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ABSTRACT

Context. Identification of metal-poor stars among field stars is extremely useful for studying the structure and evolution of the Galaxy
and of external galaxies.
Aims. We search for metal-poor stars using the artificial neural network (ANN) and extend its usage to determine absolute magnitudes.
Methods. We have constructed a library of 167 medium-resolution stellar spectra (R∼ 1200) covering the stellar temperature range
of 4200 to 8000 K, logg range of 0.5 to 5.0, and [Fe/H] range of−3.0 to+0.3 dex. This empirical spectral library was used to
train ANNs, yielding an accuracy of 0.3 dex in [Fe/H] , 200 K in temperature, and 0.3 dex in logg. We found that the independent
calibrations of near-solar metallicity stars and metal-poor stars decreases the errors inTeff and logg by nearly a factor of two.
Results. We calculatedTeff, logg, and [Fe/H] on a consistent scale for a large number of field stars and candidate metal–poor stars. We
extended the application of this method to the calibration of absolute magnitudes using nearby stars with well-estimated parallaxes.
A better calibration accuracy for MV could be obtained by training separate ANNs for cool, warm, and metal-poor stars. The current
accuracy of MV calibration is±0.3 mag.
Conclusions. A list of newly identified metal-poor stars is presented. TheMV calibration procedure developed here is reddening-
independent and hence may serve as a powerful tool in studying galactic structure.

Key words. stars: individual – stars: solar-type – stars: metal-poor—stars: fundamental parameters

1. Introduction

Metallicity estimates for large samples of stars among differ-
ent Galactic components can provide a wealth of informationon
the structure and formation of our Galaxy. Extremely metal-poor
stars are the relics of early the Galaxy, while moderately metal-
poor stars can provide indications of whether it is a thick orthin
disk when supplemented by additional information such as the
kinematics of these objects. A high spectral resolution follow-
up of these metal-poor stars (identified mostly through low-and
intermediate-resolution spectral surveys) has resulted in identi-
fications of exotic objects such as very metal-poor (VMP), ex-
tremely metal-poor (EMP), ultra metal-poor (UMP), and hy-
per metal-poor (HMP) (explained in Beers & Christlieb (2005)),
which show different degrees of metal deficiencies. Among
these metal-poor class, subclasses comprising carbon-enhanced
metal-poor stars (CEMPs) have also been identified, which show
a wide range in s- and r-process element enhancements. These
objects are important tools for understanding the enrichment of
the interstellar medium (ISM) caused by stars of different mass
range in our Galaxy.

Intrinsic luminosity is another important parameter that not
only helps in deriving the distances of the objects, but alsohelps
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in distinguishing objects at different evolutionary stages. The
photometric determination of MV , however, requires a good red-
dening estimate. The spectroscopic approaches based on line
strengths, line ratio, and profiles of Hi, Caii, etc. are reddening
independent. A list of luminosity-sensitive features for different
spectral types can be found in Gray & Corbally (2009), and a
condensed review in Giridhar (2010).

A large number of metal-poor stars have been iden-
tified with the help of earlier surveys such as the
HK Survey (Beers et al (1992)). However, multi-object
spectrometers like 6df on the UK Schmidt telescope
(Watson et al (1998)), AAOMEGA at the Anglo-Australian
Telescope (AAT) (Sharp et al (2006)), and the LAMOST project
(Zhao et al (2006)) can provide a large number of spectra per
night. The ongoing and future surveys and space missions
will collect a vast amount of spectra for stars belonging to
different components of our Galaxy and nearby galaxies. The
wide variety of objects covered in these surveys require good
pipelines for data handling and automated procedures that are
efficient as well as robust in deriving accurate stellar parameters
that are essential ingredients in studying the structure and
evolution of our Galaxy.

Several automated methods of spectral classification and
parametrization such as the minimum distance method (MDM),
the gaussian probabilistic model (GPM), the principal compo-
nent analysis (PCA), and the neural network have been devel-
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oped over the last two decades. These methods have been sum-
marized in Bailer-Jones (2002).

These automated methods differ in two major ways. Real
stellar spectra of well-known calibrated stars, referred to as the
empirical library, are employed by some groups (including us),
while others prefer using a synthetic spectral library. Both ap-
proaches have their merits and disadvantages. Synthetic spectra
depend on the quality with which the model atmosphere (often
assuming local thermodynamic equilibrium) represents actual
stars, and the line lists used are sometimes poor; in particular
the line data for molecular lines are not very accurate. Our at-
tempt at validating these line lists by comparing the synthetic
spectra with spectra of well-known stars has shown disagree-
ments that indicate that there are unidentified lines or thatthe
oscillator strengths of poor quality. The problem is more severe
for cool stars with molecular lines.

In empirical libraries, the stars are assigned a spectral
class based upon the appearance of spectral features and there-
fore are model independent. Earlier reference libraries did
not have the required uniform range in atmospheric parame-
ters. The empirical libraries assembled by Jacoby et al (1984),
Pickles (1985), and Silva & Cornell (1992) mostly contained
solar-metallicity objects; the last two libraries also have lower
resolution. The libraries assembled by Worthey et al (1994)and
Kirkpatrick et al (1991) had lower resolution, and the library
by Serote Roos et al (1996) had insufficient spectral coverage.
At the inception of our program (more than a decade ago)
the database of stellar libraries was not satisfactory (partic-
ularly for metallicity coverage), hence we chose to develop
our own reference library. The situation has changed con-
siderably now. In the past decade, several new empirical li-
braries providing good spectral coverage at good resolution
(R ∼ 2000 or better) have been developed. For the opti-
cal region, libraries such as STELIB (Le Borgne et al (2003)),
ELODIE (Prugniel & Soubiran (2004), Prugniel et al (2007)),
INDO-US (Valdes et al (2004)), and more recently MILES
(Sánchez-Blázquez et al (2006)) have been provided while
NGSL (Gregg et al.(2006)), IRTF-Spex (Rayner et al (2009)),
and XSL (?) provide extended coverage from the ultraviolet
to the infrared. With the help of softwares such as ULySS
(Koleva et al (2009)) large samples of stars can be classified
and parametrized (see e.g. Prugniel et al (2011)). These empir-
ical libraries are very important tools for building population-
synthesis models and also for the automated classification and
parametrization of stars. Notwithstanding its modest size, the
reference library developed by us is very useful for the present
problem because of its uniform coverage in metallicity, temper-
ature, and gravity.

From the medium-resolution spectra metal-poor stars have
been detected using different approaches; some are based upon
the usage of strong features such as the Ca II lines (e.g.
Allende Priento et al (2000) on INT spectra), while others em-
ploy PCA or even full spectra (e.g. Snider et al (2001)). A good
account of stellar parametrization approaches developed for han-
dling data from different surveys can be found in the volume
edited by Bailer-Jones (2008).

