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I. INTRODUCTION

There is no clear evidence of new physics beyond the Standard Model found at the LHC so

far [1–3], and the most favored supersymmetry, extra dimensions, and many others all receive

somewhat strong constraints [1, 4, 5]. Then it is a preferable way to be more concerned about

the model independent theory rather than considering some specific models. Here we study the

model independent color sextet (antitriplet) scalars, which have many significant effects in the

phenomenology. Actually, color sextet scalars have been included in many new physics models,

such as unification theories [6–8], supersymmetry with R-parity violation [9], and diquark Higgs

[10]. Their masses can be as low as the TeV scale or less [11], which leads to much impact on the

physics. For example, in the supersymmetric Pati-Salam SU(2)R ×SU(2)L ×SU(4)C model, light

color sextet scalars can be realized around the weak scale even though the scale of SU(2)R×SU(4)C

symmetry breaking is around 1010 GeV [10, 11]. Observation of the color sextet scalars will be a

direct signal of new physics beyond the Standard Model.

Considering the interaction of the color sextet (antitriplet) scalars with quarks, which is param-

eterized, the relevant Lagrangian can be written as [12]

L = 2
√
2
[

K̄ab
i φ

iψ̄a.(λLPL + λRPR).ψ
C
b + h.c.

]

+ (Dij
µ φj)

†Dik
µ φk −m2

φφ
i†φi, (1)

where Kab
i is the Clebsch-Gordan coefficient of the sextet (antitriplet), λL/R is the Yukawa-like

coupling, and a, b are the color indices. The quantum numbers of the colored scalars are listed in

Table I, and more information can be found in [12, 13]. In order to satisfy the gauge symmetry,

SU(2)L U(1)Y |Q| = |T3 + Y | couplings to

1 1/3 1/3 QQ,UD

3 1/3 1/3, 2/3, 4/3 QQ

1 −2/3 2/3 DD

1 4/3 4/3 UU

TABLE I: Q is the SU(2)L quark doublet, and U(D) is the up(down)-type SU(2)L quark singlet. Under

SU(3)C × SU(2)L × U(1)Y , Q has the quantum numbers (3,2,1/6), while U has (3,1,2/3), and D has

(3,1,−1/3).

the colored scalars couple to same-sign quarks, and then they have fractional electronic charges.

In the cases of antitriplet the couplings should be antisymmetric in flavor. For convenience, we

label the colored scalars as sextetI , sextetII and sextetIII with electronic charge 1/3, −2/3 and

4/3, respectively. For the antitriplet, the labels are antitripletI , antitripletII and antitripletIII .
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It has been shown [10, 14, 15] that the measurements of D0 − D̄0 mixing and the rate of

D → π+π0(π+φ) decay can constrain the couplings of the colored scalars to two up-type quarks:

λuuR , λucR . 0.1, |Re(λccλuu∗)| ∼ 5.76 × 10−7 for mφ ∼ 1 TeV. Besides, the left-handed coupling λL

also receives a tight constraint due to minimal flavor violation. Since we use the model independent

coupling λ2 = λ2L + λ2R, above constraints can be relaxed in the scenario considered below.

Production and decay of the colored scalars at hadron colliders have been extensively discussed

in [12, 15–20]. Recently the CMS collaboration has searched for the signal of the colored scalar

and obtained limits on the production cross section of such resonant states [21–23] with the fixed-

order theoretical predictions (leading order and next-to-leading order) in Ref. [18, 24]. In this

paper we investigate the threshold resummation effects in the single production of the color sex-

tet (antitriplet) scalars, and we also discuss the rapidity distribution of the colored scalars at

NLO+NNLL accuracy at the LHC with soft-collinear effective theory (SCET) [25–29]. As a cross

check, we also calculate the NLO corrections using the analytical-phase space integral method, and

present their analytical expressions. Actually, when the masses of the colored scalars approach the

threshold limit, there are large logarithms left after cancelling the divergences, because the scale of

the soft gluon radiations is rather small compared to the scalar mass. These threshold logarithms

should be resummed to reduce the scale uncertainties and improve the confidence of the theoretical

predictions.

