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In the next decade, a number of experiments will attempt to determine the neutrino mass hierarchy.

Feasibility studies for such experiments generally determine the statistic ∆χ2. As the hierarchy is

a discrete choice, ∆χ2 does not obey a one degree of freedom χ2 distribution and so the number

of σ’s of confidence of the hierarchy determination is not the square root of ∆χ2. We present a

simple Bayesian formula for the sensitivity to the hierarchy that can be expected from the median

experiment as a function of ∆χ2.

In the next two decades a number of reactor,

accelerator and atmospheric neutrino experiments

will attempt to determine the neutrino mass hi-

erarchy, which is the sign of the mass difference

∆M2
31 = M2

3 − M2
1 where Mi is the ith eigenvalue

of the neutrino mass matrix. If the sign is posi-

tive (negative), one says that the hierarchy is nor-

mal (inverted). Most of these experiments are still

in the planning stages, where the key role is played

by studies of the sensitivity of a given design to the

hierarchy.

Such studies determine, either analytically or via

Monte Carlo simulations,

∆χ2 = χ2
I − χ2

N (1)

where χ2
N (χ2

I) is the χ
2 statistic equal to a weighted

sum of the squares of the differences between the

data and predictions given the normal (inverted) hi-

erarchy, choosing all of the nuisance parameters so

as to minimize χ2
N (χ2

I). The goal of these experi-

ments is not to determine whether each of the hier-

archies is consistent with the data, as would be usual

in a frequentist approach. Rather, as it is already

well accepted that precisely one of the hierarchies is

manifested in nature, the goal of these experiments

is to determine which of the hierarchies provides the

best fit to the data. In this paper we will use the

test statistic ∆χ2 to answer this question as follows.

We will define the best fit hierarchy to be that which

yields the lowest value of χ2, and so the hierarchy

determined by the experiment simply corresponds to

the sign of ∆χ2.

The critical question is then, given ∆χ2, what is

the sensitivity of a typical experiment to the hierar-

chy? In Ref. [1] the authors showed that the most

naive answer, the p value that would be obtained

if ∆χ2 satisfied a one degree of freedom χ2 distri-

bution, gives the incorrect answer. Indeed ∆χ2 is

not necessarily positive and so such a prescription

would not even always be defined. In this note we

will provide an analytic answer (13) to this question

and will compare our answer to the results of sim-

ulations of Daya Bay II and disappearance data at

NOνA.

Nested hypotheses

To begin, we will describe just why the p value is

not the answer to the question stated above. Con-

sider N data points {yi} generated by an experiment

trying to determine an unknown quantity x. We will

use the approximation in which these data points yi
follow a Gaussian distribution peaked at y

(0)
i (x) with

variance σ2
i (x). Both y

(0)
i (x) and σi(x) are known

functions of x. An experimenter is interested in two

hypotheses. Hypothesis (A) states that x is a real

number. Hypothesis (B) states that x = x0, for a

particular real number x0. Clearly hypothesis (B) is

a special case of hypothesis (A), so these hypotheses

are said to be nested. In particular, (B) is obtained

from (A) by fixing one, otherwise unconstrained, real

number, the number x.

For any given value of x, the experimenter can de-

fine a statistic χ2(x) by simulating the experiment

with that value of x and calculating the weighted

sum of the squares of differences between his mea-

sured and simulated results

χ2(x) =
∑

i

(yi − y
(0)
i (x))2

σi(x)2
. (2)

The experimenter then determines a best fit x, for

which χ2(x) is minimized. He then asks how com-

patible his results are with the hypothesis (B). To

determine this, he calculates

δχ2 = χ2(x0)− χ2(x). (3)
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Unlike ∆χ2 defined in Eq. (1), δχ2 is manifestly non-

negative, because x is defined so as to give the lowest

value of χ2.

Just what value of δχ2 should the experimenter

expect? 75 years agoWilks proved [2] that if hypoth-

esis (B) is true then δχ2 will obey a χ2 distribution

with a single degree of freedom. The experimenter

can then determine a conditional probability that

given (B), the experiment would have gone as badly

as it did

pW (δχ2) =
1

2

(

1− erf

(
√

δχ2

2

))

. (4)

For example, if he found δχ2 = 9, then pW would

only be about 0.13%, and so a frequentist experi-

menter might conclude that he has ruled out (B)

with 3σ of confidence.

