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Abstract

We discuss, for the first time, the role of the superpotential couplings of three messenger fields in a

GMSB-type unification model in which messenger sector consists of both 5 + 5 and 10 + 10 of SU(5). It

turns out that these interactions are relevant when coexist with appropriate messenger-MSSM couplings.

Then they induce extra contributions to 2-loop soft masses. In the present model, we derive all such soft

terms and discuss constraints which have to be satisfied to avoid rapid proton decay and µ/Bµ problem. As

an example, it is shown how superpotential couplings of three messengers influence mass spectra when the

model is restricted by additional global U(1)q symmetry. We find that masses of the lightest sleptons are the

most sensitive to those new interactions, what in some cases results in the NLSP/NNLSP pattern in which

stau or selectron is lighter than the lightest neutralino.

1 Introduction

The recent measurement of the Higgs-like boson mass at the LHC [1, 2] triggers a lot of questions

about its consequences for models of SUSY breaking mediation [3]. It is well-known that mh0 ≈ 125

GeV can be achieved in the MSSM by adequate left-right stops mixing, which in turn originates

e.g. from large A-terms at the EWSB scale [4]. It is hard to accommodate them in the standard

Gauge-Mediated Supersymmetry Breaking (GMSB) models, but they naturally arise at 1-loop level

in so-called extended1 GMSB models [5, 6, 7, 8]. In that class of frameworks, messengers interact

with themselves and with MSSM matter fields via renormalizable superpotential couplings (herein

called marginal couplings).2 One usually considers two types of them: matter-matter-messenger

and matter-messenger-messenger. That topic has been widely investigated from quite a long time

in various settings, and it is well known that some of those couplings significantly change phe-

nomenology of the usual GMSB models [9] because they generate additional 1- and 2-loop soft

terms. Depending on the context, the focus was on messenger-Higgs [10, 11], messenger-quark [12]

or messenger-lepton [13] interactions. Selection rules are usually delivered by R-parity, or some

1Models which include marginal couplings of messengers are also called Yukawa-Deflected, More Generic or Flavoured Gauge

Mediation models.
2We adopt terminology used in [8].
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global U(1) symmetry, which in some cases is related to Froggatt-Nielsen mechanism. For sim-

plicity, it is often assumed that only couplings to the third family of the matter are relevant (i.e.

some hierarchy of interactions is assumed, akin to the one in MSSM Yukawas). However, there are

attempts to justify the structure of the couplings and address the issue of FCNC in the case when

messengers interact also with the light families of MSSM [13, 14, 15, 16]. The upshot being that rel-

atively small hierarchy (much milder than the one in MSSM Yukawas) renders predictions of those

models perfectly consistent with low-energy observables. Recently, all matter-matter-messenger

and matter-messenger-messenger couplings have been analysed in the case when messengers are in

SU(5) representations of low dimension (singlet, fundamental, antisymmetric and adjoint) [8, 17].

Moreover, the wave-function renormalization method, which is relevant for computing soft terms,

was substantially improved [8]. Finally, it is worthwhile to mention that the attractive feature of

extended GMSB models is that they not only accommodate for large A-terms, but also in some

cases realize non-standard NLSP/NNLSP mass patterns (e.g. stop/bino) with NLSP mass in the

range that may be probed at the LHC [18].

In this letter we analyse the possible marginal couplings of messengers in GMSB-type model

which contains one pair of messengers in representation 5 + 5 and one in 10 + 10 of SU(5). The

novel elements are superpotential couplings of the form: messenger-messenger-messenger. We show

that they are relevant for the phenomenology when coexist with appropriate messenger-messenger-

matter or messenger-matter-matter interactions. Then they contribute to 2-loop soft masses. At

the same time, they do not generate A-terms nor give contributions to 1-loop soft masses. The

latter feature is expected to be important for low-scale GMSB models.

One can check that proper phenomenology put several constraints on the discussed couplings.

Some of them must be highly suppressed to avoid inducing operators which would lead to rapid

proton decay, or those which make it difficult to realize EWSB [19]. In the model under considera-

tion, we analyse the issue of baryon/lepton number violation and generation of µ and Bµ terms at

1-loop. To elude mentioned problems extra global U(1)q symmetry is introduced. Detailed analysis

of the phenomenology of the models restricted by that symmetry shows that, even in such simpli-

fied frameworks, superpotential couplings of three messengers influence mass spectrum significantly

(e.g. by changing NLSP/NNLSP pattern).

The paper is organized as follows. In Section 2 we recall details of the extended GMSB model,

and analyse soft terms generated by marginal couplings of messengers. Section 2.2 contains new

results. Namely, we derive 2-loop contributions to soft masses induced by superpotential couplings

of three messengers. In Section 2.4 it is shown how to avoid the proton decay and µ/Bµ problem by

invoking additional global U(1)q symmetry. In Section 3 we give examples of the simplest models

restricted by that symmetry, and investigate their low-energy phenomenology. We conclude in

Section 4. Appendices contain tables of U(1)q charges and numerical coefficients related to 2-loop

soft masses generated by messenger-messenger-messenger couplings.
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2 Extended GMSB model

We consider SU(5) unification model of GMSB-type in which SUSY breaking effects are communi-

cated to the visible sector through two pairs of messengers: (Y5, Y5) and (Y10, Y10), where subscripts

denote representations of SU(5). In the visible sector all matter fields, beside Higgses, can be

arranged into 5 and 10 of SU(5).3 Higgs triplets are supposed to have mass of order GUT scale

MGUT , and in the theory below MGUT they are absent from the spectrum. However, it is very

convenient to use SU(5) notation though - all couplings involving Higgs fields H5,5 are understood

to be projected onto doublet components of 5, 5.

