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1 Introduction

Recent simulations of relativistic heavy ion collisions suggested the intriguing possibility

that huge magnetic fields are created during noncentral collisions [1–3]. At the typical

Relativistic Heavy Ion Collider energies the current estimate for the largest magnetic field

produced is eB ≈ 5m2
π, withmπ corresponding to the pion mass in the vacuum1. Moreover,

at typical Large Hadron Collider energies it is found eB ≈ 15m2
π as a maximum value for

the produced magnetic field. Electric fields are also produced in the collisions, but their

magnitude is smaller than that of their magnetic counterpart. Simulations show that the

structure of the electromagnetic fields in space and time is rather complicated, and in fact

these fields are highly inhomogeneous and short lived. On the other hand, these results

make the study of the role of the electromagnetic fields on the phase structure of Quantum

Chromodynamics (QCD) not academic. Relevant studies can be found in the book [4] as

well as in [5–33]. The existence of strong fields in heavy ion collisions, combined to the

excitation of strong sphalerons at high temperature [34], also suggested the possibility of

event-by-event P− and CP−odd effect dubbed Chiral Magnetic Effect [1, 35–43], see [4, 44]

for reviews. Besides heavy ion collisions, even stronger magnetic fields might have been

produced in the early universe at the epoch of the electroweak phase transition, tew, because

of gradients in the vacuum expectation value of the Higgs field: a widely accepted value for

the magnetic field at the transition is B(tew) ≈ 105m2
π ≈ 1019 T, even if this value rapidly

decreased scaling as a−2, where a(t) denotes the scale factor of the expanding universe,

1It is customary to measure the value of eB in units of the vacuum pion mass. As a rule of thumb, to

eB = m2
π corresponds B ≈ 1014 Tesla.
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losing several order of magnitude at the QCD phase transition. Finally, strong magnetic

fields (but still weaker than the one produced in relativistic heavy ion collisions) are present

on the surface of magnetars, B ≈ 10−4m2
π ≈ 1010 T [45]. Therefore, there exist at least

three physical contexts in which QCD in a strong magnetic background is worth to be

studied.

There is general consensus on the fact that a strong magnetic field affects the physics

of spontaneous chiral symmetry breaking in QCD. At zero temperature, the magnetic field

induces the magnetic catalysis, leading to an increase of the chiral condensate with the

strength of the applied field. On the other hand, the effect of the external field on the

restoration of chiral symmetry at finite temperature is still controversial. In fact recent

lattice simulations have shown that increasing the strength of the magnetic field leads to

a reduction of the critical temperature for chiral restoration [5], which is understood in

terms of the backreaction of the quark loops on the gluon action [14]. This conclusion is in

agreement with some previous model computations, see for example [13] and [18], but in

disagreement with most of the recent chiral model computations. The lattice results show

as well some role of the bare quark mass on the shift of the critical temperature; on the

other hand, model computations have not been able to describe such a behavior, see for

example [19]. Interesting possibilities to solve this puzzle can be found in [46].

Leaving apart the problem of the critical temperature, there is general agreement that

the magnetic field makes the chiral phase transition stronger, and it might turn to a first

order phase transition at large enough B. If this is the case, then a critical point in the

(T,B) plane should appear at zero baryon chemical potential 2. Lattice results are in

agreement with the strengthening of the phase transition, but they show no evidence for

a critical point. The existence of the latter is also not confirmed by models: some model

computations predict a first order phase transition if eB is large enough, while other models

do not observe a change of the phase transition from crossover to first order even for large

magnetic field strengths.

In this Article we address analytically the problem of the chiral phase transition for

quark matter at zero baryon chemical potential and nonzero magnetic field, focusing on

the possible existence of a critical point in the phase diagram and connecting it to the

ultraviolet divergences of the underlying microscopic model. In order to make quantitative

predictions, we build up a Ginzburg-Landau (GL) effective potential for the chiral conden-

sate at finite temperature; neglecting inhomogeneous condensates as well as terms which

are not dependent on the condensate, we write the effective GL action around the critical

line as

Ω =
α2

2
m2

q +
α4

4
m4

q , (1.1)

where mq corresponds to the dynamical quark mass which is proportional to the chiral

condensate, see the description of the model below. According to the general GL description

of a phase transition, the order of the latter depends on the sign of the coefficient α4 at

the temperature T ∗

c defined as the solution of the equation α2(T
∗

c ) = 0. If α4(T
∗

c ) > 0 then

2In [13] such critical endpoint is found; however, it connects a first order transition at small B with a

second order transition at large B.
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the phase transition is of the second order and the critical temperature is Tc = T ∗

c ; on the

other hand, if α4(Tc) < 0 then the phase transition is of the first order and the critical

temperature satisfies Tc > T ∗

c . Hence the point (α2, α4) = (0, 0) in the phase diagram

corresponds to a critical point, at which a first order and a second order phase transition

lines meet.

For the mapping of the phase diagram from the (α2, α4) plane to the (T,B) plane

we need a microscopic model to compute the explicit dependence of the GL coefficients

on these variables. In this Article we make use of the chiral quark-meson model [47–50],

and restrict ourselves to the one-loop approximation which amounts to neglect quantum

fluctuations for the meson fields in the thermodynamic potential. The advantage of the

quark-meson model is its renormalizability, which allows to make quantitative predictions

which are not affected by any ultraviolet scale. In fact, our main goal is to elucidate on the

role of the ultraviolet divergences in this model on the order of the phase transition. Our

main conclusion is that a critical point in the (T,B) plane might exist, but its existence is

very sensitive to the way the ultraviolet divergences of the model are treated. In particular,

we are able to predict analytically that after the renormalization of the thermodynamic

potential has been properly performed, no chiral critical point exists. On the other hand,

such a critical point there exists when the ultraviolet divergences are not removed by a

proper renormalization.

