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Abstract

The on-shell renormalization scheme for the electroweak theory is well studied in the stan-

dard model(SM), but a consistent on-shell renormalization scheme for the minimal supersymmet-

ric standard model(MSSM) is still unknown. In MSSM, we study the on-shell scheme for three

vertexesZlI lI ,W+νI lI and L̃∗
iχ

0
αl

I with virtual SUSY particles (chargino, sneutrino, neutralino

and slepton) at one-loop order. Instead of amplitude of a single triangle diagram, the sum of

amplitude of triangle diagrams belonging to one suit can be renormalized in the on-shell scheme.

One suit points out that the internal virtual particles are consistent. Zero-momentum scheme is

also used for the renormalization. The two schemes can make the renormalized results decoupled.

In MSSM, some special characters of the on-shell scheme are shown here. This work is propitious

to complete the on-shell renormalization scheme in MSSM.

PACS numbers: 11.30.Er, 12.60.Jv,14.80.Cp
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I. INTRODUCTION

As we all know, the quantum field theory is perturbative theory. That is to say, it can

not be solved exactly. To obtain finite results, renormalization is necessary and there are

some typical renormalization schemes such as MS, MS, MOM, zero-momentum and on-shell

schemes[1–5]. In MS scheme, the counter term is just the pole term(1/ǫ, ǫ → 0). The counter

term is proportional to 1/ǫ + ln 4π − γE in MS scheme. The two foregoing schemes have

nothing to do with mass. For the on-shell scheme, the renormalization constants are all

obtained under on-shell condition. It is the only physical scheme. For electroweak theory,

the on-shell scheme is the most appropriate one.

If we can resolve the theory accurately, different renormalization schemes can give the

same finite result of any physical process though the functions of the renormalized parameters

are different. However, different physical predictions are produced from different renormal-

ization schemes and different renormalized parameters, because of the curtate perturbation

theory.

To obtain the counter term for the UV-divergent diagram, one can take all the external

momenta of the diagram as zero, which is called zero-momentum renormalization scheme.

The advantage is that in arbitrary model each divergent diagram is easy to be renormalized,

and the renormalized results are decoupled[6, 7].

We focus on the on-shell renormalization scheme that is popular in electroweak theory.

In the on-shell scheme, the fine structure constant α is an expansion parameter and defined

in the Thomson limit. At any order of perturbation theory, the physical parameters are the

same as the finite renormalized parameters. They represent clear physical meaning and can

be measured directly in experiment. The renormalization procedure is summarized in the

counter term approach[4].

Extending SM, physicists have developed many new models[8, 9] to explain the exper-

imental phenomena. MSSM[10] is the most attractive one. A lot of experimentalists of

high energy physics are focusing on searching for Higgs bosons in MSSM. The colliders

(LHC, e+e− linear collider, etc.) will provide abundant information of new physics beyond

SM. In MSSM, the decays h0(H0, A0) → χ̃0
mχ̃

0
n, χ̃

0
m → h0(H0, A0) + χ̃0

n(m,n = 1, 2, 3, 4)

and b̌a → χ−
i t(a, i = 1, 2) are studied at one-loop order with the on-shell renormalization

2



scheme[11, 12], but they do not give analytic results to show the elimination of UV-divergence

apparently. Considering the one-loop contributions, the authors[13] completed systematic

on-shell renormalization programme for gauge boson and Higgs parts. Radiative one-loop

corrections to the process e+e− → l+l−(hadrons) are calculated with the same scheme[14].

For supersymmetric gauge theories, a consistent regularization scheme preserving su-

persymmetry and gauge invariance is still not known. Two equivalent ways to solve the

problem are shown here. One is to use an invariant scheme to keep the symmetries to man-

ifest, where only those counterterms are necessary for renormalization that they themselves

preserve the symmetries. The other is to use a non-invariant scheme, through using ap-

propriate non-invariant counterterms to compensate the corresponding symmetry breaking.

