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When is an axisymmetric potential separable?
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ABSTRACT
An axially symmetric potentialψ(ρ, z) = ψ(r, θ) is completely separable if the ratios : k is
constant. Heres = r−1

∂r∂θ(r2ψ) and k = ∂ρ∂zψ. If β = s/k, then the potential admits an
integral of the form 2I = L2 + βv2

z + 2ξ, whereξ is some function of positions determined
by the potentialψ. More generally, an axially symmetric potential respects the third axisym-
metric integral of motion – in addition to the classical integrals of the Hamiltonian and the
axial component of the angular momentum – if there exist three real constantsa, b, c (not all
simultaneously zero,a2 + b2 + c2

, 0) such thatas + bh+ ck = 0, whereh = r−1
∂σ∂τ(rψ) and

(σ, τ) is the parabolic coordinate in the meridional plane such thatσ2 = r + z andτ2 = r − z.

Key words: methods: analytical – galaxies: kinematics and dynamics

1 INTRODUCTION

Numerical orbit integrations in realistic potentials indicate that reg-
ular orbits are the norms rather than the exceptions in astrophysics.
However, only known exact integrals of motion besides thosedue to
the Noether theorem are the separation constants of the Hamilton–
Jacobi equation, which are limited to the class of potentials known
as the Stäckel potential. None the less, behaviours of regular orbits
of most astrophysical interests appear to be well approximated by
those found in the Stäckel potential (de Zeeuw 1985a). Hence, un-
derstanding the Stäckel potential is not only the first step to sort out
regular orbits but also of practical importance.

Unfortunately, the Stäckel potential is usually defined to be the
potential separable in an ellipsoidal (or one of its degenerate lim-
its) coordinate, which hinders easy understanding and somewhat
obscures physical meaning. Lynden-Bell (2003) on the otherhand
presented an elementary derivation of the third integral ofmotion
in axially symmetric potentials using only vector calculus. His
idea is based on the realization that the kinetic part of a non-trivial
quadratic integral of motion is the scalar product of the angular mo-
menta about two foci. The angular momentum with respect toz = a
on the symmetry axis is given byLa = (r − ak̂)× u = L − a(k̂ × u),
where k̂ is the unit vector in the direction of the symmetry axis.
Hence, the kinetic part considered by him is equivalent toLa ·L−a =

L2−a2(v2−v2
z ), whereL = ‖L‖, v = ‖u‖ andvz = k̂ ·u. However,v2 is

the kinetic part of the Hamiltonian,H = 1
2v

2 + ψ and the assump-
tion is therefore equivalent to existence of an integral thekinetic
part of which is given byL2 + a2v2

z .
Here we explore the condition under which there exists such an

integral of motion with the kinetic part ofL2 + βv2
z . This approach

is conceptually advantageous as imaginary magnitudes are replaced
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by negative constants, and thus unifies the separability in both pro-
late and oblate spheroidal coordinates into variation of a single real
parameter. More importantly, this affords us to express the neces-
sary condition for axially symmetric potentials to admit the third
integralwithout prior knowledge on the constant itself.

In the next section (Sect. 2), we prove that, given the axially sym-
metric potentialψ(ρ, z) = ψ(r, θ) where (ρ, φ, z) and (r, θ, φ) are
cylindrical and spherical polar coordinates, there existsan integral
of motion with its kinetic part given byL2 + βv2

z if (and only if)
the ratio of two mixed partial derivatives,r−1

∂r∂θ(r2ψ) : ∂ρ∂zψ,
is constant (which is the same asβ). An example, namely the
Kuzmin (1953) disc potential, is provided in Sect. 3. In Sect. 4,
it is shown that this encompasses the Stäckel potentials separable
in either prolate or oblate spheroidal coordinate as well asspher-
ical or cylindrical polar coordinate (the location of the coordinate
origin is assumed to be known). Discussion on generalization al-
lowing unspecified origin (on the symmetry axis) and separability
in the rotational parabolic coordinate follows in Sect. 5. In par-
ticular, we find that, by considering the kinetic part of the form
aL2 − 2b(u × L) · k̂ + cv2

z , an axially symmetric potentialψ admits
the third integral if and only if the null space of three mixedpar-
tial derivatives including the earlier two and the third,r−1

