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Abstract
Analyses of the J/ψ π+π− decay channel of the X(3872) resonance by the CDF, Belle, and

LHCb collaborations have established its JPC quantum numbers as 1++. An analysis of the

π+π−π0 invariant mass distribution in the J/ψ π+π−π0 decay channel by the Babar collaboration

indicated a preference for 2−+ over 1++. We point out that a proper evaluation of the χ2 in that

analysis increases the probability for 1++ from 7.1% to about 18.7%. In the case of quantum

numbers 1++, where the X has an S-wave coupling to J/ψ ω, the proximity of the J/ψ ω threshold

to D∗D̄ thresholds and the narrow width of the ω suggest that the effects of scattering between

J/ψ ω and charm meson pairs could be significant. We derive invariant mass distributions for

J/ψ π+π−π0 and π+π−π0 that take into account S-wave scattering between the D∗0D̄0, D∗+D−,

and J/ψ ω channels. We also analyze the effects of scattering through the χc1(2P ) charmonium

resonance. We find that scattering effects are unable to produce significant changes in the shape

of the π+π−π0 invariant mass distribution.

PACS numbers: 12.38.-t, 12.39.St, 13.20.Gd, 14.40.Gx
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I. INTRODUCTION

Ever since the discovery of the X(3872) by the Belle Collaboration in 2003 [1], one
of the leading interpretations has been a charm meson molecule whose constituents are a
superposition of D∗0D̄0 and D0D̄∗0 [2, 3]. This identification would require the JPC quantum
numbers of X(3872) to be 1++. The observation of its decay into J/ψ γ determined the
charge conjugation C to be + [4, 5]. In 2006, the CDF Collaboration reduced the options
for JPC to 1++ and 2−+ by analyzing decays into J/ψ π+π− [6]. The LHCb Collaboration
recently ruled out 2−+, finally establishing the quantum numbers of X(3872) as 1++ [7].

The option 2−+ had been disfavored on various theoretical grounds, especially if the
X(3872) is identified with the 1D2 charmonium state η′c2. The prediction of the mass of η′c2
in most potentials models is lower than 3872 MeV by 40 to 100 MeV [8]. The decay of η′c2
into J/ψ γ should have strong multipole suppression [9]. The expected production rate for
D-wave charmonium in a hadron collider is much smaller than the observed production rate
of the X(3872) at the Tevatron [10]. The decay of D-wave charmonium into D0D̄0π0 should
have angular momentum suppression [11]. Finally, the degree of isospin violation required
by the observed branching fraction into J/ψ π+π− is difficult to accommodate for D-wave
charmonium [12]. All of these problems are solved, or at least ameliorated, if the quantum
numbers are 1++.

Back in 2010, the Babar collaboration analyzed decays of X(3872) into J/ψ π+π−π0

and concluded that 2−+ was preferred over 1++ [13]. They quantified this preference in
terms of a probability that was 7.1% for 1++ and 61.9% for 2−+. We will point out that a
proper quantification of the likelihood for the observed result increases the probability for
1++ to 18.7%. With the properly calculated probabilities, the preference for 2−+ over 1++

is no longer so significant. However it is still worth considering whether a more accurate
description of the resonance in the J/ψ π+π−π0 channel would be important in the Babar
analysis or in future analyses.

Since it has quantum numbers 1++, the X has an S-wave coupling to J/ψ ω. The prox-
imity of the J/ψ ω threshold to the D∗0D̄0 and D∗+D− thresholds and the narrow width of
the ω suggest that the effects of scattering between J/ψ ω and charm meson pairs could be
significant. We therefore study the effects of scattering between these coupled channels on
the X(3872) resonance in the J/ψ π+π−π0 channel. We also analyze the effects of scattering
through the χc1(2P ) charmonium resonance, which has quantum numbers 1++.

In Section II, we introduce our notation for the three coupled channels and for the many
masses that are relevant to this problem. In Section III, we derive the scattering ampli-
tudes due to S-wave scattering between the coupled channels. We use them in Section IV
to determine the inclusive line shape of the X(3872) resonance and its line shape in the
J/ψ π+π−π0 channel. We also determine the effect of the χc1(2P ) resonance on the line
shape. In Section V, we derive a simple expression for the π+π−π0 invariant mass distri-
bution. We examine the Babar results in Ref. [13] and point out that a proper evaluation
of the χ2 significantly increases the probability for the quantum numbers 1++. We show
that the experimental resolution, which was ignored in previous theoretical analyses, has
a significant effect on the π+π−π0 invariant mass distribution. Finally we study the effect
on that invariant mass distribution of scattering between the three coupled channels and
scattering through the χc1(2P ) charmonium resonance.
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II. NOTATION AND MASSES

We consider the effects of scattering between three JPC = 1++ channels involving the
particle pairs D∗0D̄0, D∗+D−, and J/ψ ω. We label the three channels by the integers 0, 1,
and 2 and a vector index n associated with the polarizations of the spin-1 particles:

|0, n〉 =
1√
2

(
|D∗0(n) D̄0〉 − |D0 D̄∗0(n)〉

)
, (1a)

|1, n〉 =
−1√

2

(
|D∗+(n)D−〉 − |D+D∗−(n)〉

)
, (1b)

|2, n〉 =
εnml√

2
|J/ψ(m)ω(l)〉. (1c)

The 3× 3 matrices that project these channels onto isospin 0 and isospin 1 are

Π0 =

 1
2
−1

2
0

−1
2

1
2

0
0 0 1

 , (2a)

Π1 =

 1
2

1
2

0
1
2

1
2

0
0 0 0

 . (2b)

We denote the masses of the charm mesons D∗0, D0, D∗+, and D+ by M∗0, M0, M∗1, and
M1 and the masses of J/ψ and ω by Mψ and Mω. We denote the reduced masses for the
three channels in Eqs. (1) by µ0, µ1, and µψω, respectively. The energy differences δ1 and
δψω between the thresholds for D∗+D− and J/ψ ω and the D∗0D̄0 threshold are

δ1 = (M∗1 +M1)− (M∗0 +M0) ≈ 8.1 MeV, (3a)

δψω = (Mψ +Mω)− (M∗0 +M0) ≈ 7.7 MeV. (3b)

We denote the total energy of the pair of particles in their center-of-momentum frame by
M . Their total energy relative to the D∗0D̄0 threshold is

E = M − (M∗0 +M0). (4)

The amplitude for the propagation of a pair of particles between contact interactions involves
the square root of their total energy relative to threshold. The appropriate thresholds for
the pairs of particles in the channels in Eqs. (1) are complex, with imaginary parts given
by the sum of the decay widths of the two particles. If one of the widths is much larger
than the other one, it is sufficient to only take the larger one into account. The resulting
threshold factors for the pairs of particles in the channels in Eqs. (1) are

