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ABSTRACT

Context. Identification of metal-poor stars among field stars is extly useful for studying the structure and evolution of thaa@y
and of external galaxies.

Aims. We search for metal-poor stars using the artificial neuraloek (ANN) and extend its usage to determine absolute ntades.
Methods. We have constructed a library of 167 medium-resolutionatspectra (R- 1200) covering the stellar temperature range
of 4200 to 8000 K, logg range of 0.5 to 5.0, and [Rd] range of—3.0 to +0.3 dex. This empirical spectral library was used to
train ANNSs, yielding an accuracy of 0.3 dex in [F§ , 200 K in temperature, and 0.3 dex in lggWe found that the independent
calibrations of near-solar metallicity stars and metadsiars decreases the error§in and logg by nearly a factor of two.

Results. We calculated «, log g, and [F&¢H] on a consistent scale for a large number of field stars andidate metal-poor stars. We
extended the application of this method to the calibratibabsolute magnitudes using nearby stars with well-estthparallaxes.

A better calibration accuracy for Mcould be obtained by training separate ANNs for cool, wanma, metal-poor stars. The current
accuracy of M calibration is+0.3 mag.

Conclusions. A list of newly identified metal-poor stars is presented. hg calibration procedure developed here is reddening-
independent and hence may serve as a powerful tool in stydyilactic structure.

Key words. stars: individual — stars: solar-type — stars: metal-postars: fundamental parameters

1. Introduction in distinguishing objects at flerent evolutionary stages. The
- . . photometric determination of {¥] however, requires a good red-
Metallicity estimates for large samples of stars amorfieti gening estimate. The spectroscopic approaches baseden lin
ent Galactic components can provide a wealth of informaiion gyengihs [ine ratio, and profiles ofiHCan, etc. are reddening
the structure and formation of our Galaxy. Extremely me@ i qenendent. A list of luminosity-sensitive features faferent
stars are the relics of early the Galaxy, while moderateltame spectral types can be found [in Gray & Corbally (2009), and a
poor stars can provide indications of whether itis a thickam ;1 qensed review In Giridhar (2010).
disk when supplemented by additional information such as tﬁ :
kinematics of these objects. A high spectral resolutiofofo!
up of these metal-poor stars (identified mostly through land

A large number of metal-poor stars have been iden-
tified with the help of earlier surveys such as the

intermediate-resolution spectral surveys) has resuitédenti- K Survey [Beers etal (1992)). However, multi-object

fications of exotic objects such as very metal-poor (VMP}), egPectrometers Iik'e 6df on the UK Schmidt telescope
tremely metal-poor (EMP), ultra metal-poor (UMP), and hy(Watson etal (1998)), AAOMEGA at the Anglo-Australian

per metal-poor (HMP) (explained|in Beers & Christlieb (2)05 Telescope (AAT)|(Sharp et al (2006)), and the LAMOST project
which show diferent degrees of metal deficiencies. Amonl‘ﬂz_hao et al (2006)) can provide a large number of spectra per
these metal-poor class, subclasses comprising carbameat |_ght. The ongoing and future surveys and space missions
metal-poor stars (CEMPs) have also been identified, whiotvsh'ill_collect a vast amount of spectra for stars belonging to
a wide range in s- and r-process element enhancements. THjégsrent_compone.nts of our Gal_axy and nearby galaxlles. The
objects are important tools for understanding the enricttrag  Wide variety of objects covered in these surveys requiradgoo

the interstellar medium (ISM) caused by stars dfatent mass PiPelines for data handling and automated procedures teat a
range in our Galaxy. efficient as well as robust in deriving accurate stellar pararset

Intrinsic luminosity is another important parameter that nthat are essential ingredients in studying the structuré an

only helps in deriving the distances of the objects, but h&ps evolution of our Galaxy. o
Several automated methods of spectral classification and

Send offprint requests to: Sunetra Giridhar parametrization such as the minimum distance method (MDM),
* Table 1, Table 2, Figure 2, Figure 3, and Figure 6 are availabl the gaussian probabilistic model (GPM), the principal comp
electronic form via httg/iwww.edpsciences.org nent analysis (PCA), and the neural network have been devel-
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oped over the last two decades. These methods have been saapproach. We present in section 5 the atmospheric paraneter
marized irj Bailer-Jones (2002). and calibration errors and the use of trained networks te est
These automated methoddtdr in two major ways. Real mate the parameters for a sample of candidate metal-pasr sta
stellar spectra of well-known calibrated stars, referedg the and some unexplored field stars. The determination of atesolu
empirical library, are employed by some groups (includisy u magnitudes is presented in section 6, derived parameterarie
while others prefer using a synthetic spectral library.lBap- didate metal-poor stars are given in section 7. We summautize
proaches have their merits and disadvantages. Synthetitrap results in section 8.
depend on the quality with which the model atmosphere (often
assuming local thermodynamic equilibrium) representsiact .
stars, and the line lists used are sometimes poor; in ph?(tiCLlZ' Calibrated stars
the line data for molecular lines are not very accurate. Qur Ve have initiated a program for the definite identification of
tempt at validating these line lists by comparing the sytithe metal-poor candidates from fiérent surveys such as the ob-
spectra with spectra of well-known stars has shown disagregctive prism survey of Beers et al (1992), which is gengrall
ments that indicate that there are unidentified lines or @t referred to as the HK survey, the EdinburghCape blue-
oscillator strengths of poor quality. The problem is moreese object survey by Stobie et al (1997), and the high tangewgial
for cool stars with molecular lines. locity objects listed by Lee (1984). During 1999-2001 we ob-
In empirical libraries, the stars are assigned a specttalned spectra of a modest sample and also a good number
class based upon the appearance of spectral features aaed thg stars of known parameters. The semi-empirical approach
fore are model independent. Earlier reference libraried dadopted i Giridhar & Goswami (2002) resulted in identityin
not have the required uniform range in atmospheric paramhd parametrizing the metal-poor star candidates at a \@my s
ters. The empirical libraries assembled|by Jacoby et al4),98pace, hence we chose to explore an ANN-based approach. Our
Pickles (1985), and Silva & Cornell (1992) mostly containedarlier attempt at using the spectra of calibrated stars ftoe
solar-metallicity objects; the last two libraries also @dewer known empirical library (e.q. Jacoby et al (1984) for tramihe
resolution. The libraries assembled[by Worthey et al (1894) network and then employing them for parametrizing our sampl
Kirkpatrick et al (1991) had lower resolution, and the lityra proved to be dficult despite our attempts at matching the reso-
by |Serote Roos et al (1996) had ifistient spectral coverage. lution of two spectra. We faced convergence problems, aad th
At the inception of our program (more than a decade agealibration errors were unacceptably large. The spedtraries
the database of stellar libraries was not satisfactorytipar available then also had no stars with good coverage in rietall
ularly for metallicity coverage), hence we chose to develay.
our own reference library. The situation has changed con- On the other hand, using stellar spectra of calibrated stars
siderably now. In the past decade, several new empirical dbtained with the same instrument configuration and compris
braries providing good spectral coverage at good reselutitng stars evenly distributed in parameter space yieldedra ve
(R ~ 2000 or better) have been developed. For the optood calibration accuracy even for calibrated samples afasb
cal region, libraries such as STELIB (Le Borgne et al (2003)ize. It should be noted that the spectral resolution anctsgie
ELODIE (Prugniel & Soubiran (2004), Prugniel et al (2007))coverage of our spectra are well suited for our objective.
INDO-US (Valdes et al (2004)), and more recently MILES We therefore created a library of observed stellar speotra f
(Sanchez-Blazquez et al (2006)) have been provided whders with well-determined parameters (adding more spéatr
NGSL (Gregg et al.(2005)), IRTF-Spek (Rayner et al (20092004-06), which was used for training ANNs. These were used
and XSL (?) provide extended coverage from the ultraviolefo estimate the astrophysical parametesg, Ibg g, [Fe/H] , and
to the infrared. With the help of softwares such as ULySBl, for a modest sample of unexplored field stars using medium-
(Koleva et al (2009)) large samples of stars can be classifiggbolution stellar spectra.
and parametrized (see €.9. Prugniel et al (2011)). Thes@-emp Our database of stars with known spectral classification
ical libraries are very important tools for building popiitd- and parallaxes is presented in Table 1, which contains the
synthesis models and also for the automated classificatidn &tar name, the Hipparcos number, the V magnitude; B
parametrization of stars. Notwithstanding its modest,siie log g, Tes, [Fe/H], and references for the stellar [f] .
reference library developed by us is very useful for the gmes Many objects were observed more than once. These objects
problem because of its uniform coverage in metallicity,pem with known atmospheric parameters were selected primar-
ature, and gravity. ily from |Gray et al (2001)| Allende Priento & Lambert (1999),
From the medium-resolution spectra metal-poor stars hg8aider et al (2001), an@ Cayrel et al (2001). Gray et al (Z001)
been detected usingftirent approaches; some are based upbave calculated atmospheric parameters with the followimg
the usage of strong features such as the Ca Il lines (ecgrtainties: 80 Kin T, 0.1 in logg, and 0.1 in [MH]. The tem-
Allende Priento et al (2000) on INT spectra), while others enperatures tabulated by Allende Priento & Lambert (1999)ehav
ploy PCA or even full spectra (e)g. Snider et al (2001)). Adjocan uncertainty of 200 K, while the uncertainty in lggvaries
account of stellar parametrization approaches develapdah- from +0.1 at logg of 4.5 to as much as0.5 at logg of 2.2.
dling data from diferent surveys can be found in the volum&he uncertainties in tHe Snider et al (2001) data are theviell
edited by Bailer-Jones (2008). ing: 150 K in Tetf, 0.3 in logg, and 0.2 in [F¢H] . We also
In this paper we used the artificial neural network (ANN) tenade use of the [F&l] derived from the high-resolution spec-
estimate stellar parametefsg, log g, and [F¢H] and My for  troscopy of the individual stars available in literaturelahose
a modest sample of candidate metal-poor stars using mediifrom the Elodie data basg (Soubiran et al (1998), whose param
resolution spectra. eter uncertainties are 145 K ingk, 0.3 in logg, and 0.2 in
In section 2 we describe the stellar spectra database geceloFe/H] . The 73 metallicity calibration stars with known lag
by us and the subset used for calibrating the ANN. SectionT3s, and [F¢H] contained in Table 1 (full table available in elec-
describes the observations and spectral analysis. Sectleals tronic form) are indicated with an asterisk mark. We obsérve
with the network configuration and the adopted networkatrey more than two hundred stars and rejected those with binairity
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Fig. 2. Plot of [FgH]ann — [Fe/H]ca Versus their catalog values, [Ficy for all calibrated stars (top panel). The middle panel
shows the result for part 1 obtained using weights from thélAiined for part 2. In the bottom panel the weights from Raate
applied to part 1. The rms error for the full sample (top paigeD.15 dex, for part 1 (middle panel) it is 0.31 dex, and fart[2
(bottom panel) itis 0.22 dex.

