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Abstract

We take a look at how the differential distributions for tqpark production are affected by chang-
ing to the running mass scheme. Specifically we consider#msyerse momentum, rapidity and
pair-invariant mass distributions at NLO for the top-quarkss in theMS scheme. It is found

that, similar to the total cross section, the perturbatigaesion converges faster and the scale
dependence improves using the mass inMi& scheme as opposed to the on-shell scheme. We

also update the analysis for the total cross section usagatv available full NNLO contribution.
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The measurement of top-quark pair production cross sectbhadron colliders has entered
the era of precision physics with the analysis of data akElfrom the Large Hadron Collider
(LHC) in the runs at center-of-mass energiéS= 7 and 8 TeV. Measurements of the total cross
section fortt-production from ATLAS and CMS reach by now an accuracy ofidgity better
than O(10%), with the systematic and luminosity uncertainties alredominating over the small
statistical uncertainty, see, e.d.} [1-3]. First resuftdifferential distributions fortt-production
from the LHC are appearing as well [4,5]. Thus, given the gmésxperimental accuracy hadro-
production ott-pairs is currently being established as a Standard Modi&) t@nchmark process.

This has motivated tremendous activity on the theory sidradtch the experimental precision
by computing higher order corrections in Quantum Chromadyias (QCD) and we briefly reca-
pitulate the status for inclusite-pair production, i.e., no additional jets or other taggedlfstates.
Predictions for the total cross section are complete to-terext-to-leading order (NNLO) [6+9]
while differential distributions are known to next-to-thag order (NLO) [10, 111], including top-
quark decay([12, 13], though. Additional corrections baydiiLO based on threshold logarithms
have been obtained for distributions in the top-quark’sgv@rse momentum and rapidit and
y', as well as in the invariant mass$' of the top-quark paif[14,15].

Comparison of these theory predictions to experimenta dah be used to determine non-
perturbative parameters such as the strong coupling aansgte parton luminosity and the top-
quark mass and to study their correlations. Of these pammeédhe top-quark mass is certainly
the most interesting one with prominent implications fa gtectro-weak vacuum of the SM, see,
e.g., [16/17]. Itis a particularly attractive feature obss sections measurements that they offer
the opportunity for an unambiguous and theoretically weliined determination of the top-quark
mass in a particular renormalization scheme([18, 19].

The conventional scheme choice for the quark mass rena@atiain is the pole mass, which has
its short-comings [20, 21], though, since it is based ondlea iof quarks appearing as asymptotic
states. It exhibits poor convergence of the perturbativiesand due to the renormalon ambiguity
it carries an intrinsic uncertainty of the order Ad§cp. As an alternative, one can consider top-
quark hadro-production with a running mass, which has tvamtages of improved convergence
and scale stability of the perturbative expansion.tEbadro-production, these features have been
demonstrated for the total cross section [18].

In the present letter, we study the dependence of singlerdiftial distributions irp!, y* and
mit on the definition of the mass parameter. Specifically, we edthpare the conventional pole

massn[p()'ewnh the scale dependeRtS mass by means of the well-known relation in perturbation

theory,
mp"'e:m(w)(ﬂ “u+ (%) ao ) (1)

for the scheme change fromrfO'eto the runningS massam(| ) taken at the renormalization scale
L. To NNLO the coefficientsl; andd, are given by[[22] (see also Refs. [23] 24])
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Figure 1:The LO, NLO and NNLO QCD predictions for the total cross sattat LHC (/S=8 TeV) as a
function of the top-quark mass in the on-shell scherf® at the scalgr= mP%® (left) and, respectively, in
theMS schemen(m) at the scalgt= m(m) (right) using the PDF set ABM1125] angd= p, = s.
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Figure 2:The scale dependence of the LO, NLO and NNLO QCD predictiongh total cross section at
LHC (v/S= 8 TeV) for the top-quark massf®® = 173 GeV in the on-shell scheme (left) and fofm) =
163 GeV in theMS scheme (right) with the choige= p = ps using the PDF set ABM11[25]. The vertical
bars indicate the size of the scale variation in the standargep/n¥®° e [1/2,2] andy/m(m) € [1/2,2),
respectively.

with / =1In (mi> and assuming vanishing masses for all lighter quarks.

