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I. INTRODUCTION

There is no clear evidence of new physics beyond the Standard Model found at the LHC so
far [[-fj], and the most favored supersymmetry, extra dimensions, and many others all receive
somewhat strong constraints [fl, [, f[j. Then it is a preferable way to be more concerned about
the model independent theory rather than considering some specific models. Here we study the
model independent color sextet (antitriplet) scalars, which have many significant effects in the
phenomenology. Actually, color sextet scalars have been included in many new physics models,
such as unification theories [§-], supersymmetry with R-parity violation [J], and diquark Higgs
[[0]. Their masses can be as low as the TeV scale or less [[[J], which leads to much impact on the
physics. For example, in the supersymmetric Pati-Salam SU(2)r x SU(2)r, x SU(4)c model, light
color sextet scalars can be realized around the weak scale even though the scale of SU(2)rx SU(4)¢
symmetry breaking is around 1019 GeV [0, L1]. Observation of the color sextet scalars will be a
direct signal of new physics beyond the Standard Model.

Considering the interaction of the color sextet (antitriplet) scalars with quarks, which is param-

eterized, the relevant Lagrangian can be written as [[]
£ =22 |60\ Py + ArPr).Uf + hue.| + (D 6;) Dif o — mBo™ e, (1)

where K@ is the Clebsch-Gordan coefficient of the sextet (antitriplet), Ay, /r is the Yukawa-like
coupling, and a, b are the color indices. The quantum numbers of the colored scalars are listed in

Table [l, and more information can be found in [, [[J]. In order to satisfy the gauge symmetry,

SU2), U@y |Q=|T5+Y| couplings to

1 1/3 1/3 QQ,UD
3 1/3 1/3,2/3,4/3 QQ
1 —2/3 2/3 DD
1 4/3 4/3 UU

TABLE I: Q is the SU(2)1, quark doublet, and U(D) is the up(down)-type SU(2). quark singlet. Under
SUB3)e x SU(2)r, x U(l)y, Q has the quantum numbers (3,2,1/6), while U has (3,1,2/3), and D has
(3.1,—1/3).

the colored scalars couple to same-sign quarks, and then they have fractional electronic charges.
In the cases of antitriplet the couplings should be antisymmetric in flavor. For convenience, we
label the colored scalars as sextet!, sextet!! and sextet!!! with electronic charge 1/3, —2/3 and

4/3, respectively. For the antitriplet, the labels are antitriplet!, antitriplet!! and antitriplet'!!.



It has been shown [0, [4, (5] that the measurements of D° — D® mixing and the rate of
D — 7t7% 7% ¢) decay can constrain the couplings of the colored scalars to two up-type quarks:
NN < 0.1, [Re(ACA™*)| ~ 5.76 x 1077 for mg ~ 1 TeV. Besides, the left-handed coupling Af,
also receives a tight constraint due to minimal flavor violation. Since we use the model independent
coupling \? = )\% + /\%, above constraints can be relaxed in the scenario considered below.

Production and decay of the colored scalars at hadron colliders have been extensively discussed
in [13, [3Pq. Recently the CMS collaboration has searched for the signal of the colored scalar
and obtained limits on the production cross section of such resonant states [R1-RJ] with the fixed-
order theoretical predictions (leading order and next-to-leading order) in Ref. [[§, B4. In this
paper we investigate the threshold resummation effects in the single production of the color sex-
tet (antitriplet) scalars, and we also discuss the rapidity distribution of the colored scalars at
NLO+NNLL accuracy at the LHC with soft-collinear effective theory (SCET) [P-R9. As a cross
check, we also calculate the NLO corrections using the analytical-phase space integral method, and
present their analytical expressions. Actually, when the masses of the colored scalars approach the
threshold limit, there are large logarithms left after cancelling the divergences, because the scale of
the soft gluon radiations is rather small compared to the scalar mass. These threshold logarithms
should be resummed to reduce the scale uncertainties and improve the confidence of the theoretical
predictions.

This paper is organized as follows: In Sect. [[], we present the NLO calculations. In Sect. [TI,
we briefly show the factorization in the threshold limit of the production of the colored scalar.
In Sect. [V], we calculate the soft function and present solutions of the renormalization group
equations obeyed by hard and soft functions. In Sect. [], we present detailed numerical analyses
and compare the NLO+NNLL rapidity distributions with the NLO results. We also use recent
dijet data at the LHC to give constraints on the couplings between the colored scalars and quarks.