We assume that the SUSY breaking in the hidden sector can be parametrized by gauge sin-

glet chiral superfield X (so-called spurion) which lowest component and F -term spontaneously get

vev i.e. 〈X〉 = M + θ2F . As usual, the following superpotential couplings between spurion and

messengers

WX = X(Y5Y5 + Y10Y10) (1)

provide mass M for the latter. We choose M to be of order 1014 GeV. For the simplicity, it is

assumed that in (1) the spurion coupling to both pairs of messengers is the same. SUSY breaking

effects are transmitted from the hidden sector to MSSM via the messengers. In the extended Gauge

Mediation models, messengers interactions which are relevant for the mediation mechanism are not

only couplings to gauge fields and to the spurion, but also to MSSM fields. Therefore, we consider

all marginal superpotential couplings of messengers and MSSM matter that are allowed by gauge

symmetry (including couplings of three messengers). They can be organized in terms of SU(5)

invariants. It is easy to check that in the model under consideration such terms are of the form:4

5 10 10, 5 10 10, 5 5 10 and 5 5 10. We assume that they are hierarchical i.e. only coupling to the

heaviest family of the MSSM is of order one - the interactions with other two families are assumed

to be small enough not to induce large FCNC effects. Taking into account full flavour structure of

the Yukawas and messenger couplings to the first and second family is left for the future work.

2.1 Marginal couplings of messengers and MSSM matter

The part of the superpotential which contains marginal couplings of messengers Y = {Y5, Y5, Y10, Y10}
is of the following form

WY = WYYY + WΦΦY + WΦYY, (2)

where WYYY are novel interactions of three messengers. They are crucial for the further discussion,

and they will be discussed in details in the next section. On the other hand, the other two terms

3Higgs fields are denoted by H5 and H5, while φ5 and φ10 stand for the superfields containing quarks Q,U,D and leptons L,E of

the third family and their superpartners. Subscripts indicate SU(5) representations. All matter superfields are collectively denoted

by Φ. Abusing notation, we denote matter superfields with the same symbol as their Standard Model components.
4 All such terms which involve messengers can a priori appear while in the visible sector one needs only couplings: H5φ10φ10

and H5φ5φ10. The issue of dangerous operator φ5φ5φ10 shall be discussed in the Section 2.3.
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in (2) include messenger couplings to matter fields Φ = {H5,H5, φ5, φ10} i.e.5

WΦΦY = h1H5φ10Y10 +
1

2
h2φ10φ10Y5 + h3H5φ5Y10 + h4H5φ10Y5 +

1

2
h5φ5φ5Y10 + h6φ5φ10Y5 (3)

are matter-matter-messenger couplings, and

WΦYY =
1

2
h7H5Y10Y10 + h8φ10Y5Y10 +

1

2
h9H5Y10Y10 +

1

2
h10φ5Y10Y10 (4)

+h11H5Y5Y10 + h12H5Y5Y10 + h13φ5Y5Y10 +
1

2
h14φ10Y5Y5

are matter-messenger-messenger couplings. We shall denote coupling constants hA collectively by

h. Let us recall that in the extended GMSB models one usually considers only interactions of

messengers Y and MSSM matter fields Φ of those two types listed above: (3) and (4).6 Both of

them, in fact, change predictions of the standard GMSB models in several ways e.g. by enhancing

left-right squarks mixing, or allowing various non-standard types of NLSP/NNLSP patterns [20].

Below messenger scale M , one gets MSSM with soft terms. Gaugino masses M
(r)
λ are of the

same form as in the GMSB models i.e. they arise at 1-loop

M
(r)
λ =

αr

4π
nXξ , (5)

where r = 1, 2, 3 corresponds to the gauge group U(1)Y , SU(2)L and SU(3)C of the Standard Model

(we use the GUT normalization for the hypercharge), and nX = 4 is twice the sum of the Dynkin

indices of the messenger fields coupling to the spurion X. ξ = F/M is the scale of gauginos and

scalar soft masses. We choose F ∼ 1019 GeV2 hence ξ ∼ 105 GeV.7 Masses M
(r)
λ do not depend

on marginal messenger couplings at the leading order. On the other hand, hA do contribute to

both 1-loop A-terms and 2-loop soft masses.8 They can be derived with the help of wave-function

renormalization method [6, 7, 8]. One can find that A-terms generated by (3) and (4) are of the

form9

At,b,τ = − ξ

4π

∑

A

C
(t,b,τ)
A αhA

and A′
b = − ξ

4π

∑

A<B

C
′(b)
A,B(αhA

αhB
)1/2. (6)

The numerical coefficients C
(t,b,τ)
A and C

′(b)
A,B are given in the Table 1. The A-terms given in (6) are

related to the trilinear terms in the scalar potential V in the following way:

V ⊃ ytAtHuQ̃Ũ + ybAbHdQ̃D̃ + yτAτHdL̃Ẽ + ybA
′
bL̃Q̃D̃, (7)

where yt,b,τ denote MSSM Yukawa couplings of the third family. The scalars Φ̃ ∈ {Hu,Hd, L̃, Ẽ, Q̃, Ũ , D̃}
receive 2-loop corrections to soft SUSY breaking mass terms from three sources what can be written

5For the simplicity, we assume that all superpotential coupling constants are real.
6WΦΦY and WΦYY are sometimes called, respectively, type II and type I messenger couplings [8].
7In the discussed model gravitino is the LSP with mass m3/2 ∼ 1 GeV.
8The 1-loop soft masses generated by hA are negligible because of ξ/M ≪ 1 .
9When messengers couplings to the first and second family of the MSSM matter are relevant then also R-parity violating A-terms

