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Abstract

Motivated by the first measurement on B(Bs → φµ+µ−) by the CDF Collaboration,

we study the supersymmetric effects in semi-leptonic Bs → φµ+µ− decay. In our evalua-

tions, we analyze the dependences of the dimuon invariant mass spectrum and the forward-

backward asymmetry on relevant supersymmetric couplings in the MSSM with and with-

out R-parity. The analyses show the new experimental upper limits of B(Bs → µ+µ−)

from the LHCb Collaboration could further improve the bounds on sneutrino exchange

couplings and (δuLL)23 as well as (δdLL,RR)23 mass insertion couplings. In addition, within

the allowed ranges of relevant couplings under the constraints from B(Bs → φµ+µ−),

B(B → K(∗)µ+µ−) and B(Bs → µ+µ−), the dimuon forward-backward asymmetry and

the differential dimuon forward-backward asymmetry of Bs → φµ+µ− are highly sensitive

to the squark exchange contribution and the (δuLL)23 mass insertion contribution. The

results obtained in this work will be very useful in searching supersymmetric signal at the

LHC.
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1 Introduction

Flavor changing neutral current (FCNC) processes can occur via penguin or box diagrams

in the standard model (SM) and are very sensitive to the gauge structure as well as various

extensions of the SM. So they can provide useful information on the parameters of the SM and

test its predictions. Meanwhile, they can offer a valuable possibility of an indirect search of

new physics (NP). The transition b → sµ+µ−, for instance, is a FCNC process, present in the

decays B → Kµ+µ−, B → K∗µ+µ−, Bs → φµ+µ− and Bs → µ+µ−. The rates for these decays

could be changed by NP contributions, and this would consequently alter the dimuon invariant

mass spectra and the forward-backward asymmetries for these semi-leptonic decays from the

SM predictions.

Recently, the first measurements of the branching ratio [1] and the dimuon invariant mass

spectrum [2] of Bs → φµ+µ− have been reported by CDF Collaboration. And its branching

ratio is [2]

B(Bs → φµ+µ−) = (1.47± 0.24± 0.46)× 10−6, (1)

which is quite consistent with its SM prediction BSM(Bs → φµ+µ−) = (1.48+2.06
−0.46) × 10−6.

Moreover, the upper limit of B(Bs → µ+µ−) has been significantly improved by the CDF, CMS

and LHCb Collaborations [3–7]. The lowest published limit from the LHCb Collaborations at

95% confidence level (CL) is [8]

B(Bs → µ+µ−) < 4.5× 10−9. (2)

These observables are important to test the SM and constrain contributions of the possible NP

models. Thus, these processes have attracted much attention (for instance, Refs. [9–15]).

In this paper, following closely the analyses of Ref. [16], we will study R-parity violating

(RPV) supersymmetric effects and the R-parity conserving (RPC) mass insertion (MI) super-

symmetric effects on the observables of Bs → φµ+µ− decay from the new experimental data

in the minimal supersymmetric standard model (MSSM). Using the experimental limits on

B(Bs → µ+µ−) from LHCb [8], B(B → K(∗)µ+µ−) from Particle Data Group [17] as well as

B(Bs → φµ+µ−) from CDF [2], we will constrain the relevant new couplings and examine the

supersymmetric effects on the branching ratio, the dimuon invariant mass spectrum, the for-
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ward backward asymmetry and the differential forward backward asymmetry of Bs → φµ+µ−

decay.

The paper is arranged as follows. In Section 2, we briefly introduce the theoretical framework

forBs → φµ+µ− decay. In Section 3, we present our numerical analyses and discussions. Section

4 contains our conclusion.

2 The theoretical framework of Bs → φµ+µ− decay

In the SM, the double differential branching ratio d2B
dŝdû

for Bs → φµ+µ− may be written as [18]

d2BSM

dŝdû
= τB

G2
Fα

2
em

5
Bs

211π5
|V ∗

tsVtb|
2

×

{
|A|2

4

(
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4

(
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+
1
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[
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+Re(FG∗)
(
(1− m̂2

φ − ŝ)(λ− û2) + 4m̂2
µλ
)]

−2
m̂2

µ

m̂2
φ

λ
[
Re(FH∗)−Re(GH∗)(1− m̂2

φ)
]
+ |H|2

m̂2
µ

m̂2
φ

ŝλ

}
, (3)

where p = pB + pφ, s = q2 and q = p+ + p− (p± the four-momenta of the muons), and the auxiliary

functions A −H can be found in Ref. [18]. The hat denotes normalization in terms of the B-meson

mass, mBs , e.g. ŝ = s/m2
Bs
, m̂q = mq/mBs .