In this paper we used the artificial neural network (ANN) to
estimate stellar parametersTeff , log g, and [Fe/H] and MV for
a modest sample of candidate metal-poor stars using medium-
resolution spectra.
In section 2 we describe the stellar spectra database developed
by us and the subset used for calibrating the ANN. Section 3
describes the observations and spectral analysis. Section4 deals
with the network configuration and the adopted network-training

approach. We present in section 5 the atmospheric parameters
and calibration errors and the use of trained networks to esti-
mate the parameters for a sample of candidate metal-poor stars
and some unexplored field stars. The determination of absolute
magnitudes is presented in section 6, derived parameters for can-
didate metal-poor stars are given in section 7. We summarizeour
results in section 8.

2. Calibrated stars

We have initiated a program for the definite identification of
metal-poor candidates from different surveys such as the ob-
jective prism survey of Beers et al (1992), which is generally
referred to as the HK survey, the Edinburgh− Cape blue-
object survey by Stobie et al (1997), and the high tangentialve-
locity objects listed by Lee (1984). During 1999-2001 we ob-
tained spectra of a modest sample and also a good number
of stars of known parameters. The semi-empirical approach
adopted in Giridhar & Goswami (2002) resulted in identifying
and parametrizing the metal-poor star candidates at a very slow
pace, hence we chose to explore an ANN-based approach. Our
earlier attempt at using the spectra of calibrated stars from the
known empirical library (e.g. Jacoby et al (1984) for training the
network and then employing them for parametrizing our sample
proved to be difficult despite our attempts at matching the reso-
lution of two spectra. We faced convergence problems, and the
calibration errors were unacceptably large. The spectral libraries
available then also had no stars with good coverage in metallic-
ity.

On the other hand, using stellar spectra of calibrated stars
obtained with the same instrument configuration and compris-
ing stars evenly distributed in parameter space yielded a very
good calibration accuracy even for calibrated samples of modest
size. It should be noted that the spectral resolution and spectral
coverage of our spectra are well suited for our objective.

We therefore created a library of observed stellar spectra for
stars with well-determined parameters (adding more spectra in
2004-06), which was used for training ANNs. These were used
to estimate the astrophysical parameters, Teff, logg, [Fe/H] , and
MV for a modest sample of unexplored field stars using medium-
resolution stellar spectra.

Our database of stars with known spectral classification
and parallaxes is presented in Table 1, which contains the
star name, the Hipparcos number, the V magnitude, (B−V),
log g, Teff, [Fe/H] , and references for the stellar [Fe/H] .
Many objects were observed more than once. These objects
with known atmospheric parameters were selected primar-
ily from Gray et al (2001), Allende Priento & Lambert (1999),
Snider et al (2001), and Cayrel et al (2001). Gray et al (2001)
have calculated atmospheric parameters with the followingun-
certainties: 80 K in Te f f , 0.1 in logg, and 0.1 in [M/H]. The tem-
peratures tabulated by Allende Priento & Lambert (1999) have
an uncertainty of 200 K, while the uncertainty in logg varies
from ±0.1 at logg of 4.5 to as much as±0.5 at logg of 2.2.
The uncertainties in the Snider et al (2001) data are the follow-
ing: 150 K in Te f f , 0.3 in log g, and 0.2 in [Fe/H] . We also
made use of the [Fe/H] derived from the high-resolution spec-
troscopy of the individual stars available in literature and those
from the Elodie data base (Soubiran et al (1998), whose param-
eter uncertainties are 145 K in Te f f , 0.3 in log g, and 0.2 in
[Fe/H] . The 73 metallicity calibration stars with known logg,
Teff, and [Fe/H] contained in Table 1 (full table available in elec-
tronic form) are indicated with an asterisk mark. We observed
more than two hundred stars and rejected those with binarityor
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Fig. 2. Plot of [Fe/H]ANN − [Fe/H]Cat versus their catalog values, [Fe/H]Cat for all calibrated stars (top panel). The middle panel
shows the result for part 1 obtained using weights from the ANN trained for part 2. In the bottom panel the weights from part2 are
applied to part 1. The rms error for the full sample (top panel) is 0.15 dex, for part 1 (middle panel) it is 0.31 dex, and for part 2
(bottom panel) it is 0.22 dex.

other peculiarities such as Ap-Am spectra and those with emis-
sion lines. Some spectra were rejected due to poor signal to noise
(S/N) ratios.

3. Observation and data handling

The spectra were obtained using a medium-resolution
Cassegrain spectrograph mounted on the 2.3 m Vainu Bappu
Telescope at VBO, Kavalur, India. When used with a grating
of 600 grooves mm−1 and a camera of 1500 mm focal length,
the spectrograph gives an average dispersion of 2.6 Å per
pixel. During the extended period of several years, over 200
medium-resolution spectra were obtained. The spectral coverage
is 3800–6000 Å. The spectra were recorded on a 1K× 1K CCD
(with Thomson TH77883) with a pixel size of 24µ. The setup
gave a two-pixel resolution of 1200.

The reduction and analysis of the spectroscopic data were
performed using the standard spectroscopic packages in IRAF.
All CCD frames were bias-corrected, response-calibrated us-
ing dome-flat spectra, and cleaned for cosmic rays. Even before
converting them to wavelength scale, the extracted spectrawere
aligned accurately using a script to ensure that a given spectral
feature fell on the same pixel number in all spectra. This pro-
cedure has the disadvantage that radial velocity information is
not retrieved. No absolute flux calibration was performed. For
fainter stars 2−3 exposures were combined to attain an S/N ratio

of atleast 50. For the continuum-fitting we adopted a procedure
similar to that given in Snider et al (2001). The spectra exhibit-
ing emission lines were excluded from the sample. The spectra
were trimmed such that all spectra (700 pixels) covered exactly
the same spectral region. The alignment of the spectra is cru-
cial to obtain the desired accuracy. Fig. 1 shows representative
stars from our sample; the stars with near-solar metallicity ar-
ranged in decreasing temperature sequence from top to bottom.
We superposed the spectra of metal-poor stars with similar tem-
perature and show their atmospheric parametersTeff, log g, and
[Fe/H] within parenthesis.

4. Atmospheric parameters of the training set

Table 1 lists the atmospheric parameters [Fe/H] , Te f f , and log
g compiled from the literature and adopted for each star in our
study. We took particular care to select stars that span a wide
range in [Fe/H] , Te f f , and logg; these values were used to train
the ANNs; the reference for [Fe/H] is given in the last column
of Table 1. These [Fe/H] are estimated using high-resolution
spectra and model atmospheres, hence their accuracy probably
is about±0.2 dex. The stars used for metallicity correction (with
known [Fe/H] , Te f f , and logg) are indicated by an asterisk fol-
lowing the star name. We used the back-propagation ANN code
developed by B.D.Ripley (see Ripley (1993), Ripley (1994).The
ANN configuration is same as that employed in our earlier work
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(Giridhar et al (2006)). Separate ANNs were trained for eachpa-
rameter.

5. ANN atmospheric parameter results

5.1. Metallicity, [Fe/H]

The top panel in Fig. 2 shows a plot of the [Fe/H] residuals ob-
tained using the ANN for the 73 stars against their [Fe/H] taken
from the literature and given in Table 1. The [Fe/H] metallicities
range from−3.0 dex to 0.3 dex, and the reduced mean scatter
about the line of unity is 0.15 dex. The [Fe/H] estimates quoted
in the literature often have uncertainties in the range 0.2−0.4
dex. To test the goodness of the ANN, we divided the sample
into two parts and trained the network separately on each part.
Then the weights of ANN trained for part 1 were used to estimate
[Fe/H] for the stars in part 2. The middle and bottom panels of
Fig. 2 show an rms error of 0.31 and 0.22, which is indicative of
the accuracy with which the ANN can predict the metallicity of
a given star within the trained metallicity range.