other peculiarities such as Ap-Am spectra and those witlsemof atleast 50. For the continuum-fitting we adopted a procedu
sion lines. Some spectra were rejected due to poor signaise n similar to that given in Snider et al (2001). The spectra lithi
(SN) ratios. ing emission lines were excluded from the sample. The spectr
were trimmed such that all spectra (700 pixels) coveredtbxac
the same spectral region. The alignment of the spectra is cru
3. Observation and data handling cial to obtain the desired accuracy. Fig. 1 shows represeata
stars from our sample; the stars with near-solar metallait
?Qnged in decreasing temperature sequence from top tanotto
superposed the spectra of metal-poor stars with singifar t

The spectra were obtained using a medium-resoluti
Cassegrain spectrograph mounted on the 2.3 m Vainu Ba
Telescope at VBO, Kavalur, India. When used with a grati ; :
of 600 grooves mml_ and a camera of 1500 mm focal Iength[Fer/algl]"\ziﬁ]?g nggrv]ttrr]\ee;ri;tmospherlc paramelgrsiog g, and
the spectrograph gives an average dispersion of 2.6 A per
pixel. During the extended period of several years, over 200
medium-resolution spectra were obtained. The spectrarege
is 3800—-6000 A. The spectra were recorded on a1 CCD
(with Thomson TH77883) with a pixel size of 24 The setup Table 1 lists the atmospheric parameters/Hig Tet¢, and log
gave a two-pixel resolution of 1200. g compiled from the literature and adopted for each star in our
The reduction and analysis of the spectroscopic data wetedy. We took particular care to select stars that span a wid
performed using the standard spectroscopic packages if.IRfange in [F¢H] , Tet¢, and logg; these values were used to train
All CCD frames were bias-corrected, response-calibrated whe ANNSs; the reference for [FZBl] is given in the last column
ing dome-flat spectra, and cleaned for cosmic rays. Evendefof Table 1. These [Fel] are estimated using high-resolution
converting them to wavelength scale, the extracted spegra spectra and model atmospheres, hence their accuracy fyobab
aligned accurately using a script to ensure that a giventigdecis about+0.2 dex. The stars used for metallicity correction (with
feature fell on the same pixel number in all spectra. This prenown [Fe/H], Tes¢, and logg) are indicated by an asterisk fol-
cedure has the disadvantage that radial velocity infoomas lowing the star name. We used the back-propagation ANN code
not retrieved. No absolute flux calibration was performeat. Fdeveloped by B.D.Ripley (sée Ripley (1983), Ripley (1994ne
fainter stars 23 exposures were combined to attain @N 8&tio ANN configuration is same as that employed in our earlier work

4. Atmospheric parameters of the training set
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(Giridhar et al (2006)). Separate ANNs were trained for gech procedure similar to that given fdls was adopted. The accu-

rameter. racy of the logg estimate is in the range 0.3 to 0.5.
5. ANN atmospheric parameter results 6. ANN absolute magnitude results
5.1. Metallicity, [Fe/H] A large portion of the stars observed by us have parallax esti

mates. Combining th¥-magnitudes with the Hipparcos paral-
laxes and absolut¢-magnitudes, théy, could be calculated.
Stars with a parallax error greater than 20% were excluded.
Since most of the sample stars are nearby bright stars, the ef
Lt of interstellar reddening in most cases will be weak or
even negligible. We therefore excluded this correctiomfiaur

The top panel in Fig. 2 shows a plot of the [IFg residuals ob-
tained using the ANN for the 73 stars against their/fgaken
from the literature and given in Table 1. The [A¢metallicities
range from-3.0 dex to 0.3 dex, and the reduced mean scat
about the line of unity is 0.15 dex. The [fF§ estimates quoted

in the literature often have uncertainties in the range-0.2 v calculations. Our spectral region contains many lumigesit

Qex. To test the good.ness of the ANN, we divided the sam Ensitive features such as wings of hydrogen lines, lindseof
into two parts and trained the network separately on each par Ti 1, Mg 1 lines at 517283 A, and for later spectral types

Then the weights of ANN trained for part 1 were used to estém '-band blends of MgH, TiO, VO, etc. However, the same fea-

[Fe/H] for the stars in part 2. The middle and bottom panels gures cannot serve the whole range of spectral types; harce,

