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We study an inflationary scenario with a two-form field to which an inflaton couples non-trivially.
First, we show that anisotropic inflation can be realized as an attractor solution and that the two-
form hair remains during inflation. A statistical anisotropy can be developed because of a cumulative
anisotropic interaction induced by the background two-form field. The power spectrum of curvature
perturbations has a prolate-type anisotropy, in contrast to the vector models having an oblate-
type anisotropy. We also evaluate the bispectrum and trispectrum of curvature perturbations by
employing the in-in formalism based on the interacting Hamiltonians. We find that the non-linear
estimators fNL and τNL are correlated with the amplitude g∗ of the statistical anisotropy in the power
spectrum. Unlike the vector models, both fNL and τNL vanish in the squeezed limit. However, the
estimator fNL can reach the order of 10 in the equilateral and enfolded limits. These results are
consistent with the latest bounds on fNL constrained by Planck.

I. INTRODUCTION

The inflationary paradigm [1] can successfully account for the observed temperature fluctuations of the Cosmic
Microwave Background (CMB) radiation and the distribution of large scale structures [2]. The basic outcome of
simplest single-field slow-roll inflation models is the statistical isotropy, the Gaussian and (almost) scale-invariant
power spectrum [3]. These statistical properties can be tested by precise measurements of the CMB temperature
anisotropies.
The observational data provided by the Wilkinson Microwave Anisotropy Probe (WMAP) [4] showed the evidence

of the scale dependence of the power spectrum, whose property has been used to discriminate between a host of
inflationary models. Interestingly, the WMAP data also indicated the deviation from the Gaussian perturbations
and they gave us a hint of the statistical anisotropy [5]. According to the recent results of Planck, the Gaussian
perturbations are still consistent with the data, but the statistical anisotropy remains [6]. In the light of these new
results, it is worth investigating a possible statistical anisotropy based on concrete theoretical models.
Naively, the statistical anisotropy implies that vector fields can play an important role during inflation. A mechanism

for creating the statistical anomaly at the end of inflation was proposed in Ref. [7] and extended in various ways [8].
Moreover, a more concrete model has been proposed in the context of supergravity [9]. There, the anisotropic
inflation is realized as an attractor and the vector hair survives during inflation. The latter vector hair gives rise
to rich phenomenology [10–12] such as the statistical anisotropy and the cross correlation between the curvature
perturbations and the primordial gravitational waves (see Refs. [13, 14] for reviews). In particular, the latter would
imply the correlation between the temperature fluctuation and the B-mode polarization [15].
Remarkably, subsequent works revealed that vector fields can also induce the large non-Gaussianity [16]. In par-

ticular, the non-Gaussianity of curvature perturbations has been investigated in the context of anisotropic inflation
[17]-[22], which further emphasized the rich phenomenology of the anisotropic inflationary models [23]. As a result,
the Planck constrained the anisotropic inflationary models with vector fields strongly. In Ref. [11], however, it was
pointed out that not only vector fields but also two-form fields can potentially give rise to anisotropic inflation. In fact,
it is well known that there are two-form fields in string theory [24]. Hence it is natural to explore this possibility from
the theoretical point of view. One may suspect that there is no statistical anisotropy because the two-form field can
be represented by a pseudo scalar field, i.e., axion. However, there remains a possibility that a non-trivial polarization
of a two-form field induces the statistical anisotropy. In this case the anisotropy comes from an expectation value of
the spatial derivative of the axion field. At first glance this seems to be odd, but it is a natural framework from the
picture of two-form fields. Hence, in this paper, we study this possibility in detail.
We show that several interesting features are present in our model. Analogous to the results of Ref. [9], anisotropic

inflation can be sustained by the background two-form field. Moreover, as suggested in Ref. [11], there exists a prolate
type anisotropy in the power spectrum of curvature perturbations. In contrast to vector models the non-Gaussianity
vanishes in the squeezed limit, but the nonlinear estimator fNL of the equilateral and enfolded shapes can be as large
as the order of 10. Hence, our predictions are consistent with the Planck data and the future analysis may reveal
these statistical anisotropies.
The organization of our paper is as follows. In Sec. II, we introduce the two-form field model and explain how

the non-trivial hair remains during inflation. In Sec. III, we quantize the perturbations of two-form fields and derive
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their vacuum expectation values on super-Hubble scales. In Sec. IV, we evaluate various statistical quantities–such
as n-point correlation functions (n = 2, 3, 4) of curvature perturbations. Sec. V is devoted to conclusions.