Using the weights from the ANN trained for the sample of
calibrated stars, the metallicity of the candidate metal-poor stars
could be estimated. These estimates were subjected to indepen-
dent tests to avoid higher temperature – low-metallicity degen-
eracy, but they were still useful in segregating the stars ofnear-
solar metallicity ([Fe/H] in −0.5 to+0.3 dex range) from sig-
nificantly metal-poor objects with [Fe/H] < −0.5 dex.

5.2. Temperature and surface gravity

The literature contains a larger number of stars with
good estimates ofTeff and log g values compared with
those with [Fe/H] values. For stars with near-solar
metallicity we used temperatures and gravities given in
Allende Priento & Lambert (1999) and Gray et al (2001) for
temperature and calibration. For metal-poor starsTeff and logg
were mostly taken from Snider et al (2001). In Fig. 3 we plotted
these parameters for the common stars to estimate systematic
differences between the two works. We found that the Te f f
values obtained by Gray et al (2001) are systematically higher
by about 1.5% and for logg the systematic difference is 3% to
4%. Hence we believe that our compiled calibrating set is not
affected by large systematic errors.

On the other hand, it should be noted that the metal-poor
stars do not have strong features in their spectra because oftheir
lack of metals, while hotter stars lack strong metallic features
in their spectra because of ionization. To ensure that the ANN
does not become confused by this, we divided the stars into solar
metallicity ([Fe/H] > −0.5 dex) and metal-poor ([Fe/H] < −0.5
dex) groups.

We estimated the [Fe/H] for the sample stars in Table 1 with
knownTeff and logg using the ANN trained for [Fe/H] as ex-
plained in section 5.1. We have spectra of 110 calibrated stars
with near-solar metallicity and spectra of 33 metal-poor stars.
We trained the temperature ANN separately for each metallicity
group.

The solar-metallicity stars were separated into two random
groups of 55, and a sanity check similar to that demonstratedin
Fig. 2 was performed. The rms about the line of unity was found
to be 150 K for both groups. As the temperatures found in the
literature have errors that can be as high as 200 K, this is not
surprising.

We trained two ANNs for logg, one ANN with stars with
[Fe/H] < −0.5 dex, and the other with [Fe/H] > −0.5 dex. A

procedure similar to that given forTeff was adopted. The accu-
racy of the logg estimate is in the range 0.3 to 0.5.

6. ANN absolute magnitude results

A large portion of the stars observed by us have parallax esti-
mates. Combining theV-magnitudes with the Hipparcos paral-
laxes and absoluteV-magnitudes, theMV could be calculated.
Stars with a parallax error greater than 20% were excluded.
Since most of the sample stars are nearby bright stars, the ef-
fect of interstellar reddening in most cases will be weak or
even negligible. We therefore excluded this correction from our
MV calculations. Our spectral region contains many luminosity-
sensitive features such as wings of hydrogen lines, lines ofFe
ii, Ti ii, Mg i lines at 5172−83 Å, and for later spectral types
G-band blends of MgH, TiO, VO, etc. However, the same fea-
tures cannot serve the whole range of spectral types; hence,we
divided the sample stars into two groups based upon their tem-
peratures. Group I had stars in the temperature range 4300−6300
K labeled Vc and group II those in the 6600−8000 K range la-
beled Vh. Yet another group, group III, which contains metal-
poor stars Vm, was handled separately. The stars in this group
have temperatures in a range similar to that of group I.

Fig. 4 illustrates the errors associated with these three
groups. The ANN trained for group I (with 76 stars labeled Vc
in figure) could predictMV with an accuracy of 0.22 mag, while
the ANN for group II (with 39 stars) attained an accuracy of
0.18. The group III of metal-poor stars had a very few stars (14)
and could predictMV with an accuracy of only 0.29. An error
of 0.3 mag in luminosity would result in an error of 150 parsec
in distance at a distance of 1 kpc. One likely reason forMV er-
ror could be that luminosity sensitive features like lines of the
Fe ii, Ti ii, and Mg i lines at 5172−83 Å are also metallicity
dependent. Furthermore, the number of metal-poor stars with
good parallaxes is woefully small. The large systematic error
for low-luminosity objects with MV of 5 deserves to be anal-
ysed with additional data. Another possible solution is theusage
of line ratios appropriate for metal-poor stars, as suggested by
Corbally (1987) and Gray (1989).

7. Stellar parameters for the candidate metal-poor
stars

The metallicity distribution of the calibrated sample is presented
in the top panel of Fig. 5. The figure shows the distribution of
the stars with [Fe/H] taken from the literature with a thick con-
tinuous line. An additional 110 stars with well-determinedTeff
and log g were lacking good [Fe/H] estimates. We determined
[Fe/H] for these objects using the ANN, and their metallicity dis-
tribution is presented with a dotted line. The distributionshows
that we had a good coverage of training stars in different metal-
licity bins.

We observed candidate metal-poor stars from the objec-
tive prism surveys of Beers et al (1992) (BPS), the Edinburgh
− Cape blue-object survey (EC) by Stobie et al (1997), and the
high tangential velocity objects listed by Lee (1984). We also
included some unexplored high proper motion field stars. Using
three separate ANNs, we estimated atmospheric parameters for
the candidate metal-poor stars. At first, the metallicity was esti-
mated using an ANN trained for metallicity. This helped us in
separating the metal-poor stars from those of near-solar metal-
licity or moderately metal-poor objects. A separate ANN trained
for these two groups was employed to estimate theTeff and logg
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Fig. 4. Plot of MV ANN − MV Par versus Mv (parallax). The subset of cool stars (Vc) is plotted in the top; the middle panel contains
the results for hot stars (Vh), and the bottom panel the results for metal-poor stars (Vm).

for these stars. The estimated atmospheric parameters are pre-
sented in Table 2. A few stars had more than one spectrum and
the small differences between the parameters estimated from
each spectrum are indicative of internal errors. The (B−V) col-
ors were available in SIMBAD for many of them, which were
used to verify the temperatures estimated by the ANN. We used
the calibration tables of Schmidt-Kaler et al (1982) to estimate
the photometric temperatures. We tabulated the difference be-
tweenTeff(ANN) andTeff(photometric) in Table 2. We obtained
surprisingly high residuals for EC 11175-3214, EC 11260-2413,
EC 13506-1845, and G 149-34. While the observed spectrum
strongly supports theTeff estimated from the ANN, a misidentifi-
cation cannot be ruled out. Excluding these exceptions, residuals
indicate an rms error of 265 K. Many metal-poor candidate stars
were near the faint limit, hence the S/N ratio was in the range of
40-50, while most of the calibrated star spectra had an S/N ratio
higher than 100.