()

Let us briefly illustrate the advantages of the runnM§ massm(y;) for the totaltt cross
section. The recently completed exact NNLO QCD result [Gu8}ed out to be very close, i.e.,
within O(1— 2%), to previous approximations based on the combined thrdsira high-energy
asymptotics[[26] and has been presented as a function ofdieenmasm}pc"e. The necessary
scheme transformation fromnfOIe to m(l ), i.e., the application of eql](1), has been discussed
in [18] and is implemented in the programthor (version 1.5)[[2]7], a tool for the calculation of



the totaltt cross section in hadronic collisions.

The much improved apparent convergence of the perturbextpp@nsion with the running mass
as well as the scale stability are illustrated in Higs. 1[anth@re we compare theory predictions for
the totaltt cross section as a function of the pole and¥f& mass, respectively. Fig. 1 displays the
increase in the cross section values from LO to NNLO, wherbawve taken the parton distribution
functions (PDFs) to be order independent. For an on-sheﬂknﬁ"e: 173 GeV, for instance, the
relative increase isnLo/0Lo = 1.46 andonnLo/OnLo = 1.12 at the scalg, = py = P, This is
to be compared with a much reduced increase of oRly /0.0 = 1.26 andonnLo/OnLo = 1.03
for m(m) = 163 GeV in theMS scheme at the scalg = ys = m(m). These findings can be
understood by noting that the scheme transformation of@plied to the totat cross section
effectively shifts all parton-level corrections to thedbhold region thereby improving the apparent
convergence of the perturbation series, see, €.gl, [28].

Fig.[2 shows the scale stability for the LHC predictions awniing earlier findings for the
Tevatron, cf.[[18]. The scale variation for the cross sectiothe on-shell scheme in the standard

rangep/mf°® e [1/2, 2] amounts tdAOnnLo —138% whereas for the running mass we only find

AONNLO :jg;g;’jg for the rangegu/m(m) € [1/2,2]. Interestingly, for an on-shell mass the point of

minimal sensitivity wheres_o ~ OnLo ~ OnnLo IS located at fairly low scalegy ~ mP®'/4 ~
45 GeV, whereas for a running mass it resides at the gcaled(m(m)), i.e., it coincides with
the natural hard scale of the process. These results inmalyekperimental determinations of the
running mass from the measured cross section are feasitllev@ny good accuracy and a small
residual theoretical uncertainty. For Tevatron data sungllyaes have already been performed in
the past[[1/7, 29].

For completeness, we include here values for the full NNLGssrsections at the Tevatron
(v/S=1.96 TeV) and at the LHC for various energies of interest.

TEV v/S=1.96TeV

LHC /S=7TeV

LHC /S=8TeV

LHC v/S=14TeV

0.21 +0.16 52 +65 74 +88 270 +25.7
ABM11 | 6.82 0% “516 1330 "5 52 1949 *11% o8 8210 757 527
0.28 +0.45 6.9 +135 95 1169 324 1375
CT10 7.30 “039 "033 1689 “T59 "109 | 2416 "5 T13g | 9393 T577 1333

Table 1:The total cross section for top-quark pair-production at)INusing a pole masm[p"'e: 173 GeV
and the PDF set ABM11[25] and CT10[30] and with the errorsashaso + AGgcaet+ AGppr. The scale
uncertaintyAGscaeis based on maximal and minimal shifts for the choiges mP*®/2 andu = 2mP*"® and
Aoppr is the o combined PDFéts error. All rates are in pb.