κ(E) = [−2µ0(E + iΓ∗0/2)]1/2 , (5a)

κ1(E) = [−2µ1(E − δ1 + iΓ∗1/2)]1/2 , (5b)

κψω(E) = [−2µψω(E − δψω + iΓω/2)]1/2 , (5c)

where Γ∗0 ≈ 66 keV, Γ∗1 ≈ 96 keV, and Γω ≈ 8.5 MeV are the decay widths of D∗0, D∗+,
and ω. The reduced masses are µ0 = 966.7 MeV, µ1 = 968.7 MeV, and µψω = 624.8 MeV.
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It is convenient to introduce a 3× 3 matrix K(E) whose diagonal entries are the threshold
factors in Eqs. (5):

K(E) =

 κ(E) 0 0
0 κ1(E) 0
0 0 κψω(E)

 . (6)

We denote the mass of the X(3872) by MX and its width by ΓX . The most precise
determinations of MX and ΓX come from the J/ψ π+π− decay channel. Measurements in
this channel avoid biases associated with the D∗0D̄0 threshold that plague some other decay
channels, such as D0D̄0π0 [14]. The most precise measurements of MX have been made by
the CDF, Belle, LHCb, and Babar collaborations [15–18]. The PDG average for the mass
is MX = 3871.68 ± 0.17 MeV [19]. We denote the binding energy relative to the D∗0D̄0

threshold by EX = (M∗0 + M0)−MX . Using the PDG averages for M0 and M∗0 −M0, we
obtain the binding energy

EX = 0.26± 0.39 MeV. (7)

More precise measurements of M0 by the LHCb collaboration [20] and by an analysis of
data from the CLEOc collaboration [21] have further decreased the uncertainty in EX ,
reinforcing the conclusion that X(3872) is extremely close to the D∗0D̄0 threshold. The
best experimental upper bound on ΓX comes from measurements in the J/ψ π+π− decay
channel by the Belle collaboration [16]:

ΓX < 1.2 MeV (90% CL). (8)

A theoretical lower bound is provided by the width of the constituent D∗0: ΓX > 0.066 MeV.

III. LOW-ENERGY SCATTERING

In this section, we derive the low-energy scattering amplitudes for the three coupled
channels consisting of neutral and charged charm mesons and J/ψ ω. We then write down
simpler scattering amplitudes for the charm mesons only in which the effects of the J/ψ ω
channel are taken into account implicitly through one of the scattering parameters. Finally
we write down scattering amplitudes for the charm mesons that take into account the χc1(2P )
resonance.

A. Explicit J/ψω channel

The low-energy scattering amplitudes fij(E) from S-wave contact interactions between
the three coupled channels defined in Eqs. (1) can be expressed as a 3× 3 matrix:

f(E) = [−G+K(E)]−1 , (9)

where K(E) is defined in Eq. (6) and G is a symmetric 3× 3 matrix of coupling constants.
Imposing the constraints from isospin symmetry, this matrix has the form

G = Π0

 γ0 0 γX
0 γ0 −γX
γX −γX γV

Π0 + γ1 Π1, (10)
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where Π0 and Π1 are the isospin projection matrices defined in Eqs. (2) and γ0, γ1, γV ,
and γX are constants with dimensions of momentum. The matrix of amplitudes in Eq. (9)
satisfies the Lippmann-Schwinger equation:

f(E) = −G−1 +G−1K(E) f(E). (11)

This can be verified by inserting Eq. (9) for f(E), multiplying on the left by G, and multi-
plying on the right by −G+K(E), in which case it reduces to a trivial identity. The explicit
expressions for the scattering amplitudes fij(E) in Eq. (9) are

f00 = [(−γ0 − γ1 + 2κ1)(−γV + κψω)− 2γ2
X ]/D, (12a)

f01 = [(γ1 − γ0)(−γV + κψω)− 2γ2
X ]/D, (12b)

f11 = [(−γ0 − γ1 + 2κ)(−γV + κψω)− 2γ2
X ]/D, (12c)

f02 = 2(−γ1 + κ1)γX/D, (12d)

f12 = −2(−γ1 + κ)γX/D, (12e)

f22 = [2γ0γ1 − (γ0 + γ1)(κ1 + κ) + 2κ1κ]/D, (12f)

where the denominator is

D = [2γ0γ1 − (γ0 + γ1)(κ1 + κ) + 2κ1κ](−γV + κψω)− 2(−2γ1 + κ1 + κ)γ2
X . (13)

For energies above the appropriate thresholds, the nonrelativistically normalized T-matrix
elements Tij(E) for scattering between the three channels are given by the matrix

T (E) = 2πµ−1/2 f(E)µ−1/2, (14)

where µ is the diagonal matrix of reduced masses.
The imaginary parts of the scattering amplitudes fij(E) in Eq. (9) can be expressed as

Imf(E) = f(E) [ImG− ImK(E)] f(E)∗, (15)

The T-matrix elements for elastic scattering between the three coupled channels are exactly
unitary if the constants γ0, γ1, γV , and γX in Eq. (10) are real and if the widths Γ∗0, Γ∗1, and
Γω in Eqs. (5) are set to zero. In this case, the imaginary part of fij(E) is nonzero only if
the energy E exceeds one of the thresholds 0, δ1, and δψω. The effects of additional inelastic
scattering channels can be taken into account through the analytic continuation of the
parameters [22, 23]. The dominant effects of inelastic scattering channels that correspond to
decay products of D∗0D̄0, D∗+D−, and J/ψ ω, such as D0D̄0π0, D+D−π0, and J/ψ π+π−π0

are taken into account through the widths Γ∗0, Γ∗1, and Γω in κ, κ1, and κψω. The dominant
effects of other inelastic scattering channels can be taken into account through the coupling
constants γ0, γ1, γV , and γX , which can have positive imaginary parts. For example, the
isospin-1 decay mode J/ψ π+π−, in which π+π− is dominated by the ρ0 resonance, can be
taken into account through the positive imaginary part of γ1.

As the energy E approaches the D∗0D̄0 threshold at E = 0, the elastic scattering ampli-
tude for D∗0D̄0 must approach the universal expression [24]

f00(E) −→ 1

−γ + κ(E)
. (16)
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It is easy to identify γ by exploiting the fact that the denominator D in Eq. (13) is linear
in κ. Since |E| � δ1, δψω, we can set E = 0 in κ1 and κψω. The resulting expression for the
inverse scattering length is

γ =
2γ0γ1 − (γ0 + γ1)κ1(0) + 2[2γ1 − κ1(0)]γ2

X/[−γV + κψω(0)]

γ0 + γ1 − 2κ1(0) + 2γ2
X/[−γV + κψω(0)]

. (17)

The binding energy and the width of the X(3872) are determined by the real and imaginary
parts of γ. This puts two constraints on the real parts and the small imaginary parts of the
four parameters γ0, γ1, γV , and γX .

