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Abstract.

We derive the basic equations of the cosmological first-order post-Newtonian

approximation from the recently formulated fully nonlinear and exact cosmological

perturbation theory in Einstein’s gravity. Apparently the latter, being exact, should

include the former, and here we use this fact as a new derivation of the former.

The complete sets of equations in both approaches are presented without fixing the

temporal gauge conditions so that we can use the gauge choice as an advantage.

Comparisons between the two approaches are made. Both are potentially important in

handling relativistic aspects of nonlinear processes occurring in cosmological structure

formation. We consider an ideal fluid and include the cosmological constant.
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1. Introduction

The origin and evolution of the large-scale cosmic structures are important in current

scientific cosmology providing links between theories and observations. Many of the

important constraints on the cosmological models come from matching observations of

http://arxiv.org/abs/1307.6270v1
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the large-scale galaxy distribution and motion, and the cosmic microwave background

radiation with the theories based on the cosmological perturbation theory.

There are plenty of cosmological situations where the relativistic nature of Einstein’s

gravity becomes potentially important. Besides its geometric nature involving dynamic

space and time, the heavy nonlinear nature of Einstein’s gravity also has limited

wide applications of the theory in the later nonlinear evolution stage of structures

in cosmology. Nonlinear aspects of clustering process of the large-scale structure are

mainly studied in the Newtonian context [1, 2, 3, 4, 5] except that the background

evolution is provided by Friedmann equations based on Einstein’s gravity often with

the cosmological constant. Up to the leading-order nonlinear perturbation in Einstein’s

gravity the success of Newtonian theory is quite remarkable though [6, 7, 8].

Recently we notice advents of two new methods in handling the relativistic and

nonlinear aspects of Einstein’s gravity in the Friedmann background cosmology. One is

the post-Newtonian (PN) approximation [9] with previous studies [10, 11, 12, 13, 14,

15, 16, 17, 18]. The other one is the fully nonlinear and exact perturbation theory in

Einstein’s gravity [19].

In comparison to the perturbation approach (Section 2) which is weakly nonlinear

but fully relativistic, the 1PN approximation (Section 3) can be regarded as fully

nonlinear but weakly relativistic. Thus, the two approaches are complementary in

understanding the relativistic nonlinear evolution stage of the cosmological structures.

In cosmological situations where the nonlinearity as well as relativistic effects are

important we may need full-blown numerical relativity implemented in cosmology. Such

a general relativistic numerical simulation in cosmology is not currently available yet.

The nonlinear perturbation analysis, being based on perturbative approach, is not

sufficient to handle the genuine nonlinear aspects of structure formation accompanied

with self-organization and spontaneous formation of structures. In order to handle the

relativistic nonlinear process in cosmology we anticipate the PN approach is currently

practically suitable to implement in numerical simulation.

Our aim in this work is to derive the cosmological 1PN equations from the

nonlinear perturbation theory and to show the relation between the two complementary

approaches. The overlap between the 1PN approximation and the linear perturbation

theory was studied in [20]. Equations of 1PN approximation, however, contain

perturbations up to the fourth order. As the equations of fully nonlinear perturbation

theory are exact without even decomposition into background and perturbation,

apparently the perturbation theory should include the 1PN approximation. In this work

we will derive the 1PN equations from the nonlinear perturbation theory equations. In

our way of showing the relation we will present the complete sets of equations, the gauge

strategies, and solution logics of the two approaches.
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2. Exact and fully nonlinear perturbation theory

The perturbation theory assumes all perturbation variables are small and makes

perturbation expansion in those variables. The relativistic perturbation theory considers

fully relativistic situation, thus applicable in all scales including the superhorizon

scale, and in the early universe where radiation and other relativistic components have

important roles. In Einstein’s gravity the linear perturbation theory has important roles

in explaining the origin and evolution of large-scale structures [21, 22, 23, 24, 25, 26, 27,

28]. Recently we have formulated a fully nonlinear and exact perturbation theory [19].

In [19] the exact perturbation equations are also presented without fixing the temporal

gauge condition, thus again in a sort of a gauge-ready form, see below.

Our metric convention in the perturbation theory is [27, 19]

ds2 = − (1 + 2α) c2dt2 − 2χicdtdx
i + a2 (1 + 2ϕ) γijdx

idxj, (1)

where spatial index of χi is raised and lowered by γij as the metric; γij is the comoving

part of spatial metric of the Robertson-Walker spacetime; as we consider a spatially flat

background in the absence of perturbation, we have γij = δij . Here we assume a to be a

function of t only, and α, ϕ and χi are arbitrary functions of spacetime. The spatial part

of the metric is simple because we already have taken the spatial gauge condition without

losing any generality to the fully nonlinear perturbation orders [27, 19] and have ignored

the transverse-tracefree tensor-type perturbation. Our spatial gauge (congruence) choice

is unique in the sense that under our spatial gauge condition the remaining variables

are free from the spatial gauge mode even to the nonlinear order perturbations [19]; any

alternative choice leaves the remnant spatial gauge mode even after imposing the spatial

gauge condition which should be carefully handled even in the linear order perturbation.