TEV v/S=1.96TeV
7.22 +0.10 +0.16

LHC v/S=14TeV

+0.0 +246
8800 —24.0 —246

LHC v/S=8TeV

0.1 +86
2104 t¢3 752

LHC v/S=7TeV
0.2 +6.4
1438 t4.3 t6.4

ABM11

—0.10 —-0.16
+0.10 +0.47 +0.0 +137 +0.0 +17.2 +0.0 +381
CT10 7.70 —0.15 —0.35 1807 —58 -111 2580 —81 -141 997.9 —283 —339

Table 2:Same as Tahbl 1 for a running masgm) = 163 GeV in theMS scheme.

Next we discuss the single-differential distributionslne top-quark’s transverse momentum
p} and rapidityy' and in the invariant massi of the tt-pair, which are all known to NLO in
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QCD [10/11] in the conventional pole mass scheme. As we aeesisted in the differential cross
sections with the mass in tihdS scheme, we briefly recall the kinematics of heavy-quarkda
production,

hi(P1) + ha(P) — Q(p1) + X[Ql(px), (4)

whereh; andh, are hadronsX[Q] denotes any allowed hadronic final state containing at teast
heavy anti-quark, and @,) is the identified heavy-quark with mass The hadronic invariants in
this reaction are

S=(PL+P)? |, Ti=(P—p)°—m* , U= (P —p)°—nv. (5)

The double differential cross section for €g. (5) in termshef hard parton cross sectior
and PDFsf; at the factorization scalé? reads

a(STy,Us) Ldx rtdx 2, 20%0ij (S,ty, ug, 1)
oS oy dTydU; /x /x2 fila ) 100108 = g gy ©)

and the partonic invariants are related to their hadronimterparts through
t1=x1Ty, U = XoU1, S=X1%S, (7)

with the limits onx; andxy,

Up _ X1 T1
X, = — <x1 <1 X5, =
1 S+ T X1S+Uq

<x <1. (8)

In order to write the differential cross section in termspbf y* and mit, we will also need their
definitions in terms of the hadronic invariants. For the aafsplr andyt, the relations are

=3 (). ()2 = 5" 0. ©

whereas fomt, pair-invariant mass kinematics is used, in which case ¢g@irements on the

integrals are

()"
S

In these kinematics, the relevant partonic invariants fatimg the differential cross section in
terms ofnt are,

X = (10)

and X, =

02 02
th=— (m) (1—BtcosH) , Up = — () (1+Brcosh) , (11)

with 3y = \/1—4mz/ (mtt_)2 and® the scattering angle of the top quark. Full discussions ef th
kinematics to NLO for one-particle inclusive and pair-inaat mass kinematics are available in
[11,31] respectively.



In order to convert to cross section predictions with thesriasheMS scheme, we start from
the on-shell description:

dc(nfmle) _ (as>2d0 nfoe)_i_((]s)sdc n{)ole)

dX T dX T dX O(a ) (12)

whereX denotes any of the variablgk, y* and so on. If we now replatmtpoIe with m(py ) using
eg. [1), we can expand ims and obtain a description of the differential cross sectiothe MS
scheme.

do(m(w)) as)2do® (m(y))
dX - (F) dx (13)

@ ©
+ (%)S{W —|—d1m(Ur>dcrjn <d0d>(<mt)> 'm:mm,)} ro)

The only extra part required is the mass derivative of thenRBmmntribution. This has been com-
puted semi-analytically for the\, y*, andm distributions. To see why we also need some nu-
merical derivatives in this calculation, consider dq. (@) the Born contribution to the double
differential cross section as a starting point:

2.-(0)

1 dx 1dx 2. 200
—f s
/X X X17 ](X27u ) dt]_d U

6(s+t1 +ug), (24)

where the delta function imposes Born kinematics and carsee to carry out the integral over
through its relation te,t; andu;. Re-writing the cross section in terms gf andy! provides us
with the form of the integrand that will need to be evaluated,
1 X1%S  d?0(s,t1,Uz)
dxq £ (X1, Xo, U2 e ,
- 1L (X1, X2, M )x18+U1 dyid p? AT

Xo=— X1S+Uq

(15)

where L (X, %o, B2) = f1(xq, P2) f2(x2, 4?) /x1x2 is the differential parton luminosity.