With appropriate non-invariant counterterms, W.Hollik[15] shows supersymmetric QED can

keep the supersymmetry. Their study can be generalized to supersymmetric models with

soft breakings and eventually to the supersymmetric extensions of the standard model. Al-

though the corresponding Slavnov Taylor identities are more involved since they have to

express not only the symmetries but also the spontaneous or soft breaking, their structure

is the same as in SQED. Therefore, this method can also extend to full EW theory of the

MSSM.

With the extension of the on-shell scheme of SM, the vertexes (ZlI lI ,W+νI lI) and L̃∗
iχ

0
αl

I

are studied at one-loop order in this work. We find some special characters for the on-shell

scheme in MSSM. Compared with the zero-momentum scheme, it is easy to find the renor-

malized results in the on-shell scheme are decoupled. These selected vertexes are ordinary,

and can represent the general vertexes in MSSM. The study of the on-shell scheme for these

vertexes is propitious to complete the on-shell renormalization programme of MSSM. If one

studies the on-shell renormalization scheme in other models, it is also helpful.

After the introduction, in Sect.2 we study both the zero-momentum scheme and the on-

shell scheme of two SM vertexes in MSSM. The corresponding results of the SUSY vertex

are shown in Sect.3. In Sect.4, the decoupling behaviors for the counter terms in both

renormalization schemes are researched. Sect.5 is devoted to discussion and conclusion.
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II. RENORMALIZATION OF SM VERTEX (ZlI lI ,W+νI lI) IN MSSM

The authors[4, 5] studied the on-shell renormalization scheme of electroweak theory in

SM successfully and completely. Extending the model from SM to MSSM, the condition

becomes complex and faint, which needs more researches. In Feynman gauge, applying both

the on-shell and zero-momentum schemes, we study the two SM vertexes (ZlI lI ,W+νI lI)

with virtual particles (L̃, χ̃0, ν̃, χ̃±) in this section. The studied one loop diagrams are

shown in Fig.1. In order to obtain the counter terms, we adopt the naive dimensional

regularization with the anticommuting γ
5
scheme, where there is no distinction between the

first 4 dimensions and the remaining D − 4 dimensions[16, 17].

Figure 1: The studied one loop diagrams.

A. ZlI lI vertex with virtual SUSY particles (L̃, χ̃0)

There are two triangle diagrams for ZlI lI vertex with virtual SUSY particles (L̃, χ̃0), and

they are shown as diagrams 1(a) and 1(b). The two diagrams are not complete and the results

do not satisfy the gauge invariant rule, but they belong to one suit and can be renormalized

with some renormalization constants. In the zero-momentum scheme, each diagram has its

own counter term, and the corresponding renormalized result is decoupled. Here we show

the sum of the counter terms for the two triangle diagrams in the zero-momentum scheme.

δV
(ZM),µ

ZlI lI
=

e3

64π2s
W
c
W

{1− 2s2
W

2s2
W

[( mlI

cβmW

)2
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+
1

c2
W

]

γµω− −
[4s2

W

c2
W

+
( mlI

cβmW

)2]

γµω+

}

∆UV

+
{ e3

256π2s3
W
c
W

(1− 2s2
W

c2
W

− (1 + 2s2
W
)(

mlI

cβmW

)2
)

+
6

∑

i,β=1

4
∑

j=1

e3

4s3
W
c
W

(G)iβ(DI)ij(DI)∗βjF1(xL̃i
, xL̃β

, xχ̃0
j
)

− e3

8s3
W
c
W

6
∑

s=1

4
∑

i,j=1

(DI)∗si(R∗)ji(DI)sjF1(xχ̃0
i
, xL̃s

, xχ̃0
j
)

+
e3

4s3
W
c
W

6
∑

s=1

4
∑

i,j=1

(DI)∗si(R)ji(DI)sj
√

xχ̃0
i
xχ̃0

j
F2(xχ̃0

i
, xL̃s

, xχ̃0
j
)
}

γµω−

+
{ e3

128π2s
W
c
W

(c2
W

s2
W

(
mlI

cβmW

)2 − 4s2
W

c2
W

)