In the MSSM without R-parity, the double differential branching ratio including the squark ex-

change contribution could be gotten from Eq. (3) by the replacements [19]

A(ŝ) → A(ŝ) +
1

W

[
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C(ŝ) → C(ŝ) +
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E(ŝ) → E(ŝ)−
1
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1

W

[
2mφ

ŝ

(
ABs→φ

3
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(4)

where W = − GFαe

2
√
2 π

V ∗
tsVtbmBs .

The sneutrino exchange contributions are summarized as

d2Bν̃

dŝdû
= τB

m3
Bs

27π3

{
−

m̂2
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m̂2
φ

[
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2(ŝ − 2m̂2
µ)

}
, (5)

with

TS =

[
i

2
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0 (ŝ)
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λ

1
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(
λ∗
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′
i32
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−
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i23
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. (6)

In the MSSM with R-parity, all the effects arise from the RPC MIs contributing to C7, C̃
eff
9 , C̃10,

and they are

CRPC
7 = CDiag

7 + CMI
7 + nC ′MI

7 ,

(Ceff
9 )RPC = (C̃eff

9 )Diag + (C̃eff
9 )MI + n(C ′eff

9 )MI ,

CRPC
10 = C̃Diag

10 + C̃MI
10 + nC ′MI

10 , (7)

where n = 1 for the terms related to the form factors V and T1 as well as n = −1 for the terms related

to the form factors A0, A1, A2, T2 and T3 in Bs → φµ+µ− decay. CDiag,MI
7 , (C̃eff

9 )Diag,MI , C̃Diag,MI
10 ,

C ′MI
7 , (C ′eff

9 )MI and C ′MI
10 have been estimated in Refs. [20–22]. The results for B(Bs → φµ+µ−)

including MI effects can be obtained from Eq. (3) by the following replacements [9, 23]:

CSM
7 → CSM

7 + CRPC
7 ,

(Ceff
9 )SM → (Ceff

9 )SM + (Ceff
9 )RPC ,

CSM
10 → CSM

10 + CRPC
10 . (8)
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From the double differential branching ratio, we can get the dimuon forward-backward asymmetry

[18]

AFB(Bs → φµ+µ−) =
∫

dŝ

∫+1
−1

d2B(Bs→φµ+µ−)
dŝdcosθ sign(cosθ)dcosθ

∫ +1
−1

d2B(Bs→φµ+µ−)
dŝdcosθ dcosθ

. (9)

3 Numerical results and analyses

In this section, we will investigate the above mentioned physics observables and study their sensitivity

to the new effects due to the MSSM with and without R-parity. When we study the SUSY effects,

we consider only one new coupling at one time, neglecting the interferences between different new

couplings, but keeping their interferences with the SM amplitude. The input parameters are collected

in Appendix, and the following experimental data will be used to constrain parameters of the relevant

new couplings [2, 8, 17]

B(Bs → µ+µ−) < 4.5× 10−9 (at 95% CL),

B(B → Kµ+µ−) = (0.48 ± 0.06) × 10−6,

B(B → K∗µ+µ−) = (1.15 ± 0.15) × 10−6,

B(Bs → φµ+µ−) = (1.47 ± 0.52) × 10−6. (10)

To be conservative, we use the input parameters varied randomly within 1σ error bar and the experi-

mental bounds at 95% CL in our numerical results.

3.1 The RPV MSSM effects

Firstly, we consider the RPV effects in Bs → φµ+µ− decay. There are three RPV coupling products,

which are λ′
2i2λ

′∗
2i3 due to squark exchange as well as λi22λ

′∗
i23 and λ∗

i22λ
′
i32 due to sneutrino exchange,

relevant to Bs → µ+µ−, Bs → φµ+µ− and B → K(∗)µ+µ− decays. We combine the experimental

bounds in Eq. (10) at 95% CL to constrain the three RPV coupling products. Comparing with the

bounds obtained in Ref. [16], we find that λi22λ
′∗
i23 and λ∗

i22λ
′
i32 couplings are further constrained by

new upper limit of B(Bs → µ+µ−), and we obtain |λi22λ
′∗
i23, λ

∗
i22λ

′
i32| ≤ 1.3× 10−4.