We stress that even if the model parameters are fixed having in mind the QCD sponta-

neous chiral symmetry breaking, our results are general and apply to any theory of charged

interacting fermions in a magnetic background, when a scalar condensate appears in the

theory, which we dub QCD-like theories according to a widely spread nomenclature. Keep-

ing this in mind, it is not the scope of this Article to investigate on the discrepancy between

model and Lattice computations about the effect of the magnetic field on the critical tem-

perature of the chiral phase transition. Adding by hand a term that leads to a decreasing

critical temperature in the GL second order coefficient would be an easy exercise; however

we do not follow this procedure since we are not interested to a quantitative comparison

with the Lattice simulations, but to a quantitative study about how ultraviolet divergences

in QCD-like theories affect the physical predictions. Moreover, adding this B−dependent

term in the GL effective action naturally requires a further arbitrary term in the quartic

coefficient, thus ruining the quantitative power of our study and the possibility to compare

directly our results to those obtained within QCD-like theories.

We also stress that our purpose is not to claim that previous model computations

lacking renormalization are wrong. In fact, the explicit ultraviolet cutoff appearing in

the model calculations is a signal of a rough modelling of the QCD asymptotic freedom:

the interactions are switched off for momenta larger than the ultraviolet scale. Therefore

we consider our study as a tasteful theoretical investigation of the role of the ultraviolet

divergences in the microscopic model on the order of the phase transition, rather than as

a censor which judges which is the more appropriate procedure to treat the divergences of

the model when it is applied to describe QCD. Nevertheless, beside the interest from the

pure field theory point of view, the results can be nicely interpreted physically observing

that the critical point appears naturally in the model with the explicit UV cutoff, which
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is a remnant of the QCD asymptotic freedom, hence connecting the latter property of the

strong interactions to the existence of the former.

The plan of the Article is as follows: in Section II we describe the renormalization of

the chiral quark-meson model in a magnetic background, discussing how the divergences

can be embedded in the vacuum and B−independent thermodynamic potential. In Section

III we compute the GL coefficients of the thermodynamic potential in Eq. (1.1) using the

renormalized model. In Section IV we repeat the same computation using the nonrenor-

malized model, thus leaving the explicit dependence on the ultraviolet cutoff. In Section

IV we summarize our results and draw our conclusions.

2 Renormalization of the quark-meson model in a magnetic background

In this Section, we specify the model we use in our calculations, explaining its lagrangian

density and how we renormalize the vacuum part of the thermodynamic potential. The

lagrangian density of the model is given by

L = q̄ [iDµγ
µ − g(σ + iγ5τ · π)] q

+
1

2
(∂µσ)

2 +
1

2
(∂µπ)

2 − U(σ,π) . (2.1)

In the above equation, q corresponds to a quark field in the fundamental representation of

color group SU(Nc) and flavor group SU(2); the covariant derivative, Dµ = ∂µ −QfeAµ,

describes the coupling to the background magnetic field, whereQf denotes the charge of the

flavor f . Besides, σ, π correspond to the scalar singlet and the pseudo-scalar iso-triplet

fields, respectively. The potential U describes tree-level interactions among the meson

fields. In this article, we take its analytic form as

U(σ,π) =
λ

4

(

σ2 + π2 − v2
)2

, (2.2)

which is invariant under chiral transformations.

In this article, we restrict ourselves to the one-loop large-Nc approximation, which

amounts to consider mesons as classical fields, and integrate only over fermions in the

generating functional of the theory to obtain the thermodynamic potential. As a matter

of fact, quantum corrections arising from meson bubbles are suppressed of a factor 1/Nc

with respect to case of the fermion bubble. In the integration process, the meson fields are

fixed to their classical expectation value, 〈π〉 = 0 and 〈σ〉 6= 0. The physical value of 〈σ〉
will be then determined by minimization of the thermodynamic potential. This implies

that one replaces gσ → g〈σ〉 in the quark action. The field σ carries the quantum numbers

of the quark chiral condensate, 〈q̄q〉; hence, in the phase with 〈σ〉 6= 0, chiral symmetry is

spontaneously broken.

The one-loop fermion bubble associated to the interaction with a magnetic background

can be computed within the Leung-Ritus-Wang method [54], namely

ΩB = −Nc

∑

f

|QfeB|
2π

∞
∑

n=0

βn

∫ +∞

−∞

dpz
2π

[

E + 2T log
(

1 + e−βE
)]

, (2.3)
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where n labels the Landau level, E corresponds to the single particle excitation spectrum,

E =
√

p2z + 2|QfeB|n+m2
q , (2.4)

andmq = g〈σ〉 is the constituent quark mass. The factor βn = 2−δn0 counts the degeneracy
of the nth-Landau level.

The divergence in ΩB is contained in the vacuum contribution. Since the model is

renormalizable, we can treat this divergence by means of renormalization. In order to

prepare ΩB for renormalization, we firstly add and subtract the contribution at B = 0,

namely

Ω0 = −2NcNf

∫

d3p

(2π)3

[

ω + 2T log
(

1 + e−βω
)]

, (2.5)

where ω =
√

p2 +m2
q. This procedure is convenient since it allows to collect all the

contributions due to the magnetic field into an addendum which is ultraviolet finite. In

principle it would be enough to consider only the vacuum contribution in Ω0 (and in fact,

such contribution will be the only one affected by the renormalization procedure); however,

for the computations of the GL coefficients at finite B it is convenient to add and subtract

the B = 0 finite temperature contribution as well. Hence we write

ΩB = Ω0 + (ΩB − Ω0) ≡ Ω0 + δΩ . (2.6)

In the following we renormalize Ω0; then we discuss the ultraviolet behavior of δΩ, showing

that it is finite and hence it does not need to be renormalized.