+
e3

2s
W
c
W

6
∑

i,β=1

4
∑

j=1

(G)iβ(CI)ij(CI)∗βjF1(xL̃i
, xL̃β

, xχ̃0
j
)

+
e3

4s
W
c
W

6
∑

s=1

4
∑

i,j=1

(CI)∗si(R)ji(CI)sjF1(xχ̃0
i
, xL̃s

, xχ̃0
j
)

− e3

2s
W
c
W

6
∑

s=1

4
∑

i,j=1

(CI)∗si(R)∗ji(CI)sj
√

xχ̃0
i
xχ̃0

j
F2(xχ̃0

i
, xL̃s

, xχ̃0
j
)
}

γµω+. (1)

To get Eq.(1), we use the unitary character of the mixing matrixes ZL̃,ZN for sleptons

and neutralinoes. Additionally, we adopt the abbreviation notations c
W

= cos θ
W
, s

W
=

sin θ
W
, c

β
= cos β, s

β
= sin β, where θ

W
is the Weinberg angle and tanβ = v2/v1 representing

the ratio between the vacuum expectation values of the two Higgs doublets. xi = m2
i /Λ

2
NP

with i denoting the virtual particles in these one loop diagrams, and Λ
NP

denotes the new

physic energy scale. Here ∆UV = 1/ǫ+ ln(4πxµ)− γ
E
, 2ǫ = 4−D, ω− = (1− γ5)/2, ω+ =

(1 + γ5)/2 and the functions F1, F2 are shown as

F1(x, y, z) =
1

16π2

(

1− x2 ln x

(y − x)(z − x)
− y2 ln y

(x− y)(z − y)
− z2 ln z

(x− z)(y − z)

)

, (2)

F2(x, y, z) =
1

16π2

( x ln x

(y − x)(z − x)
+

y ln y

(x− y)(z − y)
+

z ln z

(x− z)(y − z)

)

. (3)

The concrete forms of the vertex couplings used in Eq.(1) reads as

(CI)tj =
−
√
2

c
W

Z(I+3)t

L̃
Z1j∗

N
−

mlIZIt
L̃
Z3j∗

N√
2s

W
cβmW

,

(DI)tj =
ZIt

L̃

c
W

(Z1j
N
s
W
+Z2j

N
c
W
)−

mlIZ(I+3)t

L̃
Z3j

N

cβmW

,

(G)ts =
1

2
ZIt

L̃
ZIs∗

L̃
− s2

W
δst, (R)kα = (Z4k

N Z4α∗
N − Z3k

N Z3α∗
N ). (4)
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In the on-shell scheme, the counter term for the radiative correction to SM vertex ZlI lI

is shown here[4].

δV
(OS),µ

ZlI lI
= −e

2

[

δZAZ − 1

2s3
W
c
W

(δm2
Z

m2
Z

− δm2
W

m2
W

)

− (2s2
W
− 1)

s
W
c
W

(δe

e
+

1

2
δZZZ

+δZ l
L

)]

γµω− − e

2

[

δZAZ − s
W

c
W

(

2
δe

e
+

1

s2
W

(
δm2

Z

m2
Z

− δm2
W

m2
W

) + δZZZ + 2δZ l
R

)]

γµω+. (5)

δZAZ and δe are the renormalization constants for γZ mixing and charge respectively. Only

the sum of amplitude of the two triangle diagrams can be renormalized in the on-shell scheme.

That is to say, the divergent term of each diagram can not be canceled by the counter term.

Another character is that just the lepton wave function renormalization constants δZ l
L and

δZ l
R are necessary to counteract the ultra-divergent terms.

The renormalization constants for the left- and right-handed lepton wave functions are

deduced from the lepton self-energy with virtual SUSY particles (L̃, χ̃0).