B. Implicit J/ψω channel

If γX = 0 or if |γV | is much larger than |κψω(E)|, the J/ψ ω channel decouples from
the charm meson channels. The J/ψ ω scattering amplitude f22 in Eq. (12f) reduces to
1/(−γV +κψω). The scattering amplitudes for the 0 and 1 channels reduce to the scattering
amplitudes for charm mesons derived in Ref. [23]:

f00 = (−γ0 − γ1 + 2κ1)/D′, (18a)

f01 = (γ1 − γ0)/D′, (18b)

f11 = (−γ0 − γ1 + 2κ)/D′, (18c)

where the denominator is

D′ = 2γ0γ1 − (γ0 + γ1)(κ1 + κ) + 2κ1κ. (19)

These are the appropriate scattering amplitudes if the X(3872) resonance is generated dy-
namically by attractive interactions between the charm mesons.

The charm meson scattering amplitudes f00, f01, and f11 in Eqs. (12), which take into ac-
count the J/ψ ω channel explicitly, can be obtained exactly from the amplitudes in Eqs. (18)
by making the substitution

γ0 −→ γ0 +
2γ2

X

−γV + κψω(E)
. (20)

The second term on the right side is the product of the J/ψ ω scattering amplitude and
transition amplitudes proportional to γX . Thus the only effect of the J/ψ ω channel on
scattering between the charm mesons is to resolve the isospin-0 inverse scattering length
into an energy-dependent term from transitions to J/ψ ω and a constant γ0 that takes into
account shorter-distance effects.

C. χc1(2P ) resonance

The χc1(2P ) charmonium state has quantum numbers 1++. If its mass is close enough
to that of the X(3872) resonance, it can have a significant effect on the charm meson
scattering amplitudes near the D∗0D̄0 threshold. It could be responsible for generating the
X(3872) resonance or it could be a separate resonance with quantum numbers 1++. If the
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χc1(2P ) is a separate resonance from the X(3872), it is expected to be higher in mass. One
former candidate for the χc1(2P ) is a state labelled X(3915) by the Particle Data Group
[19]. It was discovered by the Babar collaboration through B decays into X(3915) + K
in the decay channel X(3915) → J/ψ ω [25], which implies that its charge conjugation is
C = +. Its properties were measured more accurately in Ref. [13]. The X(3915) was also
observed by the Belle collaboration in the production channel γγ → X(3915) [26], which
would have excluded 1++, but that observation could also be attributed instead to the
nearby charmonium state χc2(2P ) at 3927 MeV. However a recent analysis by the Babar
collaboration of γγ → X(3915) → J/ψ ω determined the spin-parity to be JP = 0+ [27].
This excludes X(3915) as a candidate for χc1(2P ). At this point, there is no well-established
resonance besides the X(3872) that might be identified with χc1(2P ). We will however for
completeness consider the possibility of a separate 1++ resonance with mass above 3872 MeV.

The coupled-channel problem for low-energy S-wave interactions of neutral and charged
charm meson pairs with a 1++ charmonium resonance was solved in Ref. [28]. The scattering
amplitudes are those for charm mesons in Eqs. (18) with the substitution

γ0 −→
(

1

γ0

+
g2

E − ν

)−1

=
γ0(E − ν)

E − ν + g2γ0

. (21)

These scattering amplitudes were also studied in Ref. [29]. They are exactly unitary for real
values of the four parameters γ0, γ1, ν, and g. The combination ν − g2γ0 can be identified
as the energy of the χc1(2P ) resonance. In Ref. [28], charmonium phenomenology was used
to obtain the estimate g = 0.4 for the coupling constant. The methods of Ref. [28] could be
extended to the case with a third scattering channel J/ψ ω that also couples to the χc1(2P ).

IV. LINE SHAPES OF X(3872)

In this section, we present line shapes for the X(3872) resonance in the J/ψ π+π−π0

channel. We first discuss the short-distance factors in a factorization formula for the line
shapes. We give an expression for the line shape in which the J/ψ ω channel is taken into
account explicitly. We then give an expression for the line shape in which the effects of
the J/ψ ω channel are taken into account implicitly through the scattering parameter γ0.
Finally we give an expression for the line shape in which the χc1(2P ) resonance is taken into
account.

A. Short-distance factors

For a production process that involves an energy transfer that is large compared to the
low-energy scales δ1 and δψω set by the differences between the thresholds, the inclusive
production rate summed over all resonant final states X satisfies a factorization formula
[30]. If the production process is a decay, such as B → K + X or B → K∗ + X, the
differential decay rate can be expressed as

dΓ =
∑

ijΓij Imfij(E) dE, (22)

where the Γij are short-distance factors that are insensitive to the resonance energy E.

7



The expression for the matrix Imf(E) in Eq. (15) can be used to decompose the dif-
ferential decay rate in Eq. (22) into contributions proportional to the imaginary parts of
the scattering parameters, which appear in the matrix G, and the imaginary parts of the
threshold factors, which appear in the matrix K. The short-distance factors Γij in Eq. (22)
are entries of a positive-definite hermitian matrix. They can be expressed as sums with
positive weights of terms of the form Ck,i(Ck,j)

∗, where Ck,i is a short-distance amplitude
for the creation of a pair of particles in the channel i. The sum is over transition channels
k from the initial state to the additional final-state particles besides those in the resonance
channel. Constraints on these short-distance amplitudes from the symmetries of QCD im-
ply constraints on the short-distance factors Γij. The decay B+ → K+ + X is particularly
simple, because the transition B+ → K+ between the two spin-0 particles has a single
short-distance amplitude Ci. The short-distance factors can therefore be expressed as

Γij = Ci(Cj)
∗. (23)

The isospin symmetry of decays that proceed at the quark level through the heavy quark
decay b→ cc̄s relates the short-distance amplitudes for B0 → K0 +X and B+ → K+ +X: C0

C1

C2


B0→K0

=

 C1

C0

C2


B+→K+

. (24)

The constraints on the coefficients C0 and C1 were derived previously [23, 28]. The constraint
on the coefficients C2 follows from the equality of the short-distance amplitudes for B0 →
K0 + (J/ψ ω) and B+ → K+ + (J/ψ ω), which is required by isospin symmetry. Using the
simple form for the short-distance factors for B → X in Eq. (23), the differential decay rate
in Eq. (22) reduces to

dΓ =
∑

ijkl[Cifik(E)] [Cjfjl(E)]∗ [ImGkl − ImKkl(E)] dE. (25)