Fig. 2 show an rms error of 0.31 and 0.22, which is indicative Q. . ; ;
; ; L —.. - divided the sample stars into two groups based upon thek tem
the accuracy with which the ANN can predict the metallicify operatures. Group | had stars in the temperature range-43mD

a given star within the trained metallicity range. 'f labeled Vc and group Il those in the 6608000 K range la-

Using the weights from the ANN trained for the sample : .
calibrated stars, the metallicity of the candidate metad#stars %gfrds:g;'s \\(/er; a\?v(;:i;%:ﬁgg ’s%ro:rgtg:’ V‘.’R;Zhsfgrgt?r']n;] imetrzzlu
could be estimated. These estimates were subjected toe'nde;ﬁave temperatijres in a range Sire]ilar toyt'hat of group | P

dent tests to avoid higher temperature — low-metallicitgate Fig. 4 illustrates the errors associated with these three

gg?;ry rr? :&E?{y\lﬁgg?!lr]ufggl t'gfg%r%%iup agn;heG) sft%w:]ec;fgg_ groups. The ANN trained for group | (with 76 stars labeled Vc
nificantly metai-poor objects with [Fel] < —0.5 dex in figure) could predicMy, with an accuracy of 0.22 mag, while
' ' the ANN for group Il (with 39 stars) attained an accuracy of
0.18. The group Il of metal-poor stars had a very few sta43 (1
5.2. Temperature and surface gravity and could prediciMly with an accuracy of only 0.29. An error

0.3 mag in luminosity would result in an error of 150 parsec

. . _of
The literature contains a larger number of stars _W't% distance at a distance of 1 kpc. One likely reasonMgrer-
good estimates ofTer and log g values compared with

: , ror could be that luminosity sensitive features like linéghe
those with [Fe¢H]values. For stars with near-solar

Feu, Ti n, and Mg lines at 517283 A are also metallicity

metallicity we used temperatures and gravities given i :
: pendent. Furthermore, the number of metal-poor staifs wit
Allende Priento & Lambert (199p) anl_Gray et al (2901) fO{;ood parallaxes is woefully small. The large systematiorerr

temperature and calibration. For metal-poor stags and logg for low-luminosity objects with M of 5 deserves to be anal-

were mostly taken from Snider et al (2001). In Fig. 3 we pitt ed with additional data. Another possible solution isubage

these parameters for the common stars to estimate syste Iy: . - i
differences between the two works. We found that the T C OI:Bgllg/aE'ng??gﬁf ga:;eyf(olrgglge)tal poor stars, as suggeby

values obtained by Gray et al (2001) are systematicallydrigh
by about 1.5% and for log the systematic dlierence is 3% to
4%. Hence we believe that our compiled calibrating set is Nt Stellar parameters for the candidate metal-poor
affected by large systematic errors. stars
On the other hand, it should be noted that the metal-poor
stars do not have strong features in their spectra becatiseinf The metallicity distribution of the calibrated sample ispented
lack of metals, while hotter stars lack strong metallic ée@s in the top panel of Fig. 5. The figure shows the distribution of
in their spectra because of ionization. To ensure that th&l ANhe stars with [F&H] taken from the literature with a thick con-
does not become confused by this, we divided the stars ifo sdinuous line. An additional 110 stars with well-determinkg
metallicity ([Fe/H] > —0.5 dex) and metal-poor ([Fel] < -0.5 and log g were lacking good [Ad] estimates. We determined
dex) groups. [Fe/H] for these objects using the ANN, and their metallicity-dis
We estimated the [Fé&l] for the sample stars in Table 1 withtribution is presented with a dotted line. The distributeows
knownTes and logg using the ANN trained for [F&H] as ex- that we had a good coverage of training stars ifedént metal-
plained in section 5.1. We have spectra of 110 calibratem stécity bins.

with near-solar metallicity and spectra of 33 metal-poarst We observed candidate metal-poor stars from the objec-
We trained the temperature ANN separately for each meitgllictive prism surveys of Beers et al (1992) (BPS), the Edinburgh
group. — Cape blue-object survey (EC) by Stobie et al (1997), and the

The solar-metallicity stars were separated into two randdmgh tangential velocity objects listed by Lee (1984). Wsoal
groups of 55, and a sanity check similar to that demonstiatedncluded some unexplored high proper motion field starsngJsi
Fig. 2 was performed. The rms about the line of unity was fourtdree separate ANNs, we estimated atmospheric parameters f
to be 150 K for both groups. As the temperatures found in thiee candidate metal-poor stars. At first, the metallicitys wati-
literature have errors that can be as high as 200 K, this is moated using an ANN trained for metallicity. This helped us in
surprising. separating the metal-poor stars from those of near-sol&alime

We trained two ANNSs for logy, one ANN with stars with licity or moderately metal-poor objects. A separate ANNeal
[Fe/H] < —0.5 dex, and the other with [FEl] > —0.5 dex. A for these two groups was employed to estimateTifzeand logg
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Fig. 4. Plot of Myann — Mypar Versus M (parallax). The subset of cool stars (Vc) is plotted in the tbe middle panel contains
the results for hot stars (Vh), and the bottom panel the tefod metal-poor stars (Vm).

for these stars. The estimated atmospheric parametersere p We have plotted in Fig. 6, a newly identified metal-poor star,
sented in Table 2. A few stars had more than one spectrum @818116474-0054 along with a near-solar-metalicity star mwifilsir

the small diferences between the parameters estimated freemperature to substantiate our findings.

each spectrum are indicative of internal errors. The\(Bcol- With these encouraging results (notwithstanding the small
ors were available in SIMBAD for many of them, which wergample) we propose to extend this work to a much larger sample
used to verify the temperatures estimated by the ANN. We usgficandidate metal-poor stars from surveys such as the HK Il
the calibration tables ¢f Schmidt-Kaler et al (1982) toreatie decribed in Beers & Christlieb (2005).

the photometric temperatures. We tabulated tifedince be- With the help of the estimateBer and My, we are able to
tweenTer(ANN) and Ter(photometric) in Table 2. We obtainedpace the program stars in the H-R diagram, as shown in Fig.
surprisingly high residuals for EC 11175-3214, EC 1126Q&4 7 The luminosity-calibration stars with Wtaken from the lit-

EC 13506-1845, and G 149-34. While the observed spectrigiyiyre are shown by open circles; theiy Mstimated from the
strongly supports th&e; estimated from the ANN, a misidentifi- ANN is shown by a filled circle. The ffierence between the two
cation cannot be ruled out. Excluding these exceptionsluals s indicative of internal errors. In both cases Thg is the catalog
indicate an rms error of 265 K. Many metal-poor candidatesstg;q|ye. It should be noted that our calibrated stars do noerep

were near the faint limit, hence th¢\Bratio was in the range of gent the local neighborhood alone since the objects weemtak
40-50, while most of the calibrated star spectra had/dh&tio  fom different sources to encompass the required range of stel-

higher than 100. lar parameters (metallicity in particular). Hence Thg and My
Within our modest sample of stars, a good fraction (abodtagram has a large scatter even for the calibrated stars.
20%) are significantly metal-poor with [A4] in —1.0 to-2.5 A good fraction of candidate metal-poor stars are dwarfs or

range. We find that 33% of the BPS stars and 21% of the EC staubgiants (which possibly are slowly evolving low-masssta
belong to the [F&#H] range of—1.0 to-2.5. A few high proper although the calibrated stars in Table 1 also contain skgéra
motion Giclas objects studied also contain metal-poosstart ants among the significantly metal-poor stars.