II. ANISOTROPIC BACKGROUND

We study the background dynamics of anisotropic inflation in the presence of two-form fields. The analysis is similar
to the case of vector models studied in Ref. [9], but we repeat it for completeness. Here, we emphasize the shape of
anisotropy is different from that of vector models.
Let us start with the action

S =

∫

d4x
√−g

[

M2
p

2
R− 1

2
∂µφ∂µφ− V (φ) − 1

12
f2(φ)HµνλHµνλ

]

, (1)

where Mp is the reduced Planck mass, R is a scalar curvature calculated from a metric gµν (with a determinant g),
φ is an inflaton field with a potential V (φ), and the field Hµνλ has a non-trivial coupling f(φ) with the inflaton. The
field Hµνλ is related to a two-form field Bµν , as

Hµνλ = ∂µBνλ + ∂νBλµ + ∂λBµν . (2)

Without loss of generality, one can take the (y, z) plane in the direction of the two-form field. Then we can express
Bµν in the form

1

2
Bµν dx

µ ∧ dxν = v(t) dy ∧ dz , (3)

where v(t) is a function with respect to the cosmic time t.
Since there exists a rotational symmetry in the (y, z) plane, it is convenient to parameterize the metric as follows:

ds2 = −N (t)2dt2 + e2α(t)
[

e−4σ(t)dx2 + e2σ(t)(dy2 + dz2)
]

, (4)

where α describes the average expansion (the number of e-foldings) and σ represents the anisotropy of the Universe.
Here, the lapse function N is introduced to derive the Hamiltonian constraint. With the above ansatz, the action (1)
reduces to

S =

∫

d4x
1

N e3α
[

3M2
p (−α̇2 + σ̇2) +

1

2
φ̇2 −N 2V (φ) +

1

2
f(φ)2v̇2e−4α(t)−4σ(t)

]

, (5)

where an overdot denotes a derivative with respect to t. After taking variations, we set the gauge N = 1.
The equation of motion for the two-form field v is easily solved as

v̇ = Af(φ)−2eα+4σ , (6)

where A is a constant of integration. Taking the variation of the action with respect to N , α, σ, φ and using the
solution (6), we obtain the following background equations of motion

α̇2 = σ̇2 +
1

3M2
p

[

1

2
φ̇2 + V (φ) +

A2

2
f(φ)−2e−2α+4σ

]

, (7)

α̈ = −3α̇2 +
1

M2
p

[

V (φ) +
A2

3
f(φ)−2e−2α+4σ

]

, (8)

σ̈ = −3α̇σ̇ − A2

3M2
p

f(φ)−2e−2α+4σ , (9)

φ̈ = −3α̇φ̇− V,φ +A2f(φ)−3f,φ e
−2α+4σ , (10)

where the subscript in V,φ and f,φ denotes a derivative with respect to its argument φ.
Let us introduce the energy density of the two-form field

ρv ≡ A2

2
f(φ)−2e−2α+4σ , (11)
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and the shear Σ ≡ σ̇. We also define the expansion rate H ≡ α̇. First, we need to look at the shear to the expansion
rate ratio Σ/H , which characterizes the anisotropy of the inflationary Universe. Notice that Eq. (9) reads

Σ̇ = −3HΣ− 2

3

ρv
M2

p

. (12)

In the regime where Σ̇ becomes negligible, the ratio Σ/H should converge to the value

Σ

H
= −2

3

ρv
V (φ)

, (13)

where we used Eq. (7) under the slow-roll approximation, i.e.,

α̇2 = H2 ≃ V (φ)

3M2
p

. (14)

In order for the anisotropy to survive during inflation, ρv must be almost constant. Employing the standard slow-
roll approximation and assuming that the two-form field is sub-dominant in the inflaton equation of motion (10),
one can show the coupling function f(φ) should be proportional to e−α to keep ρv almost constant. In the slow-roll
regime, the number of e-foldings α is related to φ, as dα = −V (φ) dφ/(M2

pV,φ). Then the functional form of f(φ) is
determined as

f(φ) = e−α = e

∫
V

M2
pV,φ

dφ
. (15)

For the polynomial potential V ∝ φn, for example, we have f = e
φ2

2nM2
p . The above case is, in a sense, a critical

one. What we want to consider is super-critical cases where the energy density of the two-form field increases. For
simplicity, we parameterize f(φ) by

f(φ) = e
c
∫

V

M2
pV,φ

dφ
, (16)

where c is a constant parameter. Let us consider the super-critical cases c > 1. From the definition (16), we can
derive the following relation

f,φ
f

= c
V

M2
pV,φ

. (17)

Then, the condition c > 1 translates into

f,φ
f

M2
pV,φ

V
> 1 . (18)

Thus, any functional pairs of f and V satisfying the condition (18) in some range could produce the two-form hair
during inflation.
On using Eq. (17), the inflation equation (10) reads

φ̈ = −3α̇φ̇− V,φ

[

1− c

ǫV

ρv
V (φ)

]

, (19)

where the slow-roll parameter ǫV is defined as

ǫV ≡ M2
p

2

(

V,φ

V

)2

. (20)

In this case, if the two-form field is initially small (ρv/V (φ) ≪ ǫV /c), then the conventional single-field slow-roll
inflation is realized. During this stage f ∝ e−cα and the energy density of the two-form field grows as ρv ∝ e2(c−1)α.
Therefore, the two-form field eventually becomes relevant to the inflaton dynamics described by Eq. (19). Nevertheless,
the cosmic acceleration continues because ρv/V (φ) does not exceed ǫV /c. In fact, if ρv/V (φ) exceeds ǫV /c, the inflaton
field φ does not roll down, which makes ρv = A2f(φ)−2e−2α+4σ/2 decrease. Hence the condition ρv ≪ V (φ) is always
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satisfied. In this way, there appears an attractor where inflation continues even when the two-form field affects the
inflaton dynamics [9].
Let us make the above statement more precise. Under the slow-roll approximation, the inflaton equation of motion

