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We reformulate quantum tunneling in a multi-dimensional system where the tunneling sector is
non-linearly coupled to oscillators. The WKB wave function is explicitly constructed under the
assumption that the system was in the ground state before tunneling. We find that the quantum
state after tunneling can be expressed in the language of the conventional in-in formalism. Some
implications of the result to cosmology are discussed.
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I. INTRODUCTION

Quantum tunneling has been studied for a long time as one of the most exciting topics in various fields of science,
from the study of the dynamics of atomic and molecular systems to condensed matter physics and field theory (see
[1, 2], and references therein). Regarding applications to cosmology, there is even a possibility that the universe was
born via quantum tunneling[3]. Furthermore, the string theory landscape has been proposed as a possible setting of
the early universe inflation[4]. In this framework, scalar fields are thought to tunnel among many false vacua (i.e.
local minima of the potential) in the vast string theory potential landscape. The formulation of the false vacuum
decay (i.e. the quantum tunneling from a false vacuum) in field theory was first considered in flat spacetimes[5, 6],
and was extended to include gravity in [7] (see [8] for the extension to multiple-field cases).
Multi-dimensional quantum tunneling has also been well studied[1], and is formulated by constructing the wave

functions for quantum tunneling using the WKB method[9–12]. Field theoretic extension was developed in [13], and
such formulation has been applied to the quantum fluctuations on a tunneling background. It was further extended to
include gravity in [14]. As a result of these developments, it has been possible to calculate the quantum fluctuations
in the universe after false vacuum decay[15–17].
All previous works on quantum tunneling neglect effects of non-linear interactions. In other words, only free quantum

field theory on a tunneling background has been considered so far. In light of the recent progress in observational
cosmology, however, it is now important to study the observational consequences of non-linear interactions. For
example, the non-Gaussianity of the cosmological fluctuations is now a hot topic in cosmology [18–20]. It is clearly
necessary to reformulate quantum field theory on a tunneling background with non-linear interactions included, in
order to calculate the non-Gaussianity in a universe undergoing quantum tunneling, as is motivated by the string
landscape. Estimates for the non-Gaussianity in such a scenario have been calculated in the literature[21, 22], but up
to now there is no rigorous proof that the formulation used there is valid.
In this paper, we reformulate multi-dimensional quantum tunneling with non-linear interactions, following the

formulation by Yamamoto [12]. Although the formulation of the multi-dimensional system is interesting in itself, it
can also be regarded as a first step towards the formulation of quantum field theory. We expect that extensions from
multi-dimensional cases to field theory with gravitation are possible as before [12–14], but leave such issues to future
studies.
As the simplest extension of the 1-dimensional case, we will study a 2-dimensional system in which the tunneling

sector y is non-linearly coupled to the oscillator η, as shown in Fig. 1. The restriction to a 2-dimensional system
keeps calculations as simple as possible whilst still maintaining the essential features of multi-dimensional effects. The
particle, originally positioned in the false vacuum at (yF , 0), moves to the nucleation point at (yN , 0) by quantum
tunneling, and then rolls down classically, as shown in Fig. 1. Assuming that the potential is static, the wave function
Ψ(y, η) for such a particle is a solution of the time-independent Schrödinger equation. The boundary conditions for
Ψ(y, η) corresponding to the scenario outlined above are given as follows: Ψ(y, η) should be an out-going wave function
outside the barrier, and Ψ(y, η) should match the wave function for the quantum state before the quantum tunneling
around the false vacuum.
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FIG. 1: The potential for the 2-dimensional system, where the tunneling sector y is non-linearly coupled to the oscillator η. The
particle moves from the false vacuum (yF , 0) to the nucleation point (yN , 0) by quantum tunneling, and rolls down classically
from the nucleation point.

Let us put a screen at y outside the barrier, and then prepare the above system many times and let the particles
hit the screen. The particles hit the screen with different η each time, since Ψ(y, η) is extended in the η direction.
The statistical properties of η at y are given by the quantum expectation values with respect to Ψ(y, η), defined as
〈

ηn
〉

y
≡

∫

dηηn|Ψ(y, η)|2 where n = 1, 2, 3, · · · . In this paper, we obtain formulae for such quantities by constructing

Ψ(y, η) explicitly using the WKB method. If we define t as the time the particle takes to reach y from the nucleation
point, we can interpret Ψ(y, η) as the t-dependent wave function with respect to η. Then, we find that our resulting
formulae can be expressed in the language of the conventional in-in formalism[23, 24]. Note that

〈

ηn
〉

y
at given y, or

given t, can be regarded as the analogue of the n-point correlation functions at a given time in field theory, where the
time is defined in terms of the value of the tunneling field.
This paper is organized as follows. In Sec. II, we obtain the expression for the quantum expectation value in the

Schrödinger picture. In Sec. III, we move to the interaction picture, where the quantum expectation value is given in
the in-in formalism form. In Sec. IV, we apply the formalism obtained in Sec. II and in Sec. III to a simple toy model
for illustration purposes. Finally, we conclude in Sec. V.