LiLjEk and U iU jDk can appear.
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A

1 2 3 4 5 6 7 8 9 10 11 12 13 14

C
(t)
A 9 6 0 1 0 4 3 6 0 0 4 0 0 1

C
(b)
A 1 3 6 5 2 6 0 3 3 3 0 4 4 1

C
(τ)
A 0 3 5 6 3 6 0 3 3 3 0 4 4 0

A,B

3,5 4,6 9,10 12,13

C
′(b)
A,B 3 4 3 4

Table 1: Numerical coefficients C
(t,b,τ)
A and C

′(b)
A,B in the A-terms (6).

as

m2
Φ̃

= m2
Φ̃,g

+ m2
Φ̃,h

+ m2
Φ̃,η

. (8)

m2
Φ̃,g

are well-known 2-loop gauge mediation mass terms induced by gauge interactions transmitting

SUSY breaking from messenger sector [9]

m2
Φ̃,g

= 2

3∑

r=1

Cr
2(Φ)

α2
r

(4π)2
nXξ2, (9)

where Cr
2(Φ) are quadratic Casimir operators of the representation of Φ̃ under r-th gauge group.

The contributions m2
Φ̃,h

in (8) are 2-loop terms induced by the superpotential couplings (3) and (4).

Since formulas for m2
Φ̃,h

are quite lengthy, and we do not need their explicit form here, we shall not

list them at this point.10 Lastly, m2
Φ̃,η

are new contributions to soft masses of scalars Φ̃ which are

generated by marginal couplings of three messengers WYYY. They are discussed below.

2.2 Marginal couplings of three messengers

The part of the superpotential which contains interactions of three messenger fields can be written

as

WYYY =
1

2
(η1Y5Y10Y10 + η2Y5Y10Y10 + η3Y5Y5Y10 + η4Y5Y5Y10) , (10)

where ηi are coupling constants of order one, collectively denoted by η. In the discussed framework,

(10) induce extra corrections to scalar soft masses m2
Φ̃

Φ̃†Φ̃. As in the case of h couplings, one can

obtain them using wave-function renormalization method [6, 7, 8]. Those new terms can be written

in the following form

m2
Φ̃,η

=
ξ2

16π2

∑

iA≤B≤Cf

(
C

(Φ)
i,A αηiαhA

+ C
(Φ)
i,(A,B,C)(αηiαhA

αhB
αhC

)1/2

+C
(Φ)
i,(A,B,f)(αηiαhA

αhB
αf )1/2

)
, (11)

where C(Φ)’s are numerical constants while αhA
= h2A/(4π), αηi = η2i /(4π). hA are defined in (3)

and (4). Finally, αf ’s are related to MSSM Yukawa couplings yt,b,τ : αf = y2f/(4π), f = t, b, τ .

10The general formulas for 2-loop masses induced by (3), (4) and (10) can be found in the ancillary Mathematica file m2Phi.nb.
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Full list of coefficients C(Φ) can be found in the Appendix B. The 2-loop contributions to soft

masses displayed in eq. (11) are new results for the discussed class of extended GMSB models. The

consecutive components of the sum (11) arise from 2-loop diagrams with two h and two η vertices,

three h and one η vertex and from diagram with two h, one η and one yf vertex respectively. Let

us mention that beside (11) also mass term m2
HdL̃,η

H†
dL̃ + h.c. mixing Hd and slepton doublet L̃ is

generated by η couplings.11 The explicit form of m2
HdL̃,η

can be found in the Appendix B.8.

The role of η will be further analysed in the Section 3, where we focus on the simplest examples

of models restricted by additional global U(1)q symmetry. That symmetry is introduced in the next

section to meet phenomenological bounds.

2.3 Operators generating proton decay and µ/Bµ terms

Having specified all possible superpotential couplings of messengers, it is important to know what

are obstructions in getting realistic low-energy phenomenology, and how they are related to the

discussed couplings (2). The obstacles one can face are e.g. rapid proton decay, absence of proper

EWSB (µ/Bµ problem [19]), or R-parity violating soft terms in the Lagrangian [22]. In this Section

we shall comment on such dangerous operators generated by (2) at tree- and 1-loop level.

When we discussed possible messenger couplings (2), gauge invariance and renormalizability

were used as the only selection rules. Hence the tree-level dimension 4 operator φ5φ5φ10|θ2 could as

well be present in the Lagrangian of the visible sector. However, it is well-known fact that this term

would lead to rapid proton decay. So, first of all, it is necessary to ensure that it cannot appear

in the superpotential. The baryon/lepton number violation would also be induced by dimension

5 operators: φ5φ
3
10/MGUT |θ2 or φ5φ

3
10/M |θ2 . The latter appears after integrating out messengers.

Its source in the model under consideration is the tree-level exchange of (Y5, Y5) messengers. It is

clear that if matter-matter-messenger couplings h2 and h6 (cf. (3)) occur simultaneously then they

generate at the tree-level the following effective operator

h2h6
M

φ5φ10φ10φ10

∣∣∣∣
θ2
. (12)

To meet experimental bounds, at least one of these couplings must be highly suppressed such that

h2h6 . 10−26+tM , where tM = log10(M/1 GeV) [23]. Integrating out messengers results also in

corrections to the Kähler potential which may violate baryon/lepton number. In the discussed

model, only the following operator of dimension 6 is relevant for the phenomenology:

h22
M2

φ†
10φ

†
10φ10φ10

∣∣∣∣
θ2θ

2
. (13)

If it is not suppressed then it lead to rapid proton decay, mainly in the channel p → π0e+. To

satisfy the lower limit on the proton lifetime, h2 has to fulfill h2 . 10−16+tM [24].