(10) reads

− 3α̇φ̇− V,φ +A2f−3f,φe
−2α+4σ ≃ 0 . (21)

Using Eqs. (14) and (21), we obtain

dφ

dα
=

φ̇

α̇
= −M2

pV,φ

V
+ c

A2

V,φ
e
−2α+4σ−2c

∫
V

M2
pV,φ

dφ
. (22)

Neglecting the evolution of V , V,φ and σ, this equation can be integrated to give

e
2α−4σ+2c

∫
V

M2
pV,φ

dφ
=

c2A2

c− 1

V

M2
pV

2
,φ

[

1 + Ω e−2(c−1)α−4σ
]

, (23)

where Ω is a constant of integration. Substituting this back into the slow-roll equation (22), it follows that

dφ

dα
= −M2

pV,φ

V
+

c− 1

c

M2
pV,φ

V

[

1 + Ω e−2(c−1)α−4σ
]−1

. (24)

At the initial stage of inflation (α → −∞), the second term of Eq. (24) can be neglected relative to the first term.
In the asymptotic future (α → ∞), the term containing Ω disappears. This clearly shows a transition from the
conventional slow-roll inflationary phase, where

dφ

dα
= −M2

pV,φ

V
, (25)

to what we refer to as the second inflationary phase, where the two-form field is relevant to the inflaton dynamics and
the inflaton gets 1/c times slower as

dφ

dα
= −1

c

M2
pV,φ

V
. (26)

In the second inflationary phase, we can employ Eq. (23) with discarding the Ω term to rewrite the energy density
of the two-form field as

ρv =
A2

2
e
−2α+4σ−2c

∫
V

M2
pV,φ

dφ
=

c− 1

c2
ǫV V (φ) , (27)

which yields the anisotropy

Σ

H
= −2

3

c− 1

c2
ǫV . (28)

Moreover, from Eqs. (7) and (8), the slow-roll parameter ǫ ≡ −Ḣ/H2 is related to ǫV as

ǫ = − α̈

α̇2
= − 1

α̇2

(

−1

2
φ̇2 − 1

3
ρv

)

=
1

c
ǫV , (29)

where we neglected the anisotropy and used Eqs. (14) and (26). Thus we arrive at the result

Σ

H
= −2

3

c− 1

c
ǫ. (30)

Therefore, for a broad class of inflaton potentials and two-form kinetic functions, there exist anisotropic inflationary
solutions, with Σ/H proportional to ǫ. We also confirmed the existence of such anisotropic solutions by integrating
Eqs. (7)-(10) numerically. Note that the sign of Σ/H is opposite to that derived for the vector field [9].
For c = 1, we need a separate treatment. In this case, integration of Eq. (22) gives

e
2α−4σ+2

∫
V

M2
pV,φ

dφ
= 2A2 V

M2
pV

2
,φ

(α+ α0) , (31)
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where α0 is an integration constant. Thus, we obtain the anisotropy

Σ

H
= − 1

3(α+ α0)
ǫ . (32)

Notice that the anisotropy stemmed from the two-form field is a prolate type, while the anisotropy created by the
vector field was an oblate type. This can be understood by the fact that the vector extending to the x-direction
speeds down the expansion in that direction, while the two-form field extending in the (y, z) plane speeds down the
expansion in the (y, z) direction.
Before entering the study of perturbations, we should note the following important attractor mechanism [25]. Taking

a look at the result (26), we find that the relation

f = e
c
∫

V

M2
pV,φ

dφ ∝ e−α , (33)

holds during the second anisotropic inflationary phase. Recall that this is the critical behavior. As we will see in the
next section, this attractor gives rise to the scale-invariant spectrum of the two-form field.

III. PERTURBATIONS OF TWO-FORM FIELDS

From the phenomenological point of view the anisotropy of the expansion rate needs to be sufficiently small, so it
is a good approximation to neglect the effect of the anisotropic expansion. However, we cannot ignore the effect of
the two-form hair. Actually, in the next section, we will show several interesting results. In this section, we prepare
some tools for the evaluation of n-point correlation functions of curvature perturbations.
Let us consider the two-form field given by the action

Sint = − 1

12

∫

d4x
√−g f2(φ)HµνλHµνλ . (34)

In the above action, there exists a gauge invariance under the gauge transformation

δBµν = ∂µξν − ∂νξµ . (35)

Here, since we have the redundancy ξµ → ξµ + ∂µX , the parameter ξ can be restricted to be ∂iξi = 0.
For the derivation of the perturbation equations of the two-form field, we consider the isotropic background described

by the metric

ds2 = a2(τ)
(

−dτ2 + δijdx
idxj

)

, (36)

where τ =
∫

a−1dt is the conformal time. From Eq. (2) it is convenient to perform the (3+1)-decomposition