the number studied is currently very small, therefore we aio n

offer statistics. L
. .. ... 7.1 Limitation of our approach and future strategy
The bottom panel of Fig. 5 shows the metallicity distribatio

of candidate metal-poor stars, which shows that our catelid&\Ve are aware of the problems caused by degeneracies imcertai
sample has a large portion of moderately metal-poor stats, parameter domains. We avoided these sources of inaccsiracie
the fraction of significantly metal-poor star is also en@ming. by incorporating a branching procedure that resulted irsdge
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Fig. 5. Metallicity distribution for the calibrated sample and datate metal-poor stars.

regation of data into meaningful subgroups. This additistep lar parameters were available, which were used by the ANN in

considerably improved the accuracies of the derived paieme the learning process.

compared with our earlier work (Giridhar et al (2006)). The procedure of pre-classifying the data and training-sepa
It should be noted that our ANN-based approach does not gite ANN for each subgroup resulted in a significant incréase

low for extrapolation. For example, the [fF§ network is trained accuracies. Now temperatures could be estimated withB0

for a [FgH] range of-3.0 to+0.3 and therefore may not givek. Similarly, using of three separate ANNs for hot, cool, and

reliable results for super-metal-rich stars or Ap-Am stditsis metal-poor stars yielded a very good accuracy inddlibration.

approach is also not applicable for double-line spectroisdai- We used these trained networks primarily to detect metal-

nares. . . poor objects from a modest sample of unexplored objects.
As mentioned earlier, the ANN procedure adopted here lipwever, the empirical library developed may be useful for

not suitable for handling peculiar stars; however, it daeside other applications and can be accessed by interested users o

agood estimate Ofes, log g, and metallicty for candidate metal-request. We believe that it will be useful in studying stetiap-

poor stars from the surveys mentioned previously. Theesti- ylation in large samples of galactic stars.

mated here agree with j[hose estimatgd from\{Bwithin +265 We extended the application of ANN to\Mwith an accu-

K for candldate_ stars with the exceptlon_of a few stars. racy of +0.3 dex. The primary application of yis in distance
Although this maiden ort of estimating M from spectral jetarmination, and the spectroscopic approach based tgon t

features is quite accurate for solar _metglllcny_objedte,errors strength and profiles of the lines is independent of reddgrin

are large particularly in the low-luminosity regime for tmetal- - 4ition, the M calibration can be used for the quick identifi-

poor stars. In addition to full spectra, we propose to iNPMs 445 of objects of various luminosity types in large datsds
important line ratios and explore near-IR features in otur containing heterogeneous objects.

work.

Future prospects

With the ANN procedure giving the desired accuracy estab-
8. Summary and conclusions lished here, we would like to explore a much larger sample of

candidate metal-poor stars. We also need to extend the -empir
We have developed an empirical library of stellar spectra fizal library toward hotter temperatures and also overcaomee t
stars covering a temperature range of 4200e< 8000 K, a poor coverage of low-gravity objects. We also contemplate i
gravity range 0.5 log g < 5.0, and a metallicity range 6f3.0  cluding near-IR Q feature, Ca lines, and line ratios suggested
< [Fe/H] < +0.3. With the good spectral coverage of 3800-600§Y [Corbally (1987) and Gray (1989) for the luminosity cadibr
A, several spectral features showing strong sensitivitjiésstel- tion of metal-poor stars. In this preliminary work, we uséar (



Giridhar et al.: Application of Artificial Neural Network fdStellar parametrization

v

O Calibrated stars: Te“§Lit.;, M

parallax)
- @ Calibrated stars: T (Lit.), M

ANN)

v

% Candidate metal-poor stars: T, (ANN), M (ANN)

&

8000 7000 6000 5000 4000
T

eff

Fig.7. M, as a function of ;¢ for the luminosity-calibration stars and candidate metadr stars.

calibration) M, for nearby stars estimated from the parallaxesiende Prieto, C., Rebolo, R., Garcia Lopez, R. J., SRiart, M., Beers,
omitting reddening corrections. Better and enlarged sampf T.C., Rossi, S., Bonifacio, P., Molaro, P., 2000, AJ, 120,615
My from upcoming surveys or data releases of the ongoing SQF—?“ M., Fuhrmann, K., Gehren, T., 1994, A&A, 291, 895

| ; . in the full ailer-Jones, C. A. L., 2002, adaa.conf, 83
vey could be used to attain consisteny Mccuracy in the full gajjer jones, C.AL., 2008, in AIPC Conf. Proc. 1082,/Gléisation and
temperature range, which will help in understanding thdlevo  Discovery in Large Astronomical Surveys” Editor Bailemas, C.A.L
tionary status of the candidate stars. Balachandran, S., 1990, ApJ, 354, 310

We have an ambitious project of observing an extended sajfe' I C- Preston, G. W, Shectman, 8. ., 1992, A), HE 1

ple of F-G stars covering a broad range in galactocent@t® gy khart, C., Coupry, M. F., 1989, A&A, 220, 197
to study the metallicity gradient, which is known to exhittd  Cayrel de Strobel, G., Soubiran, C., Ralite, N., 2001, A&A33159
slopes and also some wriggles near the spiral arm locatWgas. Chen, Y., Trager, S., Peletier, R., Lancon, A., 2011, JRI¥28, 012023
hope to attain the required accuracy in metallicity by caltgf Corbally, C.J., 1987, AJ, 94, 161
L . . ardsson, B., Andersen, J., Gustafsson, B., Lambert,.DNissen, P. E.,
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Acknowledgments Giridhar, S., Muneer, S., Goswami, A., 2006, MmSAI, 77, 1130
Sunetra Giridhar wishes to thank T. Van Hippel for his helg'”dhar' S., 2010, BASI, 38, 1

with the ANN code. This work was partially funded by theG:Z;tog’_ (F;'. Glégan%nggs"léggs’A&A' 169, 201

National Scjence Foundationsfiide of Internatior)al Science Gray, R. 0., Graham, P. W.,, Hoyt, S. R., 2001, AJ, 121, 2159
and Education, Grant Number 0554111: International RebeaGray, R.O., and Corbally, J., 2009, in Stellar Spectral €ifastion. Princeton
Experience for Students, and managed by the National Solar Series in Astrophysics (Princeton Univ. Press, Princetmh@xford)

Hath : regg, M.D. et al. 2006, in The 2005 HST calibration workshafol
Observatorys Global Oscillation Network Group. This work NASA/CP2006- 214134, (Greenbelt MD: NASA), ed Koekemoer, AM.,

made use of the SIMBAD astronomical database, operated at goydfrooij, P. and Dressel L.L.

CDS, Strasbourg, France, and the NASA ADS, USA. We thankcoby, G. H., Hunter, D. A., Christian, C. A., 1984, ApJS, B&7

the anonymous referees for their constructive commentghwh Eirrpatri'\CAk, ,J:' D., Htlenl;y, g. J-,hMcglaArthz{I DQ”&SB&%?XE@E@““
i P oleva, M., Prugniel, P., Bouchard, A., Wu, Y., , ,

helped us to improve the manuscript. Le Borgne, J.F., Bruzual, G., Pello, R. et al. 2003, A&A. 4033

Lee, S.-G., 1984, AJ, 89, 702

Luck, R. E., Lambert, D. L., 1981, ApJ, 245, 1018

Luck, R. E., Lambert, D. L., 1985, ApJ, 298, 782

References Moultaka, J., llovaisky, S. A., Prugniel, P., Soubiran, Z04, PASP, 116, 693
Adelman, S. J., Philip, A. G. D., 1994, MNRAS, 269, 579 Oinas, V., 1974, ApJS, 27, 405
Allende Prieto, C., Lambert, D. L., 1999, A&A, 352, 555 Patchett, B. E., McCall, A., Stickland, D. J., 1973, MNRA$41329



