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Abstract

We report the computation of the matrix element of the chromomagnetic operator of the flavour changing neutral
current (FCNC)-type between a B- or D-meson state and a light hadron and off-shell photon. The computation is
carried out by using the method of light-cone sum rules (LCSR). It is found that the matrix element exhibits a large
strong phase for which we give a long distance interpretation. The analytic structure of the correlation function in use
admits a complex anomalous threshold on the physical sheet, the meaning and handling of which within the sum rule
approach is discussed. We compare our results to QCD factorisation for which spectator photon emission is end-point
divergent.

1. Introduction

The chromomagnetic operator of the b → s-type is
defined as follows:

Õ
(′)
8 = s̄σµνG

µν
a
λa

2
(1 ± γ5)b . (1)

In the effective Hamiltonian1 Heff
b→s =

kGFC8 [mb(ms)Õ8] + .., there is an additional fac-
tor of mb(ms), whose origin can be understood from
the minimal flavour symmetry of the Standard Model
(SM). The operator is therefore effectively of mass
dimension six and thus on the same footing as the
four-Fermi interactions.

The motivation for our work [1] is twofold: first, to
provide an estimate of the chromomagnetic matrix el-
ement; and second, to compare it with the QCD fac-
torisation (QCDF) calculation. The matrix element is
of importance for isospin asymmetries [2, 3, 4, 5, 6],
as the photon can be emitted from the spectator quark,
and for testing for weak phases in C(′)

8 [7, 8], which may
be related to the relatively large direct CP-violation in
D0 → π+π−/K+K− [10]. The comparison with QCDF
is not natural as LCSR are not tailored around the heavy
quark expansion and contain additional contributions
not inherent in the QCDF calculation. Possibly the most

1The coefficient k is convention dependent and C8 is the Wilson
coefficient.

surprising outcome of our investigations is the appear-
ance of a complex anomalous threshold on the physical
sheet in the correlation function used to extract the ma-
trix element.

2. Definitions and computation

We aim to compute the following matrix element

A∗ρ(V) = 〈γ∗(q, ρ)V(p, η)|Õ8|B̄(pB)〉 , (2)

where V stands for a light vector meson of the ρ,K∗,etc.-
type and the star indicates that the photon γ can be off-
shell, i.e. q2 , 0. The formalism allows us to extract
the matrix element above with the B-meson replaced
by a D-meson as well as the V-meson replaced by a
light pseudoscalar of the π,K,etc.-type. Throughout this
write-up we shall refer mostly to the B̄ → Vγ∗ transi-
tion and replacements for the other decays are consid-
ered implied. Eq. (2) decomposes into the following
transverse Lorentz structures2

cV A
∗ρ(V) = kG

3∑
i=1

Gi(q2)Pρ
i ,

A∗ρ(P) = kG GT (q2)Pρ
T . (3)

2The factor cV is inserted to absorb trivial factors due to the ω ∼
(ūu + d̄d)/

√
2, ρ0 ∼ (ūu − d̄d)/

√
2 wave functions. cV = −

√
2 for ρ0

in b → d, cV =
√

2 in all other transitions into ω and ρ0, and cV = 1
otherwise.
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(qρPρ
ι = 0 where ι ∈ {1, 2, 3,T })

Pρ
1 =2εραβγη

∗αpβqγ ,

Pρ
2 =i{(m2

B−m2
V )η∗ρ−(η∗ ·q)(p + pB)ρ} ,

Pρ
3 =i(η∗ ·q){qρ−

q2

m2
B−m2

V

(p + pB)ρ} ,

Pρ
T =

1
mB + mK

{(m2
B − m2

K)qρ−q2(p + pB)ρ} . (4)

The prefactor kG ≡ −2e/g is chosen such that Gi and GT

parallel the standard form factors T1 and fT in the sense
that the amplitude readsA(b→ s) ∝ (C7T1+C8G1)P1+