This paper is organized as follows: In Sect. II, we present the NLO calculations. In Sect. III,

we briefly show the factorization in the threshold limit of the production of the colored scalar.

In Sect. IV, we calculate the soft function and present solutions of the renormalization group

equations obeyed by hard and soft functions. In Sect. V, we present detailed numerical analyses

and compare the NLO+NNLL rapidity distributions with the NLO results. We also use recent

dijet data at the LHC to give constraints on the couplings between the colored scalars and quarks.

We conclude in Sect. VI.

II. FIXED-ORDER CALCULATIONS

We consider the process h1 + h2 → φ + X, where h1 and h2 are the incoming hadrons with

momenta P1 and P2, and we define the rapidity of the colored scalar φ as Y = 1
2 ln

E+pz
E−pz

, where E

and pz represent the energy and longitudinal momentum of the scalar in the center-of-mass frame



4

of the colliding hadrons. We write the cross section as [30, 31]:

dσ

dY
=
∑

ij

∫ 1

τ

dz

z

∫ 1

0
dy fi/h1

(x1, µf )fj/h2
(x2, µf )Cij(y, z,mφ, µf ), (2)

Cij(y, z,mφ, µf ) = z

∣

∣

∣

∣

dx1dx2
dydz

∣

∣

∣

∣

dσij
dY

=
1

2S

∫

dPSf |Mij |2 δ
(

y − u′ − z

(1− z)(1 + u′)

)

, (3)

with

S = (P1 + P2)
2, τ = m2

φ/S, s = (p1 + p2)
2 = x1x2S,

u′ =
x1
x2
e−2Y , z =

m2
φ

s
=

τ

x1x2
, y =

u′ − z

(1− z)(1 + u′)
, (4)

where PSf is the final state phase space, and µf is the factorization scale. For one-particle final

state, there is no y dependence, and then the delta function can be reduced to (δ(y) + δ(1− y))/2.

The NLO corrections were investigated in Ref. [12] using the phase-space slicing method [32, 33].

Here we recalculate the matrix elements, which are consistent with the results in Ref. [12], and we

do not present the details of these calculations. Below we just show the analytical expressions of

the phase-space integration. Using the identity

x−1+ǫ =
1

ǫ
δ(x) +

∑

n

ǫn

n!

[

lnn x

x

]

+

, (5)

with

∫ 1

τ
dx

[

lnn(1− x)

1− x

]

+

f(x) =

∫ 1

τ
dx

lnn(1− x)

1− x
[f(x)− f(1)]− f(1)

∫ τ

0
dx

lnn(1− x)

1− x
, (6)

we can obtain the following results for Cij(y, z,mφ, µf ). The leading-order result is

C(0)
qq =

2πλ2ND

N2
CS

δ(y) + δ(1 − y)

2
δ(1 − z), (7)

and the contributions from the virtual and real corrections for the qq channel are given by

Cvirt
qq =

2πλ2ND

N2
CS

δ(y) + δ(1 − y)

2
δ(1 − z)

αs

4π

(4π)ǫ

Γ(1− ǫ)

[−4CF

ǫ2
+

1

ǫ
(−2CD − 6CF + 4CFL)

+CD

(

2L− 2− 4π2

3

)

+CF

(

−2L2 − 4 + 2π2
)

]

(8)
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and

Creal
qq =

2πλ2ND

N2
CS

αs

4π

(4π)ǫ

Γ(1− ǫ)

{

δ(y) + δ(1 − y)

2
δ(1 − z)

4CF

ǫ2

+
δ(y) + δ(1 − y)

2

1

ǫ

(

(2CD − 4CFL)δ(1 − z)− 8CF

[

1

1− z

]

+

+ 4CF (1 + z)

)

+CD

[

δ(y) + δ(1 − y)