Non-nested Hypotheses

As described in Ref. [1], the determination of the

hierarchy is qualitatively different. The two hy-

potheses are the normal hierarchy (NH) and the

inverted hierarchy (IH). These hypotheses are not

nested, and they correspond to a discrete choice, not

the fixing of a degree of freedom. So the conditions

for Wilks’ theorem are strongly violated. As was ob-

served in general in Ref. [3] and in this context in

Ref. [1], this means that the statistic ∆χ2 defined in

Eq. (1) does not follow a χ2 distribution.

Just what distribution does ∆χ2 follow? Let us

begin with the simple case in which there are no nui-

sance parameters, which was applied to a toy model

of the hierarchy determination in Ref. [1].

An experiment will produce a set of numbers {yi},
which we assemble into a vector y. The normal and

inverted hierarchies yield two theoretical estimates

of this vector which we will denote yN and yI respec-

tively. Again let us assume that the measured num-

bers yi are normally distributed about their mean

with a variance σ2
i , which for simplicity we take to

be independent of the hierarchy. Without loss of

generality, let us assume for the moment that the

true hierarchy is normal. Then the measured num-

bers will be

yi = yNi + σigi (5)

where gi is a standard Gaussian random variable.

The statistic ∆χ2 is then easily determined to be

∆χ2 = χ2
I − χ2

N (6)

=
∑

i

(yi − yIi)
2

σ2
i

−
∑

i

(yi − yNi )
2

σ2
i

=
∑

i

(yNi + σigi − yIi)
2 − (yNi + σigi − yNi )

2

σ2
i

=
∑

i

(yNi − yIi)
2

σ2
i

+
∑

i

2(yNi − yIi)

σi
gi.

This identifies ∆χ2 as a Gaussian distributed ran-

dom variable with mean given by the first term on

the right hand side

∆χ2 =
∑

i

(yNi − yIi)
2

σ2
i

(7)

and standard deviation given by the second term [1]

σ∆χ2 =

√

∑

i

4(yNi − yIi)
2

σ2
i

= 2

√

∆χ2. (8)

Note that ∆χ2 is the ∆χ2 statistic without sta-

tistical fluctuations, for example it may be given by

the theoretical spectra of νe observed at a reactor

experiment, of νµ and νµ at an iron calorimeter at-

mospheric neutrino experiment, or of νe (νe) appear-

ance at an accelerator experiment running in the

neutrino (antineutrino) mode. In an atmospheric

neutrino experiment one may use the spectra as a

function of energy, zenith angle and even the inelas-

ticity of the events [4]. ∆χ2 is the statistic most

often reported in the literature. We will now use

Eq. (8) to relate ∆χ2 to three quantities of interest.

What is the probability that the hierarchy which

yields the lowest χ2 is indeed the true hierarchy?

Let us first consider the case in which the nor-

mal hierarchy is manifested in nature. The correct

hierarchy will be determined by the experiment if

∆χ2 > 0. The statistic ∆χ2 is centered on the posi-

tive value ∆χ2 with a standard deviation of 2

√

∆χ2

and so the closest negative value is

√

∆χ2/2 σ’s from

the mean, on one side of the distribution. For ex-

ample, if ∆χ2 = 9 then a negative value will be ex-

cluded at 1.5σ’s on one side, yielding a probability of

successfully determining the hierarchy of 93.3%, con-

siderably less than the 99.7% that one may naively

suspect just by taking the square root of ∆χ2. More
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generally, the probability of correctly determining

the hierarchy is

pc(∆χ2) =
1

2



1 + erf





√

∆χ2

8







 . (9)

In a more standard terminology, pc is the sensitiv-

ity to the hierarchy of the binary classification test

whose classification function is the sign of ∆χ2. We

will refer to it simply as the “probability of success”

in what follows. In Ref. [5] the authors obtained a

similar result which differs as a result of their for-

mula (5.11) for the probability of success for a given

∆χ2.

If instead the inverted hierarchy is correct, the

calculation proceeds identically. As we have approx-

imated σi to be hierarchy independent, the probabil-

ity of success is identical for both hierarchies. This

is the quantity quoted in a number of studies such

as Refs. [6–8].