2.1 Renormalization of the zero field contribution

We split the zero field potential into a vacuum and a valence part, Ω0 = Ω0
0 +ΩT

0 , with

Ω0
0 = −2NcNf

∫

d3p

(2π)3
ω , (2.7)

ΩT
0 = −4NcNfT

∫

d3p

(2π)3
log
(

1 + e−βω
)

. (2.8)

The valence quark contribution is finite and is not affected by renormalization. Therefore

we focus on the renormalization of the vacuum part. Within a 3−momentum UV cutoff

we find, in the limit Λ ≫ mq and neglecting terms which do not depend on the quark

condensate,
Ω0
0

NcNf

= −
m4

q

32π2
−
m2

qΛ
2

4π2
+
m4

q

8π2
log

2Λ

mq
. (2.9)

In order to remove the UV divergences we add the two counterterms to the thermodynamic

potential,

Ωc.t. =
δλ

4

m4
q

g4
+
δv

2

m2
q

g2
, (2.10)

and impose the renormalization conditions [8, 10]

∂(Ω0
0 +Ωc.t.)

∂mq

∣

∣

∣

∣

mq=gfπ

=
∂2(Ω0

0 +Ωc.t.)

∂m2
q

∣

∣

∣

∣

mq=gfπ

= 0 , (2.11)
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which amount to the requirement that the one-loop contributions, represented by Ω0, do

not affect the expectation value of the scalar field and the mass of the scalar meson. After

elementary evaluation of the counterterms we find, putting Ωren
0 ≡ Ω0

0 +Ωc.t.,

Ωren
0

NcNf

= −g
2f2π
8π2

m2
q +

3

32π2
m4

q −
m4

q

8π2
log

mq

gfπ
. (2.12)

In this article we are interested to build up the GL expansion at the chiral critical

line. To this end we need to expand the thermodynamic potential, Ωren
0 + ΩT

0 , in powers

of mq around mq = 0. An inspection of Eq. (2.12) reveals that in the zero temperature

part of the thermodynamic potential a nonanalytic term, proportional to m4
q logmq, is

present. However this is not a problem; in fact, as discussed in [53], summing up the

thermal part of the potential removes the dependence on the logarithm of the quark mass,

leaving an analytic function which can be expanded around mq = 0. In order to show

how this cancellation occurs we take advantage of the Dolan-Jackiw large temperature

expansion [51], see [52] for a review,

ΩT
0

NcNf

= −7π2T 4

180
+
m2

qT
2

12
+
m4

q

8π2

[

log
mq

πT
+ γE − 3

4

]

+O
(

m6
q/T

6
)

. (2.13)

Summing Eq. (2.12), which is valid at any temperature, to Eq. (2.13), which is valid only in

the limit T ≫ mq (which is the limit which we are interested to) results in the cancellation

of the logmq term; taking into account the meson potential Eq. (2.2), we find

Ωren
0 +ΩT

0 + U =
αR
2

2
m2

q +
αR
4

4
m4

q +O
(

m6
q/T

6
)

, (2.14)

with

αR
2 = 2NcNf

(

T 2

12
− g2f2π

8π2

)

− λv2

g2
, (2.15)

αR
4 = 4NcNf

(

γE − 3/4

8π2
+

3

32π2
− 1

8π2
log

πT

gfπ

)

+
λ

g4
, (2.16)

and the superscript R stands for renormalized. In the above equation, γE corresponds to

the Euler-Mascheroni constant.

According to the general GL theory of phase transitions, the critical temperature is

obtained as a solution of the equation αR
2 = 0, that is

T 2
c =

6λv2

g2NcNf

+
3g2f2π
2π2

. (2.17)

For numerical estimations we take the parameters of [18], namely λ = 20, v = fπ and

g = 3.3; with this parameter set we find Tc ≈ 173 MeV. Moreover αR
4 (Tc) > 0, which

implies that the phase transition is of the second order.
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2.2 Ultraviolet convergence of δΩ

Here we summarize the discussion of [10] which proves the ultraviolet convergence of δΩ

in Eq. (2.6). Since the valence quark contribution is obviously finite, we limit ourselves to

consider the T = 0 part in δΩ. In ΩB the zero temperature contribution is

−Nc

∑

f

|QfeB|
2π

∞
∑

n=0

βn

∫ +∞

−∞

dpz
2π

E ; (2.18)

following [10] we regulate the above term introducing the function, V(s), of a complex

variable, s, as

V(s) = −Nc

∑

f

|QfeB|
2π

∞
∑

n=0

βn

∫ +∞

−∞

dpz
2π

(

p2z + 2|QfeB|n+m2
q

)
1−s

2 . (2.19)

The function V(s) can be analytically continued to s = 0. We define then ΩB(T = 0) =

lims→0+ V(s). After elementary integration over pz, summation over n and taking the limit

s→ 0+, we obtain the result

ΩB(T = 0) = Nc

∑

f

m4
q

16π2

(

2

s
− log(2|Qf eB|) + a

)

+Nc

∑

f

|QfeB|m2
q

8π2
log

m2
q

2|QfeB|

−Nc

∑

f

(QfeB)2

2π2
ζ ′ (−1, q) . (2.20)

where we have subtracted terms which do not depend explicitly on the condensate. In

the above equation, ζ (t, q) is the Hurwitz zeta function; we have defined q = (m2
q +

2|QfeB|)/2|Qf eB|; furthermore, a = 1− γE −ψ(−1/2), where γE is the Euler-Mascheroni

number and ψ is the digamma function. The derivative ζ ′ (−1, q) = dζ(t, q)/dt is under-

stood to be computed at t = −1.