H0ij = B′
ij + ∂iBj0 + ∂jB0i , (37)

Hijk = ∂iBjk + ∂jBki + ∂kBij , (38)

where a prime represents a derivative with respect to τ . The interacting action (34) reads

Sint = −1

4

∫

d4x
√−g f2(φ)H0ijH0ij −

1

12

∫

d4x
√−g f2(φ)HijkHijk . (39)

Taking the variation of this action with respect to B0i, we obtain

∂i
[√−g f2(φ)H0ij

]

= 0 . (40)

Variation with respect to Bij leads to

∂

∂τ

[√−g f2(φ)H0ij
]

+ ∂k
[√−g f2(φ)Hijk

]

= 0 . (41)

Then Eqs. (40) and (41) reduce to

∂i
[

B′
ij + ∂iBj0 − ∂jBi0

]

= 0 , (42)

− ∂

∂τ

[

1

a2
f2(φ)

{

B′
ij + ∂iBj0 + ∂jB0i

}

]

+ ∂k

[

1

a2
f2(φ) {∂iBjk + ∂jBki + ∂kBij}

]

= 0 . (43)
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Since we have the gauge degree of freedom

δBij = ∂iξj − ∂jξi , ∂iξi = 0 , (44)

choosing the parameter

∆ ξj = −∂iBij , (45)

we can take the gauge

∂iBij = 0 . (46)

Similarly, by taking into account the following gauge transformation

δBi0 = ∂iξ0 − ξ′i , (47)

we can set

∂iBi0 = 0 . (48)

From Eq. (42) it follows that

Bi0 = 0 . (49)

Then, Eq. (43) reduces to

− ∂

∂τ

[

1

a2
f2(φ)B′

ij

]

+
1

a2
f2(φ)∂2

kBij = 0 . (50)

Let us check the degrees of freedom. The components Bij have 3 degrees. There are 2 gauge conditions Bij,j = 0.
Hence, we have one degree of freedom. This is the reason why we can map the two-form field to a scalar field.
However, there is an important difference from the scalar field, namely, there exists a polarization in our case. Using
the polarization tensor ǫij = −ǫji with kiǫij = 0, we can expand the anti-symmetric tensor field as

Bij(τ,x) =

∫

d3k

(2π)3/2
[

ak χ(τ,k) ǫij e
ik·x + c.c.

]

, (51)

where ak is the annihilation operator. We take the polarization tensor to be ǫij = (km/k)ǫmij , with the normalization
condition

ǫijǫ
ij = 2 . (52)

The mode functions χ(τ,k) is known by solving Eq. (50). For convenience we introduce the following variable

u(τ,k) =
f

a
χ(τ,k) , (53)

and parametrize the kinetic function as f = ap. This is always possible during inflation where both φ and a = eα are
monotonic functions with respect to time. Then, we obtain

u′′ +

[

k2 +
p(1− p)

τ2

]

u = 0 . (54)

Hence, for p = −1 or p = 2, we obtain the scale-invariant spectrum for the two-form field. Although either choice
is possible, we set p = −1 because, as is shown in the previous section, this is an attractor value realized during
anisotropic inflation. For p = −1, we can deduce the mode functions as

u =
Ha√
2k3

(1 + ikτ) e−ikτ , (55)

and χ = a2u.
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Now, it is convenient to define

Eyz ≡ f

a3
H0yz =

f

a3
B′

yz , (56)

δEij ≡ f

a3
H0ij =

f

a3
B′

ij , (57)

where Eyz and δEij correspond to the background value and the perturbation of the two-form field respectively. Note
that Hijk can be negligible on super-Hubble scales. We perform the Fourier transformation of the perturbation δEij ,
as

δEij =

∫

d3k

(2π)3/2
eik·x δEij(τ,k) . (58)

On super-Hubble scales the Fourier modes are given by

δEij(τ,k) =
(

ak + a†−k

)

Ek ǫij , (59)

where

Ek =
f

a3
χ′ =

(a2u)′

a4
≃ 3H2

√
2k3

. (60)

In the last approximate equality of Eq. (60) we used the solution (55) in the limit τ → 0 on the de Sitter background.
The vacuum expectation value of the field δEij is given by

〈δE2
ij〉 =

1

π2

∫

dk k2|Ek|2 ≃ 9H4

2π2

∫

IR

dk

k
. (61)

The Infrared (IR) modes are characterized by ki < k < kf , where ki and kf are the wavenumbers which crossed

the Hubble radius at the beginning and at the end of inflation respectively. Since the integral
∫

IR
dk
k = ln(kf/ki) is

equivalent to the number of e-foldings N = ln(af/ai) on the de-Sitter background, it follows that

〈δE2
ij〉 =

9H4

2π2
N . (62)

On super-Hubble scales the total two-form field is given by

Eclassical
ij = Eyz + δEij , (63)

with the variance (62) of the perturbation δEij .