In our spatial gauge together with one of the fundamental temporal gauge (slicing)

conditions to be suggested below, all the remaining perturbation variables become free

from the gauge mode and can be regarded as gauge-invariant ones even to the nonlinear

perturbation order [19].

It is important to neglect the transverse-tracfree part of the metric to have the

fully nonlinear perturbation formulation in [19]. This is the main assumption restricting

the potential applications of the formulation. We may still call our formulation exact

and fully nonlinear because, except for ignoring the transverse-tracefree part, in the

basic set of equations we have not imposed any condition on the amplitude of the

perturbation variables, and also we have not separated the background and perturbation.

Ignoring the transverse-tracefree part of the perturbation is consistent with the 1PN

approximation because gravitational waves are known to show up from the 2.5PN order

[29]. The transvere-tracefree part, however, can always be handled perturbatively to any

desired nonlinear perturbation order; in perturbation theory, the scalar- and vector-type

perturbations can work as sources to the gravitational waves from the second order, see

Section 8 in [19].
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The energy-momentum tensor of an ideal fluid is

T̃ab = µ̃ũaũb + p̃ (ũaũb + g̃ab) , (2)

where tildes indicate covariant quantities; µ̃ and p̃ are the covariant energy density and

pressure, respectively, and ũa is the normalized fluid four-vector [30, 31, 32]. In the

perturbation theory we may introduce

µ̃ = µ+ δµ, p̃ = p+ δp, ũi ≡ a
vi
c
, (3)

where the index of vi is raised and lowered by γij as the metric. In the following we will

keep µ̃ and p̃ without decomposition.

In [19] we also have introduced several different definitions of the fluid three-velocity.

We introduce the coordinate fluid three-velocity vi as

1

a

vi

c
≡ ũi

ũ0
, (4)

where the index of vi is raised and lowered by γij as the metric; this definition coincides

with the one used in our PN study in [9], see equation (20). Compared with vi we have

[19]

vi =
γ̂

N
[
(1 + 2ϕ) vi −

c

a
χi

]
≡ γ̂v̂i, (5)

where γ̂ is the Lorentz factor

γ̂ =

√√√√1 +
vkvk

c2(1 + 2ϕ)
=

1√
1− v̂k v̂k

c2(1+2ϕ)

=
1√

1− 1+2ϕ
N 2

(
vk

c
− χk

a(1+2ϕ)

) (
vk
c
− χk

a(1+2ϕ)

) , (6)

and N , related to the lapse function (N ≡ aN ), is introduced in equation (16); v̂i is

the fluid three-velocity measured by the Eulerian observer; see the Appendix D of [19].

Although mathematically equivalent, in this work we will use vi.

We can decompose χi, vi and vi to scalar- and vector-type perturbations even to

nonlinear perturbation orders as

χi ≡ cχ,i + χ
(v)
i , vi ≡ −v,i + v

(v)
i , vi ≡ −v,i + v

(v)
i , (7)

with the vector-type perturbations satisfying χ
(v)|i
i ≡ 0 and v

(v)|i
i ≡ 0 ≡ v

(v)|i
i ; a vertical

bar indicates the covariant derivative based on γij as the metric, thus the same as an

ordinary derivative in our present case. Due to the nonlinear relation between vi and vi
the scalar- and vector-decompositions for vi and vi do not coincide with each other to

the nonlinear order. To the nonlinear order our scalar- and vector-type perturbations

are coupled in the equation level.

In order to match with our convention in the PN approach, here we introduce the

dimensions as the following

[a] = [γij] = [g̃ab] = [ũa] = 1, [xi] = L, [α] = [ϕ] = [χi] = [vi/c] = [vi/c] = 1,

[κ] = T−1, [χ] = T, [v/c] = L, [T̃ab] = [p̃] = [µ̃], [Gµ̃/c2] = T−2, (8)
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where κ is the perturbed part of the trace of extrinsic curvature, see equation (9).

The exact and fully nonlinear perturbation equations, without taking the temporal

gauge (slicing or hypersurface) condition, are the following [19].

Definition of κ:

κ ≡ 3
ȧ

a

(
1− 1

N
)
− 1

N (1 + 2ϕ)

[
3ϕ̇+

c

a2

(
χk

,k +
χkϕ,k

1 + 2ϕ

)]
. (9)

ADM energy constraint:

− 3

2

(
ȧ2

a2
− 8πG

3c2
µ̃− Λc2

3

)
+

ȧ

a
κ+

c2∆ϕ

a2(1 + 2ϕ)2
=

1

6
κ2 − 4πG

c2
(µ̃+ p̃)

(
γ̂2 − 1

)

+
3

2

c2ϕ,iϕ,i

a2(1 + 2ϕ)3
− c2

4
K

i

jK
j

i . (10)