11After EWSB it may induce non-zero vev for sneutrino [21].
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The second serious issue is the µ/Bµ problem [19]. We shall assume that there is no µH5H5 term

in the superpotential, and mass term for Higgs superfields is generated via the following correction

to the Kähler potential
cµ

MGUT
X†H5H5 (14)

when F -term of spurion superfield X gets vev (cµ is a coupling constant of order one). To avoid

µ/Bµ problem, we require that at the same time a term of the form X†XH5H5/M
2
GUT is absent.

However, µ and Bµ are also generated at 1-loop by messenger-matter couplings i.e. the following

corrections to the Kähler potential appear after integrating out messengers:

c′µ
M

X†H5H5 and
c′Bµ

M2
X†XH5H5, (15)

where c′µ,Bµ
∼ (h7h9 + h11h12)/(4π)2 ∼ O(10−2), which lead to µ2 ≪ Bµ when F -term of X gets

vev. Therefore, to get proper electroweak symmetry breaking with µ generated by (14), one has to

suppress c′µ,Bµ
[11].

To ensure those phenomenological constraints without fine-tuning parameters, it is necessary to

impose additional selection rules which restrict structure of the Lagrangian. It seems that the most

handy and economical way to achieve it is to add extra global U(1)q symmetry. Such solution is

realized e.g. in F-theory GUT models [20, 25, 26, 27], and in models which use Froggatt-Nielsen

mechanism to address Yukawas hierarchy problem.

In the rest of the paper, we exploit that idea, and analyse what are necessary conditions to

forbid dangerous operators which were discussed above. Then we shall examine what are the low-

energy predictions of the simplified model in which U(1)q symmetry dictates the structure of the

superpotential.

2.4 U(1)q symmetry

As introduced in the previous section, to get rid of rapid proton decay and the µ/Bµ problem we

shall invoke extra global U(1)q symmetry and appropriately choose charges of the visible sector

fields Φ, messengers (Y, Y ) and the spurion X . The requirements discussed in Section 2.3 can be

rephrased as follows: (a) in the superpotential of the visible sector there is no φ5φ5φ10 term, but

the standard Yukawa couplings H5φ10φ10 and H5φ5φ10 are present, (b) supersymmetric mass term

for the Higgses is forbidden, however they couple to X† in the Kähler potential. One of the ways

to satisfy those conditions is to assign the following charges to the fields:

qH5
= k, qφ5

= l, qH5 = 2(k + l), qφ10 = −(k + l), qX = 3k + 2l, (16)

where k and l are nonequal integers such that charge of the X field (i.e. qX) is different from 0.

Moreover, extra condition comes from spurion–messenger couplings (1). They are allowed only if

the following relations hold:

qY
R

= −(3k + 2l) − qYR
, (17)
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where R = 5, 10 denotes representation of SU(5). Hence analysis of the possible ΦΦY, ΦYY and

YYY couplings boils down to inspecting charges of Y5 and Y10. Let us remark that if they are set as

in (16) then operator φ5φ
3
10/MGUT |θ2 is ruled out. Furthermore, condition (a) is basically equivalent

to the requirement that φ5 and H5 have different U(1)q charges, what prevents them from mixing

in the kinetic terms. It can also be checked that when these fields have different charges then (2)

does not lead to R-parity violating A-term (cf. Table 1). Moreover, it should be emphasized that

operators (12) and (15) are also ruled out in spite of the fact that in the effective theory, below

scale M , global U(1)q symmetry is spontaneously broken by the vev of the lowest component of X.

The reason is that they would arise from couplings φ5φ
3
10/X and H5H5X

†/X, respectively, which

are forbidden in the parent theory provided (a) and (b) are satisfied. On the other hand, U(1)q

symmetry protects the proton from decay via dimension 6 operator (13) only if

qY5 6= 2(k + l). (18)

Finally, mass term H5φ5 in the superpotential which would cause appearance of φ5φ5φ10 operator

after redefinition of matter fields should also be forbidden. To ensure this additional condition, we

require that

2k + 3l 6= 0. (19)

3 Phenomenology of the simplest models with YYY

In this Section we study how low-energy predictions of the discussed extended GMSB models depend

on messenger couplings (10), taking into account restrictions imposed by U(1)q symmetry. We shall

use discussed above set of constraints (16)-(19) to select the simplest models involving marginal

interactions of messengers. Analysis of more complicated cases is straightforward, and will be given

elsewhere. The cases with only η couplings allowed give at the leading order the same results

as the standard GMSB model with the effective number of messengers equal to 4, and will not be

investigated here. It is also straightforward to check that there is no charge assignment which allows

for model with only one h and no η coupling. On the other hand, taking into account (16)-(19), it

is easy to find out that there are only two possible scenarios which include one h and one η. They

are realized when superfields have U(1)q charges shown in the first (I) and the second (II) row of

the table in the Appendix A. Then the allowed couplings are, respectively,

(I) (h8, η4) or (II) (h14, η2). (20)

Surprisingly, there is a lot of ways to assign charges which allow for two h and one η interaction but

not all of them are relevant for phenomenology. We shall examine two of them which lead to the

biggest At-terms in that class of models (cf. Table 1). Namely, we analyse models in which U(1)q

admits the following couplings:

(III) (h8, h11, η2) or (IV) (h8, h11, η4). (21)
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Charges corresponding to these cases are displayed in the third (III) and fourth (IV) row of the

table in the Appendix A.