Giridhar et al.: Application of Artificial Neural Network fdStellar parametrization

Pickles, A. J., 1985, ApJS, 59, 33

Prugniel, P., Soubiran, C., 2004, asfro, arXiv:astr®p09214

Prugniel, P., Soubiran, C., Koleva, M., Le Borgne, D., 200tro,
arXiv:astro-pli0703658

Prugniel, P., Vauglin, 1., Koleva, M., 2011, A&A, 531, A165

Rayner, J. T., Cushing, M. C., Vacca, W. D., 2009, ApJS, 185, 2

Ripley, B.D., 1993, in Networks and Chaos: Statistical arabBbilistic Aspects,
ed. O. E. Barnddf-Nielsen, J. L. Jensen, & W. S. Kendall (London:
Chapman & Hall), 40

Ripley, B.D., 1994, in Statistics and Images, Advances iplitgd Statistics, ed.
K. V. Mardia (Abingdon: Carfax), 37

Ryan, S. G., Lambert, D. L., 1995, AJ, 109, 2068

Sanchez-Blazquez, P., Peltier, R.F., Jiménez-Vicehtet al. 2006, MNRAS,
371,703

Schmidt-Kaler, T. S. ‘Landolt-Bornstein’ Group 6 Vol 2b,838 Springer Verlag

Serote Roos, M., Boisson, C., Joly, M., 1996, A&AS, 117, 93

Sharp, R., Saunders, W., Smith, G., Churilov, V. et al. 2@WIE, 6269

Silva, D. R., Cornell, M. E., 1992, ApJS, 81, 865

Snider, S., Allende Prieto, C., von Hippel, T., Beers, T.Sheden, C., Qu, Y.,
Rossi, S., 2001, ApJ, 562, 528

Soubiran, C., Katz, D., Cayrel, R., 1998, A&AS, 133, 221

Spite, M., Pasquini, L., Spite, F., 1994, A&A, 290, 217

Stobie, R.S., Kilkenny, D., O’'Donoghue, D. et al. 1997, MNRA87, 848

Tomkin, J., Lemke, M., Lambert, D. L., Sneden, C., 1992, A3%,11568

Tomkin, J., Lambert, D. L., 1999, ApJ, 523, 234

Valdes, F., Gupta, R., Rose, J. A, Singh, H. P., Bell, D.Q042 ApJS, 152, 251

Venn, K. A., 1995, ApJS, 99, 659

Watson, F. G., Parker, Q. A., Miziarski, S. 1998, Proc. SBE55, 834

Worthey, G., Faber, S. M., Gonzalez, J. J., Burstein, D.4189®JS, 94, 687

Zhao, G., Chen, Y.-Q., Shi, J.-R., Liang, Y.-C., Hou, J.&€hen, L., Zhang, H.-
W., Li, A.-G., 2006, ChJAA, 6, 265


http://arxiv.org/abs/astro-ph/0409214
http://arxiv.org/abs/astro-ph/0703658

Giridhar et al.: Application of Artificial Neural Network fcStellar parametrizatigrOnline Material p 1

I T T T T I T T T T I T T T T I T T T
s [ HD 43750 (7943, 4.34, 0.03)
o5 HD 37430 (7244, 4.30, 0.08) _
=
—_-—
. —
N
S 2
—_—
jam)
—
©
=
—
= 1s HD 166161 (5125, 1.
— -~ -
Q) — —
o= i HD 100006 (4677, 2.41, 0.02) |
1 —
HD 122563 (4687, 1.61, —2.46)
0.5 ]
1 I 1 1 1 1 I 1 1 1 1 I 1 1 1

4500 5000 5500
Wavelength (&)

Fig.1. Spectra of a selected sample of stars with near-solar negtallisplayed in decreasing temperature sequence franmato
bottom. The spectra of a few metal-poor stars are superpmsadlar-metallicity stars of similar temperatures. Thaapheric
parameter3 s, log g, and [F¢H] for each star are given in parenthesis.

)
o))
a1
o
)

\

\

4.4 [~

4.2 [

6000 7

T.; (Allende Prieto+, 1999
*
¢
log g (Allende Prieto+, 1999)
T T
* %
*
*

‘ | | ‘ L1 1 ‘ L 1 | ‘ L 1| ‘ L 1| ‘ L1 1 ‘
3.4
5500 6000 6500 34 36 38 4 42 44

T, (Gray+, 2001) log g (Gray+, 2001)

Fig.3. Comparison off¢;t and logg values for stars common between Allende Prieto and Lamb88&9) and Gray, Graham and
Hoyt (2001)



Giridhar et al.: Application of Artificial Neural Network fcStellar parametrizatigrOnline Material p 2