It is shown in [10] that the ultraviolet divergence of the lowest Landau level (LLL)

contribution is canceled by an analogous divergence coming from the higher Landau levels.

Nevertheless a divergence still remains, arising from the higher Landau levels, and that is

represented by the explicit 1/s pole in Eq. (2.20), which survives in the B → 0 limit and

is obviously related to the divergence of the vacuum contribution which we have examined

in the previous Section. The structure of the divergence in Eq. (2.20) is identical to

that obtained within the dimensional regularization scheme; the apparent missing scale

of the logarithm is hidden in the 1/s term, and appears explicitly when the divergence is

subtracted. Such a divergence affects only the zero field, zero temperature thermodynamic

potential; the corrections due to the magnetic field are either finite or independent on the
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condensate 3. As a matter of fact, taking the zero magnetic field limit we find

Ω0(T = 0) = NcNf

m4
q

16π2

(

2

s
− logm2

q + a+
1

2

)

; (2.21)

comparing Eqs. (2.20) and (2.21) it is easily proved that the pole 2/s is cancelled in the

difference ΩB(T = 0)− Ω0(T = 0),

δΩ(T = 0) = −Nc

∑

f

(

m4
q

16π2
+

|QfeB|m2
q

8π2

)

log
2|QfeB|
m2

q

−Nc

∑

f

|QfeB|2
2π2

ζ ′ (−1, q)−NcNf

m4
q

32π2
, (2.22)

hence proving the statement that δΩ is ultraviolet finite. Since δΩ is finite, it does not

depend on the actual regularization scheme. In fact, in the following Section we are going

to use a different regularization scheme to compute the Ginzburg-Landau coefficients in

the effective action for mq at the critical line, employing a 3−momentum cutoff, which

is certainly less elegant than the regularization scheme used in this Section, but easily

manageable analytically. In that case we will prove excplicitly the cancellation of ultraviolet

divergences in the relevant coefficients of the GL expansion.

Before going ahead, it is useful to remind that our goal in this article is to obtain

analytically the expression of the thermodynamic potential at the critical line, within an

expansion in powers of mq. However, we notice that the argument of the log in Eq. (2.22)

forbids the analytic expansion of the thermodynamic potential in powers of mq/|eB|. This
problem is analogous to the one encountered in the B = 0 case, see for example Ref. [53] for

a nice discussion; it is well known that in the latter case, summing the valence quark con-

tribution to the thermodynamic potential results in the replacement of the mq/Λ argument

in the log in the zero temperature term with a T/Λ argument, turning the thermodynamic

potential to an analytic function of mq at mq = 0, then permitting the mq−power ex-

pansion. In the case of finite B we face the same problem; as we will show explicitly

in the next Section, this is cured by summing the finite temperature contribution to the

thermodynamic potential.

3 Effective action at the critical line

In this Section we present the novelty of our study. Our goal is to expand Ω in powers ofmq,

in order to build up the effective potential at the critical line for the order parameter. In

particular, we compute the quadratic and the quartic coefficients of the Ginzburg-Landau

expansion in Eq. (1.1), putting

αi ≡ αR
i + δαi . (3.1)

3In [16] a term proportional to B2/s is considered; this is a pure field contribution, which needs to

be renormalized and contributes to the total pressure. On the other hand, it is not coupled to the quark

condensate; for this reason we do not take into account such a term in the present study.
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Here αR
i and δαi are computed from Ω0 and δΩ in Eq. (2.6), respectively, as αR

i =

∂iΩ0/∂m
i
q|mq=0 and δαi = ∂i(ΩB − Ω0)/∂m

i
q|mq=0. The zero field coefficients have been

computed in the previous Section, see Eqs. (2.15) and (2.16), and are the ones which are

affected by the renormalization procedure. Since ΩB − Ω0 is finite, it is not sensitive to

renormalization. In this Section we compute δα2 and δα4.

As we have stressed in the previous Section, the quantity ΩB − Ω0 is finite both in

the ultraviolet (UV) and in the infrared (IR). However, in the intermediate steps of the

computations, when the coefficients from Ω0 and ΩB are computed independently, it is

necessary to regulate the several addenda both in the UV and in the IR. We achieve

this by introducing the 3−momentum cutoffs Λ and ε respectively. However, we will prove

explicitely that the final result does not depend on these cutoffs, since both the UV and the

IR divergences are removed at any order in mq when the vacuum contribution is subtracted

from the finite field one, as we have discussed in the previous Section.

In the computation of δαi we find convenient use the following decomposition of ΩB:

ΩB = ΩLLL
B,0 +ΩLLL

B,T +ΩhLL
B,0 +ΩhLL

B,T , (3.2)

where the superscripts LLL, hLL correspond to lowest Landau level and higher Landau

levels, respectively; moreover, the subscripts 0 and T correspond to the zero temperature

and valence quark contributions respectively. By means of the above decomposition it is

easy to identify the several contributions to each GL coefficient, as well as to check how

the intermediate steps divergences combine to produce a finite result.

3.1 Computation of δα2

According to the definitions in Eq. (3.1), in order to compute δαi we need to expand both

ΩB and Ω0. The computation of the zero field contribution is straightforward; we find

Ω0 =
m2

q

2

[

NcNf

π2

(

π2T 2

6
− Λ2

2

)]

, at the order m2
q , (3.3)

where Λ is an intermediate-step UV cutoff which is introduced to regularize the result; as we

have already stressed, when we subtract the above equation to the finite field contribution,

the divergence is exactly cancelled, leaving a finite result.