2
δ(1 − z)(−2L+ 4)− 4

[

1

1− z

]

+

+ 2z + 2

]

+CF
δ(y) + δ(1 − y)

2

[

δ(1 − z)

(

2L2 − 2π2

3

)

+ 8
(

L− ln(z)
)

[

1

1− z

]

+

+16

[

ln(1− z)

1− z

]

+

− 4(1 + z)
(

L+ 2 ln(1− z)− ln(z)
)

+ 4(1− z)

]

+CF

([

1

y

]

+

+

[

1

1− y

]

+

)(

4

[

1

1− z

]

+

− 2(1 + z)

)}

, (9)

respectively. Combining the contributions of the LO results, the virtual and real corrections, we

obtain the bare NLO partonic differential cross sections:

Cbare
qq = C(0)

qq + Cvirt
qq + Creal

qq . (10)

They still contain the collinear singularities, which can be factorized into the following form to all

orders of perturbation theory in general:

Cbare
ij (z, 1/ǫ) =

∑

k,l

Γki(z, µf , 1/ǫ) ⊗ Γlj(z, µf , 1/ǫ) ⊗ Ckl(z, µf ), (11)

where µf is the factorization scale and ⊗ is the convolution symbol defined as

f(z)⊗ g(z) =

∫ 1

z

dy

y
f(y)g(

z

y
). (12)

The universal splitting functions Γij(z, µf , 1/ǫ) represent the probability of finding a particle i with

fraction z of the longitudinal momentum inside the parent particle j at the scale µf . They contain

the collinear divergences, and they can be absorbed into the redefinition of the PDF according to

mass factorization [34, 35]. Adopting the MS mass-factorization scheme, we have to O(αs)

Γij(z, µf , 1/ǫ) = δijδ(1 − z)− 1

ǫ

αs

2π

Γ(1− ǫ)

Γ(1− 2ǫ)

(

4πµ2r
µ2f

)ǫ

P
(0)
ij (z), (13)

where P
(0)
ij (z) are the leading-order Altarelli-Parisi splitting functions [36]

P (0)
qq (z) =

4

3

[

1 + z2

(1− z)+
+

3

2
δ(1 − z)

]

,

P (0)
qg (z) =

1

2
[(1− z)2 + z2]. (14)
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After absorbing the splitting functions Γij(z, µf , 1/ǫ) into the redefinition of the PDFs through

the mass factorization in this way, we have the hard-scattering partonic differential cross sections

Cij(y, z,mφ, µf ), which are free of collinear divergences, and depend on the scale µf . The final

NLO results for the qq channel are given by

C(1)
qq =

2πλ2ND

N2
CS

αs

4π

{

δ(y) + δ(1 − y)

2

[

δ(1 − z)

(

CD

(

2− 4

3
π2
)

+ CF

(4

3
π2 − 4

)

)

−8CF (ln z − L)

[

1

1− z

]

+

+ 16CF

[

ln(1− z)

1− z

]

+

− 4CF

(

(z + 1)L+ 2(z + 1) ln(1− z)

−(z + 1) ln z + z − 1

)]

− 2CF

[

1

y

]

+

(

− 2

[

1

1− z

]

+

+ z + 1

)

−2CF

[

1

1− y

]

+

(

− 2

[

1

1− z

]

+

+ z + 1

)

+ 2CD

(

− 2

[

1

1− z

]

+

+ z + 1

)}

. (15)

Similarly, the final NLO result for the qg channel is given by

C(1)
qg =

2πλ2ND

NC(N2
C − 1)S

αs

4π

{

δ(1 − y)2CF

[

(2z2 − 2z + 1)
(

L+ 2 ln (1− z)− ln z − 1
)

+ 1

]

+2CF

[

1

1− y

]

+

(2z2 − 2z + 1) +
2(1 − z)

(yz − y − z)2

[

CD

(

y2(z − 1)2 + z2
)