δZ l
L = − e2

64π2s2
W

( 1

c2
W

+ (
mlI

cβmW

)2
)

∆UV −
6

∑

i=1

4
∑

j=1

{ 1

2s2
W

|(DI)ij|2F4(xL̃i
, xχ̃0

j
)

+xlI

[ 1

2s2
W

|(DI)ij |2 + |(CI)ij|2 +
√
2

s
W

Re[(CI)†ij(DI)ij ]F3(xL̃i
, xχ̃0

j
)
]}

,

δZ l
R = − e2

32π2

( 2

c2
W

+ (
mlI√

2s
W
cβmW

)2
)

∆UV −
6

∑

i=1

4
∑

j=1

{

|(CI)ij |2F4(xL̃i
, xχ̃0

j
)

+xlI

[ 1

2s2
W

|(DI)ij |2 + |(CI)ij|2 +
√
2

s
W

Re[(CI)†ij(DI)ij ]
]

F3(xL̃i
, xχ̃0

j
)
}

, (6)

where the functions F3, F4 are shown as follows

F3(x, y) =
x2 + 2xy(ln y − ln x)− y2

32π2(x− y)3
,

F4(x, y) =
(2y − x)(y − x+ x ln x)− y2 ln y

32π2(x− y)2
. (7)

Considering Eqs.(5)(6)(7), the needed counter terms for Diagram 1(a) and Diagram 1(b)

are obtained in the on-shell scheme.

B. W+νI lI vertex with virtual SUSY particles (L̃, ν̃, χ̃0, χ̃±)

The condition of W+νI lI vertex is more complex than that of ZlI lI vertex. The three

triangle diagrams(2(a), 2(b) and 2(c)) are all necessary and belong to one suit, where the
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virtual SUSY particles are L̃, ν̃, χ̃0, χ̃±. We collect the counter terms of these three diagrams

in the zero-momentum scheme.

δV
(ZM),µ

W+νI lI
=

e3√
2s3

W

{ 1

64π2

[ 1

c2
W

+
( mlI

cβmW

)2]

∆UV

+
1

128π2

[

4− 1

c2
W

+
( mlI

cβmW

)2]

− 1

2c
W

2
∑

i=1

3
∑

J=1

4
∑

j=1

(

(ζI)∗Jj(T )ji(Bi)
IJF1

+2(ζI)∗Jj(Q)ji(Bi)
IJ

√

xχ̃−

i
xχ̃0

j
F2

)

(xχ̃−

i
, xν̃J , xχ̃0

j
)

+
1

4c
W

6
∑

i=1

3
∑

J=1

4
∑

j=1

(η)∗iJ(ζ
I)∗Jj(DI)ijF1(xL̃i

, xν̃J , xχ̃0
j
)

+
1

2

2
∑

i=1

6
∑

s=1

4
∑

j=1

(

2(PI)si(Q)∗ji(DI)sj
√

xχ̃−

i
xχ̃0

j
F2

+(PI)si(T )∗ji(DI)sjF1

)

(xχ̃−

i
, xL̃s

, xχ̃0
j
)
}

γµω−, (8)

with the vertexes couplings

(Ai)
IJ =

−mlIZ−∗
2i ZIJ∗

ν̃√
2c

β
m

W

, (Bi)
IJ = Z+

1iZIJ∗
ν̃ ,

(η)sJ = ZIJ
ν̃ ZIs

L̃
, (Q)ji = Z2j∗

N Z+
1i −

Z4j∗
N Z+

2i√
2

,

(T )ji = Z2j
N Z−

1i +
1√
2
Z3j

N Z−∗
2i ,

(PI)si =
mlI√
2c

β
M

W

Z
(I+3)s∗

L̃
Z−∗

2i − ZIs∗
L̃

Z−∗
1i ,

(ζI)
J j = ZIJ∗

ν̃ (Z1j
N
s
W
− Z2j

N
c
W
). (9)

In the on-shell scheme, the counter term formula for vertex W+νI lI can be found in Ref[4].