We can obtain order-of-magnitude estimates for the ratios of |C0|2, |C1|2, and |C2|2 from
measured partial widths of B into K plus appropriate pairs of mesons. The decay amplitude
into three mesons, such as D∗0D̄0K+, is a function of two Lorentz invariants whose range
extends over the Dalitz plot for the three mesons. The amplitudes C0, C1, and C2 are the
short-distance factors of the decay amplitudes in the corner of the Dalitz plot corresponding
to the threshold for the two mesons other than K. Our estimates of their ratios are based
on the assumption that the short-distance factors do not vary dramatically over the Dalitz
plot. The partial widths of B into K plus pairs of charm mesons have been measured by the
Babar collaboration in Ref. [31]. The partial widths into K plus J/ψ ω were measured by
the Babar collaboration in Ref. [13]. Using the data from B+ decays, we estimate |C1|2/|C0|2
by dividing the sum of the partial widths for D∗+D− and D+D∗− by the sum of the partial
widths for D∗0D̄0 and D0D̄∗0. Using the data from B0 decays, we must interchange the
numerator and denominator. The resulting estimates for |C1|2/|C0|2 are 0.14 from B+

decays and 0.17 from B0 decays. Using the data from B+ decays, we estimate |C2|2/|C0|2
by dividing the partial width for J/ψ ω by the sum of the partial widths for D∗0D̄0 and
D0D̄∗0. Using the data from B0 decays, we must replace the denominator by the sum of the
partial widths for D∗+D− and D+D∗−. The resulting estimates for |C2|2/|C0|2 are 0.037
from B+ decays and 0.036 from B0 decays. These estimates suggest that the short-distance
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FIG. 1: (Color online) Diagrams for the propagation of J/ψ ω between contact interactions: (a)

simple bubble diagram with a J/ψ ω cut, (b) diagram with a J/ψ π+π−π0 cut. The J/ψ, ω, and

pions are represented by double solid, wavy, and dashed lines, respectively.

production rates for J/ψ ω and for D∗+D− and D+D∗− are smaller than those for D∗0D̄0

and D0D̄∗0 by factors of about 30 and 6.5, respectively.
The suppression of C2 relative to C0 and C1 does not necessarily imply that the C2 term

in the resonance factor in Eq. (26) can be neglected. The C0 and C1 terms in the resonance
factor are multiplied by γX , which is an amplitude for a transition between J/ψ ω and a pair
of charm mesons. Since this process involves a rearrangement of constituent charm quarks
between the two mesons, γX could provide a sufficient suppression factor to make the C0

and C1 terms comparable in strength to the C2 term. For production of the resonance in
other channels, such as J/ψ ρ and D0D̄0π0, the C2 term in the resonance factor should be
completely negligible.

B. Explicit J/ψω channel

The inclusive differential decay rate for B → X +K in Eq. (25) can be partially resolved
into contributions from individual resonant states by inserting the expressions for Imfij(E)
in Eq. (15). The imaginary part of K22 = κψω comes from cutting the bubble diagram
in Fig. 1(a), in which J/ψ and ω propagate between points where they are created and
annihilated. The term in the differential rate proportional to Imκψω therefore represents the
contribution from the final state J/ψ ω or from decay products of this pair of particles:

dΓ[J/ψ ω] =
∣∣∑

i=0,1,2Cifi2(E)
∣∣2 (−Imκψω(E)) dE, (26)

where fi2(E) are the scattering amplitudes in Eqs. (12). The imaginary part of the function
κψω(E) in Eq. (5c) can be expressed in analytic form:

−Imκψω(E) = µ
1/2
ψω

(√
(E − δψω)2 + Γ2

ω/4 + E − δψω
)1/2

. (27)

If E is above the threshold δψω by much more than Γω/2, the expression in Eq. (27) reduces
to [2µψω(E− δψω)]1/2. In this region of E, Eq. (26) is the differential rate for producing J/ψ
and ω on their mass shells. If E is below the threshold δψω by much more than Γω/2, the
expression in Eq. (27) reduces to (1

8
µψω/|E− δψω|)1/2Γω. In this region of E, Eq. (26) is the

differential rate for producing J/ψ plus the decay products of a virtual ω, such as π+π−π0.
The contribution from the specific decay channel J/ψ π+π−π0 can be obtained from Eq. (26)
by multiplying by the branching fraction Bω→πππ ≈ 89%.
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As the energy E approaches the D∗0D̄0 threshold, the elastic scattering amplitude for
D∗0D̄0 approaches the universal expression in Eq. (16). The pole at κ(E) = γ arises from the
denominator D(E), which is a common factor in all the scattering amplitudes in Eq. (12).
Thus all the scattering amplitudes have that same energy dependence near the D∗0D̄0 thresh-
old. The linear combination of scattering amplitudes that appears in the resonance factor
in Eq. (26) has the behavior

∑
iCifi2(E) −→ 2[γ1 − κ1]γXC0 − 2γ1γXC1 − [2γ1γ0 − (γ1 + γ0)κ1]C2

[γ0 + γ1 − 2κ1][−γV + κψω] + 2γ2
X

1

−γ + κ(E)
, (28)

where κ1 and κψω are evaluated at E = 0. Thus the resonance factor in Eq. (26) has the
simple universal form |−γ+κ(E)|−2 at energies E small compared to the thresholds δ1 and
δψω, which are both approximately 8 MeV.

C. Implicit J/ψω channel

If the short-distance factor C2 for the production of J/ψ ω is sufficiently small, it is not
essential to take the J/ψ ω channel into account explicitly. It can be taken into account
implicitly through the isospin-0 inverse scattering length γ0. In the factorization formula in
Eq. (25), γ0 appears in the coupling constant matrix G. The contribution to Im(γ0) from
the J/ψ ω channel can be deduced from the substitution for γ0 given in Eq. (20):

(Imγ0)J/ψ ω −→
2γ2

X

| − γV + κψω(E)|2
(−Imκψω(E)) , (29)

where the terms with ImγV and ImγX have been dropped because they do not contribute
to the J/ψ ω final state. Our final result for the decay rate into the J/ψ ω channel is

dΓ[J/ψ ω] =
∣∣∑

i=0,1Ci(fi0(E)− fi1(E))
∣∣2 γ2

X

| − γV + κψω(E)|2
(−Imκψω(E)) dE, (30)

where fi0(E) and fi1(E) are the scattering amplitudes in Eqs. (18) with the substitution for
γ0 in Eq. (20). This result can also be obtained from the expression in Eq. (26) in which
the J/ψ ω channel is taken into account explicitly by setting C2 = 0.