+CF (y + 1)(z − 1)(yz − y − z)2
]}

, (16)

where λ2 = λ2L + λ2R, L = ln(m2
φ/µ

2
f ). The color factors are ND = 6, CD = 10/3 for the sextet and

ND = 3, CD = 4/3 for the antitriplet. In the above results, we have set the renormalization scale

µr = µf . Finally, we combine these finite results to arrive at the NLO differential cross section

Cij(y, z,mφ, µf ) for colored scalar production:

Cij = C(0)
qq + C(1)

qq +C(1)
qg . (17)

Following the method in [30], we rearrange the results as

Cqq(z, y,mφ, µf ) = C(0)
qq + C(1)

qq =
2πND

SN2
C

δ(y) + δ(1 − y)

2
C(z,mφ, µf ) + Csubleading

qq , (18)

where the C(z,mφ, µf ) are the leading singular terms (threshold terms), which are arranged as

C(z,mφ, µf ) = λ2δ[1− z] + λ2
αs

4π

{

δ[1 − z]

[

CD

(

2− 4

3
π2
)

+ CF

(

−4 +
4

3
π2
)]

+

[

1

1− z

]

+

[

− 4CD + 8CF (L− ln z)
]

+

[

ln(1− z)

1− z

]

+

16CF

}

. (19)

From Eq. (19), we can see that the singular terms make the perturbative series badly convergent

in the threshold limit z → 1, and thus they must be resummed to all orders.
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III. FACTORIZATION AT THRESHOLD IN SCET

The production of the colored scalar involves several scales, which are

s,m2
φ ≫ s(1− z)2 ≫ Λ2

QCD (20)

in the threshold limit, and it is convenient to introduce two light-like vectors n and n̄ along the

directions of the colliding partons, which satisfy n · n̄ = 2. In the lab frame, they can be written as

n = (1, 0, 0, 1), n̄ = (1, 0, 0,−1). (21)

Then any four vector can be decomposed as

kµ = n · k n̄
µ

2
+ n̄ · kn

µ

2
+ kµ⊥ ≡ k+

n̄µ

2
+ k−

nµ

2
+ kµ⊥. (22)

In this limit, we need to distinguish four different momentum regions

hard: kµ ∼
√
s(1, 1, 1),

hard-collinear: kµ ∼
√
s(ǫ, 1,

√
ǫ),

anti-hard-collinear: kµ ∼
√
s(1, ǫ,

√
ǫ),

soft: kµ ∼
√
s(ǫ, ǫ, ǫ), (23)

where we use kµ = (k+, k−, k⊥) to denote the momenta and ǫ = (1 − z) ≪ 1. Generally, the

differential cross section can be written as

dσ =
1

2S

d3~q

(2π)32Eφ

∫

d4x〈N1(P1)N2(P2)|H†
eff (x)|φ(q)〉〈φ(q)|Heff (0)|N1(P1)N2(P2)〉, (24)

where the effective Hamiltonian is given by

Heff (x) =

∫

dt1dt2 e
imφv·x C̃(t1, t2) O(x, t1, t2), (25)

with

O(x, t1, t2) = 2
√
2 Y a†

n̄ χ̄n̄(x+ t2n).(λLPL + λRPR).Y
b†
n χC

n (x+ t1n̄) Y
i
vφv(x) K

ab
i , (26)

where χn is the gauge-invariant combination of the n-collinear quark field and n-collinear Wilson

line, and Y is defined as the soft Wilson line [26, 37, 38]:

Yn(x) = P exp

(

igs

∫ 0

−∞

dt0 n · Aa
s(x+ t0n)t

a

)

,

Yv(x) = P exp

(

−igs
∫ ∞

0
dt0 v ·Aa

s(x+ t0v)t
a

)

, (27)
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where v is the velocity of the colored scalar. The matrix element can be factorized as follows:

