flows. In the next section,
this result is confirmed by an analysis of PDF's of velocity
and magnetic field increments and spatial derivatives.

C. Probability density functions

We now consider PDFs for longitudinal increments of
the x-component of the velocity and magnetic fields. As
already mentioned, the PDFs will be presented normal-
ized by their variance, and together with a Gaussian
distribution with unit variance as a reference. Devia-
tions from Gaussianity, or increase of the deviations from
Gaussianity as smaller increments are considered, are a
signature of intermittency.

Figure Bl shows the PDFs of the magnetic field in-
crements for four different spatial increments, namely
[ =1.6,0.8,04, and 0.1, for runs A, B, C, and D. For
all runs, the PDFs of magnetic field increments are close
to Gaussian for [ = 1.6, while for smaller spatial incre-
ments non-Gaussian tails and asymmetry develop. This
is a common feature for many turbulent flows, with large
scales close to Gaussian statistics and smaller scales de-
veloping deviations from Gaussianity with strong tails
(i.e., with extreme gradients more probable than what
can be expected from a normal distribution). As a ref-
erence, the integral scale in all runs (the scale with the
energy containing eddies) is close to the size of the do-
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FIG. 5: PDFs for magnetic field increments, for [ = 1.6
(solid), 0.8 (dotted), 0.4 (dash-dotted), 0.2 (dash-triple-
dotted), and 0.1 (long dashes), and for runs (a) A, (b) B,
(c) C, and (d) D. In all the figures, a dashed curve indicates
a Gaussian PDF with unit variance.
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FIG. 6: PDFs for velocity field increments, for [ = 1.6 (solid),
0.8 (dotted), 0.4 (dash-dotted), 0.2 (dash-triple-dotted), and
0.1 (long dashes), and for runs (a) A, (b) B, (c¢) C, and (d) D.
In all the figures, a dashed curve indicates a Gaussian PDF
with unit variance.

main, L ~ 2w, while the dissipative scale is L, =~ 0.05.
Increments with | = 1.6 are close to the flow integral
scale, increments with [ = 0.8 or 0.4 are in the inertial
range, while | = 0.1 is close to the dissipation length
scale.

Although all runs develop non-Gaussian tails, when
comparing the PDFs of the four runs with different values
of €, it is clear that the amplitude of these tails is dras-
tically reduced as the value of € is increased. Moreover,
for the largest value of e considered, we cannot identify
a clear increase in the amplitude of the tails as we look
at smaller increments. This tendency (which is mono-
tonic with increasing €) of the PDFs of different spatial
increments to collapse into a single curve, with weaker
tails than in the MHD case, is an indication of reduced
intermittency and expected for scale-invariant flows.

Figure [0l shows the same PDFs for increments of the
velocity field. Again, the PDF's are close to Gaussian for
the largest increment in the four runs, and non-Gaussian
tails develop with increasing amplitude for smaller incre-
ments. In this case, for ¢ = 1/8 all the PDFs seem to
collapse into the Gaussian, and the tails are weaker than
for the magnetic field. This is consistent with the previ-
ous observation, using the intermittency coefficients p*
and u?, that the magnetic field is more intermittent than
the velocity field, and that both fields are less intermit-
tent in HMHD than in MHD.

To quantify the deviations from a Gaussian distribu-
tion in each run, we calculated the skewness and the
kurtosis of the x-derivatives of the xz-components of the
velocity and magnetic fields. Note these quantities cor-
respond respectively to the third- and fourth-moments
of the PDFs in Figs. B and in the limit of vanish-
ing spatial increment. The skewness and kurtosis of

a function f are defined as S(f) = <f3>/<f2>3/2 and

K(f) = {(f*/ <f2>2 respectively, where f can be, e.g.,
some component of the velocity (or magnetic) field gra-
dient. The resulting values are listed in Table[ll In accor-
dance with what can be expected from a visual inspec-
tion of Figs. Bl and [ the skewness of O,u, and O.b,
is reduced to almost zero for ¢ = 1/8, which indicates a
substantial reduction in the asymmetry of the PDF. The
kurtosis of d,u, and 0,b, also decreases with increasing
€, wich indicates a smoothing in the peakedness of the
PDF's and a decrease in the intensity of the tails.

VI. EFFECT OF RESOLUTION

Recently, it was stressed the need of using well resolved
numerical simulations to quantify high order statistics
and intermittency in MHD @] In particular, it has
been claimed that if the flow is not properly resolved, a
partial thermalization of the small scales may result in
artificial Gaussian statistics and an artificial decrease of
the intermittency. Considering this, in this section we
present results for simulations with the same parameters
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FIG. 7: (a) Velocity field scaling exponents (with error bars)
as a function of the order p up to sixth order, for runs D
(stars) and D2 (crosses), both with e = 1/8. Linear scaling
of the exponents is indicated as a reference. (b) Same for the
magnetic field scaling exponents.

as in runs A and D, but with larger spatial resolution
(7682 x 32 grid points). We will refer to these two runs
as runs A2 and D2.