δV
(OS),µ

W+νI lI
=

e

2
√
2s

W

(δm2
Z

m2
Z

− δm2
Z
− δm2

W

m2
Z
−m2

W

+ 2δe+ δZ l
L + δZν

L + δZWW

)

γµω−, (10)

where δe is calculated from the virtual slepton contribution. The virtual slepton and

sneutrino produce the mass renormalization constants δm2
Z
, δm2

W
andW wavefunction renor-

malization constant δZWW . The wave function renormalization constants δZν
L and δZ l

L are

deduced respectively from the self-energies of neutrino and lepton with virtual SUSY parti-

cles [(ν̃, χ̃0), (L̃, χ̃±)] and [(ν̃, χ̃±), (L̃, χ̃0)].

To cancel the UV-divergent terms for these diagrams in the on-shell scheme, all the

renormalization constants in Eq.(10) must be taken into account. Following the method in

7



Refs[4, 5], we obtain the needed renormalization constants.

δm2
Z

m2
Z

=
e2

32π2s2
W
c2
W

(1− 2s2
W
)2∆UV − e2

s2
W
c2
W

{1

4

3
∑

j=1

F5(xν̃j , xν̃j )

+
6

∑

α,β=1

|(G)αβ|2F5(xL̃α
, xL̃β

)
}

,

δm2
W

m2
Z

=
e2c2

W

32π2s2
W

∆UV − e2c2
W

2s2
W

6
∑

i=1

3
∑

α=1

|(η)iα|2F5(xν̃α , xL̃i
),

δZWW = − e2

32π2s2
W

∆UV +
e2

2s2
W

6
∑

i=1

3
∑

α=1

|(η)iα|2F5(xν̃α, xL̃i
),

δe =
e2

8π2
∆UV − e2

6
∑

i=1

F5(xL̃i
, xL̃i

),

δZν
L =

−e2

32π2s2
W

( 1

2c2
W

+ 1 + (
mlI√
2cβmW

)2
)

∆UV

− e2

2s2
W
c2
W

4
∑

i=1

3
∑

α=1

|(ζI)αi|2F4(xν̃α , xχ0
i
)− e2

s2
W

4
∑

i=1

6
∑

α=1

|(PI)αi|2F4(xL̃α
, xχ0

i
),

δZ l
L = − e2

32π2s2
W

( 1

2c2
W

+ 1 + (
mlI√
2cβmW

)2
)

∆UV

− e2

s2
W

3
∑

α=1

2
∑

i=1

{

|(Bi)
Iα|2F4 + xlI

[

|(Bi)
Iα|2

+|(Ai)
Iα|2 + 2Re[(A†

i)
Iα(Bi)

Iα]
]

F3

}

(xν̃α , xχ̃−

i
)

−e2
4

∑

j=1

6
∑

i=1

{

xlI

[ |(DI)ij|2
2s2

W

+

√
2

s
W

Re[(CI)†ij(DI)ij ]

+|(CI)ij |2
]

F3 +
1

2s2
W

|(DI)ij|2F4

}

(xL̃i
, xχ̃0

j
). (11)

The function F5 is

F5(x, y) =
1

288π2(x− y)3
[6(x− 3y)x2 lnx+6(3x

−y)y2 ln y − (x− y)(5x2 − 22xy + 5y2)]. (12)

From Eqs.(10)(11)(12), we get the counter terms for the three diagrams(2(a),2(b) and 2(c)).

The renormalization constants in Eq.(10) are all necessary at this place, which is different

from the condition of ZlI lI vertex.

