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Magnetic fields appear to be present in all galaxies and galaxy clusters. Recent measurements
indicate that a weak magnetic field may be present even in the smooth low density intergalactic
medium. One explanation for these observations is that a seed magnetic field was generated by some
unknown mechanism early in the life of the Universe, and was later amplified by various dynamos
in nonlinear objects like galaxies and clusters. We show that a primordial magnetic field is expected
to be generated in the early Universe on purely linear scales through vorticity induced by scale-
dependent temperature fluctuations or equivalently, a spatially varying speed of sound of the gas.
Residual free electrons left over after recombination tap into this vorticity to generate magnetic field
via the Biermann battery process. Although the battery operates even in the absence of any relative
velocity between dark matter and gas at the time of recombination, the presence of such a relative
velocity modifies the predicted spatial power spectrum of the magnetic field. At redshifts of order
a few tens, we estimate a root mean square field strength of order 10−25

− 10−24 G on comoving
scales ∼ 10 kpc. This field, which is generated purely from linear perturbations, is expected to be
amplified significantly after reionization, and to be further boosted by dynamo processes during
nonlinear structure formation.

I. INTRODUCTION

Galaxies in the local Universe have coherent mag-
netic fields with strength ∼ 10−6G [1–3]. Similar fields
strengths are seen in galaxies up to redshift ∼ 2 [2, 4]. In
some cases, the field appears to be even stronger, e.g., a
recent measurement of 30µG in star forming galaxies [5].
One explanation is that the observed fields originated
from primordial magnetic fields which were created in
the very early Universe and were later amplified during
the formation of the galaxies. Another possibility is that
there were no primordial fields and the observed fields
were generated spontaneously during the gravitational
collapse of galaxies [6, 7].
There is independent evidence for a pre-galactic seed

magnetic field in the inter galactic medium (IGM). This
is based on the lack of detection of inverse Compton GeV
radiation from charged secondaries associated with ex-
tragalactic TeV sources. A magnetic field greater than
∼ 10−16G can deflect secondaries sufficiently to explain
the observations [8, 9]; the required field strength has
been reduced to 10−18G in a recent study [10]. This evi-
dence for magnetic fields in the IGM emphasizes the no-
tion that the fields are primordial (see for further discus-
sion Ref. [11]), although it is possible that the fields orig-
inated by baryonic outflows from already formed galax-
ies [6, 7]. We note that the absence of secondary radiation
from TeV sources may have nothing to do with a mag-
netic field but be the result of beam instabilities which
slow down the particles before they can produce signifi-
cant inverse Compton radiation [12] (but see Ref. [13]).
Other recent studies which have considered the influence
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of primordial magnetic fields on the cosmic microwave
background (CMB) and Lyα clouds [14–16] give an up-
per limit on the present day large scale magnetic field in
the IGM (extended up to z ∼ 5) of ∼ 10−9G.
In an influential study, Biermann (1950; Ref. [17])

showed that currents must flow whenever a plasma has
a rotational vortex–like motion. These currents will lead
to the generation of magnetic field starting from zero
field. The process has been coined in the literature as
the “Biermann battery”, and several astrophysical appli-
cations have been discussed.These range from the gener-
ation of magnetic fields in stars [17, 18] to seed magnetic
fields on galactic scales [19–23]. The latter studies typi-
cally use nonlinear gas-dynamical processes such as those
that occur in shocks during structure formation.
It has been argued that magnetic fields, at the time

of recombination, may be generated on large scales (>
600 kpc) through second-order couplings between pho-
tons and electrons [24]. Here we consider smaller scales,
and we show that seed magnetic fields can be produced
in the early Universe starting from zero field purely as
a consequence of the growth of linear over-densities. We
consider the evolution of density and temperature fluc-
tuations of the baryonic matter after the time of recom-
bination. We follow the approach described in Ref. [25],
where the key new effect that permits the generation of
magnetic fields is a spatially varying speed of sound (see
below). We also consider the effect of the relative veloci-
ties between the dark matter and baryons at the time of
recombination [26]. The latter effect has been shown to
have a considerable effect on the evolution of over densi-
ties at high redshifts [26–33]. Here we show that it has a
noticeable effect also on the growth of the magnetic field.
Throughout this paper, we adopt the following cosmo-

logical parameters: (ΩΛ, ΩM, Ωb, n, σ8, H0)= (0.72, 0.28,
0.046, 1, 0.82, 70 km s−1 Mpc−1) [34].
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II. LINEAR EVOLUTION OF OVER DENSITIES