Taking the second derivative of ΩLLL
B,0 +ΩLLL

B,T with respect to mq at mq = 0 we find

ΩLLL
B,0 +ΩLLL

B,T =
m2

q

2



−Nc

∑

f

|QfeB|
2π2

(

log
Λ

T
+ a2

)



 , at the order m2
q , (3.4)

with a2 ≈ 0.139 resulting from a convergent numerical integral. The above result is ob-

tained by means of elementary integrations. The only care needed in the computation

is to regulate the contributions coming from ΩLLL
B,0 and ΩLLL

B,T in the IR, introducing an

IR cutoff, ε; summing the finite temperature contribution to the zero temperature one, λ

cancels exactly leaving a finite IR result.

The computation involving the higher Landau levels is complicated by the summation

over the infinite tower of levels. In order to regulate the UV divergences in the intermediate
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steps of the computation we use the scheme of [17], requiring that p2z + 2|QfeB|n ≤ Λ2

with Λ an UV cutoff. Then the zero temperature contribution reads

ΩhLL
B,0 =

m2
q

2



−Nc

∑

f

|QfeB|
π2

NΛ
∑

n=1

log

√
NΛ − n+

√
NΛ√

n



 , at the order m2
q , (3.5)

where NΛ = Λ2/(2|Qf eB|). In the above equation the summation over Landau levels has

to be performed. The divergent part can be extracted analytically by using the Euler-

McLaurin formula,
NΛ
∑

n=1

f(n) ≈
∫ NΛ

1

f(z)dz +
f(1) + f(NΛ)

2
, (3.6)

while the finite part has to be computed numerically. We find, in the limit Λ2 ≫ eB,

NΛ
∑

n=1

log

√
NΛ − n+

√
NΛ√

n
≈ Λ2

2|QfeB| +
1

4
log

2|QfeB|
Λ2

− b2 , (3.7)

with b2 ≈ 0.806 independent on the fermion charge, hence leading to

ΩhLL
B,0 =

m2
q

2



−Nc

∑

f

|QfeB|
π2

(

Λ2

2|QfeB| +
1

4
log

2|QfeB|
Λ2

− b2

)



 , at the order m2
q .

(3.8)

Comparing the above equation with Eqs. (3.3) and (3.4) we find that the UV divergences

are perfectly cancelled, as it should.

The last computation is the thermal contribution of the higher Landau levels. This

computation is a bit lengthy but straightforward. Defining

Yn = −2T

π2

∑

f

|QfeB|
∫

∞

0

dpz
∂2

∂m2
q

log
(

1 + e−βE
)∣

∣

∣

mq=0
, n ≥ 1 , (3.9)

we have

ΩhLL
B,T =

m2
q

2
Nc

∞
∑

n=1

Yn , at the order m2
q ; (3.10)

in order to easily combine Eq. (3.10) with Eq. (3.3) and (3.4) we define Y =
∑

n Yn and

F2 = Y − T 2

6
+

|QfeB|
4π2

log
T 2

2|QfeB| , (3.11)

in such a way

ΩhLL
B,T =

m2
q

2
Nc

∑

f

(

T 2

6
+

|QfeB|
4π2

log
2|QfeB|
T 2

+ F2

)

, at the order m2
q . (3.12)

We have not been able to obtain an analytic expression for F2; on the other hand, just

on the base of dimensional analysis and on the observation that F2 → 0 in the B → 0

limit, we expect F2 = (|QfeB|/π2)×G2(|QfeB|/T 2) (the overall 1/π2 is introduced just for
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convenience). In the case |eB|/T 2 ≪ 1 the function G2 can then be determined by a best

fit procedure; in the opposite limit |eB|/T 2 ≫ 1 the thermal contribution of the higher

Landau levels is suppressed, which implies Y → 0 in Eq. (3.11). Then we find respectively

(x ≡ |eB|/T 2)

G2 ≈ −13.51 − 7.24 log x , x≪ 1 (3.13)

G2 ≈ −1

4
log 2x− π2

6x
, x≫ 1 . (3.14)

Summing up all the finite B contributions and subtracting the B = 0 one we thus find

δα2 = Nc

∑

f

|QfeB|
π2

[

−1

2
a2 + G2

( |QfeB|
T 2

)

+ b2

]

. (3.15)

3.2 Computation of δα4

From Ω0 we find

Ω0 =
m4

q

4

(

3NcNf

2π2
log

Λ2

T 2
−NcNf c

0
4

)

, at the order m4
q , (3.16)

where c04 ≈ 0.265 resulting from a finite numerical integral, and Λ is an ultraviolet cutoff

that we introduce to cut the 3−momentum integral. At the end of the calculation, the log

divergence will be cancelled by the finite B contribution, in agreement with the argument

given in the previous Section.

Taking the fourth derivative of ΩLLL
B,0 +ΩLLL

B,T with respect to mq and computing it at

mq = 0 we find

ΩLLL
B,0 +ΩLLL

B,T =
m4

q

4



Nc

∑

f

|QfeB|
π2

3

T 2
a4



 , at the order m4
q , (3.17)

In order to obtain Eq. (3.17) we have used an ultraviolet 3−momentum cutoff regulariza-

tion, then sent the UV cutoff to infinity being the result finite in the ultraviolet. In the

above equation a4 ≈ 0.11 results from a convergent numerical integral.