Table 1: List of observed stars and their parameters

SINo Star HIP Vmag (B-V) Literature ANN Ref

logg Tef [FeH] M, logg Tdf [Fe/H] M,

1 HD 344 655 5.67 1.119 241 45709 0.7 2.28 4635.6-0.04 0.8

2 HD 496 765 3.88 1.013 247  4786.3 +0.13 0.7 2.58 4786.4 +0.02 0.7 4

3 HD 587 840 5.85 0.973 3.05 4786.3 -0.24 21 296 48124 -0.24 21 1

4 HD 1529 1565 7.95 0.818 3.70 5248.1 3.99 5294.80.17

5 HD 10142 7643 5.94 1.045 2.68 4786.3 0.9 240 4767.60.34 0.9

6 HD 14679 10973  9.28 0.652 450 5754.4 456 5754.80.68

7 HD 18709 13902  7.39 0.590 440 6025.6 4.4 430 6050.80.50 4.4

8 HD 19445 14594  8.05 0.46 438 6020.0-1.95 51 434 5964.0 -2.06 4.6 1

9 HD 19659 14613  7.11 0.684 3.58 57544 2.3 3.58 5664.40.37 2.3

10 HD 20902 15863  1.82 0.48 0.90 63000 0.15 -45 156 63164 +0.23 -42 11

11 HD 21718 16270  8.96 1.163 3.60 4786.9 3.76  4695.60.34

12 HD 21925 16479  8.30 0.418 442  6606.9 431 6651.20.12

13 HD 22484 16852  4.28 0.57 415 5981.0 -0.11 3.6 414 6121.2 -0.05 3.2 1

14 HD 23190 17575  6.83 0.210 420 79433 2.1 435 7848.0 021.4 2

15 HD 23650 17887  9.01 0.582 455 6025.6 5.0 454 6008.80.23 4.6

16 HD 26519 19501 7.86 0.440 442  6606.9 3.9 449 6555.60.48 3.8

17 HD 26749 19767 6.74 0.677 4.11 5754.4 4.0 443 5543.20.60 4.3

18 HD 27045 19990 4.93 0.259 430 7585.8 2.6 425 7654.8 0176 2

19 HD 27174 20334 8.25 1.071 3.43 4677.4 3.7 3.36  4634.00.05 3.8

20 HD 29140 21402  4.25 0.184 3.81 79433 0.27 0.9 3.94 783520.006 1.2 17

21 HD 30177 21850 8.41 0.773 4.30 5495.4 4.7 489 5483.00.27 5.2

22 HD 284908 22684  9.28 1.128 3.73 4677.4 410 5369.00.38

23 HD 31109 22701  4.36 0.257 3.40 72444 0.1 3.40 7362.0 0.18.1 O

24 HD 32890 23668 5.71 1.166 2,70  4570.9 3.089 4717-0.109

25 HD 33111 23875  2.78 0.161 3.70 79433 0.6 385 78504 021.3 O

26 HD 33419 24041 6.11 1.098 2,50 45709 1.2 229  4655.2 007.2 1

27 HD 34303 24665  6.85 1.061 2.85 4677.4 2.2 2.87  4679.20.03 2.2

28 HD 34500 24730 741 0.204 436 79433 2.8 416 7889.2 022.7 2

29 HD 36079 25606 2.81 0.807 254 52481 0.05 2.34 5275.6-0.13 1

30 HD 36153 25651  7.32 0.305 428 72444 2.8 407 73604 012.7 2

31 HD 36673 25985  2.59 0.21 1.10 7400.0 0.04 -54 125 7357.6 001 -57 14

32 HD 37192 26219 5.76 1.120 240 4570.9 0.8 2.30 4558.40.05 0.7

33 HD 37430 26412  6.15 0.322 430 72444 2.9 428 7283.6 0.08.7 2

34 HD 37984 26885  4.90 1.144 221 4570.9-0.55 0.07 221 47476 -0.45 0.3 1

35 HD 37613 26996  7.84 0.455 420 6606.9 3.0 436 6565.60.02 2.9

36 SAO 58437 27361  9.19 0.372 440 6918.3 43 457 6939:60.37 4.0

37 HD 39425 27628  3.12 1.146 2.31  4570.9 +0.13 1.0 229 45728 +0.081 1.0 1

38 HD 41393 28654  6.88 0.201 429 79433 2.3 413 7874.8 0.26.3 2

39 BD+191185 28671  9.31 0.588 429 5440.0-1.21 474 5571.2 -1.05

40 HD 41116 28734  4.16 0.835 2.97 5248.1-0.01 0.8 3.109 5323.2 -0.045 1.0 1

41 HD 41547 28854  5.88 0.374 3.90 6918.3-0.10 4.054 7069.6 0.095 12

42 HD 41712 29002 6.94 0.455 3.90 6606.9-0.03 2.3 410 6535.2 +0.06 24 12

43 HD 44007 29992  8.06 0.84 2.00 4830.0 -1.71 2.03 48456 -1.77 1

44 HD 43750 30165  7.44 0.201 434 79433 2.8 428 7768.0 0.03.7 2

45 HD 43771 30275 7.43 0.209 433 79433 2.6 424 7822.0 015.2 2

46 HD 46355 30932 5.20 1.087 226 46774 0.3 225 4679.21.21 0.3

47 HD 48329 32246  3.02 1.40 0.80 4582.0-0.05 -42 132 45116 +021 -41 1

48 CD-333337 33221  9.03 0.48 411  5930.0-1.40 4146 5973.6 -1.74 3

49 HD 52622 33577  6.46 0.389 3.68 6918.3 15 2,963 6901.2 10.181.3

50 HD 56935 35154  7.69 0.653 3.75 4786.9 4.0 3.77  4781.20.07 4.0

51 HD 56221 35341 5.87 0.181 3.94 7943.3 1.3 3.90 7855.6 017.2 1

52 HD 58431 36059 7.84 0.331 431 7244.4-0.07 3.0 432 7393.2 -0.16 2.9 12

53 HD 58946 36366  4.16 0.31 4.47  7145.0 -0.17 2.8 411 7082.4 -0.35 2.9 12

54 HD 61295 37339 6.16 0.374 3.70 69183 0.02 1.5 3.47 6939.2 0.14 14

55 HD 62781 37710 5.80 0.320 416 72444 2.6 4.17 7306.4 0.09.4 2

56 HD 62345 37740  3.57 0.93 2.90 5000.0 -0.16 0.4 254 4892.0 +0.01 0.3 1

57 HD 62196 37802  7.67 0.313 437 72444 3.6 4518 6952:80.78 3.6

58 HD 62509 37826 1.15 1.00 2.75  4865.0 -0.04 1.0 278 4813.2 +0.04 1.0 1

59 HD 63660 38146  5.32 0.751 3.02 54954 0.3 2.93 5479.2 010.2 O

60 HD 63700 38170 3.34 1.25 115 4990.0 0.24 0.825 4684.80.317 1

61 HD 63791 38621  7.92 1.80 4750.0 -1.65 1.79 47616 -1.70 1

62 HD 65228 38835 4.20 0.73 1.70 5900.0 0.52 1.663 5728.0 80.13 1
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HD 67078
HD 65871
HD 70110
HD 69960
HD 71973
HD 73764
HD 74706
HD 76218
HD 76582
HD 76932
HD 76617
HD 76909
HD 78752
HD 233608
HD 76990
HD 83212
HD 83808
HD 84441
HD 84850
HD 84937
G43-3

HD 85379
HD 85444
HD 085773
HD 85844
HD 87427
HD 87140
G43-33
G54-21

HD 89086
HD 89449
HD 89962
HD 90860
HD 91135
HD 91669
HD 91948
G58-23

HD 94028
BD-163141
HD 94771
HD 95272
HD 95364
HD 95532
HD 96833
HD 97336
HD 97998
HD 98175
HD 98579
HD 100006
HD 101165
HD 101501
HD 102070
HD 102902
HD 103095
HD 104163
HD 107325
HD 107610
HD 107700
HD 107752
HD 108317
G13-38

HD 108506
HD 109358
HD 109379
G59-27

HD 1103173
HD 110646
G60-46

HD 113226
HD 114435

39565
39616
40858
41022
42249
42528
42928
43852
44001
44075
44103
44137
44915
45098
45421
47139
47508
47908
47913
48152

48347
48356
48516
48590
49339
49371
49988
50355
50364
50564
50851
51414
51475
51789
52064
52958
53070
53174
53437
53740
53851
53886
54539
54741
55013
55126
55374
56146
56795
56997
57283
57759
57939
58502
60170
60305
60351
60387
60719
60747
60813
61317
61359
61545
61910
62103

63608
64332

6.62
8.16
6.18
8.00
6.31
6.60
6.10
7.69
5.68
5.86
8.17
7.84
7.84
9.40
6.30
8.34
3.52
2.97
6.22
8.28
12.52
7.34
4.11
9.43
8.23
5.70
9.00
7.85
7.62
7.62
4.80
6.06
7.01
6.51
9.70
6.77
9.96
8.21
10.4
7.37
4.08
8.62
7.58
3.00
8.15
7.36
6.85
6.68
5.54
9.18
5.32
4.72
7.36
6.45
8.48
5.52
6.33
4.78
10.07
8.04
10.51
6.23
4.26
2.65
10.86
5.17
5.91
11.00
2.83
5.78

0.448
0.529
0.607
0.756
0.308
0.899
0.195
0.771
0.209
0.53
0.596
0.756
0.602
0.879
0.339
1.09
0.516
0.81
0.461
0.41
0.65
1.187
0.918
1.16
0.263
0.303
0.70
0.55
0.60
0.468
0.44
1.119
0.622
0.534
0.877
0.465
0.60
0.498
0.906
0.752
1.079
0.690
0.543
1.144
0.357
0.626
0.328
1.124
1.056
0.615
+0.710
0.97
0.701
+0.75
0.879
1.091
1.115
0.515
0.75

0.71
0.430
+0.59
+0.89
+0.425
0.432
0.850

+0.94
0.521

3.81
4.40
4.01
4.06
3.85
3.22
411
4.59
4.25
4.37
412
4.22
4.01
4.34
3.72
1.00
3.23
1.70
3.70
4.00
4.66
3.20
2.48
0.99
4.37
3.70
2.58
4.30
4.48
4.22
4.14
2.90
3.74
3.60
4.40
3.99
4.40
4.20
4.21
3.90
2.34
4.20
4.10
2.08
4.35
4.57
4.05
2.84
241
4.34
4.69
2.57
3.81
4.50
3.68
3.04
2.61
3.14
2.07
3.33
4.60
3.64
4.52
2.20
3.50
3.34
3.23
4.59
2.97
3.34