Within our modest sample of stars, a good fraction (about
20%) are significantly metal-poor with [Fe/H] in −1.0 to−2.5
range. We find that 33% of the BPS stars and 21% of the EC stars
belong to the [Fe/H] range of−1.0 to−2.5. A few high proper
motion Giclas objects studied also contain metal-poor stars, but
the number studied is currently very small, therefore we do not
offer statistics.

The bottom panel of Fig. 5 shows the metallicity distribution
of candidate metal-poor stars, which shows that our candidate
sample has a large portion of moderately metal-poor stars, but
the fraction of significantly metal-poor star is also encouraging.

We have plotted in Fig. 6, a newly identified metal-poor star,
BS 16474-0054 along with a near-solar-metalicity star of similar
temperature to substantiate our findings.

With these encouraging results (notwithstanding the small
sample) we propose to extend this work to a much larger sample
of candidate metal-poor stars from surveys such as the HK II
decribed in Beers & Christlieb (2005).

With the help of the estimatedTeff and MV , we are able to
place the program stars in the H-R diagram, as shown in Fig.
7. The luminosity-calibration stars with MV taken from the lit-
erature are shown by open circles; their MV estimated from the
ANN is shown by a filled circle. The difference between the two
is indicative of internal errors. In both cases theTeff is the catalog
value. It should be noted that our calibrated stars do not repre-
sent the local neighborhood alone since the objects were taken
from different sources to encompass the required range of stel-
lar parameters (metallicity in particular). Hence theTeff and MV
diagram has a large scatter even for the calibrated stars.

A good fraction of candidate metal-poor stars are dwarfs or
subgiants (which possibly are slowly evolving low-mass stars)
although the calibrated stars in Table 1 also contain several gi-
ants among the significantly metal-poor stars.

7.1. Limitation of our approach and future strategy

We are aware of the problems caused by degeneracies in certain
parameter domains. We avoided these sources of inaccuracies
by incorporating a branching procedure that resulted in theseg-
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Fig. 5. Metallicity distribution for the calibrated sample and candidate metal-poor stars.

regation of data into meaningful subgroups. This additional step
considerably improved the accuracies of the derived parameters
compared with our earlier work (Giridhar et al (2006)).

It should be noted that our ANN-based approach does not al-
low for extrapolation. For example, the [Fe/H] network is trained
for a [Fe/H] range of−3.0 to+0.3 and therefore may not give
reliable results for super-metal-rich stars or Ap-Am stars. This
approach is also not applicable for double-line spectroscopic bi-
naries.

As mentioned earlier, the ANN procedure adopted here is
not suitable for handling peculiar stars; however, it does provide
a good estimate ofTeff, logg, and metallicty for candidate metal-
poor stars from the surveys mentioned previously. TheTeff esti-
mated here agree with those estimated from (B−V) within ±265
K for candidate stars with the exception of a few stars.

Although this maiden effort of estimating MV from spectral
features is quite accurate for solar metallicity objects, the errors
are large particularly in the low-luminosity regime for themetal-
poor stars. In addition to full spectra, we propose to input some
important line ratios and explore near-IR features in our future
work.

8. Summary and conclusions

We have developed an empirical library of stellar spectra for
stars covering a temperature range of 4200< Teff< 8000 K, a
gravity range 0.5< log g < 5.0, and a metallicity range of−3.0
< [Fe/H] < +0.3. With the good spectral coverage of 3800–6000
Å, several spectral features showing strong sensitivity tothe stel-

lar parameters were available, which were used by the ANN in
the learning process.

The procedure of pre-classifying the data and training sepa-
rate ANN for each subgroup resulted in a significant increasein
accuracies. Now temperatures could be estimated within±150
K. Similarly, using of three separate ANNs for hot, cool, and
metal-poor stars yielded a very good accuracy in MV calibration.

We used these trained networks primarily to detect metal-
poor objects from a modest sample of unexplored objects.
However, the empirical library developed may be useful for
other applications and can be accessed by interested users on
request. We believe that it will be useful in studying stellar pop-
ulation in large samples of galactic stars.

We extended the application of ANN to MV with an accu-
racy of±0.3 dex. The primary application of MV is in distance
determination, and the spectroscopic approach based upon the
strength and profiles of the lines is independent of reddening. In
addition, the MV calibration can be used for the quick identifi-
cation of objects of various luminosity types in large databases
containing heterogeneous objects.

Future prospects
With the ANN procedure giving the desired accuracy estab-

lished here, we would like to explore a much larger sample of
candidate metal-poor stars. We also need to extend the empir-
ical library toward hotter temperatures and also overcome the
poor coverage of low-gravity objects. We also contemplate in-
cluding near-IR Oi feature, Caii lines, and line ratios suggested
by Corbally (1987) and Gray (1989) for the luminosity calibra-
tion of metal-poor stars. In this preliminary work, we used (for
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Fig. 7. Mv as a function of Te f f for the luminosity-calibration stars and candidate metal-poor stars.

calibration) MV for nearby stars estimated from the parallaxes
omitting reddening corrections. Better and enlarged samples of
MV from upcoming surveys or data releases of the ongoing sur-
vey could be used to attain consistent MV accuracy in the full
temperature range, which will help in understanding the evolu-
tionary status of the candidate stars.

We have an ambitious project of observing an extended sam-
ple of F-G stars covering a broad range in galactocentric distance
to study the metallicity gradient, which is known to exhibittwo
slopes and also some wriggles near the spiral arm locations.We
hope to attain the required accuracy in metallicity by carefully
binning the data in a more narrow range in temperatures and
gravities, and also including important line ratios.

Acknowledgments
Sunetra Giridhar wishes to thank T. Van Hippel for his help
with the ANN code. This work was partially funded by the
National Science Foundations Office of International Science
and Education, Grant Number 0554111: International Research
Experience for Students, and managed by the National Solar
Observatorys Global Oscillation Network Group. This work
made use of the SIMBAD astronomical database, operated at
CDS, Strasbourg, France, and the NASA ADS, USA. We thank
the anonymous referees for their constructive comments, which
helped us to improve the manuscript.

References

Adelman, S. J., Philip, A. G. D., 1994, MNRAS, 269, 579
Allende Prieto, C., Lambert, D. L., 1999, A&A, 352, 555

Allende Prieto, C., Rebolo, R., Garcı́a López, R. J., Serra-Ricart, M., Beers,
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Fig. 1. Spectra of a selected sample of stars with near-solar metallicity displayed in decreasing temperature sequence from top to
bottom. The spectra of a few metal-poor stars are superposedon solar-metallicity stars of similar temperatures. The atmospheric
parametersTeff, log g, and [Fe/H] for each star are given in parenthesis.
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Fig. 3. Comparison ofTe f f and logg values for stars common between Allende Prieto and Lambert (1999) and Gray, Graham and
Hoyt (2001)
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Table 1: List of observed stars and their parameters