As for δα2, the computation involving the higher Landau levels is complicated by

the summation over the infinite levels. In order to regulate the UV divergences in the

intermediate steps of the computation we use again the regulation scheme which has lead

to Eq. (3.5). Then the zero temperature contribution reads

ΩhLL
B,0 =

m4
q

4
Nc

∑

f

3

2π2

NΛ
∑

n=1

√

Λ2 − 2|QfeB|n
nΛ

, at the order m4
q , (3.18)

where NΛ = Λ2/(2|QfeB|). In the above equation the summation over Landau levels

has to be performed; the divergent contribution can be extracted once again by virtue of

Eq. (3.6); the finite part is then computed numerically. We find, in the limit Λ2 ≫ eB,

NΛ
∑

n=1

√

Λ2 − 2|QfeB|n
nΛ

≈ log
Λ2

2|QfeB| − d4 , (3.19)
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with d4 ≈ 0.0360, hence leading to

ΩhLL
B,0 =

m4
q

4
Nc

∑

f

3

2π2

(

log
Λ2

2|QfeB| − d4

)

, at the order m4
q . (3.20)

The above equation is quite useful since it allows to verify easily that once Eq. (3.16) is

subtracted, the UV divergence is cancelled leaving a finite final result.

The last computation is the thermal contribution of the higher Landau levels. As in

the case of δα2 the computation is a bit lenghty but straightforward. Firstly we define

Jn = −2T

π2

∑

f

|QfeB|
∫

∞

0

dpz
∂4

∂m4
q

log
(

1 + e−βE
)∣

∣

∣

mq=0
, n ≥ 1 ; (3.21)

then we have

ΩhLL
B,T =

m4
q

4
Nc

∞
∑

n=1

Jn , at the order m4
q ; (3.22)

in order to easily combine subtract Eq. (3.22) with Eq. (3.16) and (3.20) we define J =
∑

n Jn and

F4 = J +
3

2π2
log

T 2

2|QfeB| , (3.23)

in such a way

ΩhLL
B,T =

m4
q

4
Nc



− 3

2π2

∑

f

log
T 2

2|QfeB| +
∑

f

F4



 , at the order m4
q . (3.24)

As for the case of F2, we have not been able to obtain an analytic expression for F4 for any

value of the magnetic field strength; we have limited ourselves to verify numerically that in

the B → 0 limit we have F4 → −c04 +3d4/2π
2 independently on the fermion charge, which

guarantees δα4 → 0 in the same limit. In the case |eB|/T 2 ≪ 1 a best fit procedure can

be used to extract the B−dependence of F4 on the magnetic field strength; on the other

hand, in the case |eB|/T 2 ≫ 1 the finite temperature contribution to the thermodynamic

potential is dominated by the lowest Landau level, which implies J → 0 in Eq. (3.23). We

find

F4 ≈ 3

2π2
d4 − c04 , x≪ 1 (3.25)

F4 ≈ − 3

2π2
log 2x , x≫ 1 . (3.26)

Summing up all the finite B contributions and subtracting the B = 0 one we find

δα4 = Nc

∑

f

(

3a4
π2

|QfeB|
T 2

− 3

2π2
d4 + F4 + c04

)

. (3.27)

In Fig. 1 we plot the coefficients α2 and α4 as a function of temperature, for several

values of the magnetic field strength. The location of the zeros of the quadratic coeffi-

cient is affected by the magnetic field: the larger eB, the larger the critical temperature.
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Figure 1. Coefficients α2 (left panel) and α4 (right panel) as a function of temperature, for several

values of the magnetic field strength.
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Figure 2. Critical temperature (left panel) and α4 at the critical temperature (right panel) as a

function of eB/m2

π, for the case of the renormalized model.

This model prediction is in disagreement with the recent lattice simulations of [5], but

understanding the reason of the discrepancy is beyond the scope of our study. At a fixed

temperature, the magnetic field increases the numerical value of δα4 as well, which might

sound unexpected since increasing B should finally result in making the phase transition

closer to a first order, hence lowering the value of α4.

In order to understand why the magnetic field enhances the strength of the phase

transition, we plot in Fig. 2 the critical temperature (left panel) and α4 at the critical

temperature (right panel) as a function of eB/m2
π, for the case of the renormalized model.

We find that when computed at Tc, the value of α4 is a decreasing function of eB, thus

making the phase transition closer to a first order. However, the α4 is never zero. This

means that, at least within the magnetic field range we have analyzed in this study (which

is however well beyond the largest magnetic fields expected to be produced in heavy ion

collisions, as well as the one produced in the early universe at the QCD phase transition), no
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critical point is present in the phase diagram, in agreement with the lattice simulations [5].

3.3 Lowest Landau level approximation

It is instructive to compute the renormalized coefficients of the GL effective action in the

LLL approximation, which is valid when eB ≫ T 2: within the renormalized model, this

amounts to consider only the LLL contribution in the thermal part of the B−dependent

thermodynamic potential, that is Y = 0 in Eq. (3.11) and J = 0 in Eq. (3.23). On the

other hand, one has to be careful in defining the LLL limit in the vacuum term, because

the hLLs are important to cancel the divergences arising from the expansion of Ω0 and of

ΩLLL
0 .

In the case of the second order coefficient, the hLLs vacuum term combines non trivially

with the other terms, see Eq. (3.8); in particular, the quadratic divergence cancels with

the analogous divergence in Ω0, while the log-type divergence combines with the same

kind of divergence of the LLL to give a renormalized result ∝ |QfeB| log 2|QfeB|/T 2.

Parametrically this is the leading contribution to the second order coefficient in the limit

|eB| ≫ T 2, and corresponds to the log-type term in the asymptotic expansion of G2 in

Eq. (3.15).

For the case of the quartic order coefficient, the log-type divergence in Eq. (3.20) com-

bines with the same kind of divergence in Eq. (3.16) to give a finite result ∝ log 2|QfeB|/T 2.