〈N1(P1)N2(P2)|O†(x)O(0)|N1(P1)N2(P2)〉 =
2λ2ND

N2
C

〈N1(P1)|χ̄n(x)
/̄n

2
χn(0)|N1(P1)〉

×〈N2(P2)|χ̄n̄(x)
/n

2
χn̄(0)|N2(P2)〉 Ŵ(x, µf ), (28)

with

Ŵ(x, µf ) =
1

ND

〈

0
∣

∣

∣
Tr
(

T̄
[

Y †
n (x)Y

†
n̄ (x)Yv(x)

]

T
[

Yn̄(0)Yn(0)Y
†
v (0)

])
∣

∣

∣
0
〉

, (29)

where the trace is over color indices, and T̄ denotes the anti-time-ordering operator. The initial

state collinear sector reduces to the conventional PDFs [26, 39]:

fi/N (x, µ) =
1

2π

∫

dt e−ixtn̄·p〈N(p)|χ̄(tn̄) /̄n
2
χ(0)|N(p)〉. (30)

The integrals over t1 and t2 produce the Fourier-transformed Wilson coefficients:

CH(−n̄ · p1 n · p2, µf ) =
∫

dt1dt2e
−it1n̄·p1−it2n·p2C̃(t1, t2, µf ). (31)

Finally, the singular differential cross section in the threshold region can be written as

dσ

dY
=

2πND

SN2
C

∑

i,j

∫ 1

τ

dz

z

∫ 1

0
dy fi/h1

(x1, µf )fj/h2
(x2, µf )

δ(y) + δ(1 − y)

2
C(z,mφ, µf ).

Following the approach in ref. [40], C(z,mφ, µf ) can be factorized as

C(z,mφ, µf ) = λ2(µf )H(mφ, µf )S
(√
s(1− z), µf

)

, (32)

with

H(mφ, µf ) =
∣

∣CH(−m2
φ − iǫ, µf )

∣

∣

2
,

S(
√
s(1− z), µf ) =

√
s W(

√
s(1− z), µf ),

W(ω, µf ) =

∫

dx0

4π
eiωx

0/2 Ŵ(x0, ~x = 0, µf ). (33)

The soft and collinear degrees of freedom decouple in the threshold limit, so the physics at different

scales can be studied separately [26].

IV. RESUMMATION

The coupling λ satisfies the renormalization group equation

d

d ln µ
λ(µ) = γλ(αs)λ(µ), (34)
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where the one-loop level γλ is

γλ = −αs

4π
6CF . (35)

The hard function encodes short distance information

H(mφ, µf ) =
∣

∣CH(−m2
φ − iǫ, µf )

∣

∣

2
= 1 +

∞
∑

n=1

cn(L)

(

αs(µf )

4π

)n

. (36)

We read off the results from the virtual correction:

H(mφ, µf ) = 1 +
αs

4π

[

CD

(

2L− 4

3
π2 − 2

)

+ CF

(

−2L2 +
7

3
π2 − 4

)]

. (37)

CH satisfies the RGE [30]

d

d lnµ
CH(−m2 − iǫ, µ) =

[

Γcusp(αs)

(

ln
m2

µ2
− iπ

)

+ γH(αs)

]

CH(−m2 − iǫ, µ), (38)

with

γH = 2γq + γD − γλ. (39)

γq is the anomalous dimension of the massless quark [41], and γD is the one of the final state

colored scalar, which is given by [42]

γD0 = −2CD,

γD1 = CDCA

(

2π2

3
− 98

9
− 4ζ3

)

+
40

9
CDTFnf . (40)

The solution of Eq.(38) is [30]

CH(−m2
φ, µf ) = exp

[

2S(µh, µf )− aγH (µh, µf ) + iπaΓ(µh, µf )
]

(

m2
φ

µ2h

)−aΓ(µh,µf )

CH(−m2
φ, µh),

(41)

with

S(ν, µ) = −
∫ αs(µ)

αs(ν)
dα

Γcusp(α)

β(α)

∫ α

αs(ν)

dα′

β(α′)
, (42)

aΓ(ν, µ) = −
∫ αs(µ)

αs(ν)
dα

Γcusp(α)

β(α)
, (43)

where µh is the hard matching scale, and for aγH we have a similar expression.
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FIG. 1: Diagrams for calculating the O(αs) soft function. The solid lines represent Wilson lines in the

light-like n and n̄ directions, the dashed lines represent Wilson lines in the v direction, and the cut curly

lines represent the cut gluon propagators.