III. RENORMALIZATION OF L̃∗
iχ

0
αl

I VERTEX WITH VIRTUAL PHOTON

In order to further research the on-shell renormalization scheme in MSSM, we study the

vertex L̃∗
iχ

0
αl

I at one-loop order in this section. The studied triangle diagram is Diagram 3

8



with virtual photon, which is the simplest instance. Diagram 3 belongs to electromagnetic

interaction, and can be treated separately without considering the diagrams with virtual W

and Z. The counter term for this diagram in the zero-momentum scheme is

δV
(ZM)

L̃∗

i
χ0
αl

I
(γ) =

e3

16π2

{ (DI
iα)√
2s

W

ω−+(CI
iα)ω+

}

∆UV

+e3F1(xL̃i
, 0, xlI )

( (DI
iα)√
2s

W

ω− + (CI
iα)ω+

)

. (13)

In the on-shell scheme the counter term formula of the vertex L̃∗
iχ

0
αl

I is complicated. Fol-

lowing the idea of SM on-shell scheme, we show the formula here[17], where the counter

term is determined by the on-shell condition.

δV
(OS)

L̃∗

i
χ0
αl

I
=

e√
2s

W
c
W

{[(δe

e
δIJ +

(δZ l
L)JI
2

)

δijδαβ +
(δZ†

L̃
)ij

2
δIJδαβ

+
(δZχ0)βα

2
δIJδij

]

(Z†

L̃
)jJ

(

Z1β
N s

W
+ Z2β

N c
W

)

− s
W

c
W

δc
W
(Z†

L̃
)jJZ

1β
N δijδIJδαβ

−c
W

s
W

δs
W
(Z†

L̃
)jJZ

2β
N δijδIJδαβ −

mlJ cW
m

W
cβ

[(δe

e
+

δmlJ

mlJ
+

δm
W

m
W

− δs
W

s
W

− δcβ
cβ

)

δIJδijδαβ

+
1

2
(δZ†

L̃
)ijδIJδαβ +

1

2
(δZχ̃0)βαδIJδij +

1

2
(δZ l

L)JIδαβδij
]

(Z†

L̃
)j(3+J)Z

3β
N

}

ω−

+

√
2e

c
W

{

−
[(δe

e
− δc

W

c
W

)

δIJδijδαβ +
1

2
(δZ†

L̃
)ijδIJδαβ +

1

2
(δZ∗

χ̃0)βαδIJδij

+
1

2
(δZ l

R)JIδαβδij
]

(Z†

L̃
)j(3+J)Z

1β∗
N +

mlJ cW
2m

W
s
W
cβ

[δZ†

L̃
)ij

2
(δIJδαβ +

(δZ∗
χ̃0)βα

2
δIJδij

+
(δe

e
+

δmlJ

mlJ
+

δm
W

m
W

− δs
W

s
W

− δcβ
cβ

)

δIJδijδαβ +
1

2
(δZ l

R)JIδαβδij
]

(Z†

L̃
)jJZ

3β∗
N

}

ω+ . (14)

δZ l
L,R, δZν̃ , δZL̃, δZχ̃− and δZχ̃0 are the renormalization constants of wave functions for lep-

tons and SUSY particles. The other renormalization constants come from the vertex coupling

renormalization.

After tedious calculation and various compounding of renormalization constants, we find

only the wave function renormalization constant of slepton (δZL̃)ij is essential. That is to

say, just the renormalization constant (δZL̃)ij can cancel the UV-divergent term. The wave

function renormalization constant (δZL̃)ij is collected in the as follows.

F6(x, y) =
1

32π2(y − x)3
[(y − x)(6x2 − 7xy + 3y2)

+2x(2x2 − 2xy + y2) ln x− 2y(4x2 − 5xy + 2y2) ln y],

(δZγ

L̃
)ij =

e2

8π2
∆UV δ

ij + e2F6(xL̃i
, 0)δij. (15)
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(δZL̃)
γ
ij in Eq.(15) is obtained from the self-energy of slepton with the virtual photon and

slepton. In our calculation, Eq.(14) is predigested as

δV
(OS)

L̃∗

i
χ0
αl

I
(γ) =

1

2
(δZγ

L̃
)†ij

[

(DI
jα)ω− + (CI

jα)ω+

]

. (16)

Combining the formulas (15) and (16), Diagram 3 can be renormalized successfully in the

on-shell scheme. Up to now, we have got the counter terms for the vertexes (ZlI lI ,W+νI lI)

and L̃∗
sχ

0
j l

I in both the zero-momentum and on-shell schemes.