.. and likewise in the pseudoscalar case. Under the re-
placement O8 → O

′
8, i.e. (1 + γ5) → (1 − γ5), at our

level of approximation3, the matrix element transforms
as follows,

{G1,G2,G2,GT }
γ5→−γ5
→ {G1,−G2,−G3,GT } , (5)

by virtue of parity conservation of QCD.
The matrix element is extracted from the following

correlation function:4

ΠV = i
∫

x
〈γ∗(q)V(p)|T JB(x)Õ8(0)|0〉e−ipB·x, (6)

where JB = imbb̄γ5q plays the role of the interpolating
current for the B-meson. At leading order in αs there
are a total of twelve graphs. We divide these into those
where the gluon connects to the spectator quark (s) and
those where it connects to the non-spectator quark (ns):

Gι(q2) = G(s)
ι (q2) + G(ns)

ι (q2) . (7)

The four diagrams denoted by A1 to A4 in
Fig.1(top,middle) contribute to G(s)

ι whereas the
diagrams at the bottom of the same figure correspond
to the G(ns)

ι -contributions. The latter factorise into
a function of f (q2/mb) times standard vector, axial
or tensor form factors. The function f , in terms of
an expansion in powers of q2/m2

b and logarithmic
terms, has been obtained in the inclusive case in [11]5.
The two diagrams where the photon is emitted from
the spectator quark and the gluon connects to the
non-spectator quark are not shown. They are expected
to be small since no fraction of the mb-rest mass is
transmitted to the energetic photon.

3The sign alternate from chiral even to chiral odd DA.
4For the sake of notational simplicity, we shall keep the photon

polarisation tensor contracted here as in (2), though from a physical
point of view this does not make sense for an off-shell photon.

5We would like to add that it would be possible to compute these
contributions within LCSR.
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Figure 1: (top/middle) Diagrams A1 to A4 to which we refer to
as spectator corrections (bottom) Non-spectator corrections.
Crosses denote possible places for photon emission.

The diagrams are computed via the light-cone oper-
ator product expansion (LC-OPE), since the correlation
function is believed to be dominated by light-like dis-
tances. Schematically this amounts to to a convolution
between a perturbatively calculable hard scattering ker-
nel TH and light-cone distribution amplitudes (DA) φ:

Π(q2, p2
B) =

∑
i

T (i)
H (q2, p2

B; µF ; u) ◦ φ(i)(u, µF) .

The sum extends over increasing orders of twist, defined
as the dimension of the operator minus its spin projec-
tion, and the variable u stands for the momentum frac-
tion of the strange quark in the light meson. We limit
ourselves to leading twist-2.

3. Sum rules and anomalous thresholds

For the important steps of selecting cuts for the dis-
persion relation and Borel transformation we refer the
reader to the main paper [1]. We shall quote here an
intermediate expression,

〈γ∗(q)V(p)|Õ8|B̄(pB)〉 =

1
fBm2

B

1
2πi

∫
Γ\ΓNP

dse
m2

B−s

M2 ΠV (q2, s) ,
(8)

that relates an on-shell matrix element to an integral
over an off-shell correlation function. Γ is a closed path
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on the physical Riemann sheet that does not contain any
singularities such as poles and cuts. ΓNP is of the same
type except that it contains the pole of the matrix ele-
ment. At this stage the relation is exact but admittedly
rather cryptic. In sum rules the analytic structure of the
correlation functions is usually such that the singular-
ities are on the real line. In the case at hand though
it happens that there is an anomalous threshold extend-
ing into the complex plane. Let us explain in more de-
tail: after the reduction to scalar integrals the Passarino-
Veltman function C0(s, u(s − m2

B), ūm2
B + uq2, 0,m2

b, 0)
(where s = p2

B) appears in the expression for G(s)
ι (q2),

c.f. Fig. 2. The fact that this function has an anomalous
threshold extending into the lower half-plane, for q2 > 0
and appropriate momentum fraction u, can be seen in
various ways. First, using the explicit result valid on the
real line we can show by uniqueness of analytic continu-
ation from the real line that there must be singularities in
the complex plane [1]. Second, by setting m2

B < 0 in the
dispersion integral we see that its path is deformed into
the lower complex plane by analytic continuation of m2