∂σ∂τ(rψ),
is non-trivial (i.e. there exists a constant-coefficient non-trivial lin-
ear combination of the three that is identically zero). Here(σ, τ)
is the parabolic coordinate in the meridional plane. We conclude
in Sect. 6 whilst the Appendices provide an overview of the whole
subject concerning separable (Stäckel) potentials and quadratic in-
tegrals, which puts the present study on proper wider context.

The treatment here is deliberately elementary, limited to vector
calculus and linear algebra whenever possible, except in Sect. 6
and the Appendices. The elliptic and parabolic coordinatesare in-
troduced naturally via a modern geometric approach withoutpre-
sumption on any prior knowledge. By contrast, the Appendices,
which are independent from the main body, introduce more sophis-
ticated physical and mathematical ideas throughout.
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2 An

2 PROOF

Consider a conservative dynamic system governed by Newton’s
laws of motion. The motion of a unit-mass tracer is determined
by

ṙ = u ; u̇ = −∇ψ, (1)

whereψ is the potential, which is a scalar function of positions.
The evolution of the angular momentumL = r × u is then given

by L̇ =✘✘ṙ × u + r × u̇ = −r × ∇ψ. Thus, forL2 = ‖L‖2 = L · L,

1
2 DtL

2 = L · L̇ = (u × r) ·
(

r × ∇ψ
)

= u ·
[

r × (r × ∇ψ)
]

, (2)

whereDt = d/dt. Let eq = ∇q and∂q = ∂/∂q be the recipro-
cal frame vector and the partial differential operator. Then∇ =
er
∂r + eθ∂θ + eφ∂φ in the spherical polar coordinate (r, θ, φ) whilst
{ êr = er , êθ = reθ, êφ = r sinθ eφ } constitutes the corresponding set
of orthonormal frame vectors. ThenDtL2 = −2u · s, where

s = −r × (r × ∇ψ) = r2
∇ψ − r(r · ∇ψ)

= r2(
∇ψ − er

∂rψ
)

=
(

eθ∂θ + eφ∂φ
)

(r2ψ).
(3)

Here we have usedr = rêr = rer ander
· er = êr · êr = 1.

Meanwhile, ˙vz = −∂zψ and thus

1
2 Dtv

2
z = vz v̇z = −u · k̂ ∂zψ, (4)

wherek̂ is the fixed unit vector in thez-direction so thatvz = u · k̂.
The set{ êρ = êr sinθ + êθ cosθ, êφ, k̂ } consists in the orthonormal
frame vectors for the cylindrical polar coordinate (ρ = r sinθ, φ, z =
r cosθ) whilst its reciprocal frame vector set is composed of
{ eρ = êρ, eφ = êφ/ρ, ez = k̂ } and so∇ = êρ∂ρ + k̂ ∂z + ρ

−1êφ∂φ.
Suppose 2Q = L2+βv2

z with a constantβ. ThenQ̇ = −u ·u, where

u = eθ∂θ(r2ψ) + eφ∂φ(r2ψ) + β k̂ ∂zψ. (5)

If u = ∇ξ − ∇ × A is the Helmholtz decomposition of the vector
field u in equation (5), theṅQ + u · ∇ξ = u · (∇× A) = (u × ∇) · A.
Consequently, ifu is curl free, thenI = Q + ξ is conserved along
the motion of the tracer. Since∇ × eq = ∇ × ∇q = 0, we have

∇ × u = er
× eθ∂r∂θ(r2ψ) + er

× eφ∂r∂φ(r2ψ) − β k̂ × ∇(∂zψ)

= êφ

[

1
r
∂

2(r2ψ)
∂r∂θ

− β ∂
2ψ

∂ρ∂z

]

− êθ
ρ

∂(r2ψφ)