ADM momentum constraint:
2

3
κ,i +

c

2a2N (1 + 2ϕ)

(
∆χi +

1

3
χk

,ik

)
+

8πG

c4
(µ̃+ p̃)

aγ̂2

N
[
(1 + 2ϕ) vi −

c

a
χi

]

=
c

a2N (1 + 2ϕ)

{(
N,j

N − ϕ,j

1 + 2ϕ

)[
1

2

(
χj

,i + χ ,j
i

)
− 1

3
δjiχ

k
,k

]

− ϕ,j

(1 + 2ϕ)2

(
χiϕ,j +

1

3
χjϕ,i

)
+

N
1 + 2ϕ

∇j

[
1

N
(
χjϕ,i + χiϕ

,j − 2

3
δjiχ

kϕ,k

)]}
. (11)

Trace of ADM propagation:

− 3
1

N
(
ȧ

a

)·
− 3

ȧ2

a2
− 4πG

c2
(µ̃+ 3p̃) + Λc2 +

1

N κ̇+ 2
ȧ

a
κ+

c2∆N
a2N (1 + 2ϕ)

=
1

3
κ2 +

8πG

c2
(µ̃+ p̃)

(
γ̂2 − 1

)
− c

a2N (1 + 2ϕ)

(
χiκ,i + c

ϕ,iN,i

1 + 2ϕ

)
+ c2K

i

jK
j

i . (12)

Tracefree ADM propagation:(
1

N
∂

∂t
+ 3

ȧ

a
− κ+

cχk

a2N (1 + 2ϕ)
∇k

){
c

a2N (1 + 2ϕ)

×
[
1

2

(
χi

,j + χ ,i
j

)
− 1

3
δijχ

k
,k −

1

1 + 2ϕ

(
χiϕ,j + χjϕ

,i − 2

3
δijχ

kϕ,k

)]}

− c2

a2(1 + 2ϕ)

[
1

1 + 2ϕ

(
∇i∇j −

1

3
δij∆

)
ϕ+

1

N
(
∇i∇j −

1

3
δij∆

)
N
]

=
8πG

c2
(µ̃+ p̃)

[
(1 + 2ϕ)

γ̂2

c2N 2

(
vi − cχi

a(1 + 2ϕ)

)(
vj −

cχj

a(1 + 2ϕ)

)

−1

3
δij
(
γ̂2 − 1

) ]
+

c2

a4N 2(1 + 2ϕ)2

[
1

2

(
χi,kχj,k − χk,jχ

k,i
)

+
1

1 + 2ϕ

(
χk,iχkϕ,j − χi,kχjϕ,k + χk,jχ

kϕ,i − χj,kχ
iϕ,k

)

+
2

(1 + 2ϕ)2

(
χiχjϕ

,kϕ,k − χkχkϕ
,iϕ,j

) ]

− c2

a2(1 + 2ϕ)2

[
3

1 + 2ϕ

(
ϕ,iϕ,j −

1

3
δijϕ

,kϕ,k

)
+

1

N
(
ϕ,iN,j + ϕ,jN ,i − 2

3
δijϕ

,kN,k

)]
.

(13)
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Covariant energy conservation:
(
∂

∂t
+

1

a
vk∇k

)
µ̃+ (µ̃+ p̃)N (3H − κ) = − (µ̃+ p̃)

[
1

a

(
vk − cχk

a(1 + 2ϕ)

)

,k

+
3ϕ,k

a(1 + 2ϕ)

(
vk − cχk

a(1 + 2ϕ)

)
+

1

γ̂

(
∂

∂t
+

1

a
vk∇k

)
γ̂

]
. (14)

Covariant momentum conservation:

1

aγ̂

(
∂

∂t
+

1

a
vk∇k

){
aγ̂

N
[
(1 + 2ϕ) vi −

c

a
χi

]}

+
1

µ̃+ p̃

{
c2N
aγ̂2

p̃,i +
1

N
[
(1 + 2ϕ) vi −

c

a
χi

] (
∂

∂t
+

1

a
vk∇k

)
p̃

}

= −c2

a
N,i −

c

a2N
[
(1 + 2ϕ) vk − c

a
χk

](
χk

1 + 2ϕ

)

,i

+

(
1− 1

γ̂2

)
c2Nϕ,i

a(1 + 2ϕ)
. (15)

These were derived in Section 3 of [19]; here we use vi as the fluid three-velocity instead

of vi used in [19] or v̂i used in [33]. With N and K
i

jK
j

i given as

N ≡
√√√√1 + 2α+

χkχk

a2(1 + 2ϕ)
, K

i

jK
j

i =
1

a4N 2(1 + 2ϕ)2

{
1

2
χi,j (χi,j + χj,i)−

1

3
χi

,iχ
j
,j

− 4

1 + 2ϕ

[
1

2
χiϕ,j (χi,j + χj,i)−

1

3
χi

,iχ
jϕ,j

]
+

2

(1 + 2ϕ)2

(
χiχiϕ

,jϕ,j +
1

3
χiχjϕ,iϕ,j

)}
,

(16)

equations (9)-(15) are the complete set of exact and fully nonlinear perturbation

equations valid for the scalar- and vector-type perturbations assuming an ideal fluid

in a flat background; Λ is the cosmological constant. Notice that we have not separated

the background order equations. We only have assumed that a is a function of t. In this

sense the above set of equations is exact.