IN THE EARLY UNIVERSE

After cosmic recombination, the baryonic gas in the
Universe decouples mechanically from the photons, but
remains thermally coupled down to z ∼ 150. This cou-
pling is a result of CMB photons scattering off the resid-
ual free electrons, which constitute a fraction ∼ 10−4

of the bound electrons. Even at z < 150 the baryons
still retain some memory of this heating, which induces
scale-dependent temperature fluctuations or equivalently,
a spatially varying speed of sound in the gas. Naoz &
Barkana (2005, Ref. [25]) took this effect into account and
computed the linear growth of baryonic density and tem-
perature fluctuations separately [35]. At large wavenum-
bers (k > 100 Mpc−1) the growth of baryon density fluc-
tuations is changed significantly by the effect of the in-
homogeneous sound speed, by up to 30% at z = 100 and
10% at z = 20. This has an important impact on high-z
gas rich halos [36].
It was shown recently that not only the amplitudes of

the dark matter and baryonic density fluctuations are dif-
ferent at early times, so too are their velocities [26]. After
recombination, the sound speed of the baryons drops dra-
matically, while the dark matter velocity remains high.
As a result, the relative velocity of baryons with respect
to the dark matter becomes supersonic. This relative
velocity, which is generally referred to as the “stream ve-
locity” in the literature, remains coherent on scales of a
few Mpc and is of the order of ∼ 30 km s−1 at the time
of recombination [26].
For completeness we write here the coupled second or-

der differential equations that govern the evolution of the
dimensionless density fluctuations of the dark matter δdm
and of the baryons δb:

δ̈dm + 2Hδ̇dm − fdm
2i

a
vbc · kδ̇dm = (1)

3

2
H2

0

Ωm

a3
(fbδb + fdmδdm) +

(

vbc · k
a

)2

δdm

δ̈b + 2Hδ̇b = (2)

3

2
H2

0

Ωm

a3
(fbδb + fdmδdm) −

k2

a2
kBT̄

µ
(δb + δT ) ,

where Ωm is the present day matter density as a fraction
of the critical density, k is the comoving wavenumber of
the perturbation, vbc is the relative velocity between the
baryons and dark matter in a local patch of the Universe,
a is the scale factor of the Universe, H0 is the present
day value of the Hubble parameter, µ is the mean molec-
ular weight of the gas, T̄ is the mean temperature of the
baryons, fb (fdm) is the cosmic baryonic (dark matter)
fraction and δT is the dimensionless fluctuation in the
baryon temperature. Derivatives are with respect to the
clock time. These equations are a compact form of equa-
tions (5) in Ref. [26], where we have used the fact that
vbc ∝ 1/a, and have included the pressure term appro-
priate to the equation of state of an ideal gas e.g., [25].

FIG. 1. Perturbation ratios δT /δb (top panel) and δT /δe
(bottom panel) as a function of wavenumber k. We consider
two cases: no stream velocity, vbc = 0 (solid lines), and a
typical stream velocity, vbc = 1σvbc (dashed lines). Results
are shown for two redshifts, z = 100 (blue lines) and z=30
(red lines).