However this contribution is parametrically subleading in comparison with the finite LLL

contribution in Eq. (3.17) which is finite once we combine the T = 0 and the finite tem-

perature terms, and it grows up as |QfeB|/T 2. Moreover, parametrically αR
2 ≪ δα2 and

αR
4 ≪ δα4 (we have verified numerically that this relation holds even for not so large values

of |eB|/T 2). This observations based on the asymptotic behavior of the GL coefficients

are quite interesting, since they reveal that the critical temperature is determined by a

renormalized combination of the contribution of the LLL and the hLLs; hence, both the

LLL and the hLLs are effective to shift Tc. However, the sign of the quartic coefficient

is asymptotically determined by the LLL only, meaning that only the LLL affects the

strength of the phase transition in the large field limit. Putting all together we thus find

in the |eB|/T 2 ≫ 1 limit (the symbol ≍ corresponds to asymptotic limit)

α2 ≍ −Nc

∑

f

|QfeB|
4π2

log
2|QfeB|
T 2

, (3.28)

α4 ≍ Nc

∑

f

3a4
π2

|QfeB|
T 2

. (3.29)

From Eq. (3.29) we read that the quartic coefficient of the GL effective action is positive

in the large field limit, for every value of the temperature. This implies that the phase

transition is of the second order at zero chemical potential, and this conclusion is not

affected by the strength of the magnetic field.
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4 Comparison with the nonrenormalized model

It is interesting to compare the results summarized in Eqs. (3.15) and (3.27) with those

obtained within a nonrenormalized model. If we perform the computation of the ther-

modynamic potential in the latter case, the UV cutoff is kept finite and is considered a

parameter, fixed to reproduce some phenomenological quantity; moreover, renormaliza-

tion of the thermodynamic potential is not performed. Hence in this case the coefficients

of the GL expansion at the critical line are given by the coefficients of the expansion of

ΩB , which will contain an explicit dependence on the UV cutoff (in the case of the renor-

malized model, we add and subtract the zero field potential Ω0, which contains the UV

divergences, and renormalize the latter; the difference ΩB − Ω0 is UV finite and does not

need renormalization).

The calculation of the GL coefficients in the nonrenormalized model follow the same

lines of those we have performed in the renormalized case. We introduce a 3−momentum

UV cutoff, Λ, to regulate the divergence of the zero temperature potential. The final results

will depend on the numerical value of Λ.

The computation of α2 using the fixed cutoff scheme leads to the same results sum-

marized in Eqs. (3.4), (3.5) and (3.10). In the present case however we cannot use the

asymptotic expression in Eq. (3.8) since cutoff Λ is kept fixed and the condition Λ ≫ |eB|
might not apply. To the quark bubble, the contribution from the meson potential equal to

−λv2/g2 has to be added, see Eq. (2.15).

For what concerns the computation of α4, the only formal difference is in the LLL

contribution, which in this case reads

ΩLLL
B,0 +ΩLLL

B,T =
m4

q

4



Nc

∑

f

|QfeB|
π2

3

T 2

(

a4 −
T 2

4Λ2

)



 , at the order m4
q , (4.1)

which agrees with Eqs. (3.29) in the Λ → +∞ limit as expected. The quartic coefficient

becomes negative if the critical temperature, Tc, is larger than T
⋆
c = 2Λ

√
a4 ≈ 0.66Λ. Thus

the change of the order of the phase transition seems inevitable within the nonrenormalized

model, at least in the case of very large magnetic field strenghts. However this conclusion

is very sensitive to the numerical value of the UV cutoff; in the limit Λ → +∞, the

contribution in Eq. (4.1) is positive definite, as it happens for the case of the renormalized

model, see Eq. (3.29). The higher Landau levels contribution is still formally given by

Eqs. (3.18) and (3.22); once again, we cannot use the asymptotic form in Eq. (3.20) because

the UV cutoff is a fixed finite number. Finally, the contribution from the meson potential

equal to λ/g4 has to be added, see Eq. (2.16).

In Fig. 3 we plot the coefficients α4 as a function of temperature, for several values of

the magnetic field strength, in the case of the nonrenormalized model. We do not plot α2

since its behavior does not change qualitatively switching from the renormalized model to

the nonrenormalized one. The numerical values of the parameters are taken by Ref. [10],

and are λ = 4.67, Λ = 560 MeV and v2 = −1.8m2
q with mq = gfπ = 335 MeV. In this case

the v2 is negative, since the nonrenormalized quark bubble is taken into account when the
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Figure 3. Coefficient α4 as a function of temperature, for several values of the magnetic field

strength, in the case of the nonrenormalized model.
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Figure 4. Critical temperature (left panel) and α4 at the critical temperature (right panel) as a

function of eB/m2

π, for the case of the nonrenormalized model. Blue dot corresponds to the critical

field, eBCP ≈ 47m2

π at which the phase transition changes from a second order to a first order.

The corresponding temperature is TCP ≈ 313 MeV. The calculation of the critical temperature in

the left panel for eB > eBCP is not reliable, since higher order terms in the GL expansion should

be computed in order to determine the location of the phase transition in the first order regime.

requirement ∂(ΩB + U)/∂σ = 0 for σ = fπ at B = 0 and T = 0. As in the case of the

renormalized model analyzed in the previous Section, increasing the value of the magnetic

field strength at fixed temperature leads to an increasing of α4. This behavior seems to

be counterintuitive, since the hardening of the phase transition with the magnetic field,

and eventually the change of the transition from second order to first order, should occur

because of a change of sign of α4; hence, one would expect that the larger the magnetic

field strength, the smaller α4. However, this naive argument ignores the possibility that the

critical temperature increases with the magnetic field strength, and that the GL expansion

is quantitatively reliable only in the very proximity of the phase transition.