IV. STATISTICALLY ANISOTROPIC NON-GAUSSIANITY

In this section we estimate the statistical properties of our model, in particular, the scalar non-Gaussianity. Through
this section, the anisotropy is assumed to be sufficiently small. We derive the interacting Hamiltonian by expanding
the action around the anisotropic background solution. We compute correlation functions according to the in-in
formalism by neglecting the anisotropic expansion of the Universe. The calculation is analogous to that carried out
for the vector field in Ref. [18]. This prescription can be justified by more rigorous calculations (see e.g., Ref. [17]).

A. Power spectrum

We first calculate the power spectrum of the comoving curvature perturbation ζ (see Refs. [26] for its definition). In
our case the curvature perturbation ζ can be written as the sum of the “unperturbed” field ζ(0) and the contribution
δζ coming from the two-form field. We decompose the field ζ(0) into the Fourier components

ζ(0) =

∫

d3k

(2π)3/2
eik·xζ̂

(0)
k , ζ̂

(0)
k = ζ

(0)
k ak + ζ

(0)∗
k a†−k , (64)
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where the annihilation and creation operators satisfy the commutation relation

[ak, a
†
k′ ] = δ(3)(k − k′) . (65)

At leading order in slow-roll we have the following solution [27]

ζ
(0)
k =

H(1 + ikτ)

2
√
ǫMpk3/2

e−ikτ . (66)

The total power spectrum Pζ is defined by the two-point correlation function of ζ, as

〈ζ̂k1
ζ̂k2

〉 = 2π2

k31
δ(3)(k1 + k2)Pζ(k1) , (67)

where ζ̂k is the Fourier component of ζ. The power spectrum can be written as the sum of the two contributions ζ(0)

and δζ, as

Pζ = P(0)
ζ + δPζ . (68)

Using the solution (66) long time after the Hubble radius crossing (τ → 0), the first term in Eq. (68) reads

P(0)
ζ =

H2

8π2ǫM2
p

. (69)

The next step is to derive the second contribution δPζ = δ〈0|ζ̂k1
ζ̂k2

|0〉 from the two-form field. The interacting
Lagrangian following from Eq. (34) is

Lint = −a4

12

∂〈f2〉
∂φ

δφ (Hµνλ + δHµνλ)
(

Hµνλ + δHµνλ
)

, (70)

where 〈 〉 represents the background value. Since the function f is given by f = exp(
∫

dφ/
√
2ǫMp), we can deduce

the following relation

∂〈f2〉
∂φ

δφ = 2〈f2〉ζ(0) , (71)

where we used δφ =
√
2ǫMpζ

(0). Note that there is no distinction between ǫ and ǫV because we are considering the
situation c ∼ 1. Thus, we obtain

Lint =
1

2
a−2f2 (4H0yzδH0yz + δH0ijδH0ij) ζ

(0) ,

=
1

2
a4(4EyzδEyz + δEijδEij)ζ

(0) , (72)

where, in the second line, we employed the solution f = a−1 and Eqs. (56)-(57).
The interacting Hamiltonian Hint is related to Lint, as Hint = −

∫

d3xLint = H1 + H2, where H1 and H2 follow
from the first and second terms of Eq. (72). Substituting Eqs. (58) and (64) into Eq. (72), we obtain

H1 = − 2Eyz

H4τ4

∫

d3k δEyz(τ,k)ζ̂(0)−k(τ) , (73)

H2 = − 1

2H4τ4

∫

d3k d3p

(2π)3/2
δEij(τ,k) δEij(τ,p)ζ̂(0)−k−p(τ) . (74)

Using the in-in formalism [27], the two-point correction following from the interacting HamiltonianH1 can be evaluated
as

δ〈0|ζ̂k1
ζ̂k2

|0〉 = −
∫ τ

τmin,1

dτ1

∫ τ1

τmin,2

dτ2 〈0|
[[

ζ̂
(0)
k1

(τ)ζ̂
(0)
k2

(τ), H1(τ1)
]

, H1(τ2)
]

|0〉

=
E2

yz

9ǫ2M4
pH

4

2
∏

i=1

∫ τ

−1/ki

dτi
τ4i

(

τ3 − τ3i
)

〈0|δEyz(τ1,k1)δEyz(τ2,k2)|0〉

=
2π2

k31
δ(3)(k1 + k2)

E2
yzN

2
k cos2 θk1,x

4π2ǫ2M4
p

, (75)
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where θk1,x is the angle between k1 and the x-axis. The two integrals in the first line of Eq. (75) have been evaluated
at the super-Hubble regime characterized by −kiτ < 1, from which τmin,i = −1/ki with i = 1, 2. In the second line
of Eq. (75) the upper bound τ1 of the second integral has been replaced by τ by dividing the factor 2! because of the
symmetry of the integrand. Note that we also used the following relation [18]

[ζ̂
(0)
k (τ), ζ̂

(0)
k′ (τ

′)] ≃ − iH2(τ3 − τ ′3)

6ǫM2
p

δ(3)(k + k′) , (76)

which is valid in the super-Hubble regime. One can show that the integral
∫ τ

−1/ki
dτi (τ

3 − τ3i )/τ
4
i is equivalent to

Nki
≃ ln(−1/kiτ) under the approximation −kiτ ≪ 1 [18], where Nki

is the number of e-foldings before the end of
inflation at which the modes with the wavenumber ki left the Hubble radius. Since k1 = −k2, we used the notation
Nk1

= Nk2
≡ Nk.