Second, what is the sensitivity of a typical experi-

ment to the hierarchy?

A “typical experiment” is one in which |∆χ2| ob-
tains its average value |∆χ2|. As the probability

of successfully determining the hierarchy is a mono-

tonic function of ∆χ2, the average value of ∆χ2

corresponds to the median value of the probabil-

ity of success and so we will refer to such exper-

iments as median experiments. The sensitivity of

the sign(∆χ2) test to the hierarchy is the probabil-

ity that a fit to the correct hierarchy yields a lower

value of χ2 than one to the wrong hierarchy. Since

|∆χ2| is fixed, this is simply the probability that

∆χ2 has the correct sign.

Again the calculation will proceed identically for

both hierarchies, so we may restrict our attention to

the case in which the normal hierarchy is correct.

Therefore the question is, given that ∆χ2 is positive

and ∆χ2 is equal to either ∆χ2 or −∆χ2, what is

the probability pv that ∆χ2 = ∆χ2.

Let L± be the likelihood, given the normal hi-

erarchy, that ∆χ2 = ±∆χ2, which is easily found

using the fact that ∆χ2 obeys a normal distribution

centered at ∆χ2 with standard deviation 2
√

∆χ2.

Using the fact that the distribution of ∆χ2 is odd

with respect to a change in the hierarchy, the Bayes

factor for the normal hierarchy is

L+

L−
= e∆χ2/2. (10)

In particular, symmetric Bayesian priors assigning a

50% chance to each hierarchy yield a probability of

success of

pv =
L+

L+ + L−
=

1

1 + e−∆χ2/2
(11)

for median experiments, those in which |∆χ2| =

|∆χ2|. For example, if ∆χ2 = 9 then the probability

that a median experiment correctly determines the

hierarchy will be 98.9%. While this is better than

the mean probability of success 93.3%, it still falls

noticeably short of the 99.7% which one might ex-

pect from Wilks’ theorem. In Ref. [9] it was noted

that the sensitivity (11) is equal to the posterior

probability of determining the correct hierarchy.

Given ∆χ2 determined either from Monte Carlo

simulations or from Asimov data, one may express

the sensitivity to the hierarchy expected at a median

experiment in terms of a number s of standard devi-

ations σ. We will convert probabilities into standard

deviations using the one-sided Gaussian distribution

pv(∆χ2) =
1

2

(

1 + erf

(

s√
2

))

. (12)

While the double-sided Gaussian is also often used

in the literature, we have checked that this choice of

convention has a small effect on our results.

Using Eq. (11) one now finds that the number of

σ’s of sensitivity is

s(∆χ2) =
√
2 erf−1

(

1− e−∆χ2/2

1 + e−∆χ2/2

)

. (13)

This function is plotted in Fig. 1. For example, if

∆χ2 = 9 then a median experiment determines the

hierarchy with a sensitivity of 2.3σ instead of the 3σ

which might be expected. Had we insteaded opted

for the double-sided Gaussian convention for s, we

would have instead found 2.5σ.

A general Bayesian prior of b and 1 − b for the

normal and inverted hierarchies leads to a sensitivity

s(∆χ2) =
√
2 erf−1

(

1 +
(

1− 1
b

)

e−∆χ2/2

1 +
(

1
b − 1

)

e−∆χ2/2

)

. (14)
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FIG. 1: For a given ∆χ2 statistic determined from the-

oretical spectra, the black curve is the number s of σ’s

of sensitivity of the determination of the mass hierarchy

by a median experiment. A median experiment is one in

which |∆χ2| obtains its median value. For comparison,

the dashed curve uses the two-sided definition of s and

the red curve is the square root of ∆χ2.

Third, what is the probability p(s) that the hierarchy

will be determined with a sensitivity of at least sσ?

Note first that for a general experimental outcome

∆χ2, the probability of success

pv =
L+

L+ + L−

=
e−(∆χ2−∆χ2)2/8∆χ2

e−(∆χ2−∆χ2)2/8∆χ2 + e−(∆χ2+∆χ2)2/8∆χ2

=
1

1 + e−∆χ2/2
(15)

is independent of ∆χ2. Using this fact, an argument

similar to those above leads to

p(s) =
1

2



1 + erf





∆χ2 − 4arctanh
(

erf
(

s√
2

))

√

8∆χ2







 .