For the cases (I)-(IV) listed above, we adopt the initial conditions for the soft SUSY breaking

terms presented in Sections 2.1 and 2.2, and compute the low-energy spectrum and the electroweak

symmetry breaking with an appropriately modified SuSpect code [28]. Approximation of vanishing

Yukawa couplings of the first two generations of fermions is used, so the MSSM mass spectra we

obtain are degenerate for these generations. In the following, we shall call sfermions of the first and

second generations with the name of the first generation (see e.g. Figure 1).

A number of constraints is imposed on the obtained mass spectra. We require that the scalar

potential is bounded from below, and that there are no low lying color or charge breaking minima.

All cases with tachyons in the spectrum, Higgs boson mass smaller than 123 GeV or bigger than

127 GeV and BR(b → sγ) lying outside the 2σ range (2.87 − 4.33) × 10−4 are discarded during the

analysis. We keep only models in which the squark and gluino masses lie within the allowed 95%

CL range determined for a simplified setup in Ref. [29].

In the case (I) the part of the superpotential which contains marginal couplings of the messengers

is of the following form (cf. (2)):

WY = h8φ10Y5Y10 +
1

2
η4Y5Y5Y10. (22)

Although in such setup the left-right stop mixing would be large enough (cf. (6) and Table 1)

to get mh0 ∼ 125 GeV even for ξ ∼ 105 GeV, this case is not phenomenologically satisfactory as

here supersymmetric mass term M ′φ5Y5 is allowed. If M ′ ∼ MGUT , then the mass of the heavy

combination of Y5 and φ5 is of order GUT scale. As a result, soft terms generated by gauge

mediation mechanism are of comparable size as those induced by gravity. Hence this case will not

be analysed further.

In the case (II) only couplings h14 and η2 are allowed by U(1)q symmetry i.e. (cf. (2)):

WY =
1

2
h14φ10Y5Y5 +

1

2
η2Y5Y10Y10. (23)

To get the lightest Higgs mass mh0 ≈ 125 GeV in this simplified model, one has to set ξ ≈ 1.6×105

GeV. The fact that mh0 is not enhanced significantly by h14 coupling can be traced back to relatively

small value of C
(t)
14 in the At-term (6). The choice of ξ results in rather large values of sparticles

masses. Bino/wino/gluino masses are about 0.9/1.6/4.0 TeV, and they hardly depend on η2. On

the other hand, masses of other neutralinos and charginos, Higgses (beside the lightest one), squarks

and heavier sleptons do vary, but stay above 1.5 TeV when η2 changes in the range 0 − 1.4 and

h14 is fixed to 1.2. However, it turns out that η2 coupling influences NLSP/NNLSP pattern. The

lighter sleptons masses are sensitive to that messenger coupling, and can be as low as 400 GeV for

h14, η2 ∼ 1. Figure 1 displays how masses of sleptons τ̃1, ẽ1 depend on the value of η2. Increasing η2

above 0.4 − 0.5 changes NLSP/NNLSP pattern from B̃/τ̃1 to τ̃1/B̃ and then to τ̃1/ẽ1 (with nearly

9



degenerated masses) for small tan β, and from τ̃1/B̃ to τ̃1/ẽ1 for moderate and large values of tan β.

Such behaviour can be explained as follows.

In this simplified model influence of marginal coupling of three messengers η2 on mass spectrum

is rather moderate because η2 affects only soft mass of left squarks doublet Q̃. One can check (cf.

Appendix B.5) that η2 contribution to (8) can be written as

m2
Q̃,η

= 6αh14αη2

ξ2

16π2
, (24)

which is always non-negative. For natural choice of coupling constants (i.e. h, η ∼ 1) it is of the

same order as the following correction to (8) induced by h14 coupling

m2
Q̃,h

= αh14

(
6αh14 −

7

15
α1 − 3α2 − 6α3

)
ξ2

16π2
, (25)

and also of the same order as the standard GMSB contribution

m2
Q̃,g

=

(
2

15
α2
1 + 6α2

2 +
32

3
α2
3

)
ξ2

16π2
. (26)

Decreasing masses of lighter sleptons is the consequence of enlarging left squark doublet soft mass

by (24) which results in speeding up the running of m2
L̃

and m2
Ẽ

via D-term contribution to their

RGE. Note that the increase in the splitting of the lighter sleptons masses when tan β becomes
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Figure 1: Plot of the τ̃1 (red, solid lines) and ẽ1 (green, solid lines) mass vs. η2 coupling for tanβ = 10

(left plot), tanβ = 30 (middle plot) and tanβ = 50 (right plot). Blue, dotted lines represent mass of

lightest neutralino (bino). h14 is set to 1.2, while ξ scale is 1.6 × 105 GeV. Dashed lines show masses of the

particles when h14 = η2 = 0, which corresponds to the standard GMSB case. The plots are symmetric under

η2 → −η2 because of m2

Q,η ∼ η2
2
. In this case τ̃1 and ẽ1 are mostly right-handed.

larger and larger is a well-known effect related to enhancing non-diagonal mass terms by tan β for

the third family of sleptons. For the first and the second family such effect is suppressed by very

small Yukawas.