Using the power spectrum (69) and the slow-roll relation 3M2
pH

2 ≃ V , the two-form field gives rise to the correction
to the power spectrum

δPζ =
6E2

yzN
2
k

ǫV
P(0)
ζ cos2 θk1,x . (77)

The interacting Hamiltonian (74) has a contribution to δPζ with Eyz replaced by the IR solution δEij with the
expectation value (62). Taking into account this contribution, the total correction to the power spectrum can be
derived by replacing Eyz in Eq. (77) for Eclassical

ij defined in Eq. (63). Using the notation Ec ≡ |Eclassical
ij |, the total

power spectrum of the curvature perturbation reads

Pζ = P(0)
ζ

(

1 + 12IN2
k cos

2 θk1,x

)

, where I ≡ E2
c

2ǫV
. (78)

In contrast to the vector case where the anisotropy is oblate [10, 11], we now have the prolate anisotropy.

The statistics of the WMAP anisotropies uses the parametrization Pζ = P(0)
ζ (1 + g∗ cos

2 θk,V ), where V is a

“privileged” direction close to the ecliptic poles [28, 29]. The WMAP data provides the constraint g∗ = 0.29± 0.031
[30]. From Eq. (78) the anisotropy parameter is

g∗ = 12IN2
k , (79)

from which we obtain

I = 2.3× 10−6
( g∗
0.1

)

(

60

Nk

)2

. (80)

Note that the quantity Iǫ = E2
c /(2V ) characterizes the ratio of the energy densities of the two-form field (E2

c /2) and
inflaton (V ), which is much smaller than 1 from Eq. (80).

B. Bispectrum

The three-point correlation of ζ can be evaluated by using the in-in formalism along the same line of Ref. [18]. The
tree-level contribution coming from the interacting Hamiltonian (73) is given by

δ〈0|ζ̂k1
ζ̂k2

ζ̂k3
|0〉 = i

∫ τ

−1/k1

dτ1

∫ τ1

−1/k2

dτ2

∫ τ2

−1/k3

dτ3〈0|
[[[

ζ̂
(0)
k1

ζ̂
(0)
k2

ζ̂
(0)
k3

(τ), H2(τ1)
]

, H1(τ2)
]

, H1(τ3)
]

|0〉+ 2 perm.

=
E2

yz

108ǫ3M6
pH

6

3
∏

i=1

∫ τ

−1/ki

dτi
τ4i

(

τ3 − τ3i
)

∫

d3p

(2π)3/2

×〈0|δEij(τ1,k1 − p)δEij(τ1,p)δEyz(τ2,k2)δEyz(τ3,k3) +

δEij(τ2,k2 − p)δEij(τ2,p)δEyz(τ3,k3)δEyz(τ1,k1) +

δEij(τ3,k3 − p)δEij(τ3,p)δEyz(τ1,k1)δEyz(τ2,k2)|0〉

=
3E2

yzH
2

8
√
2π3/2ǫ3M6

p

δ(3)(k1 + k2 + k3)Nk1
Nk2

Nk3

[

cos θk1,k2
cos θk1,x cos θk2,x

k31k
3
2

+ 2 perm.

]

, (81)
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where “2 perm.” represents two terms obtained by the permutation. In the last line of Eq. (81) we used the relation
ǫij(k1)ǫij(k2) = 2 cos θk1,k2

. The loop contribution following from the product of the three interacting Hamiltonians
H2 provides the bispectrum in which Eyz of Eq. (81) is replaced by the IR solution δEij with the variance (62). Then

the total anisotropic bispectrum Bζ , defined by δ〈0|ζ̂k1
ζ̂k2

ζ̂k3
|0〉 = Bζδ

(3)(k1 + k2 + k3), reads

Bζ = 72
√
2π5/2I(P(0)

ζ )2Nk1
Nk2

Nk3

[

cos θk1,k2
cos θk1,x cos θk2,x

k31k
3
2

+ 2 perm.

]

, (82)

where I = E2
c/(2ǫV ) is given by Eq. (80).

We define the non-linear parameter fNL according to the relation

Bζ =
3

10
(2π)5/2fNL(Pζ)

2
3

∑

i=1

k3i /

3
∏

i=1

k3i , (83)

by which we have

fNL = 60I
(P(0)

ζ )2

(Pζ)2
Nk1

Nk2
Nk3

1 + r32 + r33
[r33 cos θk1,k2

cos θk1,x cos θk2,x + cos θk2,k3
cos θk2,x cos θk3,x

+ r32 cos θk3,k1
cos θk3,x cos θk1,x] , (84)

where

r2 ≡ k2
k1

, r3 ≡ k3
k1

. (85)

In the following we employ the approximations (Pζ)
2 ≃ (P(0)

ζ )2 and Nk1
≃ Nk2

≃ Nk3
≡ NCMB. We also fix r2 = 1

and define the angle β = π − θ12 in the range 0 < β < π (i.e., 0 < r3 < 2). In this case there is the following relation

r23 = 2(1− cosβ) . (86)