We conclude in Sect. [VI.

II. FIXED-ORDER CALCULATIONS

We consider the process hi + ho — ¢ + X, where hy and hg are the incoming hadrons with
momenta P; and P, and we define the rapidity of the colored scalar ¢ as Y = %ln %ﬁi, where F

and p, represent the energy and longitudinal momentum of the scalar in the center-of-mass frame



of the colliding hadrons. We write the cross section as [BJ, BIJ):

do Laz [t
v Z =/ dy fisn (@1, 10f) i /no (02, 107) Ci (y, 2, Mg, g, (2)
ij 7T

dl’ldiEg
dydz

doij 1 M2 v
= %/dPSf |sz| 5<y (1—z)(1+u/)>’ ¥

Czj(yv z,m¢,,uf) =z

with

S=(PL+P)* 7T=m}/S, s=(p1+p2)’=z1225,

2 /
m T u —z
, Z:—(z): y:4 (4)

r_ ﬂe—2Y
9 S 129 (1=2)(1+u)’

u =

where PS; is the final state phase space, and py is the factorization scale. For one-particle final
state, there is no y dependence, and then the delta function can be reduced to (6(y) + (1 —y))/2.

The NLO corrections were investigated in Ref. [[J] using the phase-space slicing method [B2, BJ].
Here we recalculate the matrix elements, which are consistent with the results in Ref. [[J], and we
do not present the details of these calculations. Below we just show the analytical expressions of
the phase-space integration. Using the identity

Ll %5(3:) +) < [ln”x] R (5)

n! T
n

with

! n"(1—-= Lol -z ToIn"™(1-—=x
[ [MLM: [ 2w - - s [fat

11—z 11—z 0 11—z
we can obtain the following results for Cj;(y, z,mg, jtf). The leading-order result is

NZS 2

(1 —2), (7)

and the contributions from the virtual and real corrections for the gg channel are given by

2 A2Np 6(y) + 6(1 — y)
NS 2

s (4m)©

o1 - Z)Ef(l —€) [

_42CF + %(_2CD —6CF +4CFL)

C«virt —
qq €
472

+Cp <2L—2— 7) + Cp (—2L7 —4+2w2)} (8)



and

real __
qu -

2mA2Np as (4m)° fo(y) +6(1 —y)
NEZS 4nT(1—¢) 2

+wg <(2CD —4CrL)5(1 — 2) — 8CF [1 i Z] . +4CFr(1 + Z))
Oy [Wm o) (2L 4 4)—4 [1—;} R 2}
+cﬁ&ﬁi931@[&1—@(ﬂ?—%§>+8uﬁ4ﬂd)LizL_

In(1 —2)

+w{ }+—4ﬂ+zﬂL+2mﬂ—z%JM@)+Ml—@}

1—2z

o (] [ O[] )

respectively. Combining the contributions of the LO results, the virtual and real corrections, we

obtain the bare NLO partonic differential cross sections:
Chare = Cf) + Co™ + Ca. (10)

They still contain the collinear singularities, which can be factorized into the following form to all
orders of perturbation theory in general:
Ciqure(zv 1/6) = Z F]“'(Z, Kfs 1/6) ® Flj(za Kfs 1/6) ® Ckl('z7 Mf)) (11)
k.l
where f1f is the factorization scale and ® is the convolution symbol defined as

1

dy z
fG @96 = [ Liwol) (12
z Y Y
The universal splitting functions I';;(z, f1f, 1/€) represent the probability of finding a particle ¢ with
fraction z of the longitudinal momentum inside the parent particle j at the scale py. They contain

the collinear divergences, and they can be absorbed into the redefinition of the PDF according to

mass factorization [B4, Bg. Adopting the MS mass-factorization scheme, we have to O(a)

lag I'(1 —€ 4 ‘
Lij(z, pp,1/€) = 6i56(1 — 2) — E%F((l _26)) ( P > PZ-(]-O)(Z), (13)

where Pl-(jo) (z) are the leading-order Altarelli-Parisi splitting functions [36]

4 1+2%2 3
o) — S 2851 =
aq (Z) 3 (1 _ Z)+ + 25( Z):| ’

PO(z) = Z[(1—2)? + 27 (14)

N |



After absorbing the splitting functions I';;(2, puf, 1/€) into the redefinition of the PDFs through
the mass factorization in this way, we have the hard-scattering partonic differential cross sections
Cij(y, z,mg, i), which are free of collinear divergences, and depend on the scale ps. The final