In the framework defined by the third (III) choice of U(1)q charges, superpotential (2) is of the

following form

WY = h8φ10Y5Y10 + h11H5Y5Y10 +
1

2
η2Y5Y10Y10, (27)
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and only corrections to Hu mass are generated by messenger marginal couplings:

m2
Hu,η = 12αh11αη2

ξ2

16π2
. (28)

Here we choose ξ = 105 GeV. Bino/wino/gluino masses are about 0.55/1.03/2.71 TeV, and, as

previously, they hardly depend on η2. The first observation is that increasing η2 gives smaller µ

at the EWSB scale. For η2 = 0 it is about 2.8 TeV while for η2 = 1.2 it drops to 2.4 TeV. It is a

consequence of extra contribution (28) to Hu soft mass. The aftereffect of changing µ is decreasing

masses of heavy Higgses bosons from about 3.1 TeV to 2.6 TeV for small tan β, and from about

2.4 TeV to 1.8 TeV for large tan β. Similarly, heavier neutralinos and second chargino masses drop

from 2.9 TeV to 2.3 TeV. Masses of the particles in the squark sector change only slightly. When

η2 grows they vary not more than a few percent and remain above 2 TeV. On the contrary, third

family slepton masses are more sensitive to η2 and tan β - see Figure 2. The masses of the lighter

stau and tau sneutrino are nearly degenerate, and grow when η2 is increased while, at the same

time, the heavier stau mass drops but it is always bigger than 2.3 TeV. For small tan β the lighter

stau mass increases from 1.06 to 1.1 TeV while for moderate and large tan β it raises from about

0.90 to 0.95 TeV and from 0.36 to 0.46 TeV. The behaviour of the first and the second generation

slepton masses is just the opposite. Namely, the mass of the lighter selectron reduces from about

0.6 to 0.46 TeV while mass of the heavier selectron and electron sneutrino increase from 1.07 to 1.11

TeV when η2 changes from 0 to 1.4. Let us remark that here the lighter stau is mostly left-handed

while the lighter selectron is mostly right-handed.

As before, slepton masses are driven by D-term contribution to their RGE. (24) increases these

contributions for right sleptons and decreases for left sleptons. Since initial conditions at the

messenger scale M for the slepton masses are not altered by η2, that results in decreasing masses of

right sleptons and raising masses of left sleptons. The reason why in this scenario left-handed stau

is lighter than its right-handed counterpart is the contribution to slepton soft masses generated by

h8 and h11:

m2
L̃,h

= −3αh8αyτ

ξ2

16π2
, m2

Ẽ,h
=

[
−
(

28

5
α1 + 16α3

)
αh8 + 6αh11αh8 + 36α2

h8

]
ξ2

16π2
. (29)

Clearly, m2
L̃,h

is amplified by large tan β. It can be seen in the Figure 2 that for large value of

tan β and η2 . 1.4 the NLSP is the lighter stau (which is mostly left-handed). The NNLSP is tau

sneutrino and masses of both particles raise when η2 increases. Simultaneously, the lighter selectron

mass drops such that for η2 ≈ 1.4 it becomes close to the stau mass, and eventually NLSP/NNLSP

pattern changes from τ̃1/ν̃τ to ẽ1/τ̃1.

In the case (IV) superpotential is of the form

WYYY = h8φ10Y5Y10 + h11H5Y5Y10 +
1

2
η4Y5Y5Y10, (30)

and coupling of three messengers induces the following contributions to soft masses of left squarks

and right up squark

m2
Q̃,η

= m2
Ũ ,η

= 2αh8αη4 . (31)
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Their influence on the mass spectrum can be described in the following way. Bino/wino/gluino

masses are about 0.55/1.03/2.71 TeV, and, as before, they hardly depend on η4. On the other

hand, behaviour of µ is different than in previous case. In this scenario µ increases when η4 raises.

The same effect can be seen in the Higgs sector (beside the lightest Higgs scalar) and for heavier

chargino and heavier neutralinos. All these masses become larger of about 150 − 200 GeV and

approach level of 3 TeV. It is caused by η4 contribution to soft masses of left squarks and right up

squark. They enter RGE for the soft mass of Hu what results in bigger value of |m2
Hu

| at EWSB

scale. Masses of the stops and lighter sbottom are the most sensitive to η4. They increase of about

200 GeV when η4 is changed, and reach level of 2.5 − 3 TeV. The first and second generation

squarks masses hardly depend on η4 value. On the other hand, the mass of the lighter stau and tau

sneutrino drop when η4 is increased while heavier stau mass raises at the same time - see Figure

3. Tau sneutrino behaves similarly, and its mass is nearly degenerate with the lighter stau mass.

Again, behaviour of the first and second generation slepton masses is just the opposite. Here the

lighter stau is mostly left-handed while the lighter selectron is mostly left-handed.

Analogously to the previous cases, additional contributions to squarks soft masses (31) decrease

D-term contribution to RGE for right sleptons, and increase for left sleptons. That results in raising

masses of right sleptons and decreasing masses of left sleptons at the EWSB scale. Left-handed

stau is lighter than its right-handed counterpart from the same reason as in the case (III).
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Figure 2: Plot of the τ̃1 (red, solid lines), ẽ1 (green, solid lines) and ν̃τ (purple, solid lines) mass vs. η2

coupling for tanβ = 10 (left plot), tanβ = 30 (middle plot) and tanβ = 50 (right plot). Blue, dotted lines

represent mass of lightest neutralino (bino). The ξ scale is chosen to be 105 GeV. h8 and h11 are fixed

to 0.9 and 0.6, respectively, what results in mh0 ≈ 125 GeV. Dashed lines show masses of the particles

when h8 = h11 = η2 = 0, which corresponds to the standard GMSB case. The plots are symmetric under

η2 → −η2 because of m2

Hu,η
∼ η22 . Selectron and tau sneutrino masses are nearly degenerated. Here ẽ1 is

mostly right-handed, while τ̃1 is mostly left-handed.
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Figure 3: Plot of the τ̃1 (red, solid lines), ẽ1 (green, solid lines) and ν̃τ (purple, solid lines) mass vs. η4

coupling for tanβ = 10 (left plot), tanβ = 30 (middle plot) and tanβ = 50 (right plot). Blue, dotted lines

represent mass of lightest neutralino (bino). The ξ scale is chosen to be 105 GeV. h8 and h11 are fixed to

0.9 and 0.6, respectively, what results in mh0 ≈ 125 GeV. Dashed lines show masses of the particles when

h8 = h11 = η4 = 0, which corresponds to the standard GMSB case. The plots are symmetric under η4 → −η4

because of m2

Q,η = m2

U,η ∼ η24 . Selectron and tau sneutrino masses are nearly degenerated. Here ẽ1 is mostly

right-handed, while τ̃1 is mostly left-handed.