B
to its physical value [1]. The analytic structure of this
function is depicted in Fig. 2 for a simplified set of vari-
ables. Further to that, the work of Källén and Wightman
[16] shows that anomalous thresholds are present in the
corresponding triangle function of the full theory using
a minimal number of axioms. This almost implies that
the anomalous thresholds are present in the full theory:
the loophole is that the reduction to a scalar object in the
non-perturbative case is not as efficient as for the one-
loop case; thus it could in principle be that the contribu-
tions cancel, however this is unlikely and in any case not
relevant to our discussion. The important point is that
the Re[s−] and thus the rest the anomalous branch cut is
well above the mB-pole, and the anomalous cut is part
of what is usually called the continuum contribution in
sum rules. In the following paragraph we aim to discuss
to what extent these anomalous thresholds are surpris-
ing and what their meaning is in the hope of clarifying
to the reader some of our brief argumentation above.

The crucial point is that the correspondence between
matrix elements and correlation functions is compli-
cated when the number of legs increases. Let us begin
by discussing the simplest case. For a two-point func-
tion of gauge invariant operators, a dispersion represen-
tation is in one-to-one correspondence with the inser-
tion of a complete set of states as is explicit in the cele-
brated Källén-Lehmann representation [18] and deriva-
tions thereof. Thus the analytic structure in the com-
plex plane of the four momentum invariant has a cut
and poles on the real line starting from the lowest state

m3

m1

m2

p1

p2

p3

m2
b

s−

m2
b + β/2

Cs

Γ

Figure 2: (left) Triangle graph corresponding to the
C0(p2

1, p2
2, p2

3,m
2
2,m

2
3,m

2
1) PV-function. The conventions are

the same as in LoopTools [14] and Feyncalc [15]. (right)
analytic structure of C0(s, s − β, α, 0,m2

b, 0) in the Cs-plane;
more precisely this corresponds to the physical sheet. The
leading Landau singularities of this triangle function are s± =

m2
b + β/2 ±

√
(β/2)2 − αm2

b. As discussed in the text s− is on
the physical sheet whereas s+ is not.

in the spectrum. For correlation functions with three or
more fields, there is no such direct relation. It seems
preferable to think of the analytic structure (singular-
ity structure) as a fundamental part of the correlation
function rather than as the insertion of a complete set
of states. For the dispersion relation, which is essen-
tially an application of Cauchy’s integral theorem, it is
immaterial whether the singularities are of the normal
or anomalous type. Normal thresholds are related to
unitarity, that is to say to the insertion of a complete
set of states. Anomalous thresholds do not have such
an interpretation. In fact, the anomalous threshold of
the triangle graph in perturbation theory corresponds to
the leading Landau singularity which in turn amounts
to setting all the propagators on the mass shell. One out
of the two solutions s± of the (leading) Landau equa-
tions turns out to be the end of the anomalous threshold
(Fig. 2), whereas the other one is not on the physical
sheet. We should add that determining which Riemann-
sheet a complex singularity is on is generally a difficult
problem.

4. Results

We refer the reader to reference [1] for some explicit
analytic results. The results of G(s)

ι (q2) and G(ns)
ι (q2)

are collected in appendices A and C of that reference.
Amongst all the possible flavour transitions, only four
are characteristically different depending on whether the
initial meson is neutral or charged and whether it is of
the beauty or charm type. Various subparts of this class,
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at q2 = 0, are collected in Tab. 1. The ratio of G(s)
1 to

T1(0) can be understood as a radiative correction and
is proportional to αs(mb(c))/(4π) times other factors of
O(1). Further semi-quantitative insight can be gained
by considering the heavy quark scaling of the matrix
elements which is m−3/2

b except for diagrams A1,2 which
scale as m−5/2

b [ln(mb) + O(1)] as discussed in section 5.
Projecting out the quark charges the respective ratios of
GD

1 (0) to GB
1 (0) follow the ratio of heavy quark scaling

and αs(
√

mcΛhad)/αs(
√

mbΛhad) surprisingly well.

type B− → ρ−γ B̄0 → ρ0γ

G(s)
1 (0) · 102 0.30 − 0.41i 0.23 + 0.21i

G(ns)
1 (0) · 102 0.90 + 1.3i 0.90 + 1.3i

G1(0) · 102 1.2 + 0.89i 1.1 + 1.5i∣∣∣G(s)
1 /G(ns)