In order to explain how the phase transition changes from second order to first order in
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presence of a strong magnetic background, in Fig. 4 we plot the critical temperature (left

panel) and α4 at the critical temperature (right panel) as a function of eB/m2
π, for the case

of the nonrenormalized model. We find that even if increasing eB at fixed temperature

results in making α4 more and more positive, in agreement with the behavior we find for the

case of the renormalized model, the value of α4 at the critical temperature is a decreasing

function of eB. This is due to the behavior of the critical temperature plotted in the left

panel of the figure, and to the decrease of α4 with the increase of the temperature at fixed

eB. Blue dot corresponds to the critical field, eBCP ≈ 47m2
π at which the phase transition

changes from a second order to a first order. The corresponding temperature is TCP ≈ 313

MeV. The calculation of the critical temperature in the left panel for eB > eBCP is not

reliable, since higher order terms in the GL expansion should be computed in order to

determine the location of the phase transition in the first order regime.

5 Discussion and Conclusions

In this article we have computed the effective action of the chiral condensate around the

chiral phase transition, in presence of a strong magnetic background B. Our goal has been

to understand in an analytic fashion the chiral phase transition in presence of a magnetic

field, having in mind the idea of realizing if and how the second order phase transition at

B = 0 transforms to a first order phase transition at B 6= 0. We have written the effective

action for the chiral condensate (or equivalently for the dynamical quark mass) around the

phase transition in a Ginzburg-Landau (GL) form, see Eq. (1.1). For simplicity we have

neglected the possibility of a coordinate dependent condensate, which allows us to neglect

the gradient terms in the GL expansion. According to the general GL theory of a phase

transition, the latter is of the second order if α4 > 0, and of first order if α4 < 0; the point

in the phase diagram with α4 = 0 is called the critical point.

In order to map the phase transition lines from the (α2, α4) plane to the (T,B) plane

we need a specific microscopic model. To this end we have used firstly the renormalized

quark-meson model. The main scope of our study is to check the existence of a chiral critical

point at B 6= 0. The use of the renormalized model allows to make quantitative predictions

which are not affected by an ultraviolet cutoff, which instead affects the predictions of the

nonrenormalizable models. We find that no critical point appears in the phase diagram in

agreement with the lattice simulations, even if the magnetic field tends to lower the value of

the quartic coefficient at the critical temperature, thus making the phase transition closer to

a first order one. Our result is in agreement with those of [17, 21] which however are mainly

numerical, while the present work is analytical, and we are able to capture the behavior

of the phase transition in magnetic field in a single GL coefficient. The power of our

computation is even better understood if we restrict ourselves to the LLL approximation,

which is a good approximation when eB >> T 2, where we can prove analytically that

the quartic coefficient is always positive, see Eq. (3.29). This result further excludes the

existence of a critical point at large B. We point out that our study is performed within the

one-loop approximation; quantum fluctuations of the meson fields, which are not taken into

account in our study, might modify this conclusion. However, the numerical computations
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of [21] seem to confirm that quantum fluctuations do not affect the qualitative structure

of the phase diagram.

We have also compared the above results with those obtained within the nonrenormal-

ized model, in which the ultraviolet cutoff is treated as a free parameter and its numerical

value is fixed in order to reproduce few phenomenological quantities. Also in the latter case

we have found the magnetic field makes the phase transition stronger. On the other hand,

the sign of the quartic coefficient of the GL expansion is affected by a finite B, turning the

second order phase transition to a first order one. Hence, in the case of the nonrenormalized

model, a critical point exists. Our main conclusion is thus that the existence of the critical

point at finite B is very sensitive to the way the ultraviolet divergences of the model are

treated. To make this explicit, as well as to summarize the main results we obtained, we

write here below our final expressions for the quartic coefficient in the asymptotic limit

eB/T 2 ≫ 1 for the case of renormalized model,

α4 ≍
3a4Nc

π2

∑

f

|QfeB|
T 2

, (5.1)

and of the nonrenormalized model,

α4 ≍
3a4Nc

π2

∑

f

|QfeB|
T 2

(

1− T 2

4Λ2a4

)

, (5.2)

with a4 ≈ 0.11. Clearly α4 is positive defined in the case the renormalization procedure

is performed; on the other hand, its sign depends on temperature and in fact it can be

negative if the critical temperature Tc > 2Λ
√
a4 ≈ 0.66Λ. The latter result however is

sensitive to the ultraviolet cutoff, and in fact the result of the nonrenormalized model

tends to that of the renormalized model if one takes Λ → ∞. However such a limit is

not performed in the numerical computations based on the nonrenormalized model, since

in this case Λ is treated as a parameter whose numerical value is fixed once for all by

phenomenological requirements.

We point out that the use of the nonrenormalized model, and its cutoff dependent

results, is still very interesting for what concerns the applications to QCD, even if from a

pure field theoretical point of view it would be preferrable to have physical predictions which

are not dependent on the regularization scheme. As we explained in the Introduction, the

reason is that the explicit UV cutoff appearing in the model results corresponds to a rough

modelling of the QCD asymptotic freedom: the interactions are switched off for momenta

larger than the UV scale. According to this interpretation of the model UV scale, our result

can be rephrased in the following terms: the change of the order of the chiral transition

at finite temperature and zero chemical potential, induced by the magnetic field, is mainly

connected to the existence of an intrinsic UV scale, the latter being the remnant of the

QCD asymptotic freedom.

There are several directions which could be followed to extend our work. One of

them is the introduction of baryon chemical potential µ, as well as the strange quark

with its own chemical potential. In particular, since our result suggests that no critical
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point appears at µ = 0 and B 6= 0, it is important to understand how the critical point

at µ 6= 0 and B 6= 0 develops, following the analysis of [20]. Moreover, in our opinion

it would be quite important to add a Polyakov loop background to the model, in order

to realize quantitatively if and how the Polyakov loop affects the chiral phase transition.

Qualitatively we do not expect a dramatic change of the results; on the other hand, a firm

statement can be done only after the computation is performed. Finally, extending our

study to inhomogeneous condensates following the lines of [55, 56] seems to be an exciting

project.
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