Sl No Star HIP Vmag (B-V) Literature ANN Ref

log g Teff [Fe/H] M v log g Teff [Fe/H] M v

1 HD 344 655 5.67 1.119 2.41 4570.9 0.7 2.28 4635.6−0.04 0.8
2 HD 496∗ 765 3.88 1.013 2.47 4786.3 +0.13 0.7 2.58 4786.4 +0.02 0.7 4
3 HD 587∗ 840 5.85 0.973 3.05 4786.3 −0.24 2.1 2.96 4812.4 −0.24 2.1 1
4 HD 1529 1565 7.95 0.818 3.70 5248.1 3.99 5294.8−0.17
5 HD 10142 7643 5.94 1.045 2.68 4786.3 0.9 2.40 4767.6−0.34 0.9
6 HD 14679 10973 9.28 0.652 4.50 5754.4 4.56 5754.8−0.68
7 HD 18709 13902 7.39 0.590 4.40 6025.6 4.4 4.30 6050.0−0.50 4.4
8 HD 19445 14594 8.05 0.46 4.38 6020.0−1.95 5.1 4.34 5964.0 −2.06 4.6 1
9 HD 19659 14613 7.11 0.684 3.58 5754.4 2.3 3.58 5664.4−0.37 2.3
10 HD 20902∗ 15863 1.82 0.48 0.90 6300.0 0.15 −4.5 1.56 6316.4 +0.23 −4.2 11
11 HD 21718 16270 8.96 1.163 3.60 4786.9 3.76 4695.6−0.34
12 HD 21925 16479 8.30 0.418 4.42 6606.9 4.31 6651.2−0.12
13 HD 22484∗ 16852 4.28 0.57 4.15 5981.0 −0.11 3.6 4.14 6121.2 −0.05 3.2 1
14 HD 23190 17575 6.83 0.210 4.20 7943.3 2.1 4.35 7848.0 0.21 2.4
15 HD 23650 17887 9.01 0.582 4.55 6025.6 5.0 4.54 6008.8−0.23 4.6
16 HD 26519 19501 7.86 0.440 4.42 6606.9 3.9 4.49 6555.6−0.48 3.8
17 HD 26749 19767 6.74 0.677 4.11 5754.4 4.0 4.43 5543.2−0.60 4.3
18 HD 27045 19990 4.93 0.259 4.30 7585.8 2.6 4.25 7654.8 0.17 2.6
19 HD 27174 20334 8.25 1.071 3.43 4677.4 3.7 3.36 4634.0−0.05 3.8
20 HD 29140∗ 21402 4.25 0.184 3.81 7943.3 0.27 0.9 3.94 7835.2−0.006 1.2 17
21 HD 30177 21850 8.41 0.773 4.30 5495.4 4.7 4.89 5483.0−0.27 5.2
22 HD 284908 22684 9.28 1.128 3.73 4677.4 4.10 5369.0−0.38
23 HD 31109 22701 4.36 0.257 3.40 7244.4 0.1 3.40 7362.0 0.18 0.1
24 HD 32890 23668 5.71 1.166 2.70 4570.9 3.089 4717.2−0.109
25 HD 33111 23875 2.78 0.161 3.70 7943.3 0.6 3.85 7850.4 0.21 0.3
26 HD 33419 24041 6.11 1.098 2.50 4570.9 1.2 2.29 4655.2 0.07 1.2
27 HD 34303 24665 6.85 1.061 2.85 4677.4 2.2 2.87 4679.2−0.03 2.2
28 HD 34500 24730 7.41 0.204 4.36 7943.3 2.8 4.16 7889.2 0.22 2.7
29 HD 36079∗ 25606 2.81 0.807 2.54 5248.1 0.05 2.34 5275.6−0.13 1
30 HD 36153 25651 7.32 0.305 4.28 7244.4 2.8 4.07 7360.4 0.12 2.7
31 HD 36673∗ 25985 2.59 0.21 1.10 7400.0 0.04 −5.4 1.25 7357.6 0.01 −5.7 14
32 HD 37192 26219 5.76 1.120 2.40 4570.9 0.8 2.30 4558.4−0.05 0.7
33 HD 37430 26412 6.15 0.322 4.30 7244.4 2.9 4.28 7283.6 0.08 2.7
34 HD 37984∗ 26885 4.90 1.144 2.21 4570.9 −0.55 0.07 2.21 4747.6 −0.45 0.3 1
35 HD 37613 26996 7.84 0.455 4.20 6606.9 3.0 4.36 6565.6−0.02 2.9
36 SAO 58437 27361 9.19 0.372 4.40 6918.3 4.3 4.57 6939.6−0.37 4.0
37 HD 39425∗ 27628 3.12 1.146 2.31 4570.9 +0.13 1.0 2.29 4572.8 +0.081 1.0 1
38 HD 41393 28654 6.88 0.201 4.29 7943.3 2.3 4.13 7874.8 0.26 2.3
39 BD+191185∗ 28671 9.31 0.588 4.29 5440.0 −1.21 4.74 5571.2 −1.05
40 HD 41116∗ 28734 4.16 0.835 2.97 5248.1 −0.01 0.8 3.109 5323.2 −0.045 1.0 1
41 HD 41547 28854 5.88 0.374 3.90 6918.3−0.10 4.054 7069.6 0.095 12
42 HD 41712∗ 29002 6.94 0.455 3.90 6606.9 −0.03 2.3 4.10 6535.2 +0.06 2.4 12
43 HD 44007∗ 29992 8.06 0.84 2.00 4830.0 −1.71 2.03 4845.6 −1.77 1
44 HD 43750 30165 7.44 0.201 4.34 7943.3 2.8 4.28 7768.0 0.03 2.7
45 HD 43771 30275 7.43 0.209 4.33 7943.3 2.6 4.24 7822.0 0.15 2.2
46 HD 46355 30932 5.20 1.087 2.26 4677.4 0.3 2.25 4679.2−1.21 0.3
47 HD 48329∗ 32246 3.02 1.40 0.80 4582.0 −0.05 −4.2 1.32 4511.6 +0.21 −4.1 1
48 CD-333337 33221 9.03 0.48 4.11 5930.0−1.40 4.146 5973.6 −1.74 3
49 HD 52622 33577 6.46 0.389 3.68 6918.3 1.5 2.963 6901.2 0.181 1.3
50 HD 56935 35154 7.69 0.653 3.75 4786.9 4.0 3.77 4781.2−0.07 4.0
51 HD 56221 35341 5.87 0.181 3.94 7943.3 1.3 3.90 7855.6 0.17 1.2
52 HD 58431∗ 36059 7.84 0.331 4.31 7244.4 −0.07 3.0 4.32 7393.2 −0.16 2.9 12
53 HD 58946∗ 36366 4.16 0.31 4.47 7145.0 −0.17 2.8 4.11 7082.4 −0.35 2.9 12
54 HD 61295∗ 37339 6.16 0.374 3.70 6918.3 0.02 1.5 3.47 6939.2 0.14 1.4 1
55 HD 62781 37710 5.80 0.320 4.16 7244.4 2.6 4.17 7306.4 0.09 2.4
56 HD 62345∗ 37740 3.57 0.93 2.90 5000.0 −0.16 0.4 2.54 4892.0 +0.01 0.3 1