The linear evolution of the baryon temperature fluctu-
ations may be written down similarly [25, 37]. Including
an additional term due to fluctuations of the electron over
density δe:

δ̇T =
2

3
δ̇b +

xe(t)

tγ
a−4

{

T̄γ

T̄

(

δTγ
− δT

)

+ (δγ + δe)

(

T̄γ

T̄
− 1

)}

, (3)

where δγ is the photon density fluctuation, t−1
γ = 8.55×

10−13 yr−1, and T̄γ and δTγ
are the mean photon tem-

perature and its fluctuation, respectively.
The evolution of the mean free electron fraction xe as

a function of time is

ẋe = −αB(T )x
2
enH(1 + y) , (4)

where αB(T ) is the case B recombination coefficient as
a function of the gas temperature, nH is the total hy-
drogen number density, and y = nHe/nH where nHe is
the helium number density. Fluctuations in the electron
density, δe = ∆ne/ne = ∆xe/xe, evolve according as

δ̇e = −αB(T )(1 + y)xenH(δb + δe) . (5)

We show below that the magnetic field grows because of
the presence of the residual free electrons. It is highly
sensitive to the evolution of their fractional fluctuations
δe, but not to the actual electron number density.
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Equation (3) describes the evolution of the gas tem-
perature in the post-recombination era but before the
formation of the first galaxies, when the only external
heating arises from Compton scattering of the remaining
free electrons on the CMB photons [25]. The first term
in Equation (3) describes the adiabatic cooling of the
gas, while the second term is the result of Compton in-
teractions. An important effect of this equation is that it
introduces a scale dependent behavior in the fluctuations
of the temperature, free electron density and baryon den-
sity. In this full thermal evolution calculation, the sound
speed (c2s = dp/dρ, where p is the pressure of the gas),
varies spatially, simply because δb and δT have the fol-
lowing relation

1 +
δT
δb

=
c2s

kBT̄ /µ
= γeff , (6)

where γeff is a scale dependent, effective adiabatic index.
In Figure 1 we show the ratios δT /δb (top panel) and

δT /δe (bottom panel) as a function of k. At the largest
scales (smallest k), the baryons follow the dark matter
density, and δT /δb evolves from 1/3 (at high redshift
where the baryons are tightly coupled to the relativis-
tic CMB) to ∼ 2/3 (lower redshift where the baryons
expand adiabatically as an independent nonrelativistic
fluid). Considering first the zero stream velocity case,
small scales (large k) at high redshift show Jeans scale
oscillations which are suppressed at lower redshift (there
is only a slight minimum for z = 30). For vbc = 1σvbc,
the small scale baryon fluctuations drop, and are less im-
portant compared to the Compton heating [see Equation
(3)] which results in a slight increase of the tempera-
ture fluctuations (compared to the zero stream velocity).
These two effects result in an increase of the ratio δT /δb
as a function of scale. The free electron fluctuations are
further suppressed in the case of vbc = 1σvbc compared to
the case of zero stream velocity which results in a larger
increase in the ratio δT /δe.

III. BIERMANN BATTERY IN AN

EXPANDING UNIVERSE

The evolution of the magnetic field via the Biermann
battery process is described by a simple combination
of the Maxwell–Faraday equation and the generalized
Ohm’s law e.g., Ref. [38]. Since we are interested in mag-
netic field evolution over cosmic times, we need to work
with the Biermann battery equation in a flat expanding
Universe. In this case, we find that the differential equa-
tion for the clock time evolution of the magnetic field B

is given by:

∂

∂t

(

a2B
)

= a∇× (u×B)− c
∇ne ×∇Pe

en2
e

, (7)

where ne and Pe are the electron number density and
pressure respectively, e is the electron charge, u is the

peculiar velocity of the gas, and the spatial derivatives
are with respect to co-moving coordinates. To relate to
the literature [39, 40] this equation can be reduced to
the familiar form of the Biermann battery by rescaling
B̃ = a2B, ñe = ne/a

3, and P̃e = Pe/a
4, for conformal

time (η) where ∂/∂η = a∂/∂t. The resulting equations
are those used for example in describing a recent labo-
ratory experiment of the Biermann battery [41]. Below
we do not rescale the equations since the temperature
and density fluctuations of the gas have a more com-
plicated dependence on the scale factor [25]. The term
∇× (u×B), in equation (7), describes flux freezing, i.e.,
the magnetic flux through any closed contour embedded
in the plasma is conserved under plasma motions. The
last term is the Biermann battery term. This term is
proportional to the derivative with respect to time of the
vorticity of the electrons; a vortex–like motion of the elec-
trons produces an rotational electric field, and through
this a magnetic field [42].