D. χc1(2P ) resonance

The scattering amplitudes for charm mesons that take into account the possibility that
the 1++ charmonium resonance χc1(2P ) is near the X(3872) are given by Eqs. (18) with
the substitution for γ0 in Eq. (21). The corresponding expressions for the line shapes were
derived in Ref. [28]. They take into account the short-distance production of χc1(2P ) as
well as charm mesons. The contributions from the imaginary parts of γ0, γ1, and ν were
taken into account, but the coupling constant g was assumed to be real. The line shapes
were used to carry out a phenomenological analysis of the J/ψ π+π−, D0D̄0π0, and D0D̄0γ
channels.

We can use the results in Ref. [28] to write down an expression for the line shape in the
J/ψ ω channel. For simplicity, we ignore the possibility of the short-distance production of

10



χc1(2P ). The inclusive line shape in Eq. (25) for isospin-0 channels produced by B → X+K
reduces to

dΓ[isospin 0] =
∣∣∑

i=0,1Ci(fi0(E)− fi1(E))
∣∣2 Im

(
1/γ0 + g2/(E − ν)

)−1
dE, (31)

where fi0(E) and fi1(E) are the scattering amplitudes in Eqs. (18) with the substitution
for γ0 in Eq. (21). The expression for the imaginary part in Eq. (31) that corresponds to
cutting rules is

Im

(
1

γ0

+
g2

E − ν

)−1

=
1

|E − ν + g2γ0|2

(
|E − ν|2Im(γ0) + |γ0|2|g|2Im(−ν)

−2|γ0|2Re[g(E − ν∗)]Im(g)

)
. (32)

The first two terms in the parentheses can be interpreted as contributions from inelastic
charm meson scattering and from χc1(2P ) decay, respectively. The imaginary parts of γ0

and −ν must be positive. The third term in Eq. (32) can be attributed to interference
between inelastic charm meson scattering and χc1(2P ) decay. Positivity of the line shape
for all energies E requires (Img)2 ≤ Im(−ν)Im(γ0)/|γ0|2. The line shape in the J/ψ π+π−π0

channel can be obtained by inserting Eq. (32) into Eq. (31), by replacing the imaginary
parts of γ0, −ν, and g by the J/ψ ω channel contributions to the imaginary parts, and by
multiplying by the branching fraction Bω→πππ.

V. THREE-PION INVARIANT MASS DISTRIBUTION

In this section, we derive a simple expression for the distribution of the invariant mass
M3π of the three pions in the decay channel J/ψ π+π−π0. We describe the results of the
Babar analysis of the M3π distribution and point out that the probability for the quantum
numbers 1++ for the X(3872) was underestimated. We describe previous theoretical analyses
of the M3π distribution, which ignored the effects of experimental resolution. We also study
the effects of scattering on the M3π distribution.

A. M3π distribution

The differential decay rate in Eq. (26) is differential only in the energy E. We proceed
to derive the M3π distribution within the same framework. The factor of −Imκψω(E) in
Eq. (26) comes from cutting the bubble diagram in Fig. 1(a). In the case of the final
state J/ψ π+π−π0, we can obtain an expression that is differential in additional variables
by replacing that cut diagram by a cut of the diagram in Fig. 1(b) in which the cut passes
through J/ψ π+π−π0. The distribution of the invariant mass M3π of the pions would be
obtained by integrating over all the other pion variables besides M3π. This distribution can
also be obtained more simply from the J/ψ ω cut diagram in Fig. 1(a). In the nonrelativistic
limit, the relation between M3π, the total energy M = (M∗0 + M0) + E, and the relative
momentum q of the J/ψ or the virtual ω is

M = M3π +Mψ + q2/(2µψω). (33)
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If the width of the ω is included in its propagator, the momentum integral for the J/ψ ω
cut diagram multiplied by 4π(Mψ +Mω) is

π

µψω

∫
d3q

(2π)3

Γω
|E − δψω − q2/(2µψω) + iΓω/2|2

=
Γω
2π

∫ M−Mψ

−∞
dM3π

√
2µψω(M −Mψ −M3π)

(M3π −Mω)2 + Γ2
ω/4

. (34)

The lower limit on the integral over M3π extends below the physical lower limit of 3mπ, but
the unphysical region is strongly suppressed by the Breit-Wigner factor. Upon integrating
over M3π, Eq. (34) reproduces the expression for −Imκψω(E) in Eq. (27). An expression for
the differential decay rate that is differential in both E and M3π can therefore be obtained
by replacing −Imκψω(E) by the integrand on the right side of Eq. (34):

dΓ[J/ψ ω] =
∣∣∑

iCifi2(E)
∣∣2 Γω q

2π[(M3π −Mω)2 + Γ2
ω/4]

dM3π dM, (35)

where E = M − (M∗0 +M0) and q = [2µψω(M −Mψ−M3π)]1/2 is the relative momentum of
the J/ψ or the virtual ω. This expression for the differential decay rate is Lorentz invariant.
The dependence on M3π is simply the product of q and a Breit-Wigner resonance function.
The differential decay rate into J/ψ π+π−π0 can be obtained by multiplying the right side
of Eq. (35) by the branching fraction Bω→πππ.

B. Babar data

The Babar data on the decay of X(3872) into J/ψ ω that favors the quantum numbers
2−+ over 1++ is the M3π distribution shown in Fig. 2 [13]. The J/ψ π+π−π0 invariant mass
M is integrated over the range from 3862.5 MeV to 3882.5 MeV, which extends about
10 MeV above and below the D∗0D̄0 threshold. The range of M3π in Fig. 2 is from 740 MeV
to 791.8 MeV, which is approximately Mω − 5Γω to Mω + Γω. The Babar data in Fig. 2
consists of 34.0 ± 6.6 events including a background of 8.9 ± 1.0 events. Also shown in
Fig. 2 are histograms of Monte Carlo events generated by the Babar collaboration under the
assumptions that the coupling of X to J/ψ ω is either S-wave or P-wave. The histograms
are normalized to 34 events. Since the P-wave Monte Carlo gives a better fit to the M3π

distribution, the Babar collaboration concluded that the quantum numbers 2−+ are favored
over 1++.