57 HD 62196 37802 7.67 0.313 4.37 7244.4 3.6 4.518 6952.8−0.78 3.6
58 HD 62509∗ 37826 1.15 1.00 2.75 4865.0 −0.04 1.0 2.78 4813.2 +0.04 1.0 1
59 HD 63660 38146 5.32 0.751 3.02 5495.4 0.3 2.93 5479.2 0.10 0.2
60 HD 63700∗ 38170 3.34 1.25 1.15 4990.0 0.24 0.825 4684.8+0.317 1
61 HD 63791∗ 38621 7.92 1.80 4750.0 −1.65 1.79 4761.6 −1.70 1
62 HD 65228 38835 4.20 0.73 1.70 5900.0 0.52 1.663 5728.0 0.138 1
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63 HD 67078 39565 6.62 0.448 3.81 6606.9 2.0 4.09 6583.2 0.01 2.3
64 HD 65871 39616 8.16 0.529 4.40 6309.6 4.3 4.42 6272.8−0.47 4.0
65 HD 70110∗ 40858 6.18 0.607 4.01 6025.6 0.07 3.1 4.29 5994.8−0.01 3.3 1
66 HD 69960 41022 8.00 0.756 4.06 5495.4 4.0 3.86 5455.2−0.02 3.8
67 HD 71973 42249 6.31 0.308 3.85 7244.4 1.7 3.59 7183.2−0.04 1.5
68 HD 73764 42528 6.60 0.899 3.22 5011.9 2.0 3.08 4992.4−0.11 2.0
69 HD 74706 42928 6.10 0.195 4.11 7943.3 1.6 4.05 7824.8 0.19 1.5
70 HD 76218 43852 7.69 0.771 4.59 5495.4 5.6 4.47 5426.0−0.19 5.2
71 HD 76582 44001 5.68 0.209 4.25 7943.3 2.2 4.04 7792.0 0.20 2.3
72 HD 76932∗ 44075 5.86 0.53 4.37 5965.0 −0.82 4.128 5896.8 −1.315 9
73 HD 76617 44103 8.17 0.596 4.12 6025.6 3.4 4.08 6005.6−0.04 3.2
74 HD 76909 44137 7.84 0.756 4.22 5495.4 4.4 4.16 5528.8 0.06 4.3
75 HD 78752 44915 7.84 0.602 4.01 6025.6 3.2 3.96 5935.2−0.24 3.5
76 HD 233608 45098 9.40 0.879 4.34 5248.1 4.48 5362.4−0.08
77 HD 76990 45421 6.30 0.339 3.72 6918.3 1.5 3.63 6993.6−0.18 1.6
78 HD 83212∗ 47139 8.34 1.09 1.00 4763.0 −1.47 2.662 4932.8 −1.37 2
79 HD 83808 47508 3.52 0.516 3.23 6309.6 0.4 3.42 6390.8−0.17 0.4
80 HD 84441∗ 47908 2.97 0.81 1.70 5300.0 0.17 −1.4 2.611 6014.4 0.048 −1.4 1
81 HD 84850 47913 6.22 0.461 3.70 6606.9 1.7 3.92 6532.4 0.08 1.7
82 HD 84937∗ 48152 8.28 0.41 4.00 6211.0 −2.34 3.7 4.439 6614.8 −2.18 3.7 1
83 G43-5∗ 12.52 0.65 4.66 5310.0 −2.12 4.71 5338.8 −2.36 3
84 HD 85379 48347 7.34 1.187 3.20 4570.9 3.0 3.19 4540.4−0.01 3.0
85 HD 85444∗ 48356 4.11 0.918 2.48 5011.9 −0.14 −0.5 2.61 5109.6 −0.02 −0.5 1
86 HD 085773 48516 9.43 1.16 0.99 4470.0−2.27 2.318 4659.2 −2.08 3
87 HD 85844 48590 8.23 0.263 4.37 7585.8 3.4 4.38 7554.8−0.14 3.5
88 HD 87427 49339 5.70 0.303 3.70 7244.4 1.2 3.70 7355.2 0.16 1.2
89 HD 87140∗ 49371 9.00 0.70 2.58 4940.0 −2.02 2.573 5086.0 −1.85 5
90 G43-33∗ 49988 7.85 0.55 4.30 5925.0 −0.37 4.17 5948.0 −0.344
91 G54-21∗ 50355 7.62 0.60 4.48 5862.0 −0.03 4.60 5839.0 −0.243
92 HD 89086 50364 7.62 0.468 4.22 6606.9 3.2 4.29 6616.0−0.10 3.0
93 HD 89449∗ 50564 4.80 0.44 4.14 6385.0 0.09 3.2 4.26 6584.4 0.09 3.1 1
94 HD 89962 50851 6.06 1.119 2.90 4677.4 1.8 2.85 4679.6−2.01 1.8
95 HD 90860 51414 7.01 0.622 3.74 6025.6 2.2 3.65 5978.4−0.56 2.6
96 HD 91135 51475 6.51 0.534 3.60 6309.6 1.6 3.45 6244.8 0.08 1.6
97 HD 91669 51789 9.70 0.877 4.40 5248.1 4.43 5182.4 0.09
98 HD 91948∗ 52064 6.77 0.465 3.99 6606.9 −0.03 2.5 4.09 6449.2 −0.001 2.5 12
99 G58-23∗ 52958 9.96 0.60 4.40 5540.0 −0.97 5.2 4.37 5464.0 −1.02 5.2 3
100 HD 94028∗ 53070 8.21 0.498 4.20 5900.6 −1.55 4.223 6062.8 −1.80 1
101 BD-163141 53174 10.4 0.906 4.21 5011.9 4.507 4812.8−0.342
102 HD 94771 53437 7.37 0.752 3.90 5495.4 3.7 3.85 5456.0−0.04 3.4
103 HD 95272∗ 53740 4.08 1.079 2.34 4677.4 −0.22 0.4 2.09 4654.8 −0.19 0.3 1
104 HD 95364 53851 8.62 0.690 4.20 5754.4 4.0 4.08 5628.8−0.40 4.0
105 HD 95532 53886 7.58 0.543 4.10 6309.6 3.2 4.24 6306.0−0.09 3.3
106 HD 96833∗ 54539 3.00 1.144 2.08 4570.9 −0.13 −0.2 2.03 4524.0 −0.01 −0.2 1
107 HD 97336 54741 8.15 0.357 4.35 6918.3 3.5 4.37 6698.0−0.76 3.6
108 HD 97998 55013 7.36 0.626 4.57 5754.4 5.2 4.45 5798.0−0.42 4.7
109 HD 98175 55126 6.85 0.328 4.05 7244.4 2.0 3.98 7127.6−0.10 2.2
110 HD 98579 55374 6.68 1.124 2.84 4570.9 1.8 2.69 4640.4−0.31 1.9
111 HD 100006∗ 56146 5.54 1.056 2.41 4677.4 +0.02 0.5 2.42 4702.4 −0.18 0.3 1
112 HD 101165 56795 9.18 0.615 4.34 6025.6 4.2 4.20 6005.2−0.29 3.7