II. FORMULATION: SCHRÖDINGER PICTURE

A. WKB analysis for 2-dimensional system

As mentioned in the introduction, let us consider a 2-dimensional system. The Hamiltonian of the system is given
by

H =
p2y
2

+
p2η
2

+ V (y, η) , (1)

where V (y, η) has a false vacuum and nucleation point at (y, η) = (yF , 0) and (yN , 0), respectively, as shown in Fig. 1.
The nucleation point is defined as the opposite end to the false vacuum on the tunneling path, which is the classical
trajectory connecting the false vacuum and the region outside the potential barrier with minimum action. Separating
V (y, η) into the y-part Vtun(y) and the η-part Vη(y, η) as V (y, η) = Vtun(y) + Vη(y, η), we assume for simplicity
that Vη(y, η) can be written as Vη(y, η) = (ω2(y)/2)η2 + Vint(y, η), where the nonlinear interaction term Vint(y, η)
consists of the cubic and higher order terms with respect to η. The vanishing of the linear term with respect to η in
the potential guarantees that the tunneling path lies on the y-axis. The inclusion of the nonlinear interaction term
Vint(y, η) is the essential new point in this paper, compared to the literature[15–17]. For later convenience, here we
denote the y- and η-parts of the Hamiltonian as Hy = p2y/2 + Vtun(y) and Hη = p2η/2 + Vη(y, η), respectively.
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In the system defined by eq. (1), we consider the tunneling wave function Ψ(y, η), which is a solution of the time
independent Schrödinger equation with eigenenergy E

ĤΨ(y, η) = EΨ(y, η) . (2)

Here, quantities with hat(̂ ) are operators, and p̂y and p̂η in Ĥ are given by (~/i)(∂/∂y) and (~/i)(∂/∂η), respectively.
In this paper, we concentrate on quantum tunneling from the quasi-ground-state, which is defined as the ground state
for the potential expanded around the false vacuum. We can consider quantum tunneling from excited states, as in
[12], but we leave such issues to future studies. As mentioned in the introduction, Ψ(y, η) should be an out-going
wave function outside the barrier.
We construct the tunneling wave function under the following assumptions:

1) the WKB approximation is valid well inside and well outside the barrier,

2) the coupling between the y and η directions is small,

3) the region around the nucleation point where the WKB approximation breaks is narrow,

4) the coupling between the y and η directions vanishes around the false vacuum.

We hope to return to more general cases, say, cases where assumptions 3) and/or 4) are relaxed, in future. If there
was no coupling between the two directions (i.e. if Vη(y, η) could be denoted as Vη(η)), the tunneling wave function
Ψ(y, η) would be given by the product of Ψy(y) and Φ(η), where Ψy(y) is the 1-dimensional tunneling wave function
for Vtun(y) and Φ(η) is the ground state for Vη(η). In our case, however, we consider small but non-vanishing coupling,
and thus we expand Ψ(y, η) and E in eq. (2) as

Ψ(y, η) = Ψy(y)Φ(y, η) , E = Ey + Eη . (3)

Here, Ψy(y) and Ey are, respectively, the wave function and energy of the 1-dimensional Schrödinger equation
HyΨy(y) = EyΨy(y), which we will briefly discuss below. As a result of assumption 4), the quasi-ground-state
is given by Ψy(y)ΦF (η), where ΦF (η) is the ground state for the η-part of the potential around the false vacuum
VF (η)(≡ Vη(yF , η)). Here, by focusing on eq. (2) around the false vacuum and denoting the ground state energy with
respect to VF (η) as EF , it can be seen that Eη is given by EF .
As shown in Fig. 2, the tunneling path y(τ), or instanton, is a solution of the Euclidean equation of motion (EOM)

y′′(τ) − dVtun/dy = 0, where ′ denotes the derivative with respect to the imaginary, or Euclidean, time τ . The
boundary conditions for y(τ) are given by y(±∞) = yF and y(0) = yN , where the freedom in choosing the origin of τ
is fixed. Well inside the potential barrier, we rewrite the wave function as Ψy(y) = e−Sy(y)/~ with the Euclidean action
Sy(τ)(= Sy(y(τ))), and make the WKB expansion Sy = S0 + ~S1 + ~

2S2 + · · · . Then, by solving the Schrödinger
equation order by order and using the instanton y(τ), we can obtain dS0(y)/dy = y′(τ), S1(y) = (1/2) ln(dS0/dy),
and so on, where we take τ to be in the region τ ∈ (−∞, 0). It is known that we can move from inside the barrier
to outside the barrier by analytical continuation τ → t = −iτ , where t is the real, or Lorentzian, time. After the
analytical continuation, the instanton gives the classical motion of the particle y(t) ≡ y(τ = it), which starts rolling
down from the nucleation point at t = 0, as shown in Fig. 1 and Fig. 2. Furthermore, the analytical continuation
of the Euclidean action Sy(t) ≡ Sy(τ = it) gives the tunneling wave function Ψy(y(t)) = e−Sy(t)/~ well outside the
barrier. In the following, we can use τ , t and y interchangeably.
Now, we will transform eq. (2) inside the potential barrier. By substituting eq. (3) with Eη = EF into eq. (2) and

using the 1-dimensional Schrödinger equation HyΨy(y) = EyΨy(y), we obtain

~
dSy

dy

∂

∂y
Φ(y, η)− ~

2

2

∂2

∂y2
Φ(y, η) + Ĥ(y)Φ(y, η) = 0 , (4)

where

Ĥ(y) =
p̂2η
2

+ Vη(y, η)− EF . (5)

Here, we can neglect the second term in eq. (4), since the y-dependence of ψ(y, η) is expected to be small as a
result of assumption 2). By neglecting the second term in eq. (4) and using the leading order relation in the WKB
approximation ~(dSy/dy)(∂/∂y) ≈ ~(∂/∂τ), we can transform eq. (4) into

−~
∂

∂τ
Φ(τ, η) = Ĥ(τ)Φ(τ, η) . (6)
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FIG. 2: The schematic picture of instanton y(τ ) with the imaginary time τ (doted line) and its analytical continuation
y(t) ≡ y(τ = it) with the real time t (solid line).