In the above set of equations we have not taken the temporal gauge condition yet.

As the temporal gauge condition we can impose any one of the following conditions [19]

comoving gauge : v̂ ≡ 0 or v ≡ 0,

zero−shear gauge : χ ≡ 0,

uniform−curvature gauge : ϕ ≡ 0,

uniform−expansion gauge : κ ≡ 0,

uniform−density gauge : δ ≡ 0, (17)

or combinations of these to all perturbation orders; we can also impose different gauge

conditions to different perturbation orders. With the imposition of any one of these

slicing conditions the remaining perturbation variables are free from the remnant (spatial

and temporal) gauge mode, and have unique gauge-invariant combinations even to the

nonlinear order [27, 34, 19].

As long as we take perturbation approach the gauge issues (gauge transformation

properties and gauge-invariant combinations) can be handled order by order to any
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nonlinear order (i.e., to the fully nonlinear order). For example, by decomposing the

perturbation variable as χ ≡ χ(1)+χ(2)+χ(3)+ . . . with the numerical indices inside the

parenthesis indicating the perturbation orders, the zero-shear gauge can be imposed as

χ(i) = 0 to each perturbation order to the fully nonlinear order or equivalently χ = 0 as

an exact zero-shear condition. The gauge issues to the nonlinear order perturbations in

concrete forms are presented in Section VI.C of [34] and Section 2 of [19].

It is important to notice that the comoving gauge condition is imposed on vi or v̂i.

Even to the linear order, under our congruence (spatial gauge) condition, v is slicing

(temporal gauge) condition independent; to the linear order we have v = v − χ/a ≡ vχ
which is already gauge-invariant (under our congruence condition). To the nonlinear

order we can regard v̂ ≡ 0 or v ≡ 0 as the comoving gauge condition. For pure scalar-

type perturbation we have v̂ = 0 implies v = 0 and vice versa; in the presence of

vector-type perturbation, v̂ = 0 differs from v = 0 from the third order in perturbation

[19].

3. 1PN approximation

The PN approach abandons the geometric spirit of Einstein’s gravity and provides the

relativistic effects as correction terms in the well known Newtonian equations. That

is, the PN approach recovers the concept of absolute space and absolute time. In

this way it provides the relativistic effects in the forms of correction terms to the well

known Newtonian equations, thus enabling us to use simpler conventional (numerical)

treatment. The corrections are made based on an expansion in the dimensionless

quantity GM
Rc2

which is of the same order as v2

c2
in motions supported by gravity; M ,

R and v are characteristic mass, dimension and velocity, respectively, of the system we

are considering. The PN order n is the same as expansion up to (GM
Rc2

)n ∼ (v
c
)2n. The

PN equations are applicable to weakly relativistic situation with GM
Rc2

≪ 1, and in the

subhorizon scale, but are fully nonlinear.

In this work we will consider the first-order PN (1PN) approximation with n = 1.

Chandrasekhar [35] has derived the 1PN hydrodynamic equations in the Minkowski

background in certain gauge condition, see equation (36). In [9] we have derived 1PN

hydrodynamic equations in the cosmological background in a gauge-ready form where

the temporal gauge condition is left (unfixed) as an option for later use, see equation

(35). In [9] we considered a fluid with general pressure, anisotropic stress and flux; we

also have considered the presence of cosmological constant and have shown that the

proper 1PN approximation demands the flat background. In this work we ignore the

anisotropic stress and the flux terms. Our aim in this section is to re-derive the 1PN

hydrodynamic equations from the nonlinear perturbation equations summarized in the

previous section. Here we closely follow the conventions used in our 1PN formulation

[9].

To the 1PN order Chandrasekhar’s metric convention adopted to the cosmological
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background is [35, 36, 9]

ds2 = −
[
1− 1

c2
2U +

1

c4

(
2U2 − 4Φ

)]
c2dt2 − 1

c3
2aPicdtdx

i + a2
(
1 +

1

c2
2V
)
γijdx

idxj ,

(18)

where the spatial index of Pi is raised and lowered by γij, the comoving spatial part of

the Robertson-Walker metric; as we consider a spatially flat background, we may set

γij = δij . Here, a(t) can be regarded as the cosmic scale factor. Similarly as in the

metric of perturbation theory in equation (1), in the g̃ij part we already have taken

spatial gauge conditions without losing any generality, and have ignored the tensor-type

perturbation: see Section 6 in [9]. Comparing the two metrics in equations (1) and (18),

to the 1PN order we can identify

α = − 1

c2

[
U − 1

c2

(
U2 − 2Φ

)]
, ϕ =

1

c2
V, χi =

1

c3
aPi. (19)