6606.9
6309.6
6025.6
54954
7244.4
5011.9
7943.3
5495.4
7943.3
5965.0 -0.82
6025.6
5495.4
6025.6
5248.1
6918.3
4763.0 -1.47
6309.6
5300.0
6606.9
6211.0 -2.34
5310.0 -2.12
4570.9
5011.9 -0.14
4470.0-2.27
7585.8
7244.4
4940.0 -2.02
5925.0 -0.37
5862.0 -0.03
6606.9
6385.0
4677.4
6025.6
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5248.1
6606.9 —0.03
5540.0 -0.97
5900.6 -1.55
5011.9
5495.4
4677.4 -0.22
5754.4
6309.6
4570.9 -0.13
6918.3
5754.4
7244.4
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4677.4 +0.02
6025.6
5538.0 0.03
4870.0 -0.11
5754.4
5000.0 -1.59
5011.9
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4570.9
6309.6 —0.06
4710.0 -2.74
5310.0 -2.27
5220.0 -0.96
6606.9
5879.0 -0.19
5125.0 0.27
6150.0 -2.20
6606.9
5248.1
5300.0 -1.19
5060.0 0.15
6309.6

0.07

0.17

0.09

0.00

2.0 4.09 6583.2 0.01.3
4.3 442 6272.80.47 4.0
3.1 4.29 5994.80.01 3.3
4.0 3.86  5455.20.02 3.8
1.7 3.59 7183.20.04 15
2.0 3.08 4992.40.11 2.0
1.6 4.05 7824.8 0.19.5
5.6 447 5426.00.19 5.2
2.2 4.04 7792.0 0.20.3
4.128 5896.8 -1.315
3.4 4.08 6005.60.04 3.2
4.4 416 5528.8 0.06 .3
3.2 3.96 5935.20.24 3.5
4.48 5362.40.08
15 3.63 6993.60.18 1.6
2.662 4932.8 -1.37
0.4 3.42 6390.80.17 0.4
-14 2611 60144 0.048 -1.4
1.7 3.92 65324 0.08.7
3.7 4.439 6614.8 -2.18 3.7
471 5338.8 -2.36
3.0 3.19 4540.40.01 3.0
-0.5 261 51096 -0.02 -05
2.318 4659.2 -2.08
3.4 4.38 7554.80.14 3.5
1.2 3.70 7355.2 0.16 .2
2.573 5086.0 -1.85
4.17 5948.0 -0.344
460 5839.0 -0.243
3.2 4.29 6616.00.10 3.0
3.2 426 6584.4 0.09
1.8 2.85 4679.62.01 1.8
2.2 3.65 5978.40.56 2.6
1.6 3.45 6244.8 0.08 .6
443 51824 0.09
2.5 4.09 6449.2 -0.001 25
5.2 4.37 5464.0 -1.02 5.2
4.223 6062.8 -1.80
4507 4812-8.342
3.7 3.85 5456.00.04 3.4
0.4 2.09 4654.8 -0.19 0.3
4.0 4.08 5628-80.40 4.0
3.2 4.24  6306:00.09 3.3
-0.2 2.03 45240 -0.01 -0.2
3.5 4.37 6698:00.76 3.6
5.2 4.45 5798:00.42 4.7
2.0 3.98 7127:60.10 2.2
1.8 2.69 464040.31 1.9
0.5 242 47024 -0.18 0.3
4.2 4.20 6005:20.29 3.7
54 4.58 5444.4-0.08 5.0
-0.4 2.28 4879.2 +0.10 -0.5
2.6 4.01 585160.25 3.1
472 5020.0 -1.52
3.67 5130.80.39
2.1 3.01 4767:20.16 2.1
1.4 247 4611:20.10 14
0.2 3.25 6498.4 -0.33 0.2
2.18 4760.4 -2.45
1.3 3.21 5186.0 -2.30 15
5.7 4.61 5134.0 -0.98 54
1.4 3.84 6636:80.02 13
4.6 445 59716 -0.19 4.6
-0.5 2.38 5150.0 0.12 -04
4.173 6072.0 -2.27
0.5 3.57 6626.4 0.15
1.7 3.35 519160.19 2.0
458 5289.2 -1.19
2.908 5063.2 0.025
0.9 2.865 6673.612 0. 0.7

Ll

1
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133 HD 115772 65047 9.63 0.84
134  HD 118253 66381 7.58 0.875
135 HD 121370 67927 2.68 0.59
136  HD 122167 68367 8.67 0.570
137  HD 121930 68375 7.58 1.199
138  G64-37 68592 11.149 0.359
139 HD 122563 68594 6.20 0.90
140 BD+092870 69746 9.45

141  HD 126053a 70319 6.30 0.60
142 HD 126354 70576 4.33 0.434
143  HD 127665 71053 3.58 1.29
144  HD 127739 71115 5901 0.391
145  HD 129401 72041 8.68 0.607
146  HD 130169 72455 7.13 0.521
147  BD+452224 72504 10.7 1.110
148  HD 132047 73065 7.66 1.060
149  G99-40 9.19 0.61
150 HD 132475 73385 8.57 0.59
151  HD 134440 74234 9.44 0.85
152 HD 136202 74975 5.10 0.54
153  HD 147397 80163 8.35 1.323
154  HD 148408 80630 9.62 0.71
155 HD 149996 81461 8.49 0.62
156 HD 153210 83000 3.20 1.16
157  BD+173248 85487 9.37 0.66
158 HD 161096 86742 2.77 1.16
159 HD 161797 86974 3.41 0.75
160 HD 165195 88527 7.34 1.29
161 HD 166161 88977 8.16 0.98
162  G141-19 90957  10.55 0.64
163  HD 185144 96100 4.70 0.79
164 HD 188512 98036 3.71 0.86
165 BD-185550 98339 9.35 0.92
166 CS22877-1

167 CS22169-35 12.9

2.56
3.47
3.83
4.41
3.10
4.20
1.61
1.62
4.50
3.01
2.22
4.02
4.26
3.93
3.96
3.38
4.08
3.76
4.70
4.07
3.81
4.55.0
4.1
2.62
2.94
1.70
3.70
1.45
1.84
4.00
4.40
3.60
1.87

1.00
1.50

4500.0
5000.0

4930.0 -0.70
5011.9
6068.0
6025.6
4570.9
6377.0 -3.0
4687.0 -2.46
4672.0 -2.39
5662.0 -0.45
6606.9
4260.0-0.17
6918.3
6025.6
6309.6
4570.9
4677.4
5970.0 -0.35
5550.0 -1.70
4790.0-1.43
6077.0 -0.15
4786.9
5200.0-0.8
5600.0 -0.65
4560.0 -0.13
4995.0 -2.03
4475.0 0.00
5520.0 0.04
4507.0 -2.18
5125.0 -1.22
5400.0 -2.30
5143.0-0.25
5100.0 -0.30
4785.0 -2.89
-2.80
-2.80

0.19

0.08

29

2.4

-0.9
1.2

2.7

+5.07

-0.6

2.3

3.7

4.3
1.0
2.2

3.8
2.7

3.5

3.8

-0.9
0.7

0.7

2.48 4933.6 -0.63 3
3.44 5116:80.56 2.9
3.73  5943.6-0.02 2.3 1
4.20 5906.40.36
3.03 462840.23 2.7

422 6477.0 -2.792

176 46680 -244 -10 3

247 4865.0 -2.14 11 3

431 5683.2 -0.435

292 65248 -041 -0.6

2.194 4384.0 -0.039 1
4.05 6980.8 0.06 2.1
4.20 6003:20.09 3.8
4.15 6258:80.22 3.2
3.91 4549.20.69
3.50 473160.19 3.3