FIG. 2. Root mean square magnetic field generated by the
Biermann battery as a function of wavenumber. Two cases
are shown: no stream velocity, vbc = 0 (solid lines), and a
typical stream velocity, vbc = 1σvbc (dashed lines). Three
redshifts are considered: z = 100 (blue lines), z = 30 (red
lines), z = 10 (black lines).

Consider now the Biermann term c∇ne × ∇Pe/en
2
e.

The electron pressure is given by Pe = nekBT , where,
following [25], we have set Te = T . Expanding the rele-
vant quantities to linear order, i.e., ne = n̄e(1 + δe) and
T = T̄ (1+δT ), and neglecting the flux-freezing term [43],
equation (7) can be written as:

∂

∂t

(

a2B
)

= −ckBT̄

e
∇δe ×∇δT . (8)
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Note that the number density of free electrons cancels
out. Thus the Biermann effect depends only on the fluc-
tuations in the fractional electron density δe and not on
the actual density ne itself. Therefore, the fact that the
ionization fraction of the gas is very low (∼ 10−4) is not
important.
The right hand side of equation (8) may be written in

Fourier space as

−∇δe ×∇δT =
1

2

∫

d3k1
(2π)3

d3k2
(2π)3

(k1 × k2) e
ir(k1+k2)

×
[

δe(k1)δT (k2)− δe(k2)δT (k1)

]

.

(9)

Fourier transforming both sides of equation (8), we then
find

∂

∂t

(

a2Bk

)

=
1

2

ckBT̄

e

∫

d3k1
(2π)3

(k1 × [k− k1]) (10)

×
[

δe(k1)δT (k− k1)− δe(k− k1)δT (k1)

]

,

where Bk has units of GMpc3. Note that the over densi-
ties that appear in the above equation are complex, i.e.,
δ(k) = |δ(k)|eiφk , where each φk represents a random
phase which is uniformly distributed over the interval 0
to 2π. The phases disappear below when we finally com-
pute the power spectrum of the magnetic field.
Before proceeding, we note that the Biermann bat-

tery produces a magnetic field only if the gradients ∇δe
and ∇δT in equation (8) are not parallel to each other.
The equivalent condition in Fourier space is that the
quantity in square brackets in equation (10) should be
non-vanishing. The latter condition requires the ratio
δT (k)/δe(k) to vary with scale. This is precisely where
the correct treatment of the gas thermodynamics, as de-
scribed in Ref. [25], is critical. As Figure 1 shows, the
ratio of temperature to density fluctuations does vary
with k, and therefore we expect the cosmological Bier-
mann battery to operate even within linear perturbation
theory.
Let us define ∆e,T (k,k1) = δe(k1)δT (|k−k1|)−δe(|k−

k1|)δT (k1). Equation (10) then becomes

aH
∂
(

a2Bk

)

∂a
=

ckB
e

∫

d3k1
(2π)3

T̄ (t) (k1 × k)∆e,T (k, k1) ,

(11)
where ∂/∂a ≡ aH∂/∂t. In this equation, only ∆e,T and
T̄ depend on the time t (or equivalently the scale factor
a). Thus we can write equation (11) as

Bk(a) =

∫

2πdk1 sin θdθ

(2π)3
β(a, k, k1, θ) (k1 × k) , (12)

where the quantity β = β(a, k,
√

k2 + k21 − 2kk1 cos θ)
satisfies

aH
∂(a2β(a, k, k1))

∂a
=

ckB
e

T̄ (a)∆e,T (k, k1) . (13)

By numerically integrating equation (13), we can calcu-
late the two dimensional array of values β(k, k1) as a
function of scale a or redshift z. These β values still in-
clude the random phases φk. However, the phases are
eliminated when we compute the power spectrum of the
magnetic field PB. The result is

PB ≡ 〈BkB
⋆
k〉 = (14)