We computed structure functions, scaling exponents,
and PDFs for runs A2 and D2 and compared the results
with those found for runs A and D. In all cases, the results
were consistent within error bars. As an illustration, in
Fig. [ we show the velocity field and magnetic field scal-
ing exponents for runs D and D2 (both with ¢ = 1/8,
the former with 5122 x 32 grid points, and the later with
7682 x 32 grid points). Increasing the resolution does not
change the scaling exponents, nor does it change the fact
that the exponents are close to the straight line and less
intermittent than in the MHD case.

In run A2, the intermittency exponents are u" =
0.52 4+ 0.08 and u® = 0.70 4+ 0.07, consistent within er-
ror bars with the values found in run A, while in run D2
the intermittency exponents are p* = 0.15 £ 0.06 and
1P = 0.2040.05, also consistent with the values obtained
in run D.

Figure[Rshows the PDF's of velocity and magnetic field
increments in runs D and D2, for a spatial increment
Il =0.1. The PDFs are almost indistinguishable. Similar
results were obtained for runs A and A2. When comput-
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0.0001 [
-10
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FIG. 8 (a) PDFs of velocity field increments for | = 0.1
and € = 1/8, for runs D (solid line) and D2 (dotted). The
two PDFs are practically indistinguishable. The dashed line
shows a Gaussian distribution as a reference. (b) Same for
magnetic field increments.

ing the PDFs of spatial derivatives of the fields, we ob-
tained S(9yu,) = —0.19, S(9b,) = 0.41, K(0,u,) = 18,
and K(0;b;) = 26 for run A2, and S(d,u,) = —0.01,
S(0zby) = 0.08, K(0yu,;) = 8.4, and K(9,b,) = 6.5 for
run D2 (compare with the values in Table[I] for the runs
at lower resolution).

Wan et al. @] argue that for an MHD simulation to
be well resolved, the kurtosis of the current should re-
main independent of the spatial resolution. In our MHD
and HMHD runs that condition is fulfilled, at least up
to the level of statistical fluctuations that can be ex-
pected when comparing two simulations of a turbulent
flow. To verify this, we computed the skewness and kur-
tosis of the component of the current density parallel to
the external magnetic field, i.e., S(j.) and K (j,). In the
MHD simulations (¢ = 0), we obtained S(j,) = 0,70
and K(j,) = 21 in the simulation with 5122 x 32 grid
points, and S(j,) = 0,71 and K(j,) = 22 in the simu-
lation with 7682 x 32 grid points. In the HMHD simu-
lations with e = 1/8, we obtained S(j,) = —0,02 and
K (j.) = 4.5 in the simulation with 5122 x 32 grid points,
and S(j.) = —0,01 and K(j.) = 4.8 in the simulation
with 7682 x 32 grid points.

Although there is a small increase in S(j.) and K(j,)



as the resolution is increased in both the MHD and
HMHD runs, the increase is smaller than 10% in most
cases. As a result, we conclude that the simulations are
well resolved even with the more stringent criteria of Wan
et al. @] Moreover, the reduction of the intermittency
in presence of the Hall term is also confirmed by the
skewness and kurtosis of the current at both spatial res-
olutions.

As a result, we conclude that increasing resolution has
no significant effect on the results we reported in the pre-
vious section, and that the decrease in the intermittency
of the flow presented above has its source in the Hall ef-
fect and not in a numerical artifact when the flow is not
properly resolved.

VII. SUMMARY AND CONCLUSIONS

In this work, we presented a study of intermittency
in the velocity and magnetic field fluctuations of com-
pressible Hall-magnetohydrodynamic turbulence with an
external guide field. Unlike previous works, we were not
interested in the characterization of geometrical proper-
ties or in the size of individual structures in the flow (e.g.,
current sheets), but rather interested in their overall sta-
tistical properties.

The equations were solved numerically using a reduced
model valid when a strong guide field is present, and both
structure functions and probability density functions of
field increments were computed. In the magnetohydrody-
namic limit we recovered results found in previous stud-
ies, with the magnetic field being more intermittent than
the velocity field. However, in the presence of the Hall
effect, we found field fluctuations at scales smaller than

the ion skin depth to be substantially less intermittent,
with close to scale-invariant scaling.

As the intensity of the Hall effect was increased in the
simulations (i.e., the ion skin depth was made larger in
units of the box size), we found both the total energy
spectrum and the structure functions to develop a steeper
scaling in a wider subinertial range, for all scales smaller
than the ion skin depth. The behavior of the scaling
exponents for both the velocity and the magnetic field
up to sixth order becomes closer to monofractal as the
Hall effect is increased, and the intermittency exponent
decreases accordingly.

In agreement with these results, the probability density
functions of longitudinal velocity and magnetic field in-
crements have weaker non-Gaussian tails and less asym-
metry at scales smaller than the ion skin depth. For
velocity and magnetic field gradients, the skewness and
kurtosis also decreases as the Hall effect is increased.

These results were obtained for simulations with spa-
tial resolution of 5122 x 32 grid points, and verified in
simulations at larger spatial resolution, with 7682 x 32
grid points. As a result, we can safely conclude that in-
creasing resolution has no effect on the results, and that
the decrease in the intermittency of the flow has its source
in the Hall effect.
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