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Although it provides a relatively good picture of the nucleons, the Skyrme Model is unable to
reproduce the small binding energy in nuclei. This suggests that Skyrme-like models that nearly
saturate the Bogomol’nyi bound may be more appropriate since their mass is roughly proportional
to the baryon number A. For that purpose, we propose a near-BPS Skyrme Model. It consists of
terms up to order six in derivatives of the pion fields, including the nonlinear and Skyrme terms
which are assumed to be relatively small. For our special choice of mass term, we obtain well-
behaved analytical BPS-type solutions with constant baryon density configurations, as opposed to
the more complex shell-like configurations found in most extensions of the Skyrme Model. Fitting
the four model parameters, we find a remarkable agreement for the binding energy per nucleon B/A
with respect to experimental data. These results support the idea that nuclei could be near-BPS
Skyrmions.

PACS numbers: 12.39.Dc, 11.10.Lm
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I. INTRODUCTION

One of the most original and successful attempts to describe the low-energy regime of the theory of strong interac-
tions comes from an idea suggested by Skyrme [1] that baryons (and nuclei) are topological soliton solutions arising
from an effective Lagrangian of mesons. The proposal is supported by the work of Witten [2] who realized that the
large Nc limit of QCD points towards such an interpretation. More recently, an analysis of the low energy hadron
physics in holographic QCD [3] have led to a similar picture, i.e. the Skyrme Model. The model, in its original form,
succeeds in predicting the properties of the nucleon within a precision of 30% [4]. This is considered a rather good
agreement for model which involves only two parameters. Some attempts to improve the model have given birth to
a number of extensions or generalizations. Most of them rely, to some extent, on our ignorance of the exact form of
the low-energy effective Lagrangian of QCD namely, the structure of the mass term [5–7], the contribution of other
vector mesons [8, 9] or simply the addition of higher-order terms in derivatives of the pion fields [5].

Unfortunately, one of the recurring problems of Skyrme-like Lagrangians is that they almost inevitably give nuclei
binding energy that are too large by at least an order of magnitude. Perhaps a better approach would be to construct
an effective Lagrangians with soliton solutions that nearly saturate the Bogomol’nyi bound. If this indeed the case,
then the classical static energy of such BPS-Skyrmions (Bogomol’nyi-Prasad-Sommerfeld) grows linearly with the
baryon number A (or atomic number) much like the nuclear mass. Support for this idea comes from a recent result
from Sutcliffe [10] who found that BPS-type Skyrmions seem to emerge for the original Skyrme Model when a large
number of vector mesons are added. The additional degrees of freedom bring the mass of the soliton down to the
saturation of the Bogomol’nyi bound. A more direct approach to construct BPS-Skyrmions was also proposed by
Adam, Sanchez-Guillen, and Wereszczynski (ASW) [11]. Their prototype model consists of only two terms: one
of order six in derivatives of the pion fields [12] and a second term, called the potential, which is chosen to be the
customary mass term for pions in the Skyrme Model [13]. The model leads to BPS-type compacton solutions with size

and mass growing as A
1
3 and A respectively, a result in general agreement with experimental observations. However,

the connection between the ASW model and pion physics, or the Skyrme Model, is more obscure due to the absence
of the nonlinear σ and so-called Skyrme terms which are of order 2 and 4 in derivatives, respectively.

Pursuing in this direction, some of us [14, 15] reexamined a more realistic generalization of the Skyrme Model which
includes terms up to order six in derivatives [12] considering the regime where the nonlinear σ and Skyrme terms are
are small perturbations, refered in what follows as the near-BPS Skyrme Model . In that limit, it is possible, given an
appropriate choice of potential, to find well-behaved analytical solutions for the static solitons in that approximation.
Since they saturate the Bogomol’nyi bound, their static energy is directly proportional to A and one recovers some
of the results of Ref. [11]. In fact, these solutions allow computing the mass of the nuclei including static, rotational,
Coulomb and isospin breaking energies. Adjusting the four parameters of the model to fit the resulting binding
energies per nucleon with respect to the experimental data of the most abundant isotopes leads to an impressive
agreement.

These results support the idea of a BPS-type Skyrme Model as the dominant contribution to an effective theory
for the properties of nuclear matter. However, a few issues remain to be addressed before such a model is considered
viable. One of them concerns the shape of the energy and baryon densities. As for most extensions of the Skyrme
Model, the BPS-type models in Refs. [11], [14] and [15] generate compact, shell-like or gaussian-like configurations
for the energy and baryon densities, respectively, as opposed to what experimental data suggests, i.e. almost constant
densities in the nuclei. The purpose of this work is to show that it is possible to construct an effective Lagrangian
which leads to a uniform baryon density and still preserve the agreement with nuclear mass data. It may be noted
that near-BPS Skyrme models form a much bigger set than previously thought as suggested from the recent discovery
of topological energy bounds [16, 17] or different extensions [18].

II. THE NEAR-BPS SKYRME MODEL

We consider an extension of the original Skyrme Model that consist of the Lagrangian density

L = L0 + L2 + L4 + L6 (1)
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with

L0 = −µ2V (U) (2)

L2 = −α Tr [LµL
µ] (3)

L4 = β Tr [fµνf
µν ] (4)

L6 = −3

2

λ2

162
Tr
[
fµνf

νλf µ
λ

]
(5)

where Lµ = U†∂µU is the left-handed current and we write for simplicity, the commutators as fµν = [Lµ, Lν ] . Here
the pion fields are represented by the SU(2) matrix U = φ0 + iτiφi and obey the nonlinear condition φ20 + φ2i = 1.
The subscript i in Li denotes to the number of derivatives of the pion fields which determines how each term changes
with respect to a scale transformation.

In the original Skyrme Model, only the nonlinear σ term, L2, and the Skyrme term, L4, contribute. This implies
that α, β > 0 otherwise the static solution would not be stable against scale transformations. A mass term — or
potential term — L0, is often added to take into account chiral symmetry breaking so as to generate a pion mass
term for small fluctuations of the chiral field in V (U). We shall analyze this term in more details in the coming
sections but, as it turns out, the choice of potential V (U) will have a direct bearing on the form of the solutions and
on the predictions of our model. Finally, the term of order six in derivatives of the pion fields, L6, is equivalent to
LJ6 = −εJ6BµBµ with εJ6 = 9π4λ2/4 that was first proposed by Jackson et al. [12] to take into account ω-meson
interactions. Here, Bµ stands for the topological current density

Bµ =
εµνρσ

24π2
Tr (LνLρLσ) . (6)

The constants µ, α, β, and λ are left as free parameters although we shall focus on the regime where α and β are
relatively small, i.e. in the limit where the solutions remain close to that of the BPS-solitons.