113 HD 101501∗ 56997 5.32 +0.710 4.69 5538.0 0.03 5.4 4.58 5444.4−0.08 5.0 1
114 HD 102070∗ 57283 4.72 0.97 2.57 4870.0 −0.11 −0.4 2.28 4879.2 +0.10 −0.5 1
115 HD 102902 57759 7.36 0.701 3.81 5754.4 2.6 4.01 5851.6−0.25 3.1
116 HD 103095∗ 57939 6.45 +0.75 4.50 5000.0 −1.59 4.72 5020.0 −1.52 1
117 HD 104163 58502 8.48 0.879 3.68 5011.9 3.67 5130.8−0.39
118 HD 107325 60170 5.52 1.091 3.04 4677.4 2.1 3.01 4767.2−0.16 2.1
119 HD 107610 60305 6.33 1.115 2.61 4570.9 1.4 2.47 4611.2−0.10 1.4
120 HD 107700∗ 60351 4.78 0.515 3.14 6309.6 −0.06 0.2 3.25 6498.4 −0.33 0.2 12
121 HD 107752∗ 60387 10.07 0.75 2.07 4710.0 −2.74 2.18 4760.4 −2.45 3
122 HD 108317∗ 60719 8.04 3.33 5310.0 −2.27 1.3 3.21 5186.0 −2.30 1.5 3
123 G13-38∗ 60747 10.51 0.71 4.60 5220.0 −0.96 5.7 4.61 5134.0 −0.98 5.4 3
124 HD 108506 60813 6.23 0.430 3.64 6606.9 1.4 3.84 6636.8−0.02 1.3
125 HD 109358∗ 61317 4.26 +0.59 4.52 5879.0 −0.19 4.6 4.45 5971.6 −0.19 4.6 1
126 HD 109379∗ 61359 2.65 +0.89 2.20 5125.0 0.27 −0.5 2.38 5150.0 0.12 −0.4 1
127 G59-27∗ 61545 10.86 +0.425 3.50 6150.0 −2.20 4.173 6072.0 −2.27 19
128 HD 110317J∗ 61910 5.17 0.432 3.34 6606.9 0.00 0.5 3.57 6626.4 0.15 0.4 1
129 HD 110646 62103 5.91 0.850 3.23 5248.1 1.7 3.35 5191.6−0.19 2.0
130 G60-46∗ 11.00 4.59 5300.0 −1.19 4.58 5289.2 −1.19 3
131 HD 113226∗ 63608 2.83 +0.94 2.97 5060.0 0.15 2.908 5063.2 0.025 1
132 HD 114435 64332 5.78 0.521 3.34 6309.6 0.9 2.865 6673.6 0.12 0.7
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133 HD 115772∗ 65047 9.63 0.84 2.56 4930.0 −0.70 2.48 4933.6 −0.63 3
134 HD 118253 66381 7.58 0.875 3.47 5011.9 2.9 3.44 5116.8−0.56 2.9
135 HD 121370∗ 67927 2.68 0.59 3.83 6068.0 0.19 2.4 3.73 5943.6−0.02 2.3 1
136 HD 122167 68367 8.67 0.570 4.41 6025.6 4.20 5906.4−0.36
137 HD 121930 68375 7.58 1.199 3.10 4570.9 2.7 3.03 4628.4−0.23 2.7
138 G64-37∗ 68592 11.149 0.359 4.20 6377.0 −3.0 4.22 6477.0 −2.792
139 HD 122563∗ 68594 6.20 0.90 1.61 4687.0 −2.46 −0.9 1.76 4668.0 −2.44 −1.0 3
140 BD+092870∗ 69746 9.45 1.62 4672.0 −2.39 1.2 2.47 4865.0 −2.14 1.1 3
141 HD 126053a∗ 70319 6.30 0.60 4.50 5662.0 −0.45 +5.07 4.31 5683.2 −0.435
142 HD 126354 70576 4.33 0.434 3.01 6606.9 −0.6 2.92 6524.8 −0.41 −0.6
143 HD 127665 71053 3.58 1.29 2.22 4260.0−0.17 2.194 4384.0 −0.039 1
144 HD 127739∗ 71115 5.91 0.391 4.02 6918.3 0.08 2.3 4.05 6980.8 0.06 2.1 13
145 HD 129401 72041 8.68 0.607 4.26 6025.6 3.8 4.20 6003.2−0.09 3.8
146 HD 130169 72455 7.13 0.521 3.93 6309.6 2.7 4.15 6258.8−0.22 3.2
147 BD+452224 72504 10.7 1.110 3.96 4570.9 3.91 4549.2−0.69
148 HD 132047 73065 7.66 1.060 3.38 4677.4 3.5 3.50 4731.6−0.19 3.3
149 G99-40∗ 9.19 0.61 4.08 5970.0 −0.35 4.26 5994.0 −0.348
150 HD 132475∗ 73385 8.57 0.59 3.76 5550.0 −1.70 3.7 3.83 5594.4 −1.71 4.1 3
151 HD 134440 74234 9.44 0.85 4.70 4790.0−1.43 4.64 4834.4 −1.43 1
152 HD 136202∗ 74975 5.10 0.54 4.07 6077.0 −0.15 3.921 6223.6 −0.191 1
153 HD 147397 80163 8.35 1.323 3.81 4786.9 3.60 4681.6−0.15
154 HD 148408 80630 9.62 0.71 4.55.0 5200.0−0.8 3.925 4933.2 −1.40 3
155 HD 149996∗ 81461 8.49 0.62 4.1 5600.0 −0.65 4.3 4.17 5566.8 −0.56 4.3 1
156 HD 153210∗ 83000 3.20 1.16 2.62 4560.0 −0.13 1.0 2.455 4592.0 0.12 1.0 1
157 BD+173248∗ 85487 9.37 0.66 2.94 4995.0 −2.03 2.2 3.247 5170.0 −2.09 2.3 3
158 HD 161096∗ 86742 2.77 1.16 1.70 4475.0 0.00 2.225 4507.2 0.061 1
159 HD 161797∗ 86974 3.41 0.75 3.70 5520.0 0.04 3.8 3.99 5563.2 0.12 4.0 1
160 HD 165195∗ 88527 7.34 1.29 1.45 4507.0 −2.18 −0.9 2.044 4724.0 −1.91 −0.8 1
161 HD 166161∗ 88977 8.16 0.98 1.84 5125.0 −1.22 0.7 2.0 5148.4 −1.15 0.5 3
162 G141-19∗ 90957 10.55 0.64 4.00 5400.0 −2.30 3.87 5396.4 −2.5 1
163 HD 185144 96100 4.70 0.79 4.40 5143.0−0.25 4.41 5588.0 −0.429 6
164 HD 188512∗ 98036 3.71 0.86 3.60 5100.0 −0.30 3.525 5017.2 −0.35 1
165 BD-185550∗ 98339 9.35 0.92 1.87 4785.0 −2.89 0.7 1.86 4783.6 −2.62 0.7 3
166 CS22877-1∗ 1.00 4500.0 −2.80 1.02 4512.0 −2.648
167 CS22169-35∗ 12.9 1.50 5000.0 −2.80 1.38 5017.0 −2.778