IV. THE DECOUPLING BEHAVIOR

In this section, we discuss the decoupling behavior of renormalized results in the two

schemes. It is easy to prove that the renormalized results in the zero-momentum scheme

are decoupled. Adopting the on-shell scheme, we must get decoupled renormalized results,

if the renormalized results can not go to infinity with the incessant enlarging SUSY particle

masses. To obtain the decoupling behavior of renormalized results in the on-shell scheme,

we suppose all SUSY particle masses are the same and much heavier than the masses of SM

particles. Compared with the decoupling character of zero-momentum counter terms, the

decoupling behavior of counter terms in the on-shell scheme is obvious.

A. SM vertex (ZlI lI ,W+νI lI)

To obtain the decoupling behavior of the counter terms for the vertex ZlI lI in the zero-

momentum scheme, we show the decoupling approximation of the functions F1and F2. The

variables x, y, z in F1(x, y, z) are all symmetrical, and three conditions are considered here.

F1(x, y, z) =

{

− lnx
16π2 − 1

32π2 , (x = y = z)

− lnx
16π2 + . . . (x = y ≫ z)

1−lnx
16π2 + . . . (x ≫ y, z)

F2(x, y, z) =
1

32π2x
, (x = y = z). (17)

With Eqs.(1) and (17), the decoupling behavior of Eq.(1) reads

δV
(ZM),µ

ZlI lI
∼ e3

64π2s
W
c
W

{1−2s2
W

2s2
W

[ 1

c2
W

+
( mlI

cβMW

)2]

γµω−

−
[4s2

W

c2
W

+
( mI

e

cβMW

)2]

γµω+

}

(∆UV − ln x
M
) + . . . , (18)
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where the dots denote the terms that are finite, even when the SUSY particle masses turn

to infinity. x
M

= M2/Λ2
NP

with M representing the SUSY particle mass. In the same way,

we deduce the decoupling behavior of the counter terms for the vertex ZlI lI in the on-shell

scheme.

δV
(OS),µ

ZlI lI
∼ e3

64π2s
W
c
W

{1−2s2
W

2s2
W

[ 1

c2
W

+
( mlI

cβMW

)2]

γµω−

−
[4s2

W

c2
W

+
( mlI

cβmW

)2]

γµω+

}

(∆UV − ln x
M
) + . . . (19)

F3(x, y) =
1

96π2x
, (x = y); F4(x, y) = − ln x

32π2
+

1

64π2
, (x = y). (20)

It is satisfactory that the infinite terms and undecoupled large logarithm terms in Eqs.(18)

and (19) are the same. Though the finite terms represented by dots in Eqs.(18) and (19)

are different, the renormalized results in both schemes are decoupled, because the zero-

momentum scheme can guarantee the decoupled renormalized results.

Using the unitary character of the mixing matrixes we obtain the expectant results for

the counter terms of the vertex W+νI lI in both schemes.

δV
(ZM),µ

W+νI lI
∼

{ e3√
2s3

W

1

64π2

[( mlI

cβMW

)2
+

1

c2
W

]

(∆UV − ln x
M
)
}

γµω− + . . . , (21)

δV
(OS),µ

W+νI lI
∼

{ e3√
2s3

W

1

64π2

[( mlI

cβMW

)2
+

1

c2
W

]

(∆UV − ln x
M
)
}

γµω− + . . . , (22)

F5(x, y) =
lnx

48π2
, (x = y).

The two counter terms in Eqs.(21) and (22) can both eliminate completely ∆UV and lnx
M

terms produced from the three triangle diagrams(2(a), 2(b) and 2(c)).