The local, equilateral, and enfolded shapes correspond to (i) β → 0, r3 → 0, (ii) β = π/3, r3 = 1, and (iii) β → π,
r3 → 2, respectively.
Let us consider the situation in which the angle between k1 and the x-axis is given by γ. On using Eq. (80), the

non-linear parameter (84) reduces to

fNL ≃ 29.8
( g∗
0.1

)

(

NCMB

60

)

F (r3, γ) , (87)

where

F (r3, γ) ≡
1

2 + r33

[

r33 cosβ cos γ(cosβ cos γ + sinβ sin γ) +
1

2
(cosβ cos γ + sinβ sin γ − cos γ)2

]

. (88)

From Eq. (86) we can express β in terms of r3, as cosβ = 1 − r23/2 and sinβ = r3
√

1− r23/4, so that fNL is a
function of r3 for a given value of γ. The non-linear parameters for the local, equilateral, and enfolded shapes are
given, respectively, by

f local
NL = 7.5

( g∗
0.1

)

(

NCMB

60

)

β2 sin2 γ , (89)

f equil
NL = 3.7

( g∗
0.1

)

(

NCMB

60

)

, (90)

f enfolded
NL = 29.8

( g∗
0.1

)

(

NCMB

60

)

cos2 γ , (91)

where, in the local case, we expanded f local
NL around β = 0. The local non-linear parameter (89) vanishes in the

squeezed limit β → 0, which is a distinctive feature of our model. The reason why this happens is that, unlike the
vector models, fNL is proportional to the inner product of two vectors ki and kj . In Eq. (84) the squeezed limit
corresponds to the case in which the angles θk2,k3

and θk3,k1
approach π/2 with r3 → 0.
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FIG. 1: The non-linear estimator fNL versus r3 = k3/k1 for a number of different values of cos γ with g∗ = 0.1 and NCMB = 60.
The left and right panels show the plots for the angles 0 ≤ γ ≤ π/2 and π/2 ≤ γ ≤ π, respectively. The local, equilateral, and
enfolded limits correspond to r3 = 0, r3 = 1, and r3 = 2, respectively. For γ close to π/2, the equilateral non-linear parameter
is largest. For γ close to 0 or π, fNL has a maximum at r3 = 2.

From Eq. (90) the equilateral non-linear parameter does not depend on the angle γ. For g∗ = 0.3 and NCMB = 60,

f equil
NL is as large as 10. The enfolded non-linear parameter (91) depends on γ. For cos2 γ = 1, g∗ = 0.1 andNCMB = 60,
f enfolded
NL is as large as 30.
In Fig. 1 we plot the non-linear parameter (87) versus r3 (0 < r3 < 2) for g∗ = 0.1 and NCMB = 60. The left

panel and right panel correspond to positive and negative values of cos γ, respectively. In the local limit (r3 → 0),
the estimator fNL vanishes for any value of γ. For the angle γ close to π/2, fNL has a maximum at the equilateral
configuration (r3 = 1). With the increase of | cos γ|, however, the enfolded estimator gets larger. In particular, for γ
close to 0 or π, fNL has a maximum at r3 = 2.

C. Trispectrum

The four-point correlation function of ζ corresponding to the tree-level contribution is given by

δ〈0|ζ̂k1
ζ̂k2

ζ̂k3
ζ̂k4

|0〉 =

∫ τ

−1/k1

dτ1

∫ τ1

−1/k2

dτ2

∫ τ2

−1/k3

dτ3

∫ τ3

−1/k4

dτ4

×〈0|
[[[[

ζ̂
(0)
k1

ζ̂
(0)
k2

ζ̂
(0)
k3

ζ̂
(0)
k4

(τ), H2(τ1)
]

, H2(τ2)
]

, H1(τ3)
]

, H1(τ4)
]

|0〉+ 5 perm.

=
1

2 · 64
E2

yz

H8ǫ4M8
p

4
∏

i=1

∫ τ

−1/ki

dτi
τ4i

(

τ3 − τ3i
)

∫

d3pd3p′

(2π)3

×〈0|δEij(τ1,k1 − p)δEij(τ1,p)δEij(τ2,k2 − p′)δEij(τ2,p′)δEyz(τ3,k3)δEyz(τ4,k4)

+ 11 perms.|0〉

= − 9

8 · (2π)3
E2

yzH
4

ǫ4M8
p

δ(3)(k1 + k2 + k3 + k4)Nk1
Nk2

Nk3
Nk4

×
[

1

k31k
3
2k

3
13

cos θk1,k13
cos θk2,k13

cos θk1,x cos θk2,x + 11 perm.

]

, (92)

where kij = ki + kj . The loop contribution, which follows from the product of the four interacting Hamiltonians H2,
gives rise to the four-point correlation function where Eyz in Eq. (92) is replaced by the IR solution δEij with the
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variance (62). Defining the total anisotropic trispectrum Tζ , as δ〈0|ζ̂k1
ζ̂k2

ζ̂k3
ζ̂k4

|0〉 = Tζ δ(3)(k1 + k2 + k3 + k4), we
obtain

Tζ = −432π3I(P
(0)
ζ )3Nk1

Nk2
Nk3

Nk4

[

1

k31k
3
2k

3
13

cos θk1,k13
cos θk2,k13

cos θk1,x cos θk2,x + 11 perm.