It is well known that setting the boundary condition for U at infinity to a constant in order to get finite energy
solutions for the Skyrme fields also characterizes such solutions by a conserved topological charge which Skyrme
identified as the baryon number B (or mass number A in the context of nuclei)

B =

∫
d3rB0 = − εijk

24π2

∫
d3rTr (LiLjLk) . (7)

Note that the static energy arising from L6 corresponds to the square of the baryon density

E6 =
9π4λ2

4

∫ (
B0 (r)

)2
d3r.

It is often associated to the energy that would emerge if the Skyrme field is couple to the ω−meson [19]

Eω =
1

2

g2ω
4π

∫
B0 (r)

e−mω|r−r′|

|r− r′|
B0 (r′) d3rd3r′.

where instead of following the e−mω|r−r′|/ |r− r′| law, the interaction is replaced by a δ−function δ3 (r− r′).
Historically, L0 and L6 were introduced to provide a more general effective Lagrangian than the original Skyrme

Model and indeed, the Lagrangian in (1) represents the most general SU(2) model with at most two time derivatives.
Since one generally relies on the standard Hamiltonian interpretation for the quantization procedure, higher-order
time derivatives are usually avoided. On the other hand, it should be kept in mind that an effective theory based on
the 1/Nc expansion of QCD should, in principle, include terms with higher-order derivatives of the fields.

The model (1) has been studied rather extensively in the sector where the values of parameters µ, α, β, and λ close
to that of the original Skyrme Model [12, 20]. Clearly these choices were made so that L2 and L4 would continue to
have a significant contribution to the mass of the baryons and thereby preserve the relative successes of the Skyrme
Model in predicting nucleon properties and their link to soft-pion theorems (α is proportional to the pion decay
constant Fπ). Yet this sector of the theory fails to provide an accurate description of the binding energy of heavy
nuclei.

Noting that this caveat may come from the fact that the solitons of the Skyrme Model do not saturate the Bo-
gomol’nyi bound, ASW proposed a toy model [11] (equivalent to setting α = β = 0) whose solutions are just BPS
solitons. In principle however, the model cannot lead to stable nuclei since BPS-soliton masses are exactly proportional
to the topological number, so B > 1 solutions have no binding energies. A more realistic approach was proposed in
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Refs. [14, 15] where the Lagrangian (1) is assumed to be in the sector where α and β are relatively small, treating
these two terms as perturbations. The solutions almost saturate without reaching the Bogomol’nyi bound so that it
allows for small but non-zero binding energies. However, in spite of a very good agreement with experimental nuclear
masses, there remain a few obstacles to the acceptance of such model. For instance, nuclear matter is believed to
be uniformly distributed inside a nucleus whereas the solutions of the aforementioned models [11, 14, 15] display
either compact, shell-like or gaussian-like baryon and energy densities respectively. The main purpose of this work
is to demonstrate that it is possible to construct an effective Lagrangian which leads to a uniform densities and still
preserves the agreement with nuclear mass data.

Let us consider the static solution for U . It can be written in the general form

U = ein·τF = cosF + in · τ sinF (8)

where n̂ is the unit vector

n̂ = (sin Θ cos Φ, sin Θ sin Φ, cos Θ) (9)

and F,Θ, and Φ depend in general on the spherical coordinates r, θ, and φ.
We first consider the model in (1) in the limit where α and β are small. For that purpose, we introduce the axial

solutions for the α = β = 0 case,

F = F (r), Θ = θ, Φ = Aφ (10)

where A is an integer that correspond to the baryon number or mass number of a nucleus.
A word of warning is in order here. The solution (10) is only one of an infinite dimensional families of solutions

of the BPS model and, is not expected to be the true minimizing solution of the static energy of the model or, for
that matter, of the total energy which includes also the (iso)rotational energy, the Coulomb energy and an isospin
symmetry breaking term. Since α and β are assumed to be small, the nonlinear σ and Skyrme terms are not expected
to a determining factor in minimizing the total energy. In fact, the dominant effect should come from the repulsive
Coulomb energy which would have a tendency to favor a most symmetric configuration. Which form is the true
minimizer remains an open question only to be answered by heavy numerical calculations. In the absence of such
an analysis and for the sake of simplicity, we chose to consider ansatz (10) which allows to easily estimate all the
contributions to the mass of the nuclei.

From hereon, we shall use whenever possible the dimensionless variable x = ar where a = (µ/18Aλ)
1/3

in order to
factor out the explicit dependence on the model parameters µ, α, β, and, λ and baryon number A. In fact, most of
the relevant quantities can be written in terms of three fundamental objects

(∇F )
2

= (a∂xF )
2

(sinF∇Θ)
2

=

(
a

sinF

x

)2

(11)

(sinF sin Θ∇Φ)
2

=

(
aA

sinF

x

)2

The total static energy Es gets a contribution from each term in (1), respectively,

E0 = 4π

(
µ2

a3

)
IV0

E2 = 4π

(
2α

a

)(
I0200 + I0020 + I0002

)
(12)

E4 = 4π (16βa)
(
I0220 + I0202 + I0022

)
E6 = 4π

(
9

16
λ2a3

)
I0222

where Iklmn are parameter-free integrals given by

Iklmn(z) =

∫ z

0

dx x2Iklmn(x) with Iklmn(x) = xk (∂xF )
l

(
sinF

x

)m(
A

sinF

x

)n
(13)

IV0 =

∫ ∞
0

x2dx V (F ) =
∑
m

CVmI
m
0m0 (14)
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and write Iklmn = Iklmn(∞) for simplicity. Note that some of these integrals are related in our case since Iklmn =
AnIkl,m+n,0. In the last equality, we assume that one can recast V (F ) as a power series of sinF, i.e. V (F ) =∑
m C

V
m sinm F as suggested in Ref. [5]. The terms E0 and E6 are proportional to the baryon number A as one

expects from solutions that saturate the Bogomol’nyi bound whereas the small perturbations E2 = A1/3(a2 + b2A
2)

and E4 = A−1/3(a4 + b4A
2) have a more complex dependence. Part of this behavior, the overall factor A±1/3, is due

to the scaling. The additional factor of A2 comes from the axial symmetry of the solution (10) that can be factored
out from Iklm2 = A2Ikl,m+2,0.