Up to the NLO, the soft matrix elements accounting for soft gluon radiations from initial and

final states can be obtained after calculating the Feynman diagrams shown in Fig. 1, and the soft

function is given by

S(
√
s(1− z), µf ) =

αs

4π

[

δ(1 − z)
(

CD(−2L+ 4) + CF (2L
2 − π2)

)

+
(

− 4CD + 8CF (L− ln z)
)

[

1

1− z

]

+

+ 16CF

[

ln(1− z)

1− z

]

+

]

. (44)

It satisfies the RGE [30]

d W(ω, µ)

d ln µ
= −

[

4Γcusp(αs) ln
ω

µ
+ 2γW (αs)

]

W(ω, µ)

−4Γcusp(αs)

∫ ω

0
dω′W(ω′, µ)−W(ω, µ)

ω − ω′
, (45)

with

γW = 2γφ + γH + γλ, (46)

where γφ is the anomalous dimension of the PDF [43]. Its solution is [30]

W(ω, µf ) = exp
[

−4S(µs, µf ) + 2aγW (µs, µf )
]

s̃(∂η, µs)
1

ω

(

ω

µs

)2η e−2γEη

Γ(2η)
, (47)

with

η = 2aΓ(µs, µf ), (48)

where ∂η is the derivative with respect to η, and s̃ is obtained by a Laplace transformation

s̃(L, µs) =

∫ ∞

0
dωe−sωW(ω, µs) = 1 +

αs

4π

[

CD(−2L+ 4) + CF

(

2L2 +
4

3
π2
)

]

, (49)

with

s =
1

eγEµseL/2
. (50)
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Combining the above formulae, the RG-improved integral kernel is given by

C(z,mφ, µf ) = λ2(µλ)|CH(−m2
φ, µh)|2U(mφ, µλ, µh, µs, µf )

· z−η

(1 − z)1−2η
s̃

(

ln
m2

φ(1− z)2

µ2sz
+ ∂η , µs

)

e−2γEη

Γ(2η)
, (51)

with

U(m,µλ, µh, µs, µf ) =

(

m2

µ2h

)−2aΓ(µh ,µs)

× exp
[

4S(µh, µs) + 4aγφ(µs, µf )− 2aγH (µh, µs)− 2aγλ(µλ, µs)
]

. (52)

RG-impr.PT Log.approx Accuracy∼ αn
sL

k Γcusp γH , γφ, γλ CH , s̃

- LL k = 2n 1-loop tree-level tree-level

LO NLL 2n− 1 ≤ k ≤ 2n 2-loop 1-loop tree-level

NLO NNLL 2n− 3 ≤ k ≤ 2n 3-loop 2-loop 1-loop

TABLE II: Schemes for resummation with different levels of accuracy.

For convenience, we list the counting scheme in Table II, which shows corresponding require-

ments of different levels of accuracy [30]. Currently the two-loop γλ is not available in the literature,

so we just use the one-loop γλ. The contribution of γλ in the evolution function U(m,µλ, µh, µs, µf )

cancels out when µλ ∼ µh, so γ
λ only affects the running of λ(µλ), which gives a subordinate

contribution. We then call our resummation an approximate next-to-next-to-leading logarithmic

(NNLLapprox), which is combined with the NLO results as follows:

dσcombined

dY
=
dσthresh

dY

∣

∣

∣

∣

µλ,µh,µs,µf

+

(

dσfixed-order

dY

∣

∣

∣

∣

µf

− dσthresh

dY

∣

∣

∣

∣

µλ=µh=µs=µf

)

. (53)

V. NUMERICAL DISCUSSION

In this section, we discuss the numerical results for threshold resummation effects in the single

production of the color sextet (antitriplet) scalars at the LHC. Throughout our work the PDFsets

MSTW2008lo and MSTW2008nlo [44–46] are used for LO, NLL and NLO, NNLLapprox, respec-

tively. If not explained specially, we will assume the coupling λ2(MZ) = 0.01αs(MZ), and we

choose the initial state quarks uu for the sextet and ud for the antitriplet.