4 Conclusions

In this work we have studied extended GMSB model in which messenger sector consists of fields

in fundamental and antisymmetric representation of SU(5) (and their conjugates). We have shown

that in such scenario superpotential couplings of three messengers (10) induce additional contribu-

tions to the standard soft masses of scalars when they coexist with appropriate couplings between

messengers and MSSM matter i.e. (3) or (4). Namely, they generate 2-loop corrections to the soft

masses when one of the messenger fields enter both YYY and YΦΦ or YYΦ vertices. At the same

time, they lead to neither additional A-terms nor 1-loop contributions to soft masses, what may be

of some importance for low-scale SUSY breaking models. We have derived all 2-loop soft masses

and 1-loop A-terms for the most general, marginal superpotential couplings (2) allowed by gauge

symmetry in the discussed model.

It turns out that to fulfill phenomenological constraints it is necessary to impose extra selection

rules on (2). Otherwise rapid proton decay or µ/Bµ problem can occur. We deal with those issues

by invoking additional global U(1)q symmetry. The charge assignments which lead to the smallest

number of allowed interaction terms were found. Using derived corrections to the soft masses (11),

we have performed analysis of the phenomenology of the models involving the smallest number of

marginal couplings of three messengers. The main conclusion is that in those scenarios the lightest

slepton masses are the most sensitive to η couplings, which alter them not directly but only via

D-term contribution to RGE running. We have shown that due to η, even for small tan β (see

Figure 1 and Figure 2, left plots), a stau or selectron can be lighter than the lightest neutralino,

and have masses as low as 300 − 400 GeV, which is close to recent LHC exclusion limit. Such
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situation is not typical for the GMSB model.

It would be worthwhile to extend analysis of the parameter space of the presented model, espe-

cially to the low M region, and investigate whether marginal couplings of three messengers are rele-

vant for realizing radiative EWSB. Moreover, one can check if there is any common NLSP/NNLSP

pattern which emerge when one considers models with more h and η couplings allowed. Finally,

while we assumed that messenger-matter couplings are hierarchical, it would be interesting to in-

vestigate full flavour structure of those interactions in the discussed model.
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A U(1)q charges

Here we show U(1)q charge assignments which lead to the smallest number of allowed marginal

couplings of messengers. In the first case (I) only couplings h8 and η4 occur while the second choice

of charges (II) results in the presence of h14 and η2. Cases (III) and (IV) correspond to models

with two hA couplings and one ηi coupling which accommodate the largest At-terms in that class

of models. In the table below, the charges of the fields are written as multiplicities of the smallest

charge (denoted by q1, q2, q3 and q4 respectively).

H5 H5 φ5 φ10 Y5 Y5 Y10 Y10 X

(I) (h8, η4) 2q1 0 q1 −q1 −q1 −q1 2q1 −4q1 2q1

(II) (h14, η2) −8q2 −7q2 3q2 4q2 17q2 −2q2 14q2 q2 −15q2

(III) (h8, h11, η2) 2q3 −3q3 4q3 −q3 −q3 2q3 2q3 −q3 −q3

(IV) (h8, h11, η4) 14q4 −9q4 16q4 −7q4 −q4 −4q4 8q4 −13q4 5q4

B Numerical coefficients in 2-loop soft masses

In this Appendix we tabulate numerical values of the coefficients C
(Φ)
i,A , C

(Φ)
i,(A,B,C) and C

(Φ)
i,(A,B,f)

which appear in 2-loop corrections (11) to sfermions soft masses induced by marginal couplings of

three messengers (10). These coefficients are displayed in the tables below. Their rows are indexed

by i = 1, 2, 3, 4. On the other hand, columns are indexed either by A or by triples: (A,B,C)

or (A,B, f) depending on the case. The C
(Φ)
i,A coefficient can be found at the i-th row and A-th

column. Likewise, C
(Φ)
i,(A,B,C) or C

(Φ)
i,(A,B,f) coefficients are located at the i-th row and column denoted

by (A,B,C) or (A,B, f). The ranges of indices are: A,B = 1, . . . , 14 and f = t, b, τ . All C(Φ)’s

which are not listed here are zero.
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B.1 Higgs Hu

A (A,B,C) (A,B, f)

1 7 11 (1, 7, 8) (1, 7, 14) (1, 8, t) (1, 14, t)

i

1 18 18 12 36 0 36 0

2 0 0 12 0 0 0 0

3 0 0 12 0 0 0 0

4 3 3 0 0 6 0 6

B.2 Higgs Hd

A (A,B,C)

3 4 9 12 (4, 8, 12) (3, 10, 12) (3, 12, 13) (4, 12, 14)

i

1 12 0 0 12 24 0 0 0

2 0 12 18 12 0 24 0 0

3 0 0 3 0 0 0 0 0

4 3 9 0 12 0 0 18 6

(A,B, f)

(3, 8, b) (3, 8, τ ) (4, 10, b) (4, 10, τ ) (3, 14, b) (4, 13, b) (4, 13, τ )

i

1 18 6 0 0 0 0 0

2 0 0 18 6 0 0 0

3 0 0 3 0 0 0 0

4 0 0 0 0 6 12 6

B.3 Slepton doublet L̃

A (A,B,C)