Using the constrained parameter spaces from the experimental data in Eq. (10), we turn to analysis

the constrained RPV effects on the observables of Bs → φµ+µ− decay which have not been measured

yet. The s-channel sneutrino exchange couplings λi22λ
′∗
i23 and λ∗

i22λ
′
i32, which are strongly constrained
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from B(B → µ+µ−), have negligible contribution to Bs → φµ+µ− decay. The t-channel squark

exchange coupling λ′
2i3λ

′∗
2i2, which is mainly constrained from B(B → K∗µ+µ−) and B(Bs → φµ+µ−),

has considerable contribution to Bs → φµ+µ−. The effects of the constrained λ′
2i2λ

′∗
2i3 in Bs → φµ+µ−

are displayed in Fig. 1 by the two-dimensional scatter plots, and the SM predictions are also shown for

comparing conveniently. The dimuon invariant mass distribution and the dimuon forward-backward

asymmetry are given with vector meson dominance contribution excluded in terms of dB/dŝ and

dAFB/dŝ, and included in dB′/dŝ and dA′
FB/dŝ, respectively.

Figure 1: The effects of RPV coupling λ′
2i2λ

′∗
2i3 due to the squark exchange in Bs → φµ+µ−

decay. φRPV denotes the RPV weak phase of λ′
2i2λ

′∗
2i3 and ̟ denotes ŝ. The limit of SM

prediction is shown by olive horizontal solid lines in plot (a) and (b).

Now we discuss the plots of Fig. 1 in detail. Figs. 1 (a) and (b) show the constrained effects of

the modulus and weak phase of λ′
2i2λ

′∗
2i3 on AFB(Bs → φµ+µ−), respectively. One can see that such

contributions could give large AFB(Bs → φµ+µ−) when |λ′
2i2λ

′∗
2i3| is large and corresponding |φRPV | is

6



near 0◦. Figs. 1 (c-f) display the constrained RPV effects on the dimuon invariant mass spectrum and

the differential forward-backward asymmetry, and we can see that the constrained λ′
2i2λ

′∗
2i3 still has

remarkable effects on them. As for the dimuon invariant mass spectrum, this observable has also been

measured as a function of the dimuon invariant mass square q2 by CDF [2]. We do not impose the

experimental bound from dB′(Bs → φµ+µ−)/dŝ and leave it as prediction of the restricted parameter

space of λ′
2i2λ

′∗
2i3, and compare it with the experimental results in Ref. [2]. The measurement is

basically consistent with the SM prediction. Nevertheless in the region of 2.00 < q2 < 8.68 (i.e.

0.07 < ŝ < 0.31), the central value of the experimental data from CDF is smaller than one of its SM

predictions. The prediction of dB′(Bs → φµ+µ−)/dŝ including λ′
2i2λ

′∗
2i3 coupling is allowed by current

experimental data, and the effects of λ′
2i2λ

′∗
2i3 coupling may be further constrained if the experimental

bound of the dimuon invariant mass spectrum in Ref. [2] is considered.

3.2 The RPC MI effects

Next, we explore the RPC MI effects in Bs → φµ+µ− decay in the MSSM with large tanβ. There

are three kinds of MIs (δuLL)23, (δ
d
LL)23 and (δdRR)23 contributing to Bs → µ+µ−, B → K(∗)µ+µ− and

Bs → φµ+µ− decays at the same time. The experimental data shown in Eq. (10) will be used to

constrain these three kinds of MI parameters. Our bounds on the three MI couplings are demonstrated

in Fig. 2. Compared with the bounds in Ref. [16], the allowed spaces of all three MI parameters are

further constrained by the new upper limit of B(Bs → µ+µ−).
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Figure 2: The allowed parameter spaces of (δuLL)23, (δ
d
LL)23 and (δdRR)23 MI parameters con-

strained by B(Bs → µ+µ−, φµ+µ−) and B(B → K(∗)µ+µ−) at 95% CL, and the RPC phases

are given in degree.