1

V

∫

2πdk1 sin θdθ

(2π)3
|β(a, k, k1, θ)|2(k1k sin θ)2 ,

where V is the volume.
In Figure 2 we show the power spectrum of the mag-

netic field as a function of wavenumber k for different
redshifts. The quantity

√
k3PB has units of gauss. Note

that the magnetic field grows most strongly on the Jeans
mass scale of the baryons. This is apparent in the case
of zero stream velocity, where the first peak is around
k−1 ∼ 16 kpc [comoving] at z = 100, corresponding to a
mass scale∼ 7×104 M⊙. This mass scale is slightly above
the minimum mass for which baryonic gravitational in-
stabilities can still grow [36, 44, 45]. The second peak,
where the power is maximum, is associated with smaller
scales ∼ 7 kpc [comoving], which correspond to where
the most dramatic variation of the ratio δT /δe occurs
(see Figure 1). For the case of vbc = 1σvbc, we see the
inverse behavior. Here the first peak (larger scales) has
more power than the second peak (smaller scales). Note
that our use of linear theory is justified, since the den-
sity perturbations are still linear for scales smaller than
∼ 1000Mpc−1 [comoving] and become nonlinear only at
z < 10 (see Fig. 6 in Ref. [46], see also [47]).

IV. DISCUSSION

We have shown that seed magnetic fields can be pro-
duced from zero initial magnetic field on cosmological
linear over density scales through the Biermann process.
The typical field strength is ∼ 10−25 − 10−24G. These
seeds fields may later be amplified via nonlinear dynamo
processes [48, 49] and are perhaps responsible for the
present day magnetic fields in galaxies. Note that bary-
onic outflows can still contribute to the IGM magnetic
field [6]. The Biermann battery mechanism requires a
vortex like motion in the plasma. We have demonstrated
that the spatially varying speed of sound of gas in the
early Universe produces this vorticity in the residual free
electrons. The process does not depend on the fraction
of free electrons in the Universe (since the electron num-
ber density cancels in the Biermann term), but only on
fluctuations in this quantity.
During reionization, the temperature of the baryons

as well as temperature fluctuations will increase. This
will lead to even larger magnetic fields since equation (8)
shows that the magnetic field growth depends linearly
on T̄ , and the temperature after reionization increases to
T̄ → 104 K. The temperature and electron fraction fluc-
tuations are also expected to increase substantially [50].
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Thus, the magnetic field could potentially increase post-
reionization by 4 − 6 orders of magnitude, bringing it
close to the 10−18G estimated from observations [8–10].
This value is about 6 orders of magnitude smaller com-
pared to other mechanisms in the literature that operate
on the relevant scales (see Ref. [7] for review), but com-
parable to Ref. [51]. However, the evolution of δe and
δT during and after reionization is model dependent. In
contrast, we have shown in this paper that, even before
reionization, magnetic field can be generated as part of
the linear growth of perturbations in the Universe, and
that the field strength due to this process can be esti-
mated robustly with few uncertainties.
The effect described here (following Ref. [25]) produces

a vorticity in the baryonic gas on the order of∼ 10−20 s−1

at z ∼ 10 on scales ∼ 6 kpc. During reionization, as in
the case of the magnetic field, the vorticity in the gas may
again increase by 4 − 6 orders of magnitude, bringing it
close to 10−15 s−1, which is the vorticity of the Milky
Way Galaxy in the solar neighborhood.
Future measurements of the magnetic field in the IGM

and in filaments (for example via Faraday rotation in the
CMB, Ref. [52, 53]) would be helpful to further clarify
the role of seed magnetic fields. Already, lower bounds
on the magnetic field in large scale structures [8–10, 53–

55] suggest that there must be a primordial seed field in
the Universe. The Biermann Battery process described
here, which operates through a spatially varying speed
of sound, can naturally explain these seeds. Our cal-
culation suggests that different coherent patches in the
Universe with different stream velocities may have up to
an order of magnitude variation in their magnetic fields.
Thus, seed magnetic fields could conceivably be used in
the future to study the stream velocity distribution in
the Universe.
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