A quantitative measure of the quality of the fit is χ2 of the histogram with respect to the
6 nonzero data points. In Ref. [13], the values of χ2 per degree of freedom were given as

χ2
Babar/NDF = 10.17/5 for S-wave Monte Carlo , (36a)

χ2
Babar/NDF = 3.53/5 for P-wave Monte Carlo . (36b)

The probabilities for χ2 to be larger than these values are 7.1% and 61.9%, respectively. This
seems to indicate that P-wave coupling of X to J/ψ ω (and therefore quantum numbers 2−+)
is strongly favored over S-wave coupling (and quantum numbers 1++). However χ2(N) is
a function of the normalization N of the histograms. The values of χ2 given in Ref. [13]
were for histograms normalized to N̄ = 34 events, which is the central value of the sum

12
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FIG. 2: (Color online) Uncorrected distribution of M3π integrated over the J/ψ π+π−π0 invariant

mass M from 3862.5 MeV to 3882.5 MeV. The data points are the Babar data from Ref. [13]. The

histograms are for Monte Carlo events generated by Babar under the assumption that the coupling

of X(3872) to J/ψ ω is S-wave (dashed lines) or P-wave (solid lines) [13]. The vertical dashed line

marks the position of the center of the ω resonance.

of the data points. Normalizing them in this way is fine for illustrating differences in their
qualitative behavior, as in Fig. 2. However it is not appropriate for calculating the χ2,
because it does not allow for independent fluctuations in the 6 bins. Instead it requires that
any downward fluctuations in some bins be compensated by upward fluctuations in other
bins. Furthermore there is no guarantee that the probability distribution for χ2(N̄) is the
standard χ2 probability distribution. The quantity that has the probability distribution of
χ2 for 5 degrees of freedom in the limit of ideal measurements is χ2(N) minimized with
respect to N . The minimum χ2 per degree of freedom for the Babar data is

χ2(Nmin)/NDF = 7.49/5 for S-wave Monte Carlo , (37a)

χ2(Nmin)/NDF = 3.25/5 for P-wave Monte Carlo . (37b)

For the S-wave Monte Carlo, the minimum is at Nmin = 24.9 and the probability for χ2 to be
larger than the observed value is 18.7%. For the P-wave Monte Carlo, Nmin = 30.3 and the
probability for χ2 to be larger than the observed value is 66.2%. While a P-wave coupling
is still favored over S-wave, it is not favored as strongly as reported in Ref. [13].

In order to compare a theoretical distribution to one that is measured, it is essential to
take into account the experimental resolution. In the Babar experiment, the experimental
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resolution on M is σX = 6.7 MeV [13]. The experimental resolution on M3π was not given
in Ref. [13]. A reasonable estimate is the resolution of the ω mass in a study of the decay
B̄0 → D∗ωπ−, which was σω = 5.6 MeV [33]. These resolutions can be taken into account
by convolving the distribution in Eq. (35) with Gaussians in M and M3π:∫

dM ′
3π dM

′ dΓ[J/ψ ω]

dM ′
3π dM

′
e−(M−M ′)2/2σ2

X

√
2πσX

e−(M3π−M ′
3π)2/2σ2

ω

√
2πσω

. (38)

Although it was not stated explicitly in Ref. [13], the Babar data and histograms in Fig. 2
are uncorrected for acceptances and efficiencies [32]. This can be deduced from the fact that
the central value of each data point for the combined distributions from B+ and B0 decay
in Fig. 4c of Ref. [13] is equal to the sum of the central values of the data points for the
separate distributions from B+ decay and B0 decay in Figs. 4a and 4b. Since the Babar
data shown in Fig. 2 are uncorrected, direct comparisons with theoretical distributions for
M3π are not appropriate.

In Ref. [13], the generator for Babar’s P-wave Monte Carlo differs from the generator for
the S-wave Monte Carlo by a multiplicative factor of q2/(1 + R2q2), where q is the relative
momentum of the J/ψ and R = 3 GeV−1. However the generator used for Babar’s S-wave
Monte Carlo is not stated in Ref. [13]. Based on the limited information provided, a plausible
guess is that the generator is equivalent to Eq. (35) with the resonance factor |

∑
Cifi2|2

replaced by δ(M − MX), where MX = 3873.0 MeV is the central value of the X(3872)
mass from Babar’s fit to the J/ψ π+π−π0 invariant mass distribution. This central value
corresponds to a negative binding energy EX = −1.1 MeV, but it is consistent within errors
with the small positive binding energy in Eq. (7).

C. Previous theoretical analyses

There have been two previous theoretical analyses [12, 34] of the M3π distribution shown
in Fig. 2. Both analyses were based on the incorrect implicit assumption that the Babar data
were corrected for acceptances and efficiencies. Both analyses also ignored the experimental
resolution.

Hanhart et al. carried out a combined analysis of data from the Belle collaboration on
the decay into J/ψ ρ and from the Babar collaboration on the decay into J/ψ ω, comparing
the options 1++ and 2−+ for the quantum numbers of the X(3872) [12]. The Belle data was
the distribution of M2π from X → J/ψ π+π−, and it consisted of approximately 200 events
in 19 bins [16]. The Babar data was the distribution of M3π from X → J/ψ π+π−π0, and it
consisted of only 25 events in 6 bins [13]. The theoretical distributions for M2π and M3π in
Ref. [12] take into account ρ− ω mixing and the energy dependence of the ρ and ω widths.
For the mass of the X(3872), the authors used MX = 3871.5 MeV, and they ignored its
width. They also ignored the experimental resolutions of the invariant masses M2π and M3π

of the pions and M of the system consisting of J/ψ and pions. The resulting distribution
for M3π drops to 0 sharply at 775 MeV. For the S-wave case, it is well-approximated by
Eq. (35) with the resonance factor |

∑
Cifi2|2 replaced by δ(E). This simple distribution

is illustrated in Fig. 3, where it has been normalized so that the area under the curve is
34 events. The shape of the curve does not resemble that of the Babar data or Babar’s
S-wave Monte Carlo histogram, primarily because the experimental resolution on M3π was
ignored. As a measure of the quality of the combined fit, Ref. [12] used the χ2 per degree
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FIG. 3: (Color online) Distribution of M3π integrated over the J/ψ π+π−π0 invariant mass M

from 3862.5 MeV to 3882.5 MeV. The data points and histograms are as described in Fig. 2. The

three curves are calculated from Eq. (35) using (1) the resonance factor δ(E) and no experimental

resolution (dotted curve), as in Ref. [12], (2) a Breit-Wigner resonance factor with width 1.7 MeV

and no experimental resolution (dash-dotted curve), as in Ref. [34], (3) the resonance factor δ(E)

and experimental resolution of 5.6 MeV in M3π (solid curve). The vertical dashed line marks the

position of the center of the ω resonance.

of freedom for the Babar and Belle data sets. Given the large error bars in the Babar data
and the small number of data points, this measure is sensitive only to the total number of
J/ψ π+π−π0 events and not to the shape of the M3π distribution. The authors concluded
from their analysis that the combined Belle and Babar data favor the quantum numbers
1++.