1

∣∣∣ (0) 32% 20%∣∣∣G(s)
1 /T1

∣∣∣ (0) 2% 1%
|G1/T1| (0) 6% 7%

type D+ → ρ+γ D0 → ρ0γ

G(s)
1 (0) · 102 −1.9 + 2.6i −7.4 − 5.2i

G(ns)
1 (0) · 102 −8.5 − 12i −8.5 − 12i

G1(0) · 102 −11 − 9.4i −16 − 17i∣∣∣G(s)
1 /G(ns)

1

∣∣∣ (0) 21% 59%∣∣∣G(s)
1 /T1

∣∣∣ (0) 5% 13%
|G1/T1)| (0) 21% 34%

Table 1: Comparison of various parts of the four characteris-
tic types of Gι matrix elements. For the short distance form
factor T1(0) we use T B

1 (0) = 0.27 [12] and T D
1 (0) = 0.7 [8]

as reference values. Recall G1(0) = G(s)
1 (0) + G(ns)

1 (0) and
G(s)

1 (0) = G(⊥)
1 (0) at our level of twist approximation.

We consider it worthwhile to quickly mention how
the various projections of the DAs contribute to the ma-
trix elements and how they are interrelated. At twist-2
there are seven contributions:

G(s)
i = G(⊥)

i (q2) + G(‖)
i (q2) ,

G(s)
T = G(P)

T (q2) , (9)

It turns out that (9) can be fully reconstructed by know-
ing the three subparts G(⊥)

1 (q2), G(‖)
3 (q2) and G(P)

T (q2).
Thus there are four relations: G(‖)

1 (q2) = 0, G(‖)
2 (q2) = 0,

G(⊥)
2 = (1−q2/m2

B)G(⊥)
3 and G(⊥)

2 = (1−q2/m2
B)G(⊥)

1 . The
third relation assures a finite decay width in the limit
m2

V → 0 (as employed here) [6]. The fourth relation
is of the large energy effective theory (LEET)-type as
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q2

B− → K∗− : G(‖)
3 (q2)×102

Re
Im

Figure 3: See caption of Fig. 4

found for form factors [13], whose origin is explained
in appendix A of [? ] using the third relation and a
generic ansatz. Furthermore, in the ultra-relativistic ap-
proximation m2

V → 0, the projections G(P)
T (q2) G(‖)

3 (q2)
are proportional to each other modulo a replacement of
the corresponding DA. Thus the results can be under-
stood qualitatively from the plots of G(⊥)

1 and G(‖)
3 c.f.

Fig. 3,4 as the DA of φ‖(u) and φP(u) hardly differ in
practice. The uncertainties, which are added in quadra-
ture, are estimated to be between 25% and 35% [1], for
the b and c-transitions respectively, depending on the
hadronic input. It worthwhile to point out that the un-
certainties are higher for the charm transitions because
of the low scale for αs.

5. Comparison with QCD-factorisation

We shall summarise here a few points of the discus-
sion in chapter 5 of [1] on comparing the contributions
of diagrams A1,2 of Fig. 1 in the QCDF and LCSR ap-
proaches. These diagrams form a well defined subset as
they are isospin dependent. Parameterising G1(0) as

G1(0) = O(m−5/2
b )

∫ 1

0
φ⊥(u)x⊥(u)︸             ︷︷             ︸
≡X⊥

+O(Qb) ,

4
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Figure 4: Plots of G(⊥)
1 (q2) and G(‖)

3 (q2) for charged (c.f. Fig. 3)
and uncharged B meson. These plots make it clear why one the
Gι(q2)-functions are not referred to as form factors as they do
not reveal a particular structure but parameterise a multitude
of effects amongst which long distance contributions play a
definite rôle. The results are valid in the region of q2 above
1 GeV2, that is to say outside the resonance region and say
3 GeV2 below m2

b.