The topological charge also simplifies to

A =

∫
d3xB0(x) = − 2

π
I0111 (15)

The root mean square radius of the baryon density is given by〈
r2
〉 1

2 =
1

2πa

(
−2I2120

)1/2
(16)

which is consistent with experimental observation for the charge distribution of nuclei
〈
r2
〉 1

2 = r0A
1
3 .

The minimization of the static energy for α = β = 0 leads to the differential equation for F :

sin2 F

288x2
∂x

(
sin2 F

x2
∂xF

)
− ∂V

∂F
= 0. (17)

Multiplying by ∂xF, this expression can be integrated(
sin2 F

x2
∂xF

)2

= 576V (18)

which leads to ∫
sin2 F

8
√
V
dF = ±

(
x3 − x30

)
(19)

where x0 is an integration constant. Finally, the expression for F (x) can be found analytically provided the integral
on the left-hand side is an invertible function of F. For example, assuming that the potential may be written in the
form

√
V =

u
(
1− u2

)
g′(
√

1− u2)
(20)

where u = cos (F/2) and, g′(u) = ∂g/∂u, equation (19) leads to√
1− u2 = sin (F/2) = g−1

(
∓
(
x3 − x30

))
(21)

Such solutions saturate the Bogomol’nyi bound [11], so their static energy is proportional to the baryon number
A. One would like ultimately to reproduce the observed structure of nuclei, i.e. a roughly constant baryon density
becoming diffuse at the nuclear surface which is characterized by a skin constant thickness parameter. Unfortunately
the chiral angle F in (21) cannot reproduce this last feature since F can only be a function of the ratio r/A1/3. So
the resulting thickness parameter is not constant and should scale like A1/3.

It is interesting to note that (18) implies that for the minimum energy solutions

V (x) =
1

576

(
sinF

x

)4

(∂xF )
2

(22)

so

E0 = 4π

(
λµ

32A

)
I0222 = E6

where the last equality arises from Derrick scaling. Furthermore according to (7) and (22), the square root of the
potential √

V (x) = − 1

24

sin2 F

x2
∂xF =

π

48A
B0(x)
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where B0(x) corresponds to the radial baryon density B0(x) =
∫
dΩ B0(x). Thus, in order to obtain a nonshell baryon

density, it suffices to construct a potential V that does not vanish at small x or, equivalently, a solution such that
∂xF (0) 6= 0.

Expression (20) must be used with caution: it only applies for potentials V which turn out to be function of u alone
or, in other words, for potentials that depends on the real part of the pion field matrix U or TrU. On the other hand,
L0 in (1) needs to be explicitly written in terms of the fields U . A simple but not unique approach to construct such
potential is to identify u = cos(F/2) to the expression

2U+ = u2I

where U± = (2I ± U ± U†)/8 and I is the 2× 2 identity matrix. Then, a convenient expression for V (U) is given by

V (U) =
16Tr

[
U+U

2
−
][

g′
(

(Tr [U−])
1/2
)]2

In the context of the BPS-Skyrme Model, not only the potential V appears as one of the dominant term in the
static energy but it is also a key ingredient in the determination of the solution. In principle, the full effective theory
including the potential should emerge from the low-energy limit of QCD, but apart from a few symmetry arguments,
little is known on the exact form of V . A most simple expression for V that reads

VASW(U) = −Tr [U−] = 1− u2 (23)

was first proposed by Adkins et al. [13] and served as an additional term to the original Skyrme Lagrangian. Its
main purpose was to recover the chiral symmetry breaking pion mass term − 1

2m
2
ππ ·π in the limit of small pion field

fluctuations U = exp(2iτaπa/Fπ). It is sometimes useful to recast the potential in the form [5]

µ2V =

4∑
k=1

CkTr
[
2I − Uk − U†k

]
(24)

Taking the limit of small pion field fluctuations, this allows fixing the parameter µ in terms of the pion mass mπ

through the relation

∞∑
k=1

k2Ck = −m
2
πF

2
π

16
.

The choice of potential (23) corresponds to the choice g(u) = u3/3 in (21) and solving for F leads to the BPS-
compacton solution of ASW [11]:

FASW(x) =

{
2 arccos

(
31/3x

)
for x ∈

[
0, 3−1/3

]
0 for x ≥ 3−1/3

(25)

Note here that ∂xF (x) diverges as x→ 3−1/3 which implies that E2 and E4 are not well defined. Unfortunately, this
solution as well as those arising from other similar models [21] saturate the Bogomol’nyi bound and as such, they give
no binding energies for the classical solitons with B > 1.

Several alternatives to (23) have also been proposed [5, 7] but recently, the major role played by the potential in
the predictions for BPS-Skyrme Models was realized and it has led to a few interesting cases:

• One such example is a potential based on Ref. [14]

VBoM(U) = −8Tr
[
U+U

3
−
]

which correspond to the choice −C1 = C2 = C3 = 4C4 = µ2/128 and Ck>4 = 0 in (24). It leads to well-behaved
solutions

FBoM(x) = π ∓ 2 arccos
[
exp

(
−x3

)]
(26)

where ∂xF remains negative and finite for all x. In order to set the baryon number to A, the boundary conditions
are chose to be F (0) = ±π and F (∞) = 0 for positive and negative baryon number respectively. Note that
the exponential fall off of F at large x prevents some quantities such as the moments of inertia from becoming
infinite. However, ∂xF (x) vanishes at x = 0 and so does the baryon density, leading to an unsatisfactory
shell-like configuration.
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• In that regard, a solution similar to that proposed in Ref. [15] seems more appropriate

FBHM(x) = π ∓ 2 arccos
[
exp

(
−x2

)]
(27)

since it possesses the kind of non-shell like baryon density configurations observed in nature. It emerges from
the potential of the form

VBHM(U) = −64

9

Tr
[
U+U

3
−
]

ln (Tr [U−])

These models display compact, shell-like or gaussian-like baryon and energy densities (see Figs. 1 and 2). However
here, we shall demonstrate that it is possible to construct an effective Lagrangian which leads to a uniform baryon
density and still preserves and even improves the agreement with nuclear mass data.

0.0 0.5 1.0 1.5 2.0
0.0

0.5

1.0

1.5

2.0

2.5

3.0

x

F
HxL BeM

BHM

BoM

ASW

FIG. 1. Profile F (x) for models ASW (dotdashed), BoM (dashed), BHM (dotted) and BeM (solid).

0.0 0.5 1.0 1.5 2.0
0

5

10

15

x

B
0

HxL

BeM

BHM

BoM

ASW

FIG. 2. Radial baryon density B(x) for models ASW (dotdashed), BoM (dashed), BHM (dotted) and BeM (solid).