NLO results for the qg channel are given by

A2 as [0 6(1 —
C’é;) _ 2 NggD E{ W) + 2(1 y) [5(1 —z) (C’D(Z - gﬂ'z) + CF(gﬂ'z - 4)>
—8CF(lnz — L) |:1 i Z:| + 16CE [%} —4CF <(Z + 1)L + 2(2 + 1) ln(l — z)
+ +

_(z—l—l)lnz—l—z—l)] _20FBL<_2[1;L+ZH>
_QCF[%]+<—2[1iJ++z+1> +20D<—2[1i2l+—|—z—|—1>}. (15)

Similarly, the final NLO result for the gg channel is given by

C(l) . 27T>\2ND g

g = mg{é(l —y)2CF [(2,22 —2241)(L+2In(1-2) —lnz—1) +1}

1
+2CF [—] (222 =22+ 1) +
1 +

— 2(1 - 2) . [C’D(y2(z _ 1) +z2)

(yz—y—2)

+Cr(y+ 1)(z — 1)(yz—y—z)2] }, (16)

where A2 =22 + A% [ = ln(m;/,u?). The color factors are Np = 6,Cp = 10/3 for the sextet and
Np = 3,Cp = 4/3 for the antitriplet. In the above results, we have set the renormalization scale
pr = py. Finally, we combine these finite results to arrive at the NLO differential cross section

Cij(y, z,mg, puy) for colored scalar production:
Cyy =CY + 0 + . (17)

Following the method in [B(]], we rearrange the results as

2nNp 0(y) +0(1 —y
Cag(z,y,mg, 117) = Cl) + Cf) = SN2 = 2( :
C

0(27 M, Nf) + C;gbleading) (18)
where the C(z,mg, f1f) are the leading singular terms (threshold terms), which are arranged as

C(z,mg, pip) = N2[1— 2] + )\2%{5[1 — 2] [C’D <2 - §7T2> +Cr <—4 + %7?2)]
T

+[1 ! L[—4OD+8OF(L—1nz)] + [mili_z)]—i_lGC’F}. (19)

— 5 —z
From Eq. ([J), we can see that the singular terms make the perturbative series badly convergent

in the threshold limit z — 1, and thus they must be resummed to all orders.



III. FACTORIZATION AT THRESHOLD IN SCET

The production of the colored scalar involves several scales, which are
2 2 2
s,mg > s(1—2)° > Apep (20)

in the threshold limit, and it is convenient to introduce two light-like vectors n and n along the

directions of the colliding partons, which satisfy n-n = 2. In the lab frame, they can be written as
=(1,0,0,1), n=(1,0,0,—1). (21)
Then any four vector can be decomposed as
nk
k' =mn - k:—+n k—+k“—k+2+k‘7+ki‘. (22)

In this limit, we need to distinguish four different momentum regions

hard: k" ~ /s(1,1,1),
hard-collinear: k" ~ v/s(e, 1,+/€),
anti-hard-collinear: k" ~ v/s(1,¢, e),
soft: kM ~ \/s(e,€,¢), (23)

where we use k# = (k™,k~,k,) to denote the momenta and ¢ = (1 — 2) < 1. Generally, the

differential cross section can be written as

1 &7

o = 55 tapra | TN PN L (0)100a) (00 ey OIN: (PONP), (20

where the effective Hamiltonian is given by
Hepr(z) = /dtldtg MV C(ty, 1) O(w,t1,t2), (25)
with
O(z,t1,t2) = 22 Y i@ + tan). (AL P + ArPr) YIXC (2 + t17) Yigy(z) K, (26)

where x,, is the gauge-invariant combination of the n-collinear quark field and n-collinear Wilson

line, and Y is defined as the soft Wilson line [2d, B7, Bg]:
Yo(z) = Pexp < / dto n - A%(x + ton)t ) ,

Y,(x) = Pexp <—z’gs/0 dtg v- A%(x + tov)t“> , (27)



where v is the velocity of the colored scalar. The matrix element can be factorized as follows:

202Np
N2

< (Va(B3) () o (O N (P2)) W ). (28)