Faccini et al. carried out an analysis [34] that also included the Belle data on angular
distributions for the decay into J/ψ π+π− [16]. The authors used MX = 3872 MeV, and
they took the width of the X(3872) to be 1.7 MeV. This is larger than the upper bound
on the width in Eq. (8). They ignored the experimental resolutions of M2π, M3π, and M .
For the S-wave case, the resulting distribution for M3π is well-approximated by Eq. (35)
with |

∑
Cifi2|2 replaced by a Breit-Wigner function of E centered at E = 0 with width

1.7 MeV. This distribution is illustrated in Fig. 3, where it has been normalized so that
the area under the curve is 34 events. The sharp cutoff on M3π at 775 MeV in Ref. [12]
has been replaced by a tail from the Breit-Wigner that extends up to about 785 MeV.
The shape of the curve does not resemble that of the Babar data or Babar’s S-wave Monte
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Carlo histogram, primarily because the experimental resolution on M3π was ignored. In the
combined fit to the J/ψ π+π− and J/ψ π+π−π0 data, the χ2 per degree of freedom favors the
quantum numbers 1++, but this measure is sensitive only to the total number of J/ψ π+π−π0

events. According to Ref. [34], the analysis of the J/ψ π+π−π0 data alone excludes 1++ at
the 99.9% confidence level. However this probability should not be taken seriously, because
experimental resolution was ignored in the analysis and because the Babar data were not
corrected for acceptances and efficiencies.

To take into account the resolution in the experiment of Ref. [13], the distribution in
Eq. (35) should be convoluted with a Gaussian in M of width σX = 6.7 MeV and a Gaussian
in M3π of width σω = 5.6 MeV as in Eq. (38). The M3π distribution is then obtained by
integrating over M from 3862.5 MeV to 3882.5 MeV. If we assume the resonance factor
|
∑
Cifi2|2 is dominated by a region near the D∗0D̄0 threshold whose width is small compared

to 6.7 MeV, we can replace the resonance factor by a delta function at E = 0. The effect
of integrating over the 20 MeV range of E is then to constrain M to be equal to the D∗0D̄0

threshold. The experimental resolution on M appears only in a multiplicative factor, so it
does not affect the shape of the M3π distribution. The resulting M3π distribution is shown
in Fig. 3, where it has been normalized so that the area under the curve is 34 events. The
shape of this distribution is much closer to both the Babar data and Babar’s S-wave Monte
Carlo than the distributions in which energy resolution was ignored.

Both of the previous theoretical analyses took into account the energy dependence of the
width Γω of the ω resonance [12, 34]. The energy dependence comes primarily from the
total phase space for the decay ω∗ → π+π−π0. The phase space increases by about 2% as
the invariant mass increases by Γω ≈ 8.5 MeV from Mω ≈ 783 MeV to Mω + Γω. Thus the
effect of the energy-dependent width is not very dramatic.

D. Resonance factor

Since the Babar data in Fig. 2 is uncorrected for acceptances and efficiencies, direct
comparisons with theoretical M3π distributions are not appropriate. However, given the
relatively low probability for Babar’s S-wave Monte Carlo, it is worth asking whether there
are aspects of the X(3872) resonance that could improve the agreement between the S-wave
Monte Carlo and the data. Better agreement could have been obtained with a generator that
gives an M3π distribution whose peak is shifted lower by about 10 MeV by suppressing the
distribution above 770 MeV. The differential rate for S-wave coupling to J/ψ ω in Eq. (35)
implies that the M3π distribution has the form

dΓ[J/ψ ω]

dM3π

=
Γω

2π[(M3π −Mω)2 + Γ2
ω/4]

∫
Emin

dE
∣∣∑

iCifi2(E)
∣∣2q(E), (39)

where q(E) = [2µψω(E − δψω −M3π + Mω)]1/2, Emin = M3π −Mω + δψω, and the upper
endpoint of the integral over E is well above the D∗D̄ threshold region. The last factor in
Eq. (39) is the integral of the line shape weighted by the relative momentum q. We wish
to determine whether the dependence of this factor on M3π could improve the agreement
between the S-wave Monte Carlo and the Babar data in Fig. 2. The generator for Babar’s
P-wave Monte Carlo produced a downward shift in the peak of the M3π distribution by
about 10 MeV through an additional multiplicative factor of q2/(1 + R2q2). If the line
shape can be approximated by a delta function near E = 0, the factor of q2 has a zero at
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FIG. 4: (Color online) Distribution of M3π integrated over the J/ψ π+π−π0 invariant mass M from

3862.5 MeV to 3882.5 MeV. The experimental resolutions of 6.7 MeV in M and 5.6 MeV in M3π

are taken into account. The curves are calculated using the binding energy EX = 0.26 MeV and

a resonance factor that is either a delta function at E = −EX (blue solid curve) or the universal

resonance factor with the minimal width ΓX = 0.066 MeV (black dashed curves). The shaded

band takes into account variations in EX from 0 to 0.65 MeV and in ΓX from 0.066 to 1.2 MeV.

M3π = Mω − δψω ≈ 775 MeV. We wish to determine whether a comparable shift can be
produced instead by a change in the resonance factor.

1. Universal resonance factor

According to Eq. (28), the resonance factor sufficiently near the D∗0D̄0 threshold has the
universal line shape |−γ+κ(E)|−2. This universal resonance factor can not be approximated
by a delta function in E, because it has power-law tails that decrease as 1/|2µ0E| at large
|E|. When integrated over a smooth distribution in E, it can be approximated by the sum
of a Lorentzian in E and 1/|E| tails at positive and negative energies. The Lorentzian
is centered at −EX with width ΓX , where EX and ΓX are the binding energy and width
of the X(3872), and it can be approximated by (4πEX/µ0ΓX)δ(E + EX). The tails have
the form 1/|2µ0E| that extend from small |E| of order EX to large |E| of order δ1 or δψω.
The relative sizes of the integrals of the line shape over the peak near −EX and over the
tails are approximately 4πEX/ΓX and ln(δ1/EX), so the contribution from the tails can be
significant. The M3π distributions for the universal resonance factor | − γ + κ(E)|−2 and
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for δ(E + EX), with the resolutions in M and M3π taken into account, are compared in
Fig. 4. Replacing δ(E + EX) by the universal resonance factor gives a negligible shift in
the position of the peak in M3π. The variations in the M3π distribution for the universal
resonance factor from the uncertainties in EX and ΓX are also shown in Fig. 4. The small
shifts in the position of the peak come primarily from the variations in EX .

2. Interference between scattering channels

Babar’s P-wave Monte Carlo produced a significant shift in the position of the peak
of the M3π distribution through a multiplicative factor of q2, which has a zero at E =
δψω + M3π − Mω. It is plausible that a significant shift could also be produced by an
approximate zero in the resonance factor instead. An approximate zero of

∑
Cifi2(E) could

arise from interference between the scattering channels. To suppress the region of M3π above
765 MeV, the approximate zero of

∑
Cifi2(E) would have to be at an energy E0 above the

D∗0D̄0 threshold. The shape of the general resonance factor |
∑
Cifi2|2 depends on the ratios

C1/C0 and C2/C0 of the complex short-distance factors and on the scattering parameters
γ0, γ1, γX , and γV . The short-distance factors Ci can be complex, so an approximate zero
requires a fine tuning of these coefficients.