If we assume for now that the observed baryon density can be appropriately approximated by the parametrization
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ρB(r,A) then, one is looking for a solution for F (r) such that

ρB(r,A) = − A

2π2

sin2 F

r2
F ′ (28)

Separating variables and integrating both sides of the equation

−2π2

A
r2ρB(r,A)dr = sin2 FdF

we get the expression of the form

F (r) = G−1(Z(r)) (29)

where

G(F ) ≡ 1

2
F − 1

4
sin 2F

Z(r) = −2π2

A

∫
r2ρB(r,A)dr

In order to be consistent, the boundary conditions for Z must obey Z(∞)−Z(0) = −π/2. Matching expressions (21)
and (29) then provides an approach to construct a model, i.e. to choose a potential V , that reproduces the empirical
baryon density ρB . Again we stress that our model leads to BPS-Skyrmions with a profile F that must be a function
of the ratio r/A1/3. Unfortunately, this excludes most parametrizations in the literature, for example, densities such
as the 2-parameter Fermi or Wood-Saxon form

ρ2pFB (r) = ρ0
1 + e−c/τ

1 + e(r−c)/τ

since they tend to reproduce two empirical observations: (a) a baryon density that is roughly constant for all nuclei
up to their boundary where (b) it is suppressed within a thickness t ≈ 4.4τ that is practically constant. The last
behavior is inconsistent with the r/A1/3 dependence of F.

Let us instead construct our model by modifying the gaussian-like profile FBHM(x) in such a way that baryon
density B0(x) is approximately constant. The solution FBHM(x) leads to a nonshell baryon density but it falls off too
rapidly. In order to suppress this behavior we propose a solution of the form (see Figs. 1 and 2)

FBeM(x) = π ∓ 2 arccos
[
exp

(
−x2 − a4x4

)]
(30)

and fix the coefficient a4 = 7/5 by setting to zero the first coefficient of the series expansion of B0(x) near x = 0.
(Note that we could, in principle, extend this procedure by changing the argument of the exponential to a truncated

series X(x) = x2 +
∑N
i=2 a2ix

2i. Imposing that the density remains constant further from the core would require to
set a6 = 1384/525, a8 = 6302/1125, and so on.). It is easy to find a potential that would allow such a solution

VBeM(U) =
1792

45
Tr
[
U+U

3
−
] (1− (14/5) ln (Tr [U−]))

1−
√

1− (14/5) ln (Tr [U−])

Note that in the limit of small pion field fluctuations U = exp(2iτaπa/Fπ), the potential has no quadratic term in the
pion field i.e. the pion mass remains zero in this model.

where the last result is obtained assuming the axial solution (10).
Using the profile F in (30), the static energy in (12) can be calculated. Recalling that Iklmn = AnIkl,m+n,0 for the

form of axial solution at hand, we need to evaluate numerically only four parameter-free integrals:

I0200 = 2.68798 I0020 = 0.48504 I0220 = 5.13755

I0040 = 1.88156 I0240 = 20.27798.

In order to represent physical nuclei, we have taken into account their rotational and isorotational degrees of freedom
and quantize the solitons. The standard procedure is to use the semiclassical quantization which is described in the
next section.
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III. QUANTIZATION

Skyrmions are not pointlike particles so we resort to a semiclassical quantization method which consists in adding
an explicit time dependence to the zero modes of the Skyrmions and applying a time-dependent (iso)rotations on the
Skyrme fields by SU(2) matrix A1(t) and A2(t)

Ũ(r, t) = A1(t)U(R(A2(t))r)A†1(t) (31)

where R(A2(t)) is the associated SO(3) rotation matrix. The approach assumes that the Skyrmion behaves as a
rigid rotator. Upon insertion of this ansatz in the time-dependent part of the full Lagrangian (1), we can write the
(iso)rotational Lagrangian as

Lr =
1

2
aiUijaj − aiWijbj +

1

2
biVijbj , (32)

where ak = −iTrτkA
†
1Ȧ1 and bk = iTrτkȦ2A

†
2

The moment of inertia tensors Uij are given by

Uij =

∫
d3r Uij = −1

a

∫
d3x

[
2α

a2
Tr (TiTj)

+ 4βTr ([Lp, Ti] [Lp, Tj ])

+
9λ2

162
a2Tr ([Ti, Lp] [Lp, Lq] [Lq, Tj ])

]
(33)

where Ti = iU†
[
τi
2 , U

]
. The expressions for Wij and Vij are similar except that the isorotational operator Ti is

replaced by a rotational analog Si = −εiklxkLl as follows:

Wij =

∫
d3r Wij =

∫
d3r Uij(Tj → Sj) (34)

Vij =

∫
d3r Vij =

∫
d3r Uij(Tj → Sj , Ti → Si). (35)

Following the calculations in [14] for axial solution of the form (10), we find that all off-diagonal elements of the inertia
tensors vanish.

Furthermore, one can show that U11 = U22 and U33 can be obtained by setting A = 1 in the expression for U11.
Similar identities hold for Vij and Wij tensors. Finally the general expressions for the moments of inertia coming
from each pieces of the Lagrangian read

U11 =
4π

3a

(
8α

a2
I2020 + 16β

(
4I2220 + 3I2022 + I2040

)
+

9λ2a2

16

(
3I2222 + I2240

))
(36)

V11 =
4π

3a

(
2α

a2
(
I2002 + 3I2020

)
+ 16β

[(
I2202 + 3I2220

)
+ 4I2022

]
+

9λ2a2

4
I2222

)
(37)

where due to the axial form of our solution, we can extract an explicit dependence on A through the relation
Iklmn = AnIkl,m+n,0.