(N1(P1)No(P,)| O () O(0)|Ny (P )Ny (Py)) = (N1(Pr)[Xn(x )é n(0)|N1(P1))

with

W) = 5= (0| T (T [Vl@riey] T [novovio])|o). e

where the trace is over color indices, and T denotes the anti-time-ordering operator. The initial

state collinear sector reduces to the conventional PDFs [R€, Bg:

f

fintoan) = oo [t e =P

X(0)IN(p))- (30)
The integrals over t; and to produce the Fourier-transformed Wilson coefficients:
CH(—ﬁ “p1 NP2, ,uf) = /dtldtge_itlﬁ'pl_it2n'p2c~'(7f1, to, ,uf). (31)

Finally, the singular differential cross section in the threshold region can be written as

do  2wNp dz 0(y) +6(1 —y)
T DY [ [ty s et 22 0 m ),

Following the approach in ref. [f[l], C(z, mg, pus) can be factorized as

C(z,mg, pup) = N(pp)H(mg, p)S(Vs(1 = 2), if), (32)
with
H(mg, i) = |Cr(—m3, —ie, pg)|,
S(\/g(l - Z)Hu’f) = \/E W(\/g(l - Z),,uf),
20 . o A
Wiw, pg) = /Cfl—ﬂ T2 W (20 F =0, y). (33)

The soft and collinear degrees of freedom decouple in the threshold limit, so the physics at different

scales can be studied separately [4].

IV. RESUMMATION

The coupling A satisfies the renormalization group equation

d

T M) = (@) A(w) (34)




where the one-loop level v* is

A —_
v = 47T6CF (35)

The hard function encodes short distance information

H(mg, pus) = |Cr( m¢—ze 1ir)] :1+ch(L)<asi::f)> . (36)

We read off the results from the virtual correction:
s 4 5 2, 1 o
H(m(b,,uf):l—l—ﬂ Cp 2L—§7T -2 +Cp|—-2L —l-gﬂ' —4]]. (37)

Cp satisfies the RGE [B(]

d 2 . o m2 . H
dln,uCH(_m — i€, 1) = [Pcusp(as) <lnﬁ — m) +7 (« )} Cu(— m? — ie NTHR (38)
with
7 =274 4P =N (39)

7% is the anomalous dimension of the massless quark [{], and " is the one of the final state

colored scalar, which is given by [iJ]

’Yé) - _2CD7
212 98 4
’yf) = CDCA <% — 5 — 4C3> + —CDTFTlf (40)
The solution of Eq.(Bg) is [B]]
m2 —ar (kn,pty)
Cr(=m3, py) = exp [28(pn, pug) — i (s pig) + iwar (pn, ug)] <u—2¢> Cr(—mg, ),
h
(41)
with
) Do) ¢ dd
Sv,u) =— / da—=2 / , 42
( Iu) as(v) ﬁ(()é) as(v) 5(0/) ( )
@) Tesp (@)
_ cusp
aF(”? lu’) - /as(,/) dOé B(a) 9 (43)

where pi, is the hard matching scale, and for a.x we have a similar expression.

o



10

LN 15>

FIG. 1: Diagrams for calculating the O(as) soft function. The solid lines represent Wilson lines in the
light-like n and 7 directions, the dashed lines represent Wilson lines in the v direction, and the cut curly

lines represent the cut gluon propagators.

Up to the NLO, the soft matrix elements accounting for soft gluon radiations from initial and
final states can be obtained after calculating the Feynman diagrams shown in Fig. [, and the soft

function is given by
S(Vs(1—2z),uf) = % [5(1 —2)(Cp(—2L +4) + Cp(2L* — %))

47
| e [23] ]

+(—4Cp +8CFr(L —1nz)) [1 !

—Z

It satisfies the RGE [Bd]

d W(w, p) w
—dnp = — |4l cusp(as) In m + 29 () | W(w, )
S W) — Wi, )
—4F0usp(a8)/0 dw' R , (45)
with
=29 4T A (46)
where 7% is the anomalous dimension of the PDF [[]. Its solution is [B{]
Wi = o[ sny) + 20, e 560005 (2) " S (a7)
W, 1 = exp|— sy [ + A w s, [ S yMs)— | — 9
f f Y I Ul w \ s T(2n)
with
1 = 2ar (s, fi5); (48)
where 0, is the derivative with respect to 7, and 5 is obtained by a Laplace transformation
- o —sw Qg 2 4 2
5(L, ps) = dwe™*“W(w, ns) = 1+ o Cp(—2L +4) + Cr(2L* + 37 ), (49)
0
with
1
s = (50)

eVE IuseL/2 ’
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Combining the above formulae, the RG-improved integral kernel is given by