This equation is of exactly the same form as the “time-dependent Schrödinger equation” with imaginary time τ ,
defined for τ ∈ (−∞, 0).
Let us now check the consistency of the approximation used to derive eq. (6), by estimating the size of the second

term in eq. (4). To next-to-leading order in the WKB approximation, the coefficient of the second term in eq. (4) can
be approximated as

~
2

2

∂2

∂y2
≈ −~y′′

y′3
~
∂

∂τ
+

1

2y′2
(~

∂

∂τ
)2 . (7)

Here, ~y′′/y′
3 ≈ 2(dS1(y)/dy)/(dS0(y)/dy) and (~∂/∂τ) can be estimated as O(~ω) using eq. (6). Thus, when the first

and second operators on the r.h.s. act on Φ(τ, η), they give terms that are suppressed, under WKB approximation,
by factors of O((dS1(y)/dy)/(dS0(y)/dy)) and O(~ω/y

′2) relative to other terms in eq. (4), respectively.
It may be useful to make a comment on the WKB expansion used above. Strictly speaking, this expansion is not

merely a expansion in ~ where η is considered to be O(~1/2), as was done in [12]. In such an expansion, the non-linear
interaction terms would not appear in eq. (6), since the non-linear interaction terms would become higher order in ~

(e.g. η3 term would become O(~3/2)). Rather, here we have expanded equations based on the fact that the classical
part of the wave function S0(y) dominates over quantum effects, which makes it possible to consistently take into
account the effect of non-linear interaction terms in eq. (6).
We can also transform eq. (2) outside the barrier, following similar arguments to those outlined above but with the

real time t instead of the imaginary time τ . As a result of the analytical continuation τ → t = −iτ , we obtain

i~
∂

∂t
Φ(t, η) = Ĥ(t)Φ(t, η) , (8)

which is the “time-dependent Schrödinger equation” with real time t, defined for t ∈ (0,∞). For later convenience,
let us recall that the original 2-dimensional wave function Ψ(y, η) is denoted as

Ψ(y, η) = exp [−S(t)/~] Φ(t, η) , (9)

where y(= y(τ = it)) is inside and outside the potential barrier for t ∈ (+i∞, 0) and t ∈ (0,∞), respectively.
Around the false vacuum or the nucleation point, where the WKB approximation is not valid, we determine Φ using

matching conditions. Thanks to assumptions 3) and 4), the matching conditions are given in a simple way. Firstly,
the matching condition at y = yN is given by

lim
τ→−0

Φ(τ, η) = lim
t→+0

Φ(t, η) , (10)

since Ψ(y, η) = Ψy(y)Φ(y, η) on both sides of yN should have the same value at yN . Here, we can use eq. (6) and
eq. (8) until very close to yN thanks to assumption 3). Secondly, the matching condition at y = yF is given by

lim
τ→−∞

Φ(τ, η) = ΦF (η) , (11)

since the wave function is assumed to match the quasi-ground-state around the false vacuum, which is given by
Ψy(y)ΦF (η) due to assumption 4), as mentioned below eq. (3).
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B. Expectation values of operators

We will obtain the tunneling wave function by solving eq. (6) and eq. (8) with the matching condition eq. (10) and
eq. (11). For notational simplicity, we introduce bra-ket notation, where eq. (8) is written as

i~
∂

∂t
|Φ(t)〉 = Ĥ(t) |Φ(t)〉 , (12)

with

〈η|Φ(t)〉 = Φ(t, η) . (13)

The formal solution to eq. (12) is given by

|Φ(t)〉 = P

(

exp

[

− i

~

∫ t

t0

H(t′)dt′
])

|Φ(t0)〉 , (14)

where 0 < t0 < t and the path ordering operator P orders operators according to their order along the integration
path. From now on, we omit ˆ over operators for brevity. Similarly, the formal solution to eq. (6) is given by

|Φ(τ)〉 = P

(

exp

[

− 1

~

∫ −iτ

−iτ0

H(τ ′)dτ ′
])

|Φ(τ0)〉 , (15)

for τ0 < τ < 0. The expressions in eq. (14) and eq. (15) are not valid at the nucleation point, where the WKB
approximation breaks down. However, thanks to the matching condition given by eq. (10), which can be written in
bra-ket notation as |Φ(τ = −0)〉 = |Φ(t = +0)〉, we can connect the two expressions at the nucleation point as

|Φ(t)〉 = P

(

exp

[

− i

~

∫ t

0

H(t′)dt′
])

|Φ(0)〉

= P

(

exp

[

− i

~

∫

−iτ0→0→t

H(t′)dt′
])

|Φ(−iτ0)〉 , (16)

where
∫

−iτ0→0→t
dt′ =

∫ t

0
dt′ +

∫ 0

−iτ0
dt′.