The most important aspect to note is that botandx; depend on the top-quark mass through
their relations to the Mandelstam variables. This mearngiieamass derivative of the PDFs needs
to be done numerically using

dx L(X1+ 8, %2, I2) — L(x1 — 8, X0, 2)

- 2 — —
dxo L (X1, %2+ 8, P2) — L (X1, X2 — 8, Y?)
o - . (16)

This form of the derivative is found to converge well. Asiderh this, all other derivatives are
known analytically. When compared with a fully numericalccgation of the derivative term, it
is found that the two methods agree to less than 1%. In theafas, the integration limits and
variables do not depend on the top-quark ma®ssp all derivatives are computed analytically.

Using the relations presented here, we have computed tfegattifial cross sections fdt-
production in terms of;, y* andmft. We have used the programru [32] for the NLO correc-

tions [13[33] in the conventional pole masE"® scheme and a custom routine for the Born and
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Figure 3: The differential cross section with respect to the rapigitpf the top quark in the pole (left)
and theMS (right) mass scheme at the LHC witiS= 8 TeV. The dotted (green) curves are the LO
contributions while the dashed (blue) curves include NL@@exions and are obtained using the PDF set
CT10 [30]. The scale dependence in the rapge{’o'e or u/m(m) € [1/2,2] is shown as a band around the
NLO curve.

mass derivative terms. The calculations were carried aaguse ABM11 [25] and CT10[30]
PDFs at NLO. As a check, each curve was integrated to obtasudtifor the full cross section.

In all cases, the value agreed within less than 1% of the s@sson computed usirngathor. As
well, the mass derivatives were checked by computing tHerdiftial cross sections at values of
the top mass ranging between 150 GeV and 180 GeV. A curve wasefich point in the relevant
spectrum to obtain the derivative at the givd® mass. Again, these values agreed within less
than 1% of the (semi-)analytic derivatives used.

In Fig.[3 the rapidity distributions are shown for tMS and pole mass schemes. It is clear
from these that at NLO, the convergence of the perturbaévies as well as the scale dependence
improves. In the pole-mass scheme, a relative increasééocrbss section ratiasy .o/0L0 =
1.50 is seen, while in th#1S scheme we havey o/0Lo = 1.31 aty! = 0. The scale variation in

the on-shell scheme &son o = T34 while in theMS scheme, we havion o = 157 again at

y' =0.

Fig.[4 shows the transverse momentum distributions. Agarsee an improvement when
moving from the pole mass scheme to M8 scheme. In this case the improvement in the NLO
contribution is a bit better witlhy 0 /01.0 = 1.50 for the pole mass scheme amgl o/010 = 1.25

in the MS scheme. The scale variation goes frdmy o = tigzjg in the pole mass scheme to

AonLo = T5ein theMS scheme. The above values are taken near the maximum afitve at

pt =75 GeV.
Finally, in Fig.[3 we show the invariant mass distributionBhe increase at NLO here is

ONLo/OLo = 1.54 with scale variatiod\an o = 135 in the pole mass scheme aogLo/0L0 =

1.30 with scale variatiohhon o = fg:gﬁfg intheMS scheme. These values are taken at an invariant

mass ofm! = 137 GeV.

In addition to these improvements, moving from the pole masseMS scheme changes the
overall shape of the distributions so that the peak postgenerally become more pronounced.
This is a consequence of the radiative corrections beiriggslo the threshold region as mentioned
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Figure 4:Same as Fid.]3 for the differential cross section with respethe transverse momentuph of
the top quark.
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Figure 5:Same as Fid.]3 for the differential cross section with resmethe invariant massi! of the top
quark pair.

earlier. However, the peak positions in both fiieandn® distributions are stable against radiative
corrections. At most they are seen to shift by 1%, which iskenthe case fott-production
from e*e~ collisions where the position of thé-threshold peak shifts significantly upon adding
NLO and NNLO perturbative corrections to the total crosgisacexpressed in terms of the pole
mass([34].