the QCDF [2] and LCSR [1] results read

xQCDF
⊥ (u) =

1 + ū
3ū2 ,

xLCS R
⊥ (u) =

∫ s0

m2
b

ds e
m2

B−s

M2 ρ(s, u) , (10)

with ū ≡ 1 − u and

ρ(s, u) = O(m3
b)


log

(
ūs(m2

b+m2
B−s)

m2
B(m2

b−us)

)
m2

B − ūs
−

s − m2
b

ūsm2
B

 .
The endpoint divergence in QCDF arises as follows: as-

suming an endpoint behaviour φ⊥(u)
u'1
→ 6ūu, which is

true at every finite order in the Gegenbauer expansion,
it is readily seen that XQCDF

⊥ is logarithmically diver-
gent (at the endpoint u = 1). On a purely technical
level this happens because two propagators behave as
1/ūm2

B c.f. Fig. 5. In LCSR there is only one propaga-
tor with manifest 1/(ūm2

B)-behaviour (c.f. Fig. 5) and

there is no such term hidden in the loop as it would
correspond to a power IR-divergence, and it is known
that in four dimensions IR-singularities, whether they
are soft or collinear, are at worst of logarithmic na-
ture, e.g. [19]. Thus the worst behaviour that we can
get is xLCS R

⊥ ∼ ln ū/ū which is integrable, i.e. does
not show an endpoint-divergence. Inspection or eval-
uation Eq. (10) gives an even milder behaviour with
xLCS R
⊥ ∼ ln ū for which we see no particular reason.

The comparison between QCDF and LCSR can be
sharpened if the heavy quark scaling mB → mb + Λ̄,
s0 → m2

b + 2mbω0 and M2 → 2mbτ, as suggested in
[20], is applied:

XLCS R
⊥ ∼ ln(mb/2ω0) + O(1) + O

(
ΛQCD

mb

)
. (11)

The logarithmic term indicates that this expression is
not expandable in inverse powers of the heavy quark
mass. In fact, the expansion of the density around
mb = ∞ reveals that ρ(s, u) ∼ 1/(mn

būn+1) in our re-
sults. Are the LCSR and the QCDF to be seen on an
equal footing when the leading heavy quark scaling be-
haviour is considered? The answer must be no as the
former has a sizeable imaginary part whereas the latter
is real (at leading order in αs) [1]. This difference is due
to the fact that LCSR contain additional contributions
which are not present in the QCDF computation. An
interpretation of the complex phase as a long distance
phenomenon is given in the caption of Fig. 6.

In regards to the discussion above it is seems worth-
while to point out that even though QCDF and LCSR are
both based on LC-expansions in terms of hard kernels
and DAs they differ on a conceptual level. QCDF com-
putes physical processes in a direct way and is in that
sense very transparent. LCSR is of an indirect nature
as correlation functions are computed in which the ma-
trix element in question appears as a residue of a pole.
The matrix element is then extracted by manipulating
the sum rule (Borel transformation) and considering ap-
propriate kinematical limits. In this sense LCSR is akin
to lattice-QCD extraction of matrix elements.

6. Conclusions

In this write up we have reported on the computation
of matrix elements of heavy to light meson transitions
induced by the O8 operator using LCSR. We focused on
the appearance of a complex anomalous threshold and
on comparing our results with those previously com-
puted in QCDF. A characteristic feature of the results is
a large strong phase reflecting the long distance physics
contained in these matrix elements.

5



ūp
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ūp+ q

upÕ8
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Figure 5: The shaded propagators scale like 1/(ūm2
B) in both

figures. (left) Diagram used in LCSR. (right) Diagram used in
QCDF. Thus xQCDF

⊥ ∼ 1/ū2 and xLCS R
⊥ ∼ ln(ū)/ū at worst, as

explained in the text.

B B V (p)

Õ8

q

pB
(qs)0± (qs)0±

up

ūp

Figure 6: (left) Hadronic interpretation of the 3-particle cut in
in terms of a long-distance hadronic process. The state (q̄s)0±

is any state, single or multiparticle, of spin zero with q̄ and s
quantum numbers. The latter is a source for the strong (CP-
even) phase that we obtain for the Gι(q2)-functions.
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