3 5 6 10 13 (6, 8, 13) (5, 10, 13) (3, 9, 13) (3, 12, 13) (5, 13, 13) (6, 13, 14)

i

1 3 9 0 0 12 24 0 0 0 0 0

2 0 0 12 18 12 0 18 6 0 0 0

3 0 0 0 3 0 0 0 0 0 0 0

4 0 3 9 0 12 0 0 0 6 12 6

(A,B, f)

(3, 8, τ ) (6, 9, τ ) (6, 12, τ )

i

1 6 0 0

2 0 6 0

3 0 0 0

4 0 0 6
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B.4 Right stau Ẽ

A (A,B,C) (A,B, f)

2 4 6 8 (2, 8, 8) (4, 10, τ ) (6, 9, τ ) (4, 13, τ ) (6, 12, τ )

i

1 9 0 0 18 18 0 0 0 0

2 0 6 6 0 0 12 12 0 0

3 6 0 0 6 0 0 0 0 0

4 0 6 6 0 0 0 0 12 12

B.5 Squark doublet Q̃

A (A,B,C)

1 2 4 6 8 14 (1, 7, 8) (2, 8, 8) (6, 10, 14) (4, 9, 14) (1, 8, 11) (4, 12, 14) (6, 13, 14) (2, 8, 14)

i

1 3 9 0 0 18 0 6 18 0 0 0 0 0 0

2 0 0 3 6 0 6 0 0 12 6 0 0 0 0

3 0 7 0 0 7 0 0 0 0 0 6 0 0 0

4 0 6 2 5 2 5 0 0 0 0 0 6 10 4

(A,B, f)

(2, 7, t) (1, 8, t) (4, 10, b) (6, 9, b) (2, 11, t) (4, 13, b) (6, 12, b)

i

1 6 6 0 0 0 0 0

2 0 0 6 6 0 0 0

3 0 0 0 0 6 0 0

4 0 0 0 0 0 4 6

B.6 Right stop Ũ

A (A,B,C) (A,B, f)

1 2 6 8 (1, 7, 8) (2, 8, 8) (1, 8, 11) (2, 8, 14) (2, 7, t) (1, 8, t) (2, 11, t) (1, 14, t)

i

1 6 9 0 18 12 18 0 0 12 12 0 0

2 0 0 6 0 0 0 0 0 0 0 0 0

3 0 8 0 8 0 0 12 0 0 0 12 0

4 2 0 4 2 0 0 0 4 0 0 0 4

B.7 Right sbottom D̃

A (A,B,C)

3 5 6 10 13 (6, 8, 13) (5, 10, 13) (3, 9, 13) (3, 12, 13) (5, 13, 13) (6, 13, 14)

i

1 6 6 0 0 12 24 0 0 0 0 0

2 0 0 12 18 12 0 12 12 0 0 0

3 0 0 0 4 0 0 0 0 0 0 0

4 2 2 10 0 12 0 0 0 12 12 4
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(A,B, f)

(3, 8, b) (6, 9, b) (3, 14, b) (6, 12, b)

i

1 12 0 0 0

2 0 12 0 0

3 0 0 0 0

4 0 0 4 12

B.8 Hd − L̃ mixing

For the completeness of the discussion, here we show numerical coefficients which appear in the

contributions to 2-loop mixing masses of sleptons and down Higgses: m2
HdL̃

H†
dL̃ + h.c. generated

by marginal couplings of the messengers (10). m2
HdL̃

can be written as follows:

m2
HdL̃,η

=
ξ2

16π2

∑

iA≤B≤Cf

(
C

(HdL̃)
i,(A,B)(α

2
ηiαhA

αhB
)1/2 + C

(HdL̃)
i,(A,B,C)(αηiαhA

αhB
αhC

)1/2

+C
(HdL̃)
i,(A,B,f)(αηiαhA

αhB
αf )1/2

)
. (32)

Coefficients C
(HdL̃)
i,(A,B), C

(HdL̃)
i,(A,B,C) and C

(HdL̃)
i,(A,B,f) which appear in (32) are displayed in the tables below.

Analogously to B.1–B.7, the C
(HdL̃)
i,(A,B) coefficient can be found at the i-th row and (A,B)-th column

of the appropriate table. Likewise, C
(HdL̃)
i,(A,B,C) or C

(HdL̃)
i,(A,B,f) coefficients are located at the i-th row

and column denoted by (A,B,C) or (A,B, f). The ranges of indices are as in the previous cases.

All C(HdL̃)’s which are not listed here are zero.

(A,B)

(12, 13) (3, 5) (4, 6) (9, 10)

i

1 12 9 0 0

2 12 0 12 18

3 0 0 0 3

4 12 3 9 0

(A,B,C)

(4, 8, 13) (6, 8, 12) (3, 10, 13) (5, 10, 12) (3, 9, 12) (3, 12, 12) (3, 13, 13) (4, 13, 14) (5,12,13) (6,12,14)

i

1 12 12 0 0 0 0 0 0 0 0

2 0 0 12 9 3 0 0 0 0 0

3 0 0 0 0 0 0 0 0 0 0

4 0 0 0 0 0 3 9 3 6 3

(A,B, f)

(5, 8, b) (6, 10, b) (6, 10, τ ) (4, 9, τ ) (5, 14, b) (6, 13, b) (4, 12, τ ) (6, 13, τ )

i

1 9 0 0 0 0 0 0 0

2 0 9 3 3 0 0 0 0

3 0 0 0 0 0 0 0 0

4 0 0 0 0 3 6 3 3
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