The matching around the false vacuum is given as follows. We consider a wave function which matches the quasi-
ground-state around the false vacuum. The ket |ΩF 〉 corresponding to the quasi-ground state ΦF (η) can be given
by

|ΩF 〉 = lim
T→∞

e−
1

~
HFT |Φ〉 , (17)

where HF ≡ H(+i∞) and |Φ〉 is arbitrary as long as it is not orthogonal to |ΩF 〉. We don’t need to care about the
overall normalization of |ΩF 〉, since it will be canceled in the calculations of quantum expectation values, as will be
seen below. In deriving eq. (17), we use the fact that the ground state has HF = 0 while excited states have HF > 0,
which comes from the definition of H(y) in eq. (5). From assumption 4), there exists a τ0 such that for τ < τ0 we can
approximate H(τ) and |Φ(−iτ)〉 as HF and |ΩF 〉, respectively. Thus, using eq. (16) and eq. (17), the state evolving
from |ΩF 〉 at t = −iτ0 is given by

|Φ(t)〉 = P

(

exp

[

− i

~

∫

−iτ0→0→t

H(t′)dt′
])

lim
T→∞

e−
1

~
HF T |Φ〉

= P

(

exp

[

− i

~

∫

+i∞→0→t

H(t′)dt′
])

|Φ〉 . (18)

Now we are able to evaluate the quantum expectation values. For an operator O with respect to η (i.e. some
function of η and pη), the quantum expectation value at given y(= y(t)) outside the barrier is given by

〈

O
〉

y
=

∫∞

−∞
dηΨ∗(y, η)OΨ(y, η)
∫∞

−∞
dη|Ψ(y, η)|2

=
〈Φ(t) |O|Φ(t)〉
〈Φ(t)|Φ(t)〉 . (19)
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Im t’

Re t’
t

t’

FIG. 3: The time integration path C given by eq. (22). The time integration along the imaginary axis (doted line) corresponds
to the evolution of the quantum state during tunneling, and along the real axis (solid line) corresponds to the evolution after
tunneling.

To derive the second line, we use eq. (9) and cancel the factors e−
1

~
S(t) appearing both in numerator and denominator.

Taking the hermitian conjugate of eq. (18), we obtain

〈Φ(t)| = (|Φ(t)〉)†

= 〈Φ|P
(

exp

[

− i

~

∫

t→0→−i∞

H(t′)dt′
])

, (20)

where H(t∗) = H(t) since H(y) given in eq. (5) depends only on y and y(−τ) = y(τ) due to the Euclidean time
inversion symmetry of the instanton. By substituting eq. (18) and eq. (20) into eq. (19), we obtain the resulting
formula for the quantum expectation values in the Schrödinger picture

〈

O
〉

y
=

〈

Φ
∣

∣P
(

O exp
[

− i
~

∫

C H(t′)dt′
])∣

∣Φ
〉

〈

Φ
∣

∣P
(

exp
[

− i
~

∫

C H(t′)dt′
])∣

∣Φ
〉 , (21)

where

C : +i∞ → 0 → t→ 0 → −i∞ (22)

is the time integration path, as shown in Fig. 3, and O is ordered by P as if it is defined at t. In the denominator of
eq. (21), we can deform the integration path from C to i∞ → −i∞ using P

(

exp
[

− i
~

∫

0→t→0H(t′)dt′
])

= 1. If |Φ〉
was chosen to be orthogonal to |ΩF 〉, we could obtain the quantum expectation values for quantum tunneling from
an excited state, as studied in [12]. We leave such issues to future studies.

III. FORMULATION: INTERACTION PICTURE

A. Relation between interaction and Schrödinger pictures

Since the expression given in eq. (21) is difficult to evaluate directly, in this section we will move from the Schrödinger
picture formulation to the interaction picture one. This can be accomplished almost in the same way as usual, but
taking into account the non-unitarity of the evolution operator for the imaginary part of the integration path. The
interaction picture formulation may be helpful when considering the multi-dimensional tunneling system in the context
of quantum field theory, where the interaction picture is employed.
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First of all, we introduce the evolution operator

U(t2, t1) = P

(

exp

[

− i

~

∫ t2

t1

H(t)dt

])

≡ 1 + (−i)
∫ t2

t1

H(t′)dt′ + (−i)2
∫ t2

t1

dt′
∫ t′

t1

dt′′H(t′)H(t′′) + · · · , (23)

where t1 and t2 are on the path C given by eq. (22). The inverse operator for U(t2, t1) is given by

(U(t2, t1))
−1

= U(t1, t2) , (24)

which can be confirmed by explicit calculation of (U(t2, t1) (U(t2, t1))
−1 using eq. (23). The combination rule

U(t3, t2)U(t2, t1) = U(t3, t1) , (25)

is satisfied as usual. It should be noted that U(t2, t1) is not generally a unitary operator since the path C include the
imaginary part, and that U(t2, t1) satisfies the relation U(t2, t1)

† = U(t∗2, t
∗
1)

−1.
To find interaction picture expression, we expand the full Hamiltonian given in eq. (5) as H(t) = H0(t) +Hint(t),

where the free part H0(t) and the interaction part Hint(t) are given, respectively, by

H0(t) =
p2η
2

+
ω2(t)

2
η2 − EF , Hint(t) = Vint(y(t), η) . (26)

Using H0(t), we can define the annihilation and creation operators at each t, respectively, as

at =

√

2ω(t)

~
η + i

√

2

~ω(t)
pη , a†t =

√

2ω(t)

~
η − i

√

2

~ω(t)
pη , (27)

where at and a†t satisfy the usual commutation relation. The eigenstates with respect to H0(t) can be defined with

at and a
†
t as

|nt〉 =
1√
n!