The comparison between the leading singular results and the NLO results is shown in Fig. 2.

We find that the leading singular terms give the dominant contribution, and the leading singular

contribution of the sextet is smaller than the one of the antitriplet. The reason is that the terms
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FIG. 2: Comparison of the exact NLO results and the leading singular results. The long-dashed, dashed

and solid lines correspond to LO, leading singular NLO and exact NLO results, respectively. The mass of

the colored scalars is set to be 1 TeV in the rapidity distributions, and the center-of-mass energy of the

colliding hadrons is set to be 14 TeV.

associated with CD give a negative contribution, and then a larger CD of the sextet leads to smaller

leading singular results.

Taking the perturbative convergence of CH and s̃ as the guiding principle, we can obtain the

matching scales µh and µs. In Fig. 3 we show the µh dependence of the expansion coefficient c1

defined in Eq.(36). We choose the hard scale µ0h = 0.535mφ for the sextet and µ0h = 1.63mφ for

the antitriplet, respectively. The µs dependence of the soft function is shown in Fig. 4. We fit the

results and obtain the empirical functions:

sextet: µ0s =
mφ(1− τ)√
7 + 540τ

,

antitriplet: µ0s =
mφ(1− τ)√
4.6 + 362τ

. (54)

It is required that µλ reflects the intensity of the interaction between the colored scalars and quarks,
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FIG. 3: The µh dependence of the expansion coefficients c1 in the hard function.
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FIG. 4: The µs dependence of the soft function with different masses of the colored scalars.

and µλ = µh is reasonable.

In Table III, we list the typical results of total cross sections, which compare NLO+NNLLapprox

with LO and NLO results. From Table III, we can see that the resummation effects increase the

NLO total cross section by about 2% and 0.2% for 1 TeV antitriplet and sextet, respectively, and

5% and 3% for 2 TeV antitriplet and sextet, respectively, at the 8 TeV LHC. And the resummation

effects at the 14 TeV LHC are smaller than the ones at the 8 TeV LHC.

In Fig. 5, we show the dependence of the total cross section on the scalar masses including

perturbative uncertainty bands due to variation of scale µf at the 8 TeV LHC. We find that the

threshold resummation reduces the scale dependence of the total cross section. The scenario at the

14 TeV LHC is very similar, so we do not present it in the figures.

Fig. 6 shows the dependence of the resummed total cross section on µh and µs. The scales are
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sextet
√
S=8 TeV

√
S=14 TeV

mφ LO NLO NLO+NNLLapprox LO NLO NLO+NNLLapprox

0.5 TeV 7.53 8.59 8.58 12.9 14.2 14.2

1 TeV 0.768 0.916 0.918 1.46 1.68 1.68

2 TeV 0.0416 0.0512 0.0529 0.137 0.165 0.165

antitriplet
√
S=8 TeV

√
S=14 TeV

mφ LO NLO NLO+NNLLapprox LO NLO NLO+NNLLapprox

0.5 TeV 4.85 6.13 6.21 9.17 11.1 11.2

1 TeV 0.406 0.532 0.542 0.907 1.15 1.17

2 TeV 0.0161 0.0215 0.0225 0.0686 0.899 0.916

TABLE III: Numerical results of the total cross section (unit: pb).

varied over the ranges µ0h/2 < µh < 2µ0h and µ0s/2 < µs < 2µ0s, respectively. From Fig. 6, we can

see that the µh dependence of the sextet is more sensitive than the antitriplet.