The axial symmetry of the solution imposes the constraint L3 + AK3 = 0 which is simply the statement that a
spatial rotation by an angle θ about the axis of symmetry can be compensated by an isorotation of −Aθ about the
τ3 axis. It follows from expressions (33)-(35) that W11 = W22 = 0 for |A| ≥ 2 and A2U33 = AW33 = V33. Otherwise,
for |A| = 1, the solution have spherical symmetry and

W11 =
4π

3a

(
8α

a2
I2020 + 64β

(
I2220 + I2040

)
+

9λ2a2

4
I2240

)
. (38)

where here A = 1 in a as well.
The general form of the rotational Hamiltonian is given by [22]

Hr = Hr =
1

2

∑
i=1,2,3


(
Li +Wii

Ki

Uii

)2
Vii −

W 2
ii

Uii

+
K2
i

Uii

 (39)
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where (Ki) Li the body-fixed (iso)rotation momentum canonically conjugate to (ai) bi. It is also easy to calculate
the rotational energies for nuclei with winding number |A| ≥ 2

Hr =
1

2

[
L2

V11
+

K2

U11
+ ξK2

3

]
(40)

with

ξ =
1

U33
− 1

U11
− A2

V11

These momenta are related to the usual space-fixed isospin (I) and spin (J) by the orthogonal transformations

Ii = −1

2
Tr
(
τiA1τjA

†
1

)
Kj = −R(A1)ijKj , (41)

Ji = −1

2
Tr
(
τiA2τjA

†
2

)T
Lj = −R(A2)TijLj . (42)

According to (41) and (42), we see that the Casimir invariants satisfy K2 = I2 and L2 = J2 so the rotational
Hamiltonian is given by

Hr =
1

2

[
J2

V11
+

I2

U11
+ ξK2

3

]
. (43)

We are looking for the lowest eigenvalue of Hr which depends on the dimension of the spin and isospin representation
of the nucleus eigenstate |N〉 ≡ |i, i3, k3〉|j, j3, l3〉. For α = β = 0, we can show that ξ is negative and we shall assume
that this remains true for small values of α and β. Then, for a given spin j and isospin i, κ must take the largest
possible eigenvalue k3. Note that K2 = I2 and L2 = J2, so the state with highest weight is characterized by k3 = i
and l3 = j. Furthermore, since nuclei are build out of A fermions, the eigenvalues k3 are limited to k3 ≤ i ≤ A/2. On
the other hand, the axial symmetry of the static solution (10) implies that k3 = −l3/A ≤ j/A where j ≤ A/2 as well.
In order to minimize Hr, we need the largest possible eigenvalue k3, so for even A nuclei, κ must be an integer such
that

κ = max(|k3|) = min (i, [j/A]) .

Similarly for odd nuclei, |k3| must be a positive half-integer so the only possible value is

κ = min

(
i, [j/A] +

1

2

)
=

1

2

This last relation only holds for the largest possible spin eigenstate j = A/2 which is not the most stable in general
and so it signals that the ansatz (10) may not be the most appropriate for odd nuclei. The axial symmetry may
however be only marginally broken if we consider the odd nucleus as a combination of an additional nucleon with an
even nucleus especially for large nuclei. Nonetheless, we shall retain the ansatz (10) for both even and odd nuclei and
choose the largest possible eigenvalue k3 for the most stable isotopes as

κ =

{
0 for A = even
1
2 for A = odd

. (44)

The lowest eigenvalue of the rotational Hamiltonian Hr for a nucleus is then given by [14]

Er =
1

2

[
j(j + 1)

V11
+
i(i+ 1)

U11
+ ξκ2

]
(45)

The spins of the most abundant isotopes are well known. This is not the case for the isospins so we resort to the usual
assumption that the most abundant isotopes correspond to states with lowest isorotational energy. Since i ≥ |i3|, the
lowest value that i can take is simply |i3| where i3 = Z − A/2. For example, the nucleon and deuteron rotational
energy reduces respectively to

ENr =
3

8U11
A = 1, j = i = κ = 1/2 (46)

EDr =
1

V11
A = 2, j = 1, i = κ = 0 (47)
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The explicit calculations of the rotational energy of each nucleus then require the numerical evaluation of the
following four parameter-free integrals in (36), (37) and (38) which, in our model, turn out to be

I2020 = 0.142868 I2220 = 1.43364

I2040 = 0.352712 I2240 = 3.94598.

So far, both contributions to the mass of the nucleus, Es and Er, are charge invariant. Since this is a symmetry
of the strong interaction, it is reflected in the construction of the Lagrangian (1) and one expects that the two terms
form the dominant portion of the mass. However, isotope masses differ by a few percent so this symmetry is broken
for physical nuclei. In the next section, we consider two additional contributions to the mass, the Coulomb energy
associated with the charge distribution inside the Skyrmion and an isospin breaking term that may be attributed to
the up and down quark mass difference.

IV. COULOMB ENERGY AND ISOSPIN BREAKING

The electromagnetic and isospin breaking contributions to the mass have been thoroughly studied for A = 1, mostly
in the context of the computation of the proton-neutron mass difference [23–25], but are usually neglected, to a first
approximation, for higher A since they are not expected to overcome the large binding energies predicted by the model.
There are also practical reasons why they are seldom taken into account. The higher baryon number configurations
of the original Skyrme Model are nontrivial (toroidal shape for A = 2, tetrahedral for A = 3, etc.) and finding them
exactly either requires heavy numerical calculations (see for example [26]) or some kind of clever approximation like
rational maps [27]. In our case however, we are interested in a precise calculation of the nuclei masses and an estimate
of the Coulomb energy is desirable, and even more so in our model which generates nonshell configurations. It turns
out that the axial symmetry of the solution and the relatively simple form of the chiral angle F (r) in (30) simplify
the computation of the Coulomb energy.

Let us first consider the charge density inside Skyrmions. Following Adkins et al. [4], we write the electromagnetic
current

JµEM =
1

2
Bµ + Jµ3V , (48)

with Bµ the baryon density and Jµ3V the vector current density. The conserved electric charge is given by

Z =

∫
d3rJ0

EM =

∫
d3r

(
1

2
B0 + J03

V

)
(49)

The vector current is then defined as the sum of the left and right handed currents

JµiV = JµiR + JµiL

which are invariant under SU(2)L ⊗ SU(2)R transformations of the form U → LUR†. More explicitly, we get

J0i
V = −1

2
{R(A1)ij , (Ujkak −Wjkbk)} (50)

where Uij and Wij are the moment of inertia densities in (33)-(35). The calculations of the Coulomb energy here
follows that in [28]; it differs that from Ref. [15] where only the body-fixed charge density was considered. The
anticommutator is introduced to ensure that J0i

V is a Hermitian operator. In the quantized version, aj and bj are
expressed in terms of the conjugate operators Ki and Li. Here we only need the relation

Ki = Uijaj −Wijbj

The solution is axially symmetric then the off-diagonal elements of Uij and Wij vanish, W11 = W22 = 0 for |A| ≥ 2
and AU33 = W33. Then have

a1 =
K1

U11
, a2 =

K2

U22
, a3 =

K3

U33
+Ab3

Inserting ai in (50), the isovector electric current density reduces to

J03
V = −1

2
{R(A1)3i,

Uii
Uii

Ki}
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where Uii/Uii may be interpreted here as a normalized moment of inertia density for the ith component of isospin in
the body-fixed frame. The expectation value R(A1)31K1 and R(A1)32K2 for eigenstate |N〉 = |i, i3, k3〉|j, j3, l3〉 are
equal so that we may simplify