(

a†t

)n

|0t〉 , at |0t〉 = 0 , (28)

where they satisfy

H0(t) |nt〉 = Ent
|nt〉 , Ent

= ~ω(t)

(

n+
1

2

)

− EF . (29)

When H0(t) explicitly depends on time, at and |0t〉 also become time-dependent. at at the times t = t1 and t = t2 are
related by a Bogolubov transformation, and |0t1〉 and |0t2〉 are annihilated by at1 and at2 , respectively. The evolution
operator for the free Hamiltonian H0(t) is given by

U (0)(t2, t1) = P

(

exp

[

− i

~

∫ t2

t1

H0(t)dt

])

. (30)

Interaction picture operators OI(t) are defined by

OI(t) ≡ U (0)(0, t)OU (0)(t, 0) , (31)

where O are Schrödinger picture operators. In the interaction picture, states are evolved with the evolution operator
for HI(t), given by

UI(t2, t1) = P

(

exp

[

− i

~

∫ t2

t1

HI(t)dt

])

, (32)

where the interaction Hamiltonian HI(t) is defined as

HI(t) ≡ Hint(ηI(t), t) . (33)
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For any t1 and t2 on C given by eq. (22), we can rewire UI(t2, t1) in terms of U(t2, t1) from eq. (23) and U (0)(t2, t1)
from eq. (30) as

UI(t2, t1) = U(t2, t1)U
(0)(t1, t2) = U (0)(t1, t2)U(t2, t1) , (34)

which can be confirmed by explicit calculation.
To describe ηI(t) and pηI(t) in a simple way, we introduce a positive frequency function u(t) and a negative frequency

function v(t). They are defined as solutions to the linearized EOM,

ü(t) = −ω2(t)u(t) , v̈(t) = −ω2(t)v(t) , (35)

which are complex conjugate to each other when t is real;

u∗(t) = v(t) for real t , (36)

and satisfy Klein-Goldon(KG) normalization,

u(t)v̇(t)− u̇(t)v(t) = i~ . (37)

Here, a dot denotes the derivative with respect to t. When t is imaginary, since we define u(t) and v(t) by analytical
continuation from real t, eqs. (35) and (37) still hold but eq. (36) is no longer true. It should be noted that the
freedom in choosing u(t) corresponds to the freedom to make an arbitrary Bogolubov transformation.
Using u(t) and v(t), we can define the annihilation operator a and the creation operator a†, respectively, as

a = − i

~
(ηI(t)v̇(t)− pηI(t)v(t)) , a† =

i

~
(ηI(t)u̇(t)− pηI(t)u(t)) . (38)

We will see below that the operators defined in eq. (38) are time-independent and hermitian conjugate to each other.
Firstly, it can be explicitly shown that these operators are time-independent by differentiating a and a† in eq. (38)
with respect to t and using eq. (35) and the evolution equations for ηI(t) and pηI(t),

η̇I(t) =
1

i~
[ηI(t), H0(t)] = pηI(t) , ṗηI(t) =

1

i~
[pηI(t), H0(t)] = −ω2(t)ηI(t) . (39)

Since eqs. (35) and (39) are valid not only for real t but also for imaginary t, eq. (38) can be used even when t is
imaginary. Secondly, by considering eq. (38) when t is real and using eq. (36) and the hermiticity of ηI(t) and pηI(t),
it is clear that a and a† defined in eq. (38) are hermitian conjugate to each other. Using eq. (37) and eq. (38), ηI(t)
and pηI(t) can be written, respectively, as

ηI(t) = au(t) + a†v(t) , pηI(t) = au̇(t) + a†v̇(t) . (40)

It should be noted that eq. (40) is valid not only for real t but also for imaginary t.

B. In-in formalism along complex path

For later convenience, we introduce the state |ΦN 〉, which is the state at the nucleation point when non-linear
interactions are switched off. By taking the limit t → ±i∞ in eq. (26), eq. (27), eq. (28) and eq. (29), we define ωF ,
aF , |nF 〉, H0F and EnF

. Using those asymptotic quantities, |ΦN 〉 is obtained as

|ΦN 〉 = lim
T→∞

eE0F
TU (0)(0, iT ) |0F 〉 , (41)

where the normalization factor eE0F
T is introduced to make the expression finite and constant in the limit T → ∞.

As a result of the explicit t-dependence of the free Hamiltonian H0(t), |ΦN〉 is not proportional to |0F 〉 in general.
The difference between |ΦN 〉 and |0F 〉 is determined by solving the EOMs for the positive and negative frequency
functions given in eq. (35)1.