∗ indicates stars with known metallicity, the references formetallicity are given below.
1. Cayrel et al (2001); 2. Ryan & Lambert (1995); 3. Snider et al (2001); 4. Gratton & Ortolani (1986); 5. Tomkin et al (1992); 6. Oinas (1974); 7.
Axer et al (1994); 8. Gray et al (2001),
9. Edvardsson et al (1993); 10. Luck & Lambert (1981); 11. Luck & Lambert (1985); 12. Moultaka et al (2004); 13. Balachandran (1990);
14.Venn (1995); 15. Burkhart & Coupry (1989);
16. Adelman & Philip (1994); 17. Patchett et al (1973); 18. Tomkin & Lambert (1999); 19. Spite et al (1994).
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Table 2: Estimated atmospheric parameters for candidate metal-poor stars

Star log g [Fe/H] Te f f (B-V) Te f f (ANN)− Mv

[ANN] [ANN] [ANN] T e f f [B-V]

EC 00451-2737 4.4 −1.97 6278.4 —- —- 4.1
EC 01374-3243 4.5 −1.35 5890.0 —- —- 5.4
EC 03531-5111 3.3 −0.43 7164.8 —- —- 4.1
EC 04555-1409 3.3 −0.32 5862.0 —- —- −0.3
EC 05148-2731 4.7 −0.58 7934.0 —- —- 5.6*
EC 09523-1259 4.4 −1.37 6572.4 +0.47 159.4 5.4*
EC 10004-1405a 3.9 −1.19 5864.0 —- —- 3.5
EC 10004-1405b 3.9 −1.02 5702.0 —- —- 4.2
EC 10262-1217 4.6 −1.16 6636.0 +0.38 −187 4.5
EC 10292-0956 4.5 −0.46 6260.4 +0.58 291.4 4.4
EC 10488-1244 4.1 −0.33 6507.2 +0.50 222.2 2.7
EC 11091-3239 4.4 0.09 5957.2 +0.54 −164.8 3.7
EC 11175-3214 4.7 −1.40 7702.4 +0.43 1112.4 5.6*
EC 11260-2413 4.7 −0.96 7523.2 +0.39 748.2 5.4*
EC 11553-2731a 4.4 −0.44 6374.8 —- —- 3.7
EC 11553-2731b 4.2 −0.35 6501.6 —- —- 3.5
EC 12245-2211 4.1 −0.34 6140.4 +0.50 −144.6 2.6
EC 12418-3240 4.1 −0.34 6129.2 +0.66 440.2 3.1
EC 12473-1945a 4.0 −0.15 6246.4 —- —- 3.0
EC 12473-1945b 4.0 −0.10 6138.4 —- —- 2.8
EC 12477-1711 4.4 −0.31 6527.2 —- —- 3.5
EC 12477-1724a 4.2 −0.24 6517.6 —- —- 2.6
EC 12477-1724b 4.5 −0.26 6497.6 —- —- 3.1
EC 12493-2149 4.8 −0.37 6145.6 +0.65 423.6 5.2
EC 13042-2740 4.6 −1.85 6405.6 +0.52 202.6 5.5*
EC 13390-2246 4.8 −0.36 6408.8 —- —- 3.9
EC 13478-2052a 4.1 −0.61 5420.4 —- —- 5.3
EC 13478-2052b 4.3 −0.57 5234.4 —- —- 5.2
EC 13499-2204 4.4 −0.65 6345.2 +0.51 102.2 5.6*
EC 13501-1758 4.2 −0.15 5847.6 +0.72 343.6 4.4
EC 13506-1845 4.5 −0.58 6664.4 +0.56 620.4 4.9*
EC 13564-2249 4.2 −0.68 5903.2 +0.58 −65.8 4.7
EC 13567-2235 4.0 −0.24 6341.6 +0.53 179.6 2.9
EC 14017-1750 4.5 −1.07 6073.6 +0.63 283.6 5.4
EC 16477-0096 3.6 −2.14 4843.6 —- —- 5.6
EC 22874-0038 4.0 −2.41 5416.0 —- —- 3.4
BS 16473-0045 4.4 −0.93 5356.4 —- —- 5.3
BS 16926-0070 4.2 −1.96 5995.6 —- —- 5.3
BS 16469-0074 4.5 −0.44 6351.2 —- —- 3.4
BS 16474-0054 4.2 −2.09 5570.8 —- —- 4.9
BS 16085-0018 3.0 −1.61 5554.0 —- —- 2.2
BS 16085-0004 3.7 −2.11 4644.0 —- —- 5.6
BS 16085-0056 4.8 −0.32 5220.8 —- —- 5.3
BS 16543-0114 3.9 0.19 4735.2 —- —- 4.7
BS 16479-0031 4.3 −0.22 5254.8 —- —- 4.0
BS 16543-0054a 4.4 −0.39 5747.2 —- —- 4.7
BS 16543-0054b 4.5 −0.30 5736.8 —- —- 5.1
BS 16477-0078 4.6 −0.11 5623.6 —- —- 5.5
BS 16559-0066 4.5 −0.81 4656.4 —- —- 5.7
BS 16551-0015 4.8 −0.55 7972.0 —- —- 1.2
BS 16084-0019 4.5 −1.21 5998.8 —- —- 4.2
BS 16084-0042 4.5 −0.86 7359.2 —- —- 5.3*
BS 16087-0004 4.7 −0.63 6692.4 —- —- 5.4*
CS 22884-0005 4.0 −1.65 5558.8 +0.67 −98.2 4.1
G 195-28 4.6 −1.45 4698.8 +0.93 −290.2 5.3
G 53-24 4.3 −0.32 5281.6 +0.94 316.6 5.1
G 96-14 4.4 −2.17 4562.8 +1.0 −277.2 5.6
G 108-33 3.8 −1.71 6226.0 —- —- 0.3
G 115-1 4.1 −0.37 5510.0 +0.90 457 4.8
G 149-34 4.9 0.32 6885.6 +0.90 1832.6 0.7
HD 31964 1.5 −0.11 6108.8 +0.55 43.8 −0.2
HD 41704 4.3 −0.74 5669.2 +0.50 −615.8 5.0
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SAO 61681 4.4 0.28 5761.6 +0.652 45.6 4.8
HD 65934 3.0 −0.04 5056.4 +0.93 67.4 2.8
HD 89025 3.4 0.06 7255.2 +0.30 −14.8 −1.1
HD 90861a 2.4 −0.06 4732.8 +1.15 292.8 1.4
HD 90861b 2.0 −0.32 4572.0 +1.15 132 0.9
HD 90861c 2.4 −0.13 4712.0 +1.15 272 1.4
HD 92588 3.5 0.08 5140.4 +0.90 120.4 3.8

For a few objects more than one spectrum was available as indicated by symbols a, b, and c, the difference in estimated values is indicative of
the internal error.∗ The MV for hot metal-poor stars is uncertain because we did not havegood calibrators covering that temperature and metallicity
range.
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Fig. 6. Spectra of metal-poor stars compared with stars of similar temperature, gravity, and near-solar composition. The solid line
indicates the metal-poor stars and the dashed line indicates solar-metallicity stars. The atmospheric parametersTeff, log g, and
[Fe/H] for each star are given in parenthesis.
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