〈N | J03
V |N〉 =

U11 + U22
2U11

i3 +

[
U11 + U22

2U11
− U33
U33

]
〈N |R(A1)33K3|N〉 (51)

where we have used relation (41). The moment of inertia density are given by

U11 + U22 = 4αI2020(1 + cos2 θ) + 32βa2
(
I2220(1 + cos2 θ) + I2040

(
A2 + cos2 θ

))
+

9λ2

8
a4I2240

(
A2 + cos2 θ

)
(52)

U33 =

(
4αI2020 + 32βa2

(
I2220 + I2040

)
+

9λ2

8
a4I2240

)
sin2 θ (53)

The expression in brakets in equation (51) integrates to zero so that one recovers the relation Z = A/2+i3 as expected.
But while it does not contribute to the total charge, the charge density is not zero everywhere. Let us examine this
contribution in more details. Since the electric charge does not depend on the angular momentum, we can limit our
analysis to the isospin wavefunctions. Following Adkins [29] we write the wavefunctions 〈A1 |i, i3, k3〉 in terms of the
Wigner’s functions Dn

mm′ :

〈A1 |i, i3, k3〉 =

(
2i+ 1

2π2

)1/2

Di
k3i3 (A1)

Similarly the matrix R(A1)33 corresponds to a spin zero and isospin zero transition that can be written

R(A1)33 = D1
00 (A1)

The appropriate expectation value is then given by

〈i, i3, k3|R(A1)33K3|i, i3, k3〉 = k3

∫
dA1

(
2i+ 1

2π2

)(
Di
k3i3 (A1)

)∗
D1

00 (A1)Di
k3i3 (A1)

= k3 (−1)
2(k3+1−i) 〈1, 0; i, k3|i, k3〉 〈1, 0; i, i3|i, i3〉

=

{
i3k

2
3

i(i+1) for i 6= 0

0 for i = 0

where the last two expressions on the second line are Clebsch-Gordan coefficients. Recalling that we have imposed
the condition |k3| = κ = 0 or 1/2 for even and odd nuclei respectively and fixed the value of the isospin to i = |i3|,
we find

ρ ≡ 1

2
B0 +

U11 + U22
2U11

i3 +

[
U11 + U22

2U11
− U33
U33

]
i3κ

2

i(i+ 1)
(54)

The last term drops for even nuclei (κ = 0). For odd nuclei, the cancellation in the brackets leads a relatively small
contribution which is further suppressed by the factor κ2/ (i+ 1) for large nuclei. It is indicative of the asymmetry
in the moments of inertia.

The Coulomb energy associated to a given charge distribution ρ(r) takes the usual form

EC =
1

2

1

4π

∫
ρ (r)

1

|r− r′|
ρ (r′) d3rd3r′ (55)

Since we have at hand an axially symmetric distribution, it is convenient to expand ρ(r) in terms of normalized
spherical harmonics to perform the angular integrations

ρ(r) = a3ρ(x) = a3
∑
l,m

ρlm(x)Y m∗l (θ, φ). (56)
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Following the approach described in [30], we define the quantities

Qlm(r) =

∫ r

0

dr̃ r̃l+2ρlm(r̃) = a−lQlm(x) (57)

which, at large distance, are equivalent to a multipole moments of the distribution. The total Coulomb energy is
given by

EC =

∞∑
l=0

l∑
m=−l

Ulm

where

Ulm = (2παem) a

∫ ∞
0

dx x−2l−2|Qlm(x)|2

The isocalar part to the charge distribution is a spherically symmetric contribution

B0(r) = a3B0(x) = − a3

2π2
I0111(x)

where Iklmn is defined in (13). On the other hand, the isovector contribution in (??) possesses a simple angular
dependence so that

the summation (56) consists of only two terms in Y 0∗
0 and Y 0∗

2 .
The moments Q00 and Q20 are then given by

Q00(x) =
2
√
π

3

(
− 3A

4π2
I0120(x) +

i3
a

(
8α

a2
I2020(x)C− + 16β

(
4I2220(x)C− + CAI

2
040(x)

)
+

9λ2a2

16
CAI

2
240(x)

))

Q20(x) =
4

3

√
π

5

i3
a
C+

(
2α

a2
I4020(x) + 16β

(
I4220(x) + I4040(x)

)
+

9λ2

16
aI4240(x)

)
where

C± =
1 + C

U11
+

C

2U33
± 3C

2U33

CA = (3A2 + 1)

(
1 + C

U11

)
− 4C

U33

and C = k23/i(i+ 1). Finally, the Coulomb energy then takes the form

EC = (2παem) a

∫ ∞
0

(Q2
00x
−4 +Q2

20x
−8) x2dx (58)

It is again convenient to regroup the model parameters in the dimensionless quantity

p0 =

[
A,C−

α

a3
i3, CA

β

a
i3, C−

β

a
i3, CAλ

2ai3

]

p2 = C+i3

[
α

a3
,
β

a
, λ2a

]
such that we may write

EC = 2παema
(
pi0M

ij
00p

j
0 + pi2M

ij
00p

j
2

)
. (59)
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Here, each element of M ij
00 (M ij

20) comes from squaring Q00 (Q20) in (58) and depend only on the form of the profile
F (x) and baryon number A according to

M ij
l0 =

∫ ∞
0

vilv
j
l x
−2−2ldx

where

v0 =
2
√
π

3

(
− 3

4π2
I0120(x), 8I2020(x), 16I2040(x), 64I2220(x),

9

16
I2240(x)

)
v2 =

4

3

√
π

5

(
2I4020(x), 16

(
I4220(x) + I4040(x)

)
,

9

16
I4240(x)

)
For the solutions at hand (30), we get

M00 =


0.035244 0.295938 1.67062 24.5793 0.65734
0.295938 2.6131624 14.1112 215.6395 5.56078
1.67062 14.1112 79.5851 1173.4095 31.3461
24.5793 215.6395 1173.4095 17835.4373 462.538
0.65734 5.56078 31.3461 462.538 12.3494