(16)

This function is plotted in Fig. 2.

Parallel nuisance parameters

In reality there is no single experimental result

yN or yI which is predicted by a given hierarchy.

The results also depend on a number of nuisance

parameters, such as the neutrino mass matrix pa-

rameters and the flux normalization of the source.

We will assemble these nuisance parameters into a

vector x = {xi}.
If the final data consists of N numbers, such as

the number of events in N energy bins, and if there

are K nuisance parameters, then each hierarchy cor-

FIG. 2: The black, red, blue, purple and green curves

are the probability of a hierarchy determination with 1σ,

2σ, 3σ, 4σ and 5σ of sensitivity as a function of ∆χ2.

The dashed line represents a median experiment, and its

intersections with the curves yield the same information

as Fig. 1.

responds not to a point but to a K-dimensional sub-

set of the N -dimensional vector space in which y

is valued. The nuisance parameters xi are coordi-

nates on these subsets. If the standard deviations σi

vary sufficiently slowly, then the inverse covariance

matrix defines a metric on this space. Recall that,

in the case of the normal (inverted) hierarchy, the

nuisance parameters x are chosen to minimize χ2
N

(χ2
I). Geometrically, this minimization corresponds

to choosing the point in each subset which is clos-

est to y, the coordinates of the point are the nui-

sance parameters which minimize the corresponding

χ2 statistic.

In this framework, it is easy to combine data from

multiple experiments. They can simply be added to

y as new components. For example, one can combine

a forecast spectrum of Daya Bay II with a value of

the nuisance parameter θ13 determined at Daya Bay

and RENO by letting the first N − 2 components of

y correspond to the νe spectrum at Daya Bay II and

the next two to the relative survival probabilities ob-

served at Daya Bay and RENO. The single nuisance

parameter θ13 yields a curve in the N -dimensional

space of observations for each hierarchy. The curve

is parameterized by θ13. The last two coordinates of

this curve are simply the relative survival probabili-

ties expected at Daya Bay and RENO as a function

of the parameter θ13. The χ
2 to be minimized is the

distance in the full N dimensional space, so it auto-

matically combines determinations of θ13 at RENO,

Daya Bay and Daya Bay II without the need for any

penalty terms.
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Now let us make two approximations. First, we

approximate yN and yI to be linear (or affine) func-

tions of the nuisance parameters x, so that the sub-

spaces corresponding to theoretical predictions are

hyperplanes. The resulting models are called lin-

ear regression models. Model selection in one di-

mensional non-nested linear regression models was

first studied in Ref. [10]. Ref. [3] presented a statis-

tic, generalizing ∆χ2, which is Gaussian distributed

and distinguishes the models. The properties of this

statistic, in the case of linear regression models, were

determined in Ref. [11].

One may object that the spectra are not indeed

linear functions of the neutrino mass matrix. How-

ever the essential point is that they be approximately

linear in a regime whose size is the precision to which

an experiment can determine the nuisance param-

eters. This is a much easier criterion. Later we

will compare our analytical results to simulations in

which no such approximation is made, and we will

see that the resulting error is small.

For now we will make the further approximation

that one obtains the same value of ∆χ2 for any value

of the nuisance parameters chosen for the normal hi-

erarchy if the nuisance parameters for the inverse

hierarchy are chosen so as to minimize ∆χ2
I . In

other words, ∆χ2, is independent of the choice of

the nuisance parameters so long as each χ2 is prop-

erly minimized. Geometrically this means that the

hyperplanes corresponding to the theoretical values

yN and yI are parallel.

Again assume that the normal hierarchy is cor-

rect. If xT is the true value of the nuisance param-

eters, then the theoretical values of the observables

yN will be linear functions yNi of xT. χ2
N (χ2

I) is just

the minimum distance squared from the observations

yi = yNi + σigi to the hyperplane corresponding to

the normal (inverted) hierarchy. The statistical fluc-

tuation vector g = σigi can be decomposed into a

two vectors, g⊥ and g‖ such that g⊥ is perpendicu-

lar to the hyperplanes and g‖ is parallel.