∂r
+ β

êρ
ρ

∂ψφ

∂z
,

(6)

where the partial derivatives with respect to (r, θ) and (ρ, z) are, re-
spectively, in the spherical and cylindrical polar coordinates and
ψφ = ∂φψ, which is consistently defined in both coordinates pro-
vided that thez-axis coincides. Hence, ifψφ = 0 and

β =
∂r∂θ(r2ψ)
r ∂ρ∂zψ

(7)

is constant, then there exists a scalar functionξ such that

2I = L2 + βv2
z + 2ξ (8)

is an integral of motion and

∇ξ = rêθ
∂ψ

∂θ

∣

∣

∣

∣

∣

r,φ
+ β k̂

∂ψ

∂z

∣

∣

∣

∣

∣

ρ,φ

. (9)

Here the partial derivatives are done with holding the coordinate
variables in the subscripts fixed.

3 EXAMPLE

Consider the Kuzmin disc (Kuzmin 1953, 1956) potential:

ψ = − k
b
, b =

√

ρ2 + (a + |z|)2 =
√

r2 + 2ar|cosθ| + a2, (10)

which is generated by an infinitesimally thin disc with the surface
densityΣ(ρ) ∝ (a2 + ρ2)−3/2 (Toomre 1963). It is easy to find

∂
2ψ

∂ρ∂z
= −3k

b5
ρ(a+ |z|); ∂

2(r2ψ)
∂r∂θ

= −3a2k
b5

r2(a+ r|cosθ|) sinθ, (11)

and thus the ratio of equation (7) is constant,β = a2. Therefore, the
potential of equation (10) admits an integral that is quadratic to the
velocities (e.g., de Zeeuw 1985b) in the form of equation (8).

The functionξ is a solution of the partial differential equations
resulting from equation (9). Usingrêθ = zêρ − ρ k̂ and∂θ = z∂ρ −
ρ∂z, equation (9) for equation (10) withβ = a2 reduces to

∂ξ

∂ρ
= z2∂ψ

∂ρ
− ρz

∂ψ

∂z
= −akρ|z|

b3
;

∂ξ

∂z
= (a2 + ρ2)

∂ψ

∂z
− ρz

∂ψ

∂ρ
=

z
|z|

ak
b3

[

ρ2 + a(a + |z|)]
(12)

in the cylindrical polar coordinate. Note that the compatibility con-
dition ∂z(∂ρξ) = ∂ρ(∂zξ) is satisfied (i.e. eq. 6 being zero), and
so the solutionξ(ρ, z) exists. Let us next suppose that the integral
curve of constantξ is parametrized bys, which then implies

d
ds
ξ[ρ(s), z(s)] =

∂ξ

∂ρ

dρ
ds
+
∂ξ

∂z
dz
ds
= 0. (13a)

Hence, the tangential slope of the constant-ξ curve is given by

dρ
dz
=
ρ′(s)
z′(s)

= −∂zξ

∂ρξ
=
ρ2 + a(a + |z|)

ρz
, (13b)

which is a first-order ordinary differential equation onρ(z). Here
we have used|z|2 = z2 for any realz. This is integrated through

1
2

d
dz

(

ρ2

z2

)

=
ρ

z2

dρ
dz
− ρ

2

z3
=

a(a + |z|)
z3

;

ρ2

2z2
= c̃ − a2

2z2
− a
|z| =

c
2
− (a + |z|)2

2z2
,

(14a)

wherec̃ = (c − 1)/2 is an integration constant. Here the last is the
implicit equation of the integral curve. That is to say,

F(ρ, z) =
ρ2 + (a + |z|)2

z2
=

b2

z2
= c (14b)

coincides with the curve of constantξ and thus there exists a real
function f : R → R such thatξ(ρ, z) = f [F(ρ, z)], which is found
using∂ρξ(ρ, z) = f ′[F(ρ, z)] ∂ρF(ρ, z). In other words,

f ′(F) =
∂ρξ

∂ρF
= −ak|z|3

2b3