1 The effect of the explicit t-dependence of H0(t) was determined by directly solving the Schrödinger equation in [12]. For the correspon-
dence between this work and [12], see App. A.
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As will be confirmed below, the annihilation operator a that annihilates |ΦN 〉 is associated with u(t) and v(t)
defined with the boundary conditions

u(t)
t→−i∞→ e−iωF t , v(t)

t→+i∞→ eiωF t , (42)

up to constant factors determined by the KG normalization. Note that u(t) and v(t) satisfy the conditions for positive
and negative frequency functions given by eq. (36) and eq. (37). The corresponding annihilation operator is defined
by substituting v(t) given by eq. (42) into eq. (38), and can be rewritten as

a = − i

~
U (0)(0, t) (ηv̇(t)− pηv(t))U

(0)(t, 0)

∝ lim
T→∞

e−ωFTU (0)(0, iT )aFU
(0)(iT, 0) . (43)

In deriving the first equality we used eq. (31), eq. (38) and the t-independence of a, and in deriving the second we
used eq. (27) in the limit t → i∞ along with eq. (42). Then, using eq. (41) and eq. (43), we can explicitly show that

a |ΦN 〉 ∝ lim
T→∞

e(E0F
−ωF )TU (0)(0, iT )aFU

(0)(iT, 0)U (0)(0, iT ) |0F 〉 = 0 , (44)

as we stated above.
Now we will move from the Schrödinger picture to the interaction picture. By inserting U (0)(t1, t2)U

(0)(t2, t1) = 1
into eq. (21) many times, and using eq. (31) and eq. (41), we obtain

〈Φ|U (0)(−i∞, 0)U (0)(0,−i∞)U(−i∞, 0)U(0, t)U (0)(t, 0)U (0)(0, t)
〈

O
〉

y
=

×OU (0)(t, 0)U (0)(0, t)U(t, 0)U(0, i∞)U (0)(i∞, 0)U (0)(0, i∞) |Φ〉
〈

Φ
∣

∣U (0)(−i∞, 0)U (0)(0,−i∞)U(−i∞, 0)U(0, i∞)U (0)(i∞, 0)U (0)(0, i∞)
∣

∣Φ
〉

=
〈ΦN |UI(−i∞, t)OI(t)UI(t, i∞) |ΦN 〉

〈ΦN |UI(−i∞, i∞)|ΦN 〉 , (45)

where the overall factors appearing in both numerator and denominator cancel each other. To make the correspondence
between this result and that of the conventional in-in formalism[23, 24] clearer, we can rewrite eq. (45) as

〈

O(t)
〉

=

〈

P
(

OI(t) exp
[

− i
~

∫

C
HI(t

′)dt′
]) 〉(N)

〈

P
(

exp
[

− i
~

∫

C
HI(t′)dt′

]) 〉(N)
, (46)

where the time integration path C is given by eq. (22),
〈

O(t)
〉

≡
〈

O
〉

y
, and

〈 〉(N)
is defined as

〈

O
〉(N) ≡

〈ΦN |O|ΦN 〉 / 〈ΦN |ΦN 〉. We can deform the integration path in the denominator from C to i∞ → −i∞ using
P
(

exp
[

− i
~

∫

0→t→0HI(t
′)dt′

])

= 1.
Since the annihilation operator a annihilates |ΦN 〉, Wick’s theorem can be used to evaluate eq. (46) as usual. The

N -point correlation function
〈

P
(

ηI(t1)ηI(t2) · · · η(tN )
)〉(N)

vanishes when N is odd, but is given by

〈

P
(

ηI(t1)ηI(t2) · · · η(tN )
)〉(N)

=
∑

set of pairs

∏

pairs

〈

P
(

ηI(ti)ηI(tj)
)〉(N)

, (47)

when N is even. Here, the 2-point correlation function
〈

P
(

ηI(t1)ηI(t2)
)〉(N)

can be evaluated as

〈

P
(

ηI(t1)ηI(t2)
)〉(N)

=

{

u(t1)v(t2) when t1 precedes t2 along C ,

u(t2)v(t1) when t2 precedes t1 along C ,
(48)

where u(t) and v(t) are given by eq. (42).
Before closing this section, let us summarize what we have found. The expression given in eq. (46) is in the

same form as the conventional in-in formalism, which is often used in quantum field theory calculations involving
interactions[23, 24]. However, the time integration path C : i∞ → 0 → t → 0 → −i∞ is different from the
usual case, where the time integration path is t0 → t → t0 when the initial state is given at an initial time t0 or
−∞(1− iǫ) → t → −∞(1 + iǫ) when the initial state is given in the past infinity. In our case, the quasi-ground-state
is chosen as the initial state of the false vacuum, and the corresponding time is given as t = ±i∞ using the instanton
y(τ) defined with Euclidean time τ = it. In eq. (46), the imaginary part of the integration path C corresponds to the
evolution inside the barrier, or during tunneling, while the real part corresponds to the evolution outside the barrier,
or after tunneling.
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IV. APPLICATION TO TOY MODEL