The 1PN energy-momentum tensor is presented in equation (21) of [9]. With

vanishing flux and anisotropic stress, the energy-momentum tensor is given in equation

(2). Comparing the energy-momentum tensors and the four-vectors in the two

formulations, to the 1PN order we can identify

µ̃ ≡ ˜̺c2
(
1 +

1

c2
Π̃
)
, vi ≡ v, ũi ≡ 1

c

1

a
viũ0, (20)

where Π̃ is associated with the internal energy [35]; vi is the same as vi used in [9]. From

equation (5) we have

vi = vi +
1

c2

[
vi

(
1

2
v2 + U + 2V

)
− Pi

]
=
(
1 +

1

c2
1

2
v̂2
)
v̂i, (21)

where v2 ≡ vkvk and v̂2 ≡ v̂kv̂k. The dimensions are the following

[U ] = [V ] = [Π̃] = c2, [Pi] = c3, [Φ] = c4, [vi] = [vi] = c,

[p̃] = [ ˜̺c2], [G ˜̺] = T−2. (22)

Now, using the identifications between the two approaches made in equations (19)

and (20), we can derive the 1PN equations from the nonlinear perturbation equations

in (9)-(15). Equation (9) gives

κ = − 1

c2

(
3
ȧ

a
U + 3V̇ +

1

a
P k

|k

)
. (23)

Equation (13) to 1PN order gives

V = U. (24)

Using these, from equations (14), (15), (12) and (11), respectively, we can derive

1

a3

(
a3 ˜̺

)·
+

1

a

(
˜̺vi
)
|i
= − 1

c2

[
˜̺
(
∂

∂t
+

1

a
v · ∇

)(
1

2
v2 + 3U + Π̃

)
+
(
3
ȧ

a
+

1

a
∇ · v

)
p̃

]
,

(25)

1

a
(avi)

· + 1

a
vi|kv

k − 1

a
U,i +

1

a

p̃,i
˜̺ =

1

c2

[
1

a
v2U,i +

2

a

(
Φ− U2

)
,i
+

1

a
(aPi)

·
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+
1

a
vk
(
Pi|k − Pk|i

)
+

1

a

(
v2 + 4U + Π̃ +

p̃

˜̺

)
p̃,i
˜̺
− vi

(
∂

∂t
+

1

a
v · ∇

)(
1

2
v2 + 3U

)

−vi
1

˜̺

(
∂

∂t
+

1

a
v · ∇

)
p̃

]
, (26)

∆

a2
U + 4πG ( ˜̺− ̺) = − 1

c2

{
1

a2

[
2∆Φ− 2U∆U +

(
aP i

|i

)·]
+ 3Ü + 9

ȧ

a
U̇ + 6

ä

a
U

+8πG
[
˜̺v2 +

1

2

(
˜̺Π̃− ̺Π

)
+

3

2
(p̃− p)

] }
, (27)

0 =
1

a2

(
P k

|ki −∆Pi

)
− 16πG ˜̺vi +

4

a

(
U̇ +

ȧ

a
U
)

,i

. (28)

Terms on the left-hand-side provide the Newtonian (0PN) limit, and the ones in the

right-hand-side are 1PN contributions. Notice that the 1PN terms include up to fourth-

order perturbations.

These are the same as cosmological 1PN equations presented in [9] for vanishing

anisotropic stress and flux; in the Minkowski background and under a certain gauge

condition, see [35]. These follow from the energy-conservation, momentum-conservation,

trace of ADM propagation (G̃0
0− G̃i

i = 2R̃0
0), and momentum-constraint (G̃0

i ) equations,

respectively; for the general case with the anisotropic stress, see equations (114), (115),

(119) and (120) in [9]. In the PN approximation, the energy constraint equation

(2G̃0
0 = R̃0

0 − R̃i
i) in equation (10) gives 0PN part of equation (27); see equation (8)

and equations (80) and (87) in [9].

Our cosmological PN approach assumes a flat cosmological background, but is valid

in the presence of the cosmological constant. Equations for the background are

ä

a
= −4πG

3
̺

[
1 +

1

c2

(
Π+ 3

p

̺

)]
+

Λc2

3
,

ȧ2

a2
=

8πG

3
̺
(
1 +

1

c2
Π
)
+

Λc2

3
, ˙̺ = −3

ȧ

a
̺, (29)

and µ̇ + 3(ȧ/a)(µ + p) = 0 with Π̇ + 3(ȧ/a)p/̺ = 0; see Section 4.1 in [9]. These

background order equations based on Einstein’s gravity were subtracted in deriving the

PN equations; see Section 3.2 in [9]. This is related to the fact that self-consistent

treatment of cosmological world model is not possible in Newton’s gravity. Without a

guide by Einstein’s gravity [37], the spatially homogeneous and isotropic cosmological

world model based on Newton’s gravity is known to be incomplete and indeterminate

[38, 39].