Another salient feature not shown in Fig. 5 above occurséMB differential cross section
with respect to the invariant mass of ttiepair. Very close to the threshold tf production the
contribution reponsible for the change in the mass renoratadn scheme, i.e., the derivative term
in eq. [I3), becomes large. This is due to the presence gawvthich diverges asft — m, cf.
eq. [11). These large corrections have the effect of causiegnvariant mass spectrum to dip
below zero for values afft > 2m. In the full spectrum, however, this is counterbalancedhey t
positive contribution resulting in a cross section intégdeovem! that agrees within less than 1%

with the value calculated iRathor.
Obviously, this behavior is an indication of the breakdowfixed-order perturbation theory.



First of all, bound-state effects i production at hadron colliders arise in the kinematic ragio
mit > 2m, i.e., when the velocit of the top quarks is smalf < 1. In this region, the conven-
tional perturbative expansion on; breaks down, owing to singular terms(as/B)" in then-loop
amplitude, which require the all-order resummation of tllldmb corrections [35, 36]. This re-
summation fott dynamics close to threshold is carried out in a non-relstiveffective theory by
means of a Schrédinger equation for which the pole mass tiefirieems to be the natural choice
and which implies a certain power counting, so that all teofnsrderm/3? ~ mya?2 are formally
of equal size.

If the contribution for the change in the mass renormalizatichem@nm®d from the pole mass
to a so-called short-distance mas¥ such as theS massm(l) is parametrically larger than
ma2 that isdms? = mP?® — m9 ~ s, thendns? becomes the dominant term in the kinematic
regionmt > 2m. Such situation is realized f@dm®d ~ mas, cf. eq. [IB), and excludes théS
mass from being a useful mass near threshold. Of courséesitfindings on the scheme choice
for the mass definition close to the threshold are long knowam studies fott production inete™
collisions [34]. Various solutions have been proposed, ¢hg alternative use of a so-calle8 1
mass [37] defined through the perturbative contributiorhtornass of a hypothetical= 1, 3S;
toponium bound state, cf. [88] for an applicatiorttdadro-production or the use of a “potential-
subtracted” (PS) mask [39], recently considered in [40hi ¢ontext of finite-width effects in
unstable-particle production at hadron colliders. In aage; since the conventional perturbative
expansion of the cross section breaks downnfér> 2m we do not display this particular kine-
matic region in Figlb. Moreover, with the currently giverpeximental resultion for theit-bins,
cf. [4], it will be difficult to access this region at the LHC ai.

For completeness we also provide a table of values for thesaection at LHC with/S=
8 TeV at binned values of, p}: andm' with binning approximately equal to that dfl[4]. Com-
paring the data generated using ABM11 as compared to CT16ewéhat there is an overall shift
downward consistent with that observed for the total cresi@n, cf. Tabd.]1 arid 2. The improve-
ment of the apparent perturbative convergence and the steddgity when moving from the pole
mass scheme to thdS scheme is consistent for both PDF sets.

r,r{)ole m(m)

37‘% LO | NLO | LO | NLO
y'=0.2 | 48.70| 73.43| 64.46 | 84.83
V' =0.6 | 44.12| 66.34| 58.57 | 76.74
yt=1.0 | 35.90| 53.70 | 48.00| 62.29
Y =14 | 25.77| 38.19| 34.87| 44.51

y =20 11.37| 16.39| 15.93| 19.34

Table 3:Values for the/ differential cross section for top-quark pair-productain.O and NLO for various
y* using the PDF set CT10[30] wit'S= 8TeV. All rates are in pb.