A. Toy model

For illustration purposes, we explicitly apply the formalism obtained above to a simple toy model. We assume that
the instanton is given by

y(τ) ≈











yF (−∞ < τ < −τW ) , (τW < τ <∞) ,

yN (−τW < τ < +τW ) ,

> yN (0 < t(= −iτ) <∞) ,

(49)

where τW (0 < τW ) is the wall size of the thin-wall instanton, and that the potential Vη(y, η) is given by

Vη(y, η) =
ω2

2
η2 + λ̃(y) η3 , (50)

where the y-dependent coupling constant λ̃(y) is assumed to be effective only inside the potential barrier (i.e. yF <
y < yN ). By substituting eq. (49) and eq. (50) into eq. (26), H(τ) = H0 +Hint(τ) can be written as

H0 =
p2

2
+
ω2

2
η2 − ~ω

2
, Hint(τ) ≈ λδ (τ − τW ) η3 + λδ (τ + τW ) η3 , (51)

where δ(x) is Dirac’s delta function and λ =
∫ −τW+0

−τW−0 λ̃(ȳ(τ))dτ . Here, the eigenenergy of the quasi-ground-state is

given by EF = ~ω/2, since Hint(τ) vanishes around the false vacuum and the quasi-ground-state is the ground state
for H0. In the following, we denote the ground state and the annihilation operator associated with H0 as |0〉 and a,
respectively. We will calculate

〈

η
〉

y
, or

〈

η(t)
〉

, using both the the Schrödinger and interaction picture expressions,

given in eq. (21) and eq. (46), respectively. Although
〈

η(t)
〉

= 0 in the free theory calculation, we obtain
〈

η(t)
〉

(t) 6= 0
as a result of the effect of non-linear interaction.

B. Calculation in Schrödinger picture

To evaluate eq. (21), we obtain |Φ(t)〉 using eq. (18). The evolution of the ground state |0〉 defined at the false
vacuum (t′ = +i∞) to behind the wall (t′ = −i(−τW − 0)) is trivial since H(t′) is simply given by H0 in this region,
and we obtain

|Φ(−i(−τW − 0))〉 = |0〉 . (52)

Using eq. (51), the evolution of the state across the wall (i.e. t′ = −i(−τW − 0) → −i(−τW + 0)) is given by

|Φ(−τW + 0)〉 = e−
λ
~
η3 |Φ(−τW − 0)〉 . (53)

Since H(t′) is again simply H0 from in front of the wall (t′ = −i(−τW + 0)) to outside the barrier (t′ = t), the
evolution of the state between them is given by

|Φ(t)〉 = exp

[

− i

~
H0(t− iτW )

]

|Φ(−i(−τW + 0))〉 . (54)

By combining eq. (52), eq. (53) and eq. (54) we obtain, to first order in λ,

|Φ(t)〉 ≈ exp

[

− i

~
H0(t− iτW )

]

(1− λ

~
η3) |0〉 , (55)

and its hermitian conjugate is given by

〈Φ(t)| ≈ 〈0| (1− λ

~
η3) exp

[

i

~
H0(t+ iτW )

]

. (56)

By substituting eq. (55) and eq. (56) into eq. (21) we obtain, to leading order in λ,

〈

η(t)
〉

≈ −λ
~

〈

0

∣

∣

∣

∣

η exp

[

− i

~
H0(t− iτW )

]

η3 + η3 exp

[

i

~
H0(t+ iτW )

]

η

∣

∣

∣

∣

0

〉

= −3~λ

2ω2
cos (ωt) e−ωτW . (57)

To obtain the second line, we used [a, a†] = 1, H0 |0〉 = 0, [H0, a] = −~ω, [H0, a
†] = ~ω and η = (~/2ω)1/2

(

a+ a†
)

.
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C. Calculation in interaction picture

Since H0 is independent of t, eq. (35) can be easily solved. u(t) and v(t) defined with the boundary conditions in
eq. (42) are given, respectively, by

u(t) =

√

~

2ω
e−iωt , v(t) =

√

~

2ω
eiωt . (58)

By using Hint(τ) given in eq. (51) along with eq. (32), we obtain, to first order in λ,

exp

[

− i

~

∫

C

HI(t
′)dt′

]

≈ 1− λ

~
η3I (iτW )− λ

~
η3I (−iτW ) . (59)

By substituting eq. (59) into eq. (45) we obtain, to leading order in λ,

〈

η(t)
〉

≈ −λ
~

〈

ηI(t)η
3
I (iτW ) + η3I (−iτW )ηI(t)

〉(N)

= −3~λ

2ω2
cos (ωt) e−ωτW . (60)

which is in agreement with eq. (57), as it should be. To obtain the second line, we used Wick’s theorem, as in eq. (47).

Here, for example,
〈

ηI(t1)η
3
I (t2)

〉(N)
can be evaluated as

〈

ηI(t1)η
3
I (t2)

〉(N)
= 3

〈

ηI(t1)ηI(t2)
〉(N)〈

η2I (t2)
〉(N)

= 3u(t1)u(t2)v
2(t2) . (61)

V. CONCLUSION

We have studied a 2-dimensional tunneling system, where the tunneling sector y is non-linearly coupled to an oscil-
lator η. Assuming the system is initially in a quasi-ground-state at the false vacuum, the 2-dimensional tunneling wave
function ψ(y, η) has been constructed using the WKBmethod. We have considered the effect of non-linear interactions,
which has not been studied in the context of multi-dimensional tunneling systems before, to our knowledge.
We have determined the quantum expectation values with respect to the η direction at a given y outside the barrier.