Then we analyze the RPC supersymmetric effects in Bs → φµ+µ− decay. Besides the MI

contributions, the SUSY predictions also include the contributions that come from graphs includ-

ing SUSY Higgs bosons and sparticles in the limit in which we neglect all the MI contributions,
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Figure 3: The constrained non-MI effects in Bs → φµ+µ− decay, and ̟ denotes ŝ.

which are called non-MI contributions. We find that non-MI couplings have negligible effect in

AFB(Bs → φµ+µ−). The non-MI SUSY effects on the dimuon invariant mass spectrum and the

differential forward-backward asymmetry of Bs → φµ+µ− are shown in Fig. 3. As shown in Figs.

3 (a-b), dB(Bs → φµ+µ−)/dŝ could be increased slightly in the low ŝ region, but obviously de-

creased in the high ŝ region. Figs. 3 (c-d) show us that the non-MI effects could slightly suppress

dAFB(Bs → φµ+µ−)/dŝ at the low ŝ ranges.

Since the constrained (δdLL)23 and (δdRR)23 MIs have no obvious effects in Bs → φµ+µ−, we only

show the (δuLL)23 MI contributions to Bs → φµ+µ− in Fig. 4. Note that the SUSY predictions in

Fig. 4 also include the non-MI contributions shown in Fig. 3. From Figs. 4 (a-b), one can see that

AFB(Bs → φµ+µ−) is very sensitive to (δuLL)23 MI, and it increases with |(δuLL)23| but decreases with

|φu
LL|. Figs. 4 (c-d) show us dB(Bs → φµ+µ−)/dŝ is compatible with the theoretical uncertainties and

thus is indistinguishable from its SM prediction. As shown in Figs. 4 (e-f), the constrained (δuLL)23

MI effects on dAFB(Bs → φµ+µ−)/dŝ could be significant. Note that the theoretical uncertainty of

dAFB(Bs → φµ+µ−)/dŝ including (δuLL)23 MI is smaller than one of dAFB(B → K∗µ+µ−)/dŝ in Ref.

[16].
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Figure 4: The constrained (δuLL)23 MI effects in Bs → φµ+µ− decay, and ̟ denotes ŝ.

4 Conclusions

In this paper, we have studied Bs → φµ+µ− decay in the MSSM with and without R-parity. We

have found that the bounds of sneutrino exchange RPV couplings as well as (δuLL)23 and (δdLL,RR)23

MI couplings are further constrained by the new experimental upper limit of B(Bs → µ+µ−). The

constrained RPV coupling due to t-channel squark exchange still has significant effects in Bs → φµ+µ−

decay, and AFB(Bs → φµ+µ−) is sensitive to both the modulus and the weak phase of this RPV

coupling product. The constrained (δuLL)23 MI could give large effects on AFB(Bs → φµ+µ−) and

dAFB(Bs → φµ+µ−)/dŝ in all ŝ region, and besides, AFB(Bs → φµ+µ−) is very sensitive to both

(δuLL)23| and (φu
LL), but the constrained (δuLL)23 MI has small effects on dB(Bs → φµ+µ−)/dŝ. In

addition, the constrained (δdLL,RR)23 MIs have ignorable effects on the observables of Bs → φµ+µ−

decay, nevertheless dAFB(Bs → φµ+µ−)/dŝ could be distinctly decreased by the SUSY contributions

9



which come from graphs including SUSY Higgs bosons and sparticles in the limit in which we neglect

all the MI contributions. More precise measurements at the LHCb and the future super-B factories

could test our results and further shrink or reveal the parameter spaces of MSSM with and without

R-parity.
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Appendix: Input parameters

The input parameters are summarized in Table 1. For the RPC MI effects, we take the five free

parameters m0 = 450 GeV,m1/2 = 780 GeV,A0 = −1110, sign(µ) > 0 and tanβ = 41 from Ref.

[25]. All other MSSM parameters are then determined according to the constrained MSSM scenario

as implemented in the program package SUSPECT [26]. For the form factors involving the Bs → φ

transition, we will use the light-cone QCD sum rules (LCSRs) results [27, 28], which are renewed

with radiative corrections to the leading twist wave functions and SU(3) breaking effects. For the q2

dependence of the form factors, they can be parameterized in terms of simple formulae with two or

three parameters. The expression can be found in Ref. [27, 28]. In our numerical data analysis, the

uncertainties induced by F (0) are also considered.
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