B. The MSSM vertex L̃∗
iχ

0
αl

I

For the MSSM vertex L̃∗
iχ

0
αl

I , the decoupling behavior of counter term is discussed here.

Assuming SUSY particles are very heavy, the approximate results of Eq.(13) deduced from

virtual photon are shown as

δV
(ZM)

L̃∗

i
χ0
αl

I
(γ) ∼ e3

16π2

{ 1√
2s

W

(DI
iα)ω− + (CI

iα)ω+

}

(∆UV − ln x
M
) + . . .

F6(x, y) = − ln x

8π2
+

3

16π2
+ . . . , (x ≫ y). (23)
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The decoupling behavior of the counter term Eq.(16) in the on-shell scheme is the same

as that of Eq.(23) for ∆UV and ln x
M
. In this way, we find that the renormalized results are

decoupled not only in the zero-momentum scheme but also in the on-shell scheme.

V. DISCUSSION AND CONCLUSION

Up to now there have been several renormalization schemes for renormalizable theories.

The on-shell renormalization scheme is approbated broadly for electroweak theory in SM,

and it is well studied by theorists. For the model including new physics beyond SM, the

on-shell renormalization scheme has mist to clear. MSSM is considered the most potent

candidate in the new models, which has attracted much attention from many people for

about twenty years. In the frame work of MSSM, some processes are calculated with the

on-shell renormalization scheme. However, a consummate on-shell renormalization scheme

for MSSM is still absent.

To explore the perfect on-shell renormalization scheme, at one-loop order we study two

SM vertexes(ZlI lI ,W+νI lI) and one MSSM vertex L̃∗
iχ

0
αl

I in the zero-momentum scheme

and the on-shell scheme. In the zero-momentum scheme, each divergent diagram has its own

counter term, and has nothing to do with other diagrams. Another important peculiarity is

that the renormalized result is absolutely decoupled.

In the on-shell scheme, the counter term formulas for the SM vertexes in MSSM and in

SM are similar. Almost all the renormalization constants are deduced from the one-loop

self-energies of the corresponding particles. In SM, all the renormalization constants in the

counter term must be taken into account. At the same time, in MSSM we can not always

renormalize one triangle diagram by the counter term made up of renormalization constants.

After careful study, both characters of the on-shell scheme are discovered. One character

is that all the triangle diagrams belonging to one type for a vertex are essential. Only the

sum of the amplitude can be renormalized completely. The other character is that not all

the renormalization constants are always necessary. Which renormalization constant must

be considered lies on the idiographic condition.

This work shows that for the SM vertex ZlI lI the lepton wave function renormalization

constants δZ l
L, δZ

l
R are requisite to obtain the needed counter term. However, the condition

of the vertex W+νI lI is dissimilar. To gain the final finite results, we have to calculate all the

12



renormalization constants in the counter term formula. For the MSSM vertex, the foregoing

experience is of value of reference. The on-shell scheme for the MSSM vertex L̃∗
iχ

0
αl

I shows

the property, i.e. just the wave function renormalization constant for the relevant slepton

(L̃) is enough for completing the on-shell scheme.

In the two renormalization schemes, we study the decoupling behavior for the counter

terms of these vertexes. Obviously, the counter terms obtained in the two renormalization

schemes have the same characters for the infinite and large logarithm terms, when the

SUSY particle masses are equal and very heavy. Because the renormalized results in the

zero-momentum scheme are decoupled, the on-shell renormalization scheme can also give

decoupled renormalized results.

There are a great deal of vertexes in MSSM, so it is hard to make one-loop on-shell

renormalization for all of them. The studied vertexes in this work are representative, which

can be helpful to upbuild a consistent on-shell renormalization scheme in MSSM. Though

there are a number of questions to deal with, one can be convinced that a perfect on-shell

renormalization scheme can be found in the future. This text is also propitious to study

the on-shell renormalization scheme in other models, even the model is more complex than

MSSM.
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