426 5994.0 -0.348

3.83 55944 -1.71 4.1 3

464 48344 -1.43 1

3.921 6223.6 -0.191 1
3.60 4681.60.15

3.925 4933.2 -1.40 3

417 5566.8 -0.56 4.3 1

2.455 4592.0 0.12 1.0

3.247 5170.0 -2.09 2.3 3
2.225 4507.2 0.061
3.99 5563.2 0.12 4.0

2.044 47240 -191 -0.8 1

2.0 5148.4 -1.15 0.5 3

3.87 53964 -25 1

441 5588.0 -0.429 6

3.525 5017.2 -0.35 1

1.86 4783.6 -2.62 0.7 3

1.02 4512.0 -2.648

1.38 5017.0 -2.778

13

[

* indicates stars with known metallicity, the referencesmatallicity are given below.
1./Cayrel et al (2001); 2. Ryan & Lambert (1995)} 3. Snider é2@01); 4/ Gratton & Ortolani (1986); 5. Tomkin et al (1988)|Oinas (1974); 7.

Axer et al (1994); 8. Gray et al (2001),

9. [Edvardsson et al (1993); 10. Luck & Lambert (1981); 11. K&d ambert (1985); 12| Moultaka et al (2004); 18. Balachamdf1990);

14[Venn (1995); 15. Burkhart & Coupry (1989);

16.[Adelman & Philip (1994); 17. Patchett et al (1973);/18mkin & Lambert (1999); 19. Spite et al (1994).
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Table 2: Estimated atmospheric parameters for candidate metal-poor stars

Star logg  [FeH]  Ters (B-V)  Tert(ANN)— My
[ANN] [ANN] [ANN] T e([BV]
EC 00451-2737 4.4 -1.97 6278.4 — — 4.1
EC 01374-3243 45 -1.35 5890.0 — — 54
EC 03531-5111 3.3 -043 7164.8 —_ —_ 4.1
EC 04555-1409 3.3 -0.32 5862.0 — — -0.3
EC 05148-2731 4.7 -0.58 7934.0 — — 5.6*
EC 09523-1259 4.4 -1.37 65724 +0.47 159.4 5.4*
EC 10004-1405a 39 -119 5864.0 — — 35
EC 10004-1405b 39 -1.02 5702.0 — — 4.2
EC 10262-1217 46 -1.16 6636.0 +0.38 -187 4.5
EC 10292-0956 45 -0.46 6260.4 +0.58 291.4 4.4
EC 10488-1244 41 -0.33 6507.2 +0.50 222.2 2.7
EC 11091-3239 4.4 0.09 5957.2 +0.54 -164.8 3.7
EC 11175-3214 4.7 -1.40 7702.4 +0.43 1112.4 5.6*
EC 11260-2413 47 -0.96 7523.2 +0.39 748.2 5.4*
EC 11553-2731a 4.4 -0.44 6374.8 — — 3.7
EC 11553-2731b 42 -0.35 6501.6 — — 35
EC 12245-2211 4.1 -0.34 6140.4 +0.50 -144.6 2.6
EC 12418-3240 41 -0.34 6129.2 +0.66 440.2 3.1
EC 12473-1945a 40 -0.15 62464 — — 3.0
EC 12473-1945b 40 -0.10 61384 — — 2.8
EC 12477-1711 4.4 -0.31 6527.2 —_ —_ 35
EC 12477-1724a 42 -0.24 6517.6 — — 2.6
EC 12477-1724b 45 -0.26 6497.6 — —_ 3.1
EC 12493-2149 48 -0.37 61456 +0.65 423.6 5.2
EC 13042-2740 46 -1.85 6405.6 +0.52 202.6 5.5*%
EC 13390-2246 48 -0.36 6408.8 — — 3.9
EC 13478-2052a 4.1 -0.61 5420.4 — — 5.3
EC 13478-2052b 43 -0.57 5234.4 —_ —_ 5.2
EC 13499-2204 44 -0.65 6345.2 +0.51 102.2 5.6*
EC 13501-1758 4.2 -0.15 5847.6 +0.72 343.6 4.4
EC 13506-1845 45 -0.58 6664.4 +0.56 620.4 4.9*%
EC 13564-2249 42 -0.68 5903.2 +0.58 -65.8 4.7
EC 13567-2235 40 -0.24 63416 +0.53 179.6 2.9
EC 14017-1750 4.5 -1.07 6073.6 +0.63 283.6 54
EC 16477-0096 3.6 -2.14 4843.6 — — 5.6
EC 22874-0038 4.0 -241 5416.0 — — 34
BS 16473-0045 44 -0.93 5356.4 — — 5.3
BS 16926-0070 42 -1.96 5995.6 — — 53
BS 16469-0074 45 -0.44 6351.2 — — 34
BS 16474-0054 42 -2.09 5570.8 — — 4.9
BS 16085-0018 3.0 -1.61 5554.0 — — 2.2
BS 16085-0004 3.7 =211 4644.0 — — 5.6
BS 16085-0056 48 -0.32 5220.8 — — 5.3
BS 16543-0114 3.9 0.19 4735.2 —_ —_ 4.7
BS 16479-0031 43 -0.22 5254.8 — — 4.0
BS 16543-0054a 44 -0.39 5747.2 —_ —_ 4.7
BS 16543-0054b 45 -0.30 5736.8 — — 51
BS 16477-0078 46 -0.11 5623.6 — — 55
BS 16559-0066 45 -0.81 4656.4 — — 5.7
BS 16551-0015 48 -055 7972.0 — —_ 1.2
BS 16084-0019 45 -1.21 5998.8 — — 4.2
BS 16084-0042 45 -0.86 7359.2 — — 5.3*
BS 16087-0004 47 -0.63 66924 — — 5.4*
CS 22884-0005 40 -1.65 5558.8 +0.67 -98.2 4.1
G 195-28 4.6 -1.45 4698.8 +0.93 -290.2 5.3
G 53-24 4.3 -0.32 52816 +0.94 316.6 51
G 96-14 4.4 -2.17 4562.8 +1.0 -277.2 5.6
G 108-33 3.8 -1.71 6226.0 — — 0.3
G 115-1 4.1 -0.37 5510.0 +0.90 457 4.8
G 149-34 4.9 0.32 6885.6 +0.90 1832.6 0.7
HD 31964 1.5 -0.11 6108.8 +0.55 43.8 -0.2

HD 41704 43 -074 56692 +050  —615.8 5.0
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SAO 61681 4.4 0.28 5761.6 +0.652 45.6 4.8
HD 65934 3.0 -0.04 5056.4 +0.93 67.4 2.8
HD 89025 3.4 0.06 7255.2 +0.30 -14.8 -1.1
HD 90861a 2.4 -0.06 4732.8 +1.15 292.8 14
HD 90861b 2.0 -0.32 4572.0 +1.15 132 0.9
HD 90861c 2.4 -0.13 47120 +1.15 272 1.4
HD 92588 3.5 0.08 5140.4 +0.90 120.4 3.8

For a few objects more than one spectrum was available asatedi by symbols a, b, and c, théfdience in estimated values is indicative of
the internal error: The My, for hot metal-poor stars is uncertain because we did not ¢yawe calibrators covering that temperature and metallicit
range.
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Fig. 6. Spectra of metal-poor stars compared with stars of simelaperature, gravity, and near-solar composition. Thel divle
indicates the metal-poor stars and the dashed line indicatiar-metallicity stars. The atmospheric parametggs log g, and
[Fe/H] for each star are given in parenthesis.
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