C(va@uf) = A2(M)\)’CH(_m§)7/’Lh)‘2U(m¢7MA7uh7,u87:uf)

_ 2 2 _
27N mg (1 — z) e~ 2VEN
= i (m— o] ——, 1
(1—z)t2° (“ R v oT (51)

with

m

2 ) —2ar (ip s pts)

U(m7 HXy Uhy U, Mf) = <_2
Hh

X exp [4S (i, ps) + daye (ps, o) — 20 (pns f1s) — 205 (px, ps)] - (52)

RG-impr.PT  Log.approx  Accuracy~ a?LF Teusp yH 4?4 Cu,s
- LL k=2n 1-loop tree-level tree-level
LO NLL 2n—1<k<2n 2-loop 1-loop tree-level
NLO NNLL 2n —3<k<2n 3-loop 2-loop 1-loop

TABLE II: Schemes for resummation with different levels of accuracy.

For convenience, we list the counting scheme in Table [[], which shows corresponding require-
ments of different levels of accuracy [BJ]. Currently the two-loop 4* is not available in the literature,
so we just use the one-loop ¥*. The contribution of 4 in the evolution function U (m, iy, fin, fhs, it )
cancels out when gy ~ pup, so ¥ only affects the running of A(yy), which gives a subordinate
contribution. We then call our resummation an approximate next-to-next-to-leading logarithmic

(NNLLapprox), which is combined with the NLO results as follows:

d Ucombined d O.thresh d O.ﬁxed—order

do.thresh
+
KX HR s s 1 f dY

ay

ay ay

) . (53)
HA=HR= (s =[if

Hf

V. NUMERICAL DISCUSSION

In this section, we discuss the numerical results for threshold resummation effects in the single
production of the color sextet (antitriplet) scalars at the LHC. Throughout our work the PDFsets
MSTW2008lo and MSTW2008nlo [f4-i] are used for LO, NLL and NLO, NNLLapprox, Tespec-
tively. If not explained specially, we will assume the coupling A\?(Mz) = 0.0la(Myz), and we
choose the initial state quarks uu for the sextet and ud for the antitriplet.

The comparison between the leading singular results and the NLO results is shown in Fig. f.
We find that the leading singular terms give the dominant contribution, and the leading singular

contribution of the sextet is smaller than the one of the antitriplet. The reason is that the terms
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FIG. 2: Comparison of the exact NLO results and the leading singular results. The long-dashed, dashed
and solid lines correspond to LO, leading singular NLO and exact NLO results, respectively. The mass of
the colored scalars is set to be 1 TeV in the rapidity distributions, and the center-of-mass energy of the

colliding hadrons is set to be 14 TeV.

associated with C'p give a negative contribution, and then a larger C'p of the sextet leads to smaller
leading singular results.

Taking the perturbative convergence of C'y and s as the guiding principle, we can obtain the
matching scales pj, and us. In Fig. [} we show the u; dependence of the expansion coefficient c;
defined in Eq.(Bf)). We choose the hard scale ,u% = 0.535m,, for the sextet and ,u% = 1.63m,, for
the antitriplet, respectively. The p5 dependence of the soft function is shown in Fig. []. We fit the

results and obtain the empirical functions:

’I’)’L¢(1—’7’)

V7 + 5407’
m¢(1 — T)

V4.6 + 3621

It is required that u) reflects the intensity of the interaction between the colored scalars and quarks,

sextet: ,ug =

antitriplet: pY = (54)
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FIG. 3: The pu; dependence of the expansion coefficients ¢; in the hard function.
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FIG. 4: The us dependence of the soft function with different masses of the colored scalars.

and p) = pp, is reasonable.

In Table [T], we list the typical results of total cross sections, which compare NLO+NNLL,pprox

with LO and NLO results. From Table [II, we can see that the resummation effects increase the

NLO total cross section by about 2% and 0.2% for 1 TeV antitriplet and sextet, respectively, and

5% and 3% for 2 TeV antitriplet and sextet, respectively, at the 8 TeV LHC. And the resummation

effects at the 14 TeV LHC are smaller than the ones at the 8 TeV LHC.