In summary, we have shown how treating the differential €rgections fott production in
the MS scheme for the top-quark mass has benefits as comparee pold mass scheme. The



P m(m)

digrr LO | NLO | LO | NLO
y'=0.2 | 44.39]| 65.82| 59.51| 76.33
y' = 0.6 | 39.55| 58.57| 53.18 | 68.00
yt =1.0 | 31.07 | 45.89| 42.06 | 53.44
y'=14|21.04| 30.91| 28.83| 36.18

y =20 8.018| 11.55| 11.40| 13.72

Table 4:The same as tablé 3 but using the PDF set ABM11 [25] .

m[pole m(m)

digrr LO NLO LO NLO
pt =30GeV | 0.5513 | 0.8681 | 0.8214 | 1.058
p} =90cev | 0.9364 | 1.399 | 1.308 | 1.637
pi =130eV | 0.7130 | 1.045 | 0.9419 | 1.196
pl = 170ev | 0.4422 | 0.6288 | 0.5455 | 0.7057
p =230eV | 0.1777 | 0.2496 | 0.2070 | 0.2675
pl- = 290GeV | 0.06806| 0.09941| 0.08152| 0.1035

p} = 360GeV | 0.02533| 0.03105| 0.02756| 0.03537

Table 5: Values for thep! differential cross section for top-quark pair-productianLO and NLO for
variouspt using the PDF set CT10[B0]. All rates are in pb/GeV.

m[pole m(m)

digrr LO NLO LO NLO
pl =300eV | 0.4874 | 0.7568 | 0.7467 | 0.9220
p} =90Cev | 0.8141 | 1.206 | 1.148 | 1.429
pt =130eeV | 0.6076 | 0.8862 | 0.8053 | 1.006
pl =170eV | 0.3658 | 0.5262 | 0.4429 | 0.5843
pt =230eV | 0.1425 | 0.1954 | 0.1750 | 0.2175
pl = 290eeV | 0.05567| 0.06975| 0.06227| 0.07316
p} = 360zeV | 0.02008| 0.02415| 0.01266| 0.01818

Table 6:The same as tablé 5 but using the PDF set ABM11 [25] .

perturbative series shows the same improvement in conveegend scale dependence as has been
observed for the total cross section. As a consequence ti@ ddintributions with aMS mass
are expected to provide already very precise cross sectadigbons. An extension to NNLO
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m{)ole m(m)

— LO NLO LO NLO
mit = 350GeV | 0.2985 | 0.4278 | 0.9046 | 1.0295
mit = 450cev | 0.5648 | 0.8441 | 0.6755 | 0.9270
mit = 500GeV | 0.4022 | 0.5914 | 0.4656 | 0.6403
mit = 600Gev | 0.1898 | 0.2782 | 0.2102 | 0.2917
mit = 700Gev | 0.09342| 0.1301 | 0.09977| 0.1404

mit = 950GeV | 0.01796| 0.02343| 0.02067| 0.02740

Table 7: Values for them® differential cross section for top-quark pair-productianLO and NLO for
variousnt' using the PDF set CT10[B0]. All rates are in pb/GeV.

m{)ole m(m)

— LO NLO LO NLO
m' = 350Gev | 0.3036 | 0.4546 | 0.8420 | 0.9508
m' = 45(0Gev | 0.4967 | 0.7381 | 0.5914 | 0.8103
mt =500Gev | 0.3481 | 0.5118 | 0.3964 | 0.54488
m' = 600GeV | 0.1554 | 0.2212 | 0.1704 | 0.2357
mft = 700Gev | 0.0729 | 0.09674| 0.07706| 0.1061

mit = 950GeV | 0.01326| 0.01839| 0.01407| 0.01611

Table 8:The same as tab[é 7 but using the PDF set ABM11 [25] .

accuracy would provide results with a still smaller theimadtuncertainty from the scale variation.
Yet, the predictions at the nominal scale, it = m(m), are expected to remain largely unchanged.

As future prospects we note that the refinement of the prgderiomenological analysis to
NNLO accuracy is certainly feasible once the complete NNLCDQorrections for differentiatit
production are available. As a first step in this directiome onay consider approximate NNLO
corrections based, e.g., on the dominant threshold Idgasit Other obvious improvements are
extension to double-differential distributions and otbeclusive observables, even including top-
quark decay.
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