M20 =

 0.0156167 1.62666 0.126600028
1.62666 173.309 13.9867

0.126600028 13.9867 1.20944


The Coulomb energy can explain part of the isotope mass differences, but it is certainly not sufficient. For example

for the nucleon, the Coulomb energy would suggest that the neutron mass is smaller than that of the proton. Of
course, one can invoke the fact that isospin is not an exact symmetry to improve the predictions. Several attempts
have been proposed to parametrize the isospin symmetry breaking term within the Skyrme Model [24, 25]. Here we
shall assume for simplicity that this results in a contribution proportional to the third component of isospin

EI = aI i3 (60)

where the parameter aI is fixed by setting the neutron-proton mass difference to its experimental value ∆M expt
n−p = 1.293

MeV. Since both of them have the same static and rotational energies, we find

aI = (EnC − E
p
C)−∆M expt

n−p (61)

where EnC and EpC are the neutron and proton Coulomb energy, respectively.
Summarizing, the mass of a nucleus reads

E(A, i, j, k3, i3) = Es(A) + Er(A, i, j, k3) + EC(A, i3) + EI(A, i3) (62)

where Es is the total static energy. The prediction depends on the parameters of the model µ, α, β, and λ and the
relevant quantum numbers of each nucleus as shown in (62).

V. RESULTS AND DISCUSSION

The values of the parameters µ, α, β and λ remain to be fixed. Let us first consider the case where α = β = 0. This
should provide us with a good estimate for the values of µ, α, β, and λ required in the 4-parameter model (1) and,
after all, it corresponds to the limit where the minimization of the static energy leads to the exact analytical BPS
solution in (30). For simplicity, we choose the mass of the nucleon and that of a nucleus X with no (iso)rotational
energy (i.e. a nucleus with zero spin and isospin) as input parameters. Neglecting for now the Coulomb and isospin
breaking energies, the mass of these two states is according to expression (62)

EN = 15.92628λµ+ 0.026426µ−1/3λ−5/3

EX = 15.92628Aλµ
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For example, if the nucleus X is Calcium-40, a doubly magic number nucleus, with mass ECa = 37214.7 MeV, then
solving for λ and µ, we get the numerical values µ = 12322.3 MeV2 , α = β = 0 and, λ = 0.00474078 MeV−1 which
we shall refer as Set I. The masses of the nuclei are then computed using Eq. (62) which results in predictions that
are accurate to at least 0.6%, even for heavier nuclei. This precision is somewhat expected since the static energy of
a BPS-type solution is proportional to A so if it dominates, the nuclear masses should follow approximately the same
pattern. However, the predictions remain surprisingly good compared to that of the original Skyrme model, another
2-parameter model.

Perhaps even more relevant are the predictions of the binding energy per nucleonB/A = (E − Zmp − (A− Z)mn) /A,
in which case, the calculation simplifies. For example, subtracting from the static energy of a nucleus from that of its
constituents we find that the binding energy does not depend on the static energies E0 or E6,

∆Es = AEs(1)− Es(A)

= 4π (A− 1)

(
2α

a

(
I0200 − (A− 1) I0020

)
− 16aβ

(
(A− 1) I0220 +AI0040

))
whereas the contribution from EI simply cancels out. The dominant contributions come from the (iso)rotational and
Coulomb energy differences, respectively,

∆Er = AENr − Er(A, i, j, k3)

dominated by AENr for large nuclei and

∆EC = ZEpC + (A− Z)EnC − EC(A, i3)

which is, of course, negative due to the repulsive nature of the Coulomb force between nucleons.
The results for B/A are presented in Fig. 3 (dashed line). They are compared to the experimental values (empty

circles). We show here only a subset of the table of nuclei in [31] composed of the most abundant 140 isotopes.
The parameters of Set I lead to a sharp rise of the binding energy per nucleon at small A followed by a slow linear
increase for larger nuclei. The accuracy is found to be roughly within 10% which is relatively good considering the
facts that the model involves only two parameters at this point and the calculation involves a mass difference between
the nucleus and its constituents.

Experimentally the charge radius of the nucleus is known to behave approximately as
〈
r2em
〉 1

2 = r0A
1
3 with r0 =

1.23 fm. It is straightforward to calculate the root mean square radius of the baryon density [see Eq (16)] which leads

to
〈
r2
〉 1

2 = (2.007 fm)A
1
3 . On the other hand the charge radius

〈
r2em
〉 1

2 displays a more complex dependence on A
since it involves an additional isovector contribution (54)

〈
r2em
〉

=

∫
d3r r2ρ(r)∫
d3rρ(r)

=
A

2Z

〈
r2
〉

+
i3
Z

〈
r2V
〉

(63)

where ρ(r) is given in expression (56) and
〈
r2V
〉

is given by

〈
r2V
〉

=
U

(2)
11

a2U11
.

where for the sake of conciseness we wrote
〈
r2V
〉

in terms of U
(2)
11 = U11

(
I2lmn → I4lmn

)
. i.e. the integrals along the

radial component in U
(2)
11 contains an extra factor of r2. Our computation verifies that the charge radius obeys roughly

the proportionality relation ∼ r0A
1
3 but overestimates the experimental value of r0 by about 80% with parameter

Set I.
Let us now release the constraint α = β = 0, and allow for small perturbations from the nonlinear σ and Skyrme

term. In order to estimate the magnitude of the parameters α and β in a real physical case, we perform two fits: the
four parameters µ, α, β and λ in Set II optimizes the masses of the nuclei while Set III reaches the best agreement
with respect to the binding energy per nucleon, B/A. Both fits are performed with data from the same subset of the
most abundant 140 isotopes as before. The best fits on both cases would lead to small negative values for β similar
to that of Refs. [14, 15]. However, since the classical (static) energy of the model is unbounded below if α, β < 0 we
impose the constraint α, β ≥ 0 from hereon to avoid stability problems. (Note that in principle β could take small
negative values as long as the Skyrme term is overcome by the repulsive Coulomb energy in which case the physical
nuclei would be stable but not the classical soliton.)
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FIG. 3. Binding energy per nucleon B/A as a function of the baryon number A: The experimental data (empty circles) are
shown along with predicted values for parametrization of Set I with α = β = 0 (dashed line), for Set II, the best fit for nuclear
masses (dotted line), and for Set III, the best fit for B/A (solid line), respectively.

A summary of the results is presented in Table I while Fig. 3 displays the general behavior of B/A as a function of
the baryon number for Sets I, II, III, and experimental values. Note that the proton and neutron mass differ slightly
over Set I, II and III so for the sake of comparison we use their experimental values in calculating B/A.

Table I: Sets of parameters

Set I Set II Set III Expt.