In Fig. [, we show the dependence of the total cross section on the scalar masses including

perturbative uncertainty bands due to variation of scale py at the 8 TeV LHC. We find that the

threshold resummation reduces the scale dependence of the total cross section. The scenario at the

14 TeV LHC is very similar, so we do not present it in the figures.

Fig. | shows the dependence of the resummed total cross section on pp and ps. The scales are
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sextet
V5=8 TeV V5=14 TeV
me LO NLO  NLO4NNLL.yprox ~ LO  NLO  NLO+NNLLapprox
0.5 TeV  7.53 8.59 8.58 129 14.2 14.2
1TeV  0.768  0.916 0.918 1.46  1.68 1.68
2TeV  0.0416 0.0512 0.0529 0.137  0.165 0.165
antitriplet
VS=8 TeV VS=14 TeV
me LO NLO  NLO+NNLLapprox ~ LO  NLO  NLO+NNLLapprox
0.5 TeV  4.85 6.13 6.21 917  11.1 11.2
1 TeV 0406  0.532 0.542 0.907  1.15 1.17
2TeV  0.0161 0.0215 0.0225 0.0686  0.899 0.916

TABLE III: Numerical results of the total cross section (unit: pb).

varied over the ranges u% /2 < pp < 2,ug and 1Y/2 < ps < 212, respectively. From Fig. [, we can
see that the uj; dependence of the sextet is more sensitive than the antitriplet.

In Fig. [, we present the rapidity distributions, which compare the resummation results com-
bined in Eq.(3) with the fixed-order results. The scale pif is varied over the range my/2 < py <
2mg. We find that the shapes of the rapidity distribution of the resummation change slightly over
the fixed-order results, and resummation reduces the scale dependence, except the NNLLypprox Te-
sults of the sextet cases. This is caused by the large color factor for the sextet (Cp = 10/3 for the
sextet, Cp = 4/3 for the antitriplet). The terms containing a large color factor C'p, which is asso-
ciated with the scale dependence of A and o, will enlarge the scale dependence of the NNLL;pprox
results of sextet.

Finally, we use recent dijet data at the LHC to give constraints on the couplings A. The CMS
collaboration published the results of dijet production based on 5 fb~! of 7 TeV data and 4 fb~!
of 8 TeV data [2T-£J], and the ATLAS collaboration based on 4.8 fb~1 of 7 TeV data and 13 fb~!
of 8 TeV data [i7, i§. Using the narrow-width-approximation [[£J], the total cross section can be

written as
27)7 Brae _

o= G [t [ oy do My [ =+ ) Mate)

B (27T)8

~ 48mD

m

/ A My (g2 / da M) (55)

After fitting the dijet data, we can give the constraints on the couplings. Since there is no direct

theoretical requirement on the couplings between the colored scalars and different quarks, we use a
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common value for the coupling A here. The colored scalars with different electronic charges couple
to different quarks, and then they receive different constraints. In Fig. [, we show the results of the
constraints on the couplings. The most stringent constraint on sextet! is A2(Myz) > 0.0060s(My),

and similarly the other constraints are 0.024cs(Mz), 0.006cs(Myz), 0.011as(Myz), 0.16a5(Mz) and

tII 25III

0.16as(My) for sextet!!, sextet!!! | antitriplet!, antitriplet!! and antitriplet’!!, respectively.

VI. CONCLUSION

We have studied the threshold resummation effects in the single production of the color sextet
(antitriplet) scalars at the LHC with the soft-collinear effective theory. We find that the resumma-
tion effects increase the NLO total cross section by about 2% and 0.2% for 1 TeV color antitriplet
and sextet scalar, respectively, and 5% and 3% for 2 TeV color antitriplet and sextet scalar, re-
spectively, at the 8 TeV LHC. The resummation effects improve the scale dependence of the cross
section and the rapidity distribution generally. But in the case of the rapidity distribution of the
color sextet scalar, the scale dependence is not improved because of the large color factor Cp
(Cp = 10/3 for the sextet, Cp = 4/3 for the antitriplet) enlarging the scale dependence. Besides,
we use recent dijet data from the LHC to give constraints on the couplings. For different col-
ored scalars with different electronic charges, the most stringent constraints of A>(My) range from

0.0060rs (Mz) to 0.160rs(Mz).

Acknowledgments

We would like to thank Hua Xing Zhu, Jian Wang and Qing Hong Cao for useful discussions.
This work was supported in part by the National Natural Science Foundation of China, under

Grants No. 11375013 and No. 11135003.

Appendix A: Relevant Feynman Diagrams

Relevant Feynman diagrams for the production of the colored scalar are shown in Fig. P
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