In Fig. 7, we present the rapidity distributions, which compare the resummation results com-

bined in Eq.(53) with the fixed-order results. The scale µf is varied over the range mφ/2 < µf <

2mφ. We find that the shapes of the rapidity distribution of the resummation change slightly over

the fixed-order results, and resummation reduces the scale dependence, except the NNLLapprox re-

sults of the sextet cases. This is caused by the large color factor for the sextet (CD = 10/3 for the

sextet, CD = 4/3 for the antitriplet). The terms containing a large color factor CD, which is asso-

ciated with the scale dependence of λ and αs, will enlarge the scale dependence of the NNLLapprox

results of sextet.

Finally, we use recent dijet data at the LHC to give constraints on the couplings λ. The CMS

collaboration published the results of dijet production based on 5 fb−1 of 7 TeV data and 4 fb−1

of 8 TeV data [21–23], and the ATLAS collaboration based on 4.8 fb−1 of 7 TeV data and 13 fb−1

of 8 TeV data [47, 48]. Using the narrow-width-approximation [49], the total cross section can be

written as

σ =
(2π)7

2S

∫ q2max

q2min

dq2
∫

dφp dφd
∣

∣Mp(q
2)
∣

∣

2[
(q2 −m2)2 + (mΓ)2

]−1∣
∣Md(q

2)
∣

∣

2

=
(2π)8

4SmΓ

∫

dφp
∣

∣Mp(q
2)
∣

∣

2
∫

dφd
∣

∣Md(q
2)
∣

∣

2
. (55)

After fitting the dijet data, we can give the constraints on the couplings. Since there is no direct

theoretical requirement on the couplings between the colored scalars and different quarks, we use a
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common value for the coupling λ here. The colored scalars with different electronic charges couple

to different quarks, and then they receive different constraints. In Fig. 8, we show the results of the

constraints on the couplings. The most stringent constraint on sextetI is λ2(MZ) ≥ 0.006αs(MZ),

and similarly the other constraints are 0.024αs(MZ), 0.006αs(MZ), 0.011αs(MZ), 0.16αs(MZ) and

0.16αs(MZ) for sextet
II , sextetIII , antitripletI , antitripletII and antitripletIII , respectively.

VI. CONCLUSION

We have studied the threshold resummation effects in the single production of the color sextet

(antitriplet) scalars at the LHC with the soft-collinear effective theory. We find that the resumma-

tion effects increase the NLO total cross section by about 2% and 0.2% for 1 TeV color antitriplet

and sextet scalar, respectively, and 5% and 3% for 2 TeV color antitriplet and sextet scalar, re-

spectively, at the 8 TeV LHC. The resummation effects improve the scale dependence of the cross

section and the rapidity distribution generally. But in the case of the rapidity distribution of the

color sextet scalar, the scale dependence is not improved because of the large color factor CD

(CD = 10/3 for the sextet, CD = 4/3 for the antitriplet) enlarging the scale dependence. Besides,

we use recent dijet data from the LHC to give constraints on the couplings. For different col-

ored scalars with different electronic charges, the most stringent constraints of λ2(MZ) range from

0.006αs(MZ) to 0.16αs(MZ).
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Appendix A: Relevant Feynman Diagrams

Relevant Feynman diagrams for the production of the colored scalar are shown in Fig. 9.
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FIG. 5: The fixed-order and RG-improved cross section predictions including perturbative uncertainty bands

due to variations of scale µf .
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FIG. 6: The µh and µs dependence of the resummed total cross sections. The solid and dashed lines

represent µh and µs dependence, respectively. We set the scalar mass to be 1 TeV.
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FIG. 7: The comparison of the rapidity distributions between the combined resummation results and the

fixed-order results for sextet and antitriplet. The scalar mass is set to be 1 TeV. The lighter bands stand

for LO and NLL, while the darker represent NLO and NNLLapprox.
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FIG. 8: Constraint on the couplings λ of the colored scalars with different electronic charges.

FIG. 9: Relevant Feynman diagrams for the production of the colored scalar.