In order to solve the 1PN equations it will be convenient to have the equations for

U , U̇ and Ü to the 0PN order [16]. For U , equation (27) gives

∆

a2
U = −4πG ( ˜̺− ̺) , (30)

valid to the 0PN order. By taking a divergence of equation (28), and using equation

(27), we have

∆

a2
U̇ = 4πG

[
ȧ

a
( ˜̺− ̺) +

1

a

(
˜̺vi
)
|i

]
, (31)
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valid to the 0PN order. By taking a time derivative, and using equations (25)-(27), we

have

∆

a2
Ü = 4πG

{(
ä

a
− 2

ȧ2

a2

)
( ˜̺− ̺)− 1

a2

[
4ȧ ˜̺vi +

(
˜̺vivk

)
|k
− ˜̺U ,i + p̃,i

]

|i

}
, (32)

valid to the 0PN order.

In the above 1PN equations the spatial gauge conditions were fixed in the same way

as in the perturbation theory, but we have not fixed the temporal (slicing) condition

yet. The gauge transformation property in the 1PN approximation was thoroughly

studied in Section 6 of [9], and in the following we briefly review it. In our 1PN metric

convention in equation (18) we already have taken spatial gauge condition by setting

gij = a2(1 + c−22V )δij; see Section 6 in [9]. Under the remaining gauge transformation

x̂a = xa + ξa(xe) with

ξ0 =
1

c
ξ(2)0 +

1

c3
ξ(4)0, (33)

we can set ξ(2)0 = 0 without losing any generality: see equation (173) in [9]. In this case

variables U and V are gauge-invariant, and we have [see equations (175) and (176) in

[9]]

P̂i = Pi −
1

a
ξ
(4)0

,i, Φ̂ = Φ +
1

2
ξ̇(4)0. (34)

Thus, in the PN approach we have freedom to impose the temporal gauge (slicing or

hypersurface) condition on P i
|i or Φ; fixing Φ = 0 in all coordinates leaves the remnant

gauge mode ξ(4)0(x), whereas setting P i
|i = 0 in all coordinate as the gauge condition

completely removes the gauge mode. A combination 2Φ,i + (aPi)
· is gauge-invariant.

The variables ˜̺ and Π̃ are not fixed individually under the gauge transformation,

and varies as ̺̂̃ = ˜̺ + ̺(2)/c2 and
̂̃
Π = Π̃ − ̺(2)/̺ where ̺(2) is an undetermined

transformation function, see equation (192) in [9]. Thus a combination ˜̺(1 + Π̃/c2)

is gauge invariant; vi is also gauge invariant: see equation (193) in [9]. Using the above

gauge transformation properties we can show that equations (25)-(28) are invariant

under the gauge transformation to the appropriate PN orders.

In [9] we have introduced a general temporal gauge condition as

1

a
P i

|i + nU̇ +m
ȧ

a
U = 0, (35)

where n and m can be arbitrary real numbers. Several temporal gauge conditions used

in the literature are

Harmonic gauge : n = 4, m = arbitrary,

Chandrasekhar′s gauge : n = 3, m = arbitrary,

Uniform−expansion gauge : n = 3 = m,

Transverse−shear gauge : n = 0 = m. (36)

Compared with the fundamental temporal gauge conditions of the perturbation theory

in equation (17), the uniform-expansion gauge is the same as κ = 0 in the perturbation
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theory; the Chandrasekhar’s gauge is the same as κ + (m − 3)(ȧ/a)ϕ = 0 in the

perturbation theory which is a fine gauge condition without remnant gauge mode. In

the cosmological PN approach, [16] also took n = 3 as their slicing condition. The

transverse-shear gauge is the same as the zero-shear gauge with χ = 0 (or χi
|i = 0). The

Harmonic gauge condition can be written as α̇+Hα+κ = 0 which leaves heavy remnant

gauge modes in the perturbation theory even to the linear order (see the Appendix in

[40]), but not in the case of 1PN approximation [9]. In the PN approximation the

comoving gauge (vi |i = 0), the uniform-curvature gauge (ϕ = 0), and the uniform-

density gauge (δ ≡ 0) in the perturbation theory, corresponding to vi |i ≡ 0, V ≡ 0, and

˜̺− ̺ ≡ 0, respectively, are not available.

Equation (27) shows that the harmonic gauge condition makes the Laplacian

operator ∆
a2

in the 0PN limit replaced by a d’Alembertian operator ∆
a2
− ∂2

c2∂t2
by the 1PN

correction terms, thus making the Poisson’s equation in 0PN limit to become a wave

equation with the propagation speed c by the 1PN correction. Examination of equation

(27) shows that, under the general gauge condition in equation (35), the propagation

speed of the gravitational potential U is
c√

n− 3
, (37)

see equation (213) of [9]. Thus, the uniform-expansion gauge and the Chandrasekhar’s

gauge leave the action-at-a-distance nature of the Poisson’s equation, and the transverse-

shear gauge makes equation (27) to be no longer a wave equation. Although the

propagation speed of the gravitational potential depends on the gauge choice, the

propagation speed of the (physical) Weyl tensor naturally does not depend on the

gauge choice and is always c: see Section 7 of [9]. Exact analogy can be found in

the electromagnetism where the propagation speed of the field potential depends on

the gauge choice, whereas the the propagation speed of the (physical) field strength is

always the speed of light, see [41].