We first introduced a Schrödinger picture formulation to obtain eq. (21) in Sec. II, and then moved to an interaction
picture formulation in Sec. III to obtain eq. (46). The resulting formula given in eq. (46) is of the same form as
the conventional in-in formalism, which is often used in quantum field theory calculations with interactions[23, 24].
However, the time integration path is modified to the one consisting of an imaginary part in addition to a real part.
The difference in the integration path for the usual case and the quantum tunneling case can be understood as

follows. In the usual case, an initial state is given at some finite past t = t0 or the infinite past t = −∞, both of which
are defined on the real axis. However, in the case of quantum tunneling, the initial state is given at the false vacuum,
where the corresponding time is t = ±i∞. In our case, the imaginary part of the integration path corresponds to the
evolution of the quantum state during tunneling, while the real part corresponds to the evolution after the quantum
tunneling.
In this paper, the formulation has been done in a multi-dimensional quantum mechanical system. In order to

apply it to cosmology, we need to extend the formulation to field theory, with gravitational effects included. Such an
extension has been done in the case without interactions in [12–14], and we expect similar extension to be possible
in the case with interactions. Although a full derivation is now under investigation, one might naively expect that
the integration path will also consist of an imaginary part corresponding to the evolution during quantum tunneling,
and real part corresponding to the evolution after quantum tunneling. Calculations assuming this naive expectation
to be true have already been performed in the literature[21, 22].
Observable effects resulting from non-linear interactions, such as the non-Gaussianity of cosmological fluctuations,

are now recognized as powerful tools to probe the early universe. It is therefore important for us to be able to
determine such features that may result from models involving quantum tunneling, which are motivated by the string
landscape.
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Appendix A: Positive frequency function and wave function

In this appendix, we will illustrate the the relation between the positive frequency function u(t) used in this work
and its corresponding wave function ψ(η, t) used in the literature[12]. We will employ the 1-dimensional harmonic
oscillator with Hamiltonian

H =
p2η
2

+
ω2

2
η2 , (A1)

as an example. We will also see how the freedom in choosing u(t) and v(t) is related to the Bogolubov transformation.
As usual, the ground state |0〉 and the corresponding annihilation operator a are given by

a =

√

ω

2~
η + i

1√
2~ω

pη , a |0〉 = 0 , (A2)

where the Hamiltonian can be rewritten as H = ~ω
(

a†a+ 1
2

)

and the commutation relation is given by
[

a, a†
]

= 1.

The Bogolubov transformed vacuum state
∣

∣0̃
〉

and corresponding annihilation operator ã are constructed as

ã = αa+ βa† , ã
∣

∣0̃
〉

= 0 , (A3)

where α and β satisfy |α|2 − |β|2 = 1. Here, ã satisfies the commutation relation
[

ã, ã†
]

= 1 but is nothing to do with
the Hamiltonian.
In the Heisenberg picture, operators are defined as OH(t) = e

i
~
HtOe− i

~
Ht, where operators with and without

subscript H correspond to Heisenberg and Schrödinger operators, respectively. The positive frequency functions u(t),
which are solutions to the EOM ü(t) = −ω2u(t) and satisfy the Klein-Gordon normalization uu̇∗ − u̇u∗ = i~, define
the corresponding annihilation operators au by

au =
1

i
(ηH(t)u̇∗(t)− pηH(t)u∗(t)) . (A4)

The positive frequency function u0(t) =
√

~/2ω e−iωt gives the annihilation operator a of the ground state defined in
eq. (A2), while ũ(t) = α∗u0(t)− βu∗0(t) gives ã of the Bogolubov transformed vacuum state defined in eq. (A3).
We will explicitly construct the wave function ψu(η) = 〈η|0u〉 where |0u〉 satisfies au |0u〉 = 0. Using eq. (A4),

OH(t) = e
i
~
HtOe− i

~
Ht and pη = −i~(∂/∂η), we can rewrite au |0u〉 = 0 in terms of the wave function as

(

i~u∗(t)
∂

∂η
+ u̇∗(t)η

)

e−
i
~
Htψu(η, t) = 0 , (A5)

where H = −(~2/2)(∂2/∂η2) + (ω2/2)η2.
For the ground state, the positive frequency function is given by u0(t) and H = ~ω/2. By solving eq. (A5), we

obtain, neglecting an imaginary phase,

ψ0(η) =

√

ω

π~
exp

[

−ωη
2

2~

]

, (A6)

where ψ0(η) is the well known ground state wave function for the harmonic oscillator, as expected. Here we choose
the overall normalization such that

∫

dη|ψ0(η, t)|2 = 1.
For the Bogolubov transformed vacuum state, the positive frequency function is given by ũ(t). Using the hermiticity

of H and solving eq. (A5), we obtain, neglecting an imaginary phase,

ψ̃(η, t) = e
i
~
Ht





√

1

π~

˙̃u∗(t)

ũ∗(t)
exp

[

i

2~

˙̃u∗(t)

ũ∗(t)
η2
]



 , (A7)

where we again choose the overall normalization such that
∫

dη|ψ̃(η, t)|2 = 1.
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