To determine χ2
N or χ2

I , one must choose the nui-

sance parameters x at which it is minimized. χ2 will

be minimized for the choice of nuisance parameters

xT+g‖. In other words, the parallel part of g yields

the statistical error in the determination of the nui-

sance parameters. We have assumed that this error

is the same for both hierarchies. For this choice of

FIG. 3: In this figure the hierarchy is normal and ∆χ2 is

independent of the nuisance parameters. The two paral-

lel lines are the expected measurements corresponding to

various values of the nuisance parameters for the two hi-

erarchies. As a result of statistical fluctuations yN

i +σigi
is measured instead of the theoretical value yN

i . The par-

allel part of g determines the effect of this fluctuation on

the best fit nuisance parameters and the perpendicular

part its effect on ∆χ2.

nuisance parameters, the theoretical predictions for

yi are y
N
i +σig

‖
i and yIi+σig

‖
i in the cases of the two

hierarchies.

Now we are ready to calculate

∆χ2 = χ2
I − χ2

N (17)

=
∑

i

(yi − yIi − σig
‖
i )

2

σ2
i

−
∑

i

(yi − yNi − σig
‖
i )

2

σ2
i

=
∑

i

(yNi + σig
⊥
i − yIi)

2 − (yNi + σig
⊥
i − yNi )

2

σ2
i

=
∑

i

(yNi − yIi)
2

σ2
i

+
∑

i

2(yNi − yIi)

σi
g⊥i .

=
∑

i

(yNi − yIi)
2

σ2
i

+
∑

i

2(yNi − yIi)

σi
gi.

In the last step we used the identity

∑

i

2(yNi − yIi)

σi
g
‖
i = 0 (18)

which follows from the fact that, using the metric

1/σ2
i , the vector (yNi − yIi) is perpendicular to the

hyperplanes and so to σig
‖
i .

Just as in Eq. (6), Eq. (17) describes a normal

distribution centered at ∆χ2 and with standard de-

viation 2

√

∆χ2. As a result, Eqs. (9) and (13) for
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the probability of success and number of σ’s of sen-

sitivity in the median experiment remain correct.

General nuisance parameters

Of course, ∆χ2 does depend on the nuisance pa-

rameters, and so the hyperplanes corresponding to

the theoretical data are not parallel and the above

results are only approximate. This fact was first

noted in Ref. [3], where it was concluded that as a

result ∆χ2 is not normally distributed. Its distribu-

tion leptokurtic.

This observation can be intuitively understood as

follows. Imagine that ∆χ2 depends so strongly upon

the nuisance parameters that a 1σ change in the nui-

sance parameters can reduce the sensitivity to the

hierarchy by several σ’s. As a result, most of the

experiments in which the hierarchy determination is

incorrect will be those in which the nuisance param-

eter is such that ∆χ2 is much smaller. Thus the

tails of the distribution of ∆χ2 will grow as a result

of those simulations in which the nuisance param-

eters take a nonstandard value. Clearly, this effect

is only present in simulations in which the nuisance

parameters are allowed to vary, and so simulations

that fix the nuisance parameters will yield values of

∆χ2 which, upon using Eq. (13), overestimate the

sensitivity to the hierarchy.

In Ref. [3] the author proposed a new statistic

which does follow a Gaussian distribution even in

this more general setting. However, in the case of

the hierarchy determinations planned in the near fu-

ture, the angle between the hypersurfaces is actually

quite small. This is reflected in the observation [13]

that even a 1σ variation in θ13 only leads to about a

one third of a σ variation in the confidence. There-

fore the approximate treatment of the ∆χ2 statistic

above is quite precise.

To illustrate this point, in Fig. 4 we present the

distribution of the ∆χ2 statistic in simulations which

combine the νe spectrum measured at Daya Bay II

with MINOS’ 4% determination of the atmospheric

mass difference [12] and also with an optimistic 1%

forecast determination at an upgraded NOνA . All of

the nuisance parameters are fixed except for |∆M2
32|,

which is chosen to minimize χ2
I and χ2

N as described

above. Following [14] we have considered 6 years

of exposure at a 20 kton detector for Daya Bay II

which detects νe via inverse β decay on the 10% of

FIG. 4: The distribution of ∆χ2 in 50,000 experiments

with each hierarchy is shown, combining the data with

MINOS’ 4% determination of the atmospheric mass

splitting (red curve) and with an optimistic 1% deter-

mination at NOνA (black curve). The dashed curves

are the corresponding Gaussian distributions centered

at ∆χ2 with width 2

√

∆χ2.

its mass consisting of free protons. The baselines

and reactor fluxes are identical to Ref. [14]. The

leptonic CP-violating angle δ is set to π/2.