Under the gauge condition in equation (35), equation (28) becomes

∆

a2
Pi =

1

a

[
(4− n) U̇ + (4−m)

ȧ

a
U
]

,i

− 16πG ˜̺vi. (38)

The temporal gauge condition corresponds to fixing n and m. As U is gauge-invariant

to 1PN order, independently of the values of n and m, using equation (38) all variables

in our set of equations are free from the gauge mode, and can be regarded as gauge

invariant.

By introducing a gauge-invariant combination

U,i ≡ U,i +
1

c2

[
2Φ,i + (aPi)

·] , (39)

the Φ and (aPi)
· terms in the right-hand-sides of equations (26) and (27) can be absorbed

to the U terms in the left-hand-sides by replacing U to U . Equations (26) and (27)

become

1

a
(avi)

· + 1

a
vi|kv

k − 1

a
U,i +

1

a

p̃,i
˜̺ =

1

c2

[
1

a

(
v2 − 4U

)
U,i +

2

a
vkP[i|k]
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+
1

a

(
v2 + 4U + Π̃ +

p̃

˜̺

)
p̃,i
˜̺
− vi

(
∂

∂t
+

1

a
v · ∇

)(
1

2
v2 + 3U

)

− vi
1

˜̺

(
∂

∂t
+

1

a
v · ∇

)
p̃

]
, (40)

∆

a2
U + 4πG ( ˜̺− ̺) = − 1

c2

{
3Ü + 9

ȧ

a
U̇ + 6

ä

a
U

+ 8πG
[
˜̺v2 + ( ˜̺− ̺)U +

1

2

(
˜̺Π̃− ̺Π

)
+

3

2
(p̃− p)

]}
. (41)

Analysis can be proceeded as follows. The fluid variables p̃ and Π̃ should be given

by the equation of state according to the system we are modeling; for example, for

pressureless dust or cold dark matter, we may set p̃ = 0 = Π̃. Choose the gauge

condition, thus fixing n and m in equation (38). We can determine ˜̺, vi and U to 1PN

order by solving equations (25), (40) and (41). In order to determine U , U̇ , Ü , and Pi in

the right-hand-sides of these equations to the 0PN order, we can solve equations (30),

(31), (32), and (38) respectively; inverting the Laplacian by volume integration in these

equations would be time consuming in numerical implementation. The background

evolution should be determined by equation (29) simultaneously.

We may identify cosmological situations where the cosmological PN approach might

have important applications. The current cosmological paradigm favors a model where

the large-scale structures are in the linear stage, whereas small-scale structures are

apparently in fully nonlinear stage. The standard strategy is to assume that the small-

scale nonlinear structures can be fully handled by the Newtonian gravity. In the galactic

and cluster scales we have the general relativistic measure GM
Rc2

∼ v2

c2
∼ 10−6−10−4, thus

small but nonvanishing, thus indeed the 1PN (weakly relativistic) assumption is quite

sufficiently valid. We believe the 1PN approach would be relevant to estimate the general

relativistic effects in the nonlinear clustering processes of the galaxy cluster-scale and

the large-scale structures.

4. 0PN approximation

We can view the Newtonian limit as the 0PN approximation; see Sec. 4.2 of [9]. Indeed,

the 1PN approximation studied in the previous section properly contains the Newtonian

hydrodynamic equations at the 0PN level; in the Minkowski background, see [35]. In

order to have the Newtonian hydrodynamic equations as the 0PN limit, we should take

the 0PN metric as

ds2 = −
(
1− 1

c2
2U
)
c2dt2 + a2

(
1 +

1

c2
2V
)
δijdx

idxj . (42)

Although α (thus U) contains the perturbed Newtonian gravitational potential, the full

Einstein’s equation demands to keep ϕ (thus V ) which can be regarded as the PN order

[33], see equation (18). Thus, as the 0PN limit we identify

α = − 1

c2
U, ϕ =

1

c2
V, χi = 0, vi = v, (43)
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and take the leading order terms in the 1/c expansion. Equation (13) gives ϕ = −α,

thus V = U . Equation (11) gives

κ = −12πG

c2
a∆−1

(
˜̺vi
)
,i
, (44)

equation (14), equation (15), equation (12), and equation (9), respectively, give

˙̺̃ + 3
ȧ

a
˜̺+

1

a

(
˜̺vi
)
,i
= 0, (45)

1

a
(avi)

· + 1

a
vi,kv

k − 1

a
U,i +

1

a ˜̺
p̃,i = 0, (46)

∆

a2
U + 4πG ( ˜̺− ̺) = 0, (47)

U̇ +
ȧ

a
U − 4πGa∆−1

(
̺vi
)
,i
= 0. (48)

Equation (12) also gives equation (47). Equation (48) is consistent with equation

(28). These are the well known perturbed Newtonian hydrodynamic equations in the

cosmological background; see Sections 7-9 of [1].