]

. (93)

We introduce the non-linear estimator τNL according to the relation

Tζ = (2π)3(Pζ)
3 τNL

8

(

1

k31k
3
2k

3
13

+ 11 perm.

)

. (94)

In the squeezed limit characterized by k12 → 0, the non-linear estimator reduces to

τ localNL = −108IN2
k1
N2

k3
[cos θk1,k12

cos θk3,k12
cos θk1,x cos θk3,x + cos θk1,k12

cos θk4,k12
cos θk1,x cos θk4,x

+ cos θk2,k12
cos θk3,k12

cos θk2,x cos θk3,x + cos θk2,k12
cos θk4,k12

cos θk2,x cos θk4,x] , (95)

where we used the approximation (Pζ)
3 ≃ (P(0)

ζ )3. Since the angles between the vectors ki (i = 1, 2, 3, 4) and k12

approach π/2 for k12 → 0, the estimator τ localNL vanishes in this limit.
We also consider the regular tetrahedron limit, i.e., k1 = k2 = k3 = k4 = k12 = k14 ≡ k (see e.g., figure 2 of Ref. [31]

for illustration). For this configuration, the angle between k13 and k1 is π/4 with k13 =
√
2k. We also focus on the

case in which the direction of k1 is the same as that of the x-axis. Then the trispectrum (93) reads

T equil
ζ ≃ −54(

√
2 + 1)π3I(P(0)

ζ )3N4
k1

1

k9
, (96)

by which the non-linear estimator can be derived as

τequilNL ≃ −4.1× 102
( g∗
0.1

)

(

Nk1

60

)2

. (97)

Unlike the local shape, |τequilNL | can be of the order of 102-103.

V. CONCLUSIONS

For the models in which the inflaton field φ couples to an anti-symmetric tensor Bµν , we showed that anisotropic
inflation occurs for the coupling f(φ) given by Eq. (15). In this case there is an attractor solution along which the
ratio of the anisotropic shear Σ to the Hubble parameter H is proportional to the slow-roll parameter ǫ. Even for the
super-critical case in which the coupling f(φ) is generalized to Eq. (16) with c > 1, there is the regime of anisotropic
inflation where Σ/H is nearly constant with f proportional to a−1. The anisotropy induced by the two-form field
corresponds to the prolate type (the expansion of the Universe slows down in the (y, z) plane), in contrast to the
oblate type stemming from the vector field.
The presence of the two-form field coupled to inflaton gives rise to modifications to statistical quantities observed

in CMB temperature fluctuations. From the action (34) we derived the interacting Hamiltonians (73) and (74)
between curvature perturbations and the two-form field. We evaluated the n-point correlation functions (n = 2, 3, 4)
of curvature perturbations by using the in-in formalism of quantum field theory. The 2-point correlation function,
i.e., the power spectrum, is given by Eq. (78), where g∗ = 12IN2

k parametrizes the strength of anisotropy. Even if the
energy density of the two-form field is very much smaller than that of inflaton, the parameter g∗ can be of the order
of 0.1, as suggested by the WMAP data [30].
In Eqs. (82) and (84) we derived the three-point correlation function Bζ (bispectrum) and the non-linear estimator

fNL, which exhibit a number of interesting properties. By considering the triangle of three momenta (k1+k2+k3 = 0)
with k1 = k2, we showed that fNL can be expressed by functions of r3 = k3/k1 and the angle γ between k1 and the
x-axis. In the local, equilateral, and enfolded limits, the non-linear estimators are simplify given by Eqs. (89), (90),

and (91), respectively. We found that f local
NL vanishes in the squeezed limit (r3 → 0), whereas f equil

NL and f enfolded
NL can be

of the order of 10 (see Fig. 1). These results are consistent with the recent constraints by Planck, i.e., f local
NL = 2.7±5.8

and f equil
NL = −42± 75 (68 %CL) [6].

The four-point correlation function Tζ (trispectrum) has been also computed in Eq. (93). Defining the non-linear
estimator τNL as Eq. (94), we found that τNL vanishes in the squeezed limit (k12 → 0). However, for other shapes



13

such as the regular tetrahedron, |τNL| can be of the order of 102-103. This is an interesting property by which our
scenario can be distinguished from the vector case as well as other models with large non-Gaussianities.
It will be of interest to understand the physics of a dipole-type anisotropy suggested by the Planck data [6]. Although

there is a phenomenological description of this type of anisotropy [32], no physically well-motivated models are present
to our best knowledge. Recent attempt to explain the dipole-type anisotropy by a contrived geometrical set up is
intriguing [33], but it still lacks a consistent dynamical picture. Since our framework is natural and consistent, it
would be great if our mechanism is generalized to explain the origin of the dipole-type anisotropy observed by Planck.
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