We find that the distribution of ∆χ2 is indeed well

approximated by a Gaussian distribution centered

at ∆χ2 with standard deviation 2

√

∆χ2. ∆χ2 ∼
11 (20) for Daya Bay II with MINOS (NOνA) yield-

ing 2.6σ (3.9σ) of sensitivity at the median exper-

iment, with a rate of successfully determining the

hierarchy of 94.6% (98.5%) in good agreement with

Eq. (9).

In Fig. 5 we present the distribution of ∆χ2 in sim-

ulations in which δ = 0 and π, although we always

fit to a δ = π/2 theoretical mode as the appear-

ance mode at T2K and NOνA cannot distinguish 0

and π [13, 15]. At δ = 0 (π) we find ∆χ2 = 17

(22) yielding 3.5σ (4.2σ) of sensitivity, confirming

the expectations of Ref. [16]. Despite the fact that

the model used for fitting differs from that used to

generate the data, the distribution of ∆χ2 described

in this paper approximates the simulated data well.

Frequentist confidence

A frequentist notion of confidence can be made

well defined even in this context [17, 18]. Imagine

that an experiment measures ∆χ2. This differs from

the expected ∆χ2 for the normal (inverted) hierar-

chy by |∆χ2∓∆χ2| which corresponds to a frequen-

tist incompatibility of

|∆χ2 ∓∆χ2|

2

√

∆χ2

(19)
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FIG. 5: As in Fig. 4, but using only a 1% determina-

tion of the atmospheric mass splitting. The simulations

reported in the red and black curves use δ = 0 and π

respectively, although the fitting is always performed as-

suming δ = π/2. As can be seen, if δ = π, the hierarchy

determination will be more reliable [13, 14].

σ’s.

In particular, in the case of the median experiment

with the true hierarchy, ∆χ2 = ∆χ2. Therefore

the inverted hierarchy is excluded at a confidence

of
√

∆χ2 σ’s. In this sense it might be tempting

to ignore the results of this paper and to identify

the frequentist incompatibility
√

∆χ2 with the con-

fidence in the hierarchy determination expected in a

median experiment.

While such a definition of confidence is well-

defined, it has a very unattractive feature. Con-

sider an experiment with an expected ∆χ2 = 16.

The general arguments in this note imply that if

the hierarchy is normal (inverted) then ∆χ2 will fol-

low a Gaussian distribution centered on 16 (−16)

with a width of σ = 8. In the frequentist sense,

the median experiment will yield |∆χ2| = 16 and so

is incompatible with the false hierarchy with 4σ of

confidence while the 98th percentile experiment will

yield ∆χ2 = 0 and so is incompatible with the false

hierarchy with 2σ of confidence. An identification of

the sensitivity to the hierarchy with the frequentist

incompatibility would therefore imply that even the

98th percentile of experimental outcomes will yield

a 2σ sensitivity to the hierarchy.

Now consider the somewhat unlikely case in which

due to statistical fluctuations, the results of this ex-

periment are indeed in the 98th percentile, so that

∆χ2 = 0. Now the experimentalist will be asked

to provide the hierarchy with 2σ of confidence. Of

course he cannot, the experiment has not yielded

any preference for either hierarchy, even at the 2σ

level that was promised for a 98th percentile experi-

ment when the funding was requested. In this sense,

the identification of the frequentist incompatibility

with the confidence in the hierarchy determination

is misleading: the confidence can be nonzero even

when no information is obtained.

The basic problem with the application of the fre-

quentist notion of confidence in this example is that

both hierarchies have been ruled out with equal con-

fidence. Ruling out both hierarchies can be useful

when searching for new physics, testing assumptions

regarding backgrounds, etc. Although in that case

one would use a χ2 test and not a ∆χ2 test, as the

latter is insensitive to effects that affect both hier-

archies similarly. However, for the purpose of deter-

mining which hierarchy is manifested in nature it is

reasonable to assume that one of the hierarchies is

indeed correct. In this case one is led to the Bayesian

constructions described in this note.
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