One may wonder why we need the presence of V term in equation (42) which is

ordinarily known as the 1PN order term; it’s presence as the 1PN correction is important

to have correct light deflection in Einstein’s gravity, see equation (149) in [9]. This

issue was addressed in the nonlinear perturbation theory context in [33]. Here, in our

PN approach we clarify the following situation. The hydrodynamic equations and the

Poisson’s equation in equations (45)-(47) properly follow from equations (14), (15) and

(12), respectively, without involving the ϕ (thus V ) term; in this sense the 0PN metric

in α (thus U) is enough to get the proper Newtonian equation. However, additionally,

in order to properly have equation (47) from equation (10), and equation (48) from

equation (9) we need the presence of the ϕ (thus V ) term which is ordinarily regarded

as the 1PN correction. Therefore, although the full Newtonian equations follow from

Einstein’s equation without involving the V term, the presence of V term is demanded

by the self-consistency of the full Einstein’s equation, see [35, 42, 43].

As a complementary study in the perturbation theory, in [33] we have shown that

in two gauge conditions (the zero-shear gauge and the uniform-expansion gauge) the

fully nonlinear perturbation equations properly reduce to the Newtonian hydrodynamic

equations in the infinite speed-of-light limit (weak gravity, slow-motion, negligible

pressure and internal energy compared with the mass-energy density, and subhorizon

limits). As the two gauge conditions are consistent with the PN approaches, the result

is consistent with the present study based on the PN approximation; see below equation

(36).

5. Discussion

Our main point in this work is a new derivation of the 1PN equations from the

recently formulated fully nonlinear and exact perturbation theory. In this way we have
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clarified the relation between the two approaches, nonlinear perturbation theory versus

PN approach, which may play key roles in handling relativistic aspects of nonlinear

processes in cosmology. In order to clarify the relations between the two approaches we

presented some overlapping materials with [9] and [19]. The master equations and gauge

strategies in both approaches are presented assuming an ideal fluid in the presence of

the cosmological constant.

We anticipate that the fully nonlinear perturbation theory will be useful to derive

2PN equations as well where the gravitational wave backreaction does not appear; in

the Minkowski background and in certain gauge conditions see [36] for 2PN equations,

and [29] for 2.5PN equations with first appearance of the radiative-reaction term.

Besides ignoring the transverse-tracefree part of the metric (which should be handled

perturbatively), one other possible limit of our nonlinear perturbation theory in handling

the higher order PN approach is the spatial gauge condition taken leaving the spatial

part of the metric as in equation (1). In the perturbation theory our spatial gauge

condition is the unique choice without remnant gauge mode to all perturbation orders

[27, 34, 19]. Whether the same spatial gauge condition will remain suitable for higher-

order PN approximation is the subject for future investigation. Under the current

situation where even 1PN equations are not implemented in the cosmological numerical

simulation yet, we do not have pressing demand to go for the higher PN effects, though.

We hope that at some point in near future the equations based on these two

approaches could be implemented numerically as a step toward the relativistic numerical

simulations in cosmology. The PN approach preserves the Newtonian nature of the

theory with the Einstein’s gravity contributions appearing as the PN correction terms:

see equations (25)-(28) together with the gauge condition in (35), or equations (40) and

(41) in a gauge-invariant form. Thus, the 1PN equations are easy to implement in the

conventional Newtonian hydrodynamic simulation code except that it could be quite

time consuming due to the presence of bare potential terms. The 1PN equations will

be important where GM
Rc2

∼ v2

c2
is small but not negligible, and the galaxy clusters and

the large-scale cosmic structure satisfy these conditions. Although the correction terms

are small, whether the PN corrections could leave long term (secular) signature in the

large-scale structure is a subject left for future cosmological PN numerical simulation.

The full-blown numerical relativity is often based on the ADM (Arnowitt-Deser-

Misner) equations [44]. As the names of equations (9)-(15) indicate, our nonlinear

perturbation equations are the same as the ADM equations based on our spatial gauge

condition and the perturbation theory notation; we used the covariant conservation

equations instead of the ADM conservation equations, but the choice is a matter of

convenience and both are presented in [19]; for the ADM conservation equations, see

equations (33) and (34) in [19]. Thus, our exact and fully nonlinear perturbation

equations can be regarded as exact Einstein’s equations adapted to cosmological

perturbation theory. Ignoring the transverse-tracefree part of the metric in our

formulation is certainly limiting the potential applications, but as demonstrated in

[19], the fully nonlinear equations are quite powerful in deriving the higher order
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nonlinear perturbation equations for the scalar- and vector-type perturbations in diverse

fundamental temporal gauge (slicing) conditions.
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