We can examine this possibility with a simplified form of the resonance factor that has
fewer adjustable parameters. We set C2 = 0, which implies that production of the X(3872)
resonance is dominated by the creation of charm meson pairs at short distance rather than
J/ψ ω. This assumption is motivated by the suppression of C2 suggested by the estimates
in Section IV A. The resonance factor then reduces to C0f02 + C1f12, where the scattering
amplitudes f02(E) and f12(E) are given in Eqs. (12d) and (12e). The numerator of the
resonance factor is proportional to C0(−γ1 + κ1)− C1(−γ1 + κ). If there is an interference
zero at E0, the short-distance coefficients must satisfy

C1

C0

=
−γ1 + κ1(E0)

−γ1 + κ(E0)
. (40)

We further assume |γV | � |κψω(E)|, which implies that the J/ψ ω channel would not have
a bound state near threshold in the absence of the X(3872) resonance. The denominator
D(E) in f02(E) and f12(E) then reduces to the denominator D′(E) for the 2-channel case
in Eq. (19), with γ0 replaced by

γeff
0 = γ0 − 2γ2

X/γV . (41)

The scattering parameter γ1 is determined by the value of γ as in Eq. (17), which reduces
to

γ =
2γeff

0 γ1 − (γeff
0 + γ1)κ1(0)

γeff
0 + γ1 − 2κ1(0)

. (42)

Thus γeff
0 is the only scattering parameter that affects the shape of the resonance factor.

The adjustable parameters in our simplified resonance factor are γeff
0 and E0. We wish

to determine whether the peak in the M3π distribution can be shifted downward by about
10 MeV by adjusting these parameters. We therefore consider E0 in the range between 0 and
10 MeV. For some values of γeff

0 , there is another resonance with energy belowX(3872), which
is inconsistent with observations. Demanding no such resonance constrains γeff

0 < κ1(0)/2 ≈
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60 MeV. There can also be a substantial enhancement near E = δ1 from a cusp associated
with the opening up of the D∗+D− threshold. This has the opposite effect of the suppression
above the threshold that we want. To avoid the enhancement, we require |γeff

0 +γ1| > 2|κ1(0)|,
which combined with Eq. (42) implies γeff

0 > 50 MeV or γeff
0 < −300 MeV. For the given

regions of E0 and γeff
0 , we are unable to obtain a significant shift in the peak of the M3π

distribution to lower mass.

3. Interference from tail of χc1(2P ) resonance

Another way to suppress the resonance factor for E above the D∗0D̄0 threshold is through
interference with the low-energy tail of the χc1(2P ) resonance. The inclusive line shape in
the isospin-0 channel is given in Eq. (31). It can be resolved into contributions proportional
to the imaginary parts of γ0, −ν, and g by using Eq. (32). The line shape in the J/ψ ω
channel can be obtained by replacing the imaginary parts of γ0, −ν, and g in Eq. (32)
by the contributions to those imaginary parts from the J/ψ ω channel, and allowing those
imaginary parts to be energy-dependent. For example, the substitution for Im(γ0) is given
in Eq. (29). If we use the assumption |γV | � |κψω(E)|, the substitution for Im(γ0) reduces
to −Imκψω(E) multiplied by a constant. The substitutions for −ν and g would reduce to
similar forms. The expression in Eq. (32) then reduces to the product of the resonance factor
1/|E − ν + g2γ0|2, the threshold factor −Imκψω(E), and a quadratic function of the energy
E. The maximum possible interference effect corresponds to total destructive interference
at some energy E0 above the D∗0D̄0 threshold. In this case, the quadratic function of E
reduces to (E − E0)2 and the expression in Eq. (32) reduces to[

Im

(
1

γ0

+
g2

E − ν

)−1
]
J/ψ ω

−→ −Imκψω(E)

|E − ν + g2γ0|2
2γ2

X

|γV |2
(E − E0)2, (43)

We vary the position of interference zero by changing E0 between 0 and 10 MeV. We are
unable to obtain a significant shift in the peak of the distributions to smaller M3π by tuning
the interference position E0. We are also unable to obtain a significant shift using zeroes in
both the X(3872) resonance factor |

∑
Cifi2|2 and the χc1(2P ) resonance factor in Eq. (43).

VI. SUMMARY

The quantum numbers of the X(3872) have been definitely established as 1++ from anal-
yses of the J/ψ π+π− decay channel. This settles an issue raised by a Babar analysis of the
M3π distribution for the J/ψ π+π−π0 decay channel that preferred 2−+ over 1++ [13]. We
pointed out that in the Babar analysis, the quoted values of χ2 were not minimized with
respect to the adjustable normalizations of the Monte Carlo distributions. Upon minimiza-
tion of the χ2, the probability for 1++ is increased significantly from 7.1% to 18.7% while
the probability for 2−+ is increased only slightly from 61.9% to 66.2%. Thus the preference
for 2−+ over 1++ was overstated in Ref. [13].

For the benefit of future analyses of the X(3872) resonance in the J/ψ π+π−π0 decay
channel, we considered whether a more accurate description of the resonance could have
further improved the agreement between the Babar data and the Babar S-wave Monte
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Carlo for the 1++ case. To describe the resonance more accurately, we derived the low-
energy scattering amplitudes due to S-wave couplings between the three channels in Eq. (1):
neutral charm meson pairs, charged charm meson pairs, and J/ψ ω. We also considered how
the scattering would be affected by an additional χc1(2P ) resonance with quantum numbers
1++. We used the scattering amplitudes to derive the line shape for the J/ψ π+π−π0 decay
channel and also the M3π distribution.

The Babar P-wave Monte Carlo that was preferred by the Babar data over the S-wave
Monte Carlo gave an M3π distribution whose peak was about 10 MeV lower. We considered
several mechanisms for shifting the peak for the S-wave case to lower values of M3π. We
considered the effects of the power-law tails of the universal scattering amplitude. We
considered interference between the charm-meson scattering channels. We also considered
the interference from the tail of a higher χc1(2P ) resonance. For all these mechanisms, the
M3π distribution was robust against a shift in the peak shift to lower values. We conclude
that, given the resolution in the Babar experiment, a more accurate description of the
X(3872) resonance in the J/ψ π+π−π0 decay channel is not essential. The effects we have
considered may however be important in future analyses of this decay channel with higher
resolution.
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