µ (104 MeV2) 1.23223 1.02259 1.33515 —

α (10−3 MeV2) 0 1.48244 0.508933 —

β (10−8 MeV0) 0 1.20427 1.31582 —

λ (10−3 MeV−1) 4.74078 5.70373 4.36994 —

Fπ ( MeV) 0 0.15401 0.0902381 186

mπ (MeV) 0 0 0 138

e2 (106) — 2.59492 2.37494 —

r0 (fm) 2.00667 2.27113 1.90139 1.23

We find that the two new sets of parameters are very close to Set I. In order to make a relevant comparison, we
look at the relative importance of the four terms in (1) and how they scale with respect to the parameters of the
model, namely

µλ : α (λ/µ)
1/3

: β (µ/λ)
1/3

: µλ

Set I 58.42 : 0 : 0 : 58.42

Set II 58.33 : 1.226× 10−5 : 1.463× 10−6 : 58.33

Set III 58.35 : 3.507× 10−6 : 1.909× 10−6 : 58.35

for L0,L2,L4, and, L6, respectively. So the nonlinear σ and Skyrme terms are found to be very small compared to
that of L0 and L6, i.e. by at least five orders of magnitude. This provides support to the assumption that (30) is a
good approximation to the exact solution.

The energy scale µλ remain approximately the same for all the sets while the values of µ and λ shows noticeable
differences. In particular for the fit involving B/A turns out to be somewhat sensitive to these variations mostly

because it involves a mass difference. We also note some variation in the baryonic charge radius r0 = 1.3982 (λ/µ)
1/3

;
all sets overestimates the experimental value by roughly 80%. Since setting the parameters mainly involves fixing the
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relevant energy scale µλ, perhaps the process may not be as sensitive to setting a proper length scale for the nucleus
so the predicted value of r0 should probably be taken as an estimate rather than a firm prediction.

Matching the parameters of the model with that of the original Skyrme Model, we identify Fπ = 4
√
α, e2 = 1/32β

whereas mπ = 0 due to the form of the potential. The quantities Fπ and e2 take values which are orders of magnitude
away for those obtained for the Skyrme Model (see Table I) but this is not surprising since we have assumed from
the start that α and β are relatively small. Unfortunately, one of the successes of the original Skyrme Model is that
it established a link with soft-pion physics by providing realistic values for Fπ, mπ and baryon masses. Such a link
here is more obscure. The departure could come from the fact that the parameters of the model are merely bare
parameters and they could differ significantly from their renormalized physical values. In other words, we may have
to consider two quite different sets of parameters: a first one, relevant to the perturbative regime for pion physics
where Fπ and mπ are closer to their experimental value and, a second set which applies to the nonperturbative regime
in the case of solitons. In our model, this remains an open question.

The model clearly improves the prediction of the nuclear masses and binding energies in the regime where α and
β are small. Let us look more closely at the results presented in Fig. 3. The experimental data (empty circles)
are shown along with predicted values for parametrization Set I , Set II and Set III (dashed, dotted and solid lines,
respectively). Setting α = β = 0 (Set I) leads to sharp increase B/A at low baryon number followed by a regular but
slow growth in the heavy nuclei sector. This suggests that heavier nuclei should be more stable, in contradiction to
observation. However the agreement remains within ∼ 10% in regards to the prediction of the nuclear masses. This
is significantly better than what is obtained with the original Skyrme Model which overestimates B/A by an order
of magnitude. Since B/A depends on the difference between the mass of a nucleus and that of its constituents, it
is sensitive to small variation of the nuclear masses so the results for B/A may be considered as rather good. The
second fit (Set II) is optimized for nuclear masses. The behavior at small A is similar to that of Set I (as well as in
Set III) while it reproduces almost exactly the remaining experimental values (A & 40). Finally, the optimization of
B/A (Set III) provide a somewhat better representation for light nuclei at the expense of some of the accuracy found
in Set II for A & 40. Overall, the binding energy is rather sensitive to the choice of parameters. This is partly because
the otherwise dominant contributions of E0 and E6 to the total mass of the nucleus simply cancel out in B/A.

The difference of behavior between light and heavy nuclei shown by the model may be partly attributed to the
(iso)rotational contribution to the mass. The spin of the most abundant isotopes remains small while isospin can have
relatively large values due to the growing disequilibrium between the number of proton and the number of neutron in
heavy nuclei. On the other hand, the moments of inertia increase with A, so the total effect leads to a (iso)rotational
energy Er < 1 MeV with A > 10 for all sets of parameters considered and its contribution to B/A decreases rapidly as
A increases. On the contrary, for A < 10, the rotational energy is responsible for a larger part of the binding energy
which means that B/A should be sensitive to the way the rotational energy is computed. So clearly, the variations
in shape of the baryon density has some bearing on the predictions for the small A sector not only the values of the
parameters.

To summarize, the main purpose this work is to propose a model in a regime where the nuclei are described by near-
BPS solitons with approximately constant baryon density configuration. This is acheived with a 4-terms generalization
of the Skyrme Model in the regime where the nonlinear σ and Skyrme terms are considered small. The choice of an
appropriate potential V allows to build constant baryon density near-BPS solitons, i.e. a more realistic description
of nuclei as opposed to the more complex configurations found in most extensions of the Skyrme Model (e.g. A = 2
toroidal , A = 3 tetrahedral, A = 4 cubic,...). Fitting the model parameters, we find a remarkable agreement for the
binding energy per nucleon B/A with respect to experimental data. On the other hand, there remain some caveats.
First, the Skyrme Model provides a simultaneous description for perturbative pion interactions and nonperturbative
baryon physics with realistic values for Fπ and mπ and baryon masses. The connection between the two sectors here
seems to be much more intricate. Secondly, there may be place for improvement by proposing more appropriate
solutions that would describe equally well the light and heavy nuclei. Finally, the model seems unable to reproduce a
constant skin thickness in the baryon or charge density and the experimental size of the nucleus correctly. On the other
hand, the concept of BPS-type Skyrmions also arises when one adds a large number of vector mesons to the Skyrme
Model as suggested by recent results based on holographic QCD from Sutcliffe [10]. Unfortunately, the emerging
large A Skyrmions configurations are rather complicated or simply unknown so that it has yet been impossible to
perform an analysis of the nuclear properties comparable to that presented in this work. More recently Adam, Naya,
Sanchez-Guillen and Wereszczynski [28] considered the special case of the pure BPS-model (α = β = 0) using the
potential VASW. Although their treatment differ slightly they find a similar agreement for the binding energy per
nucleon. Yet, all approaches clearly suggest that nuclei could be treated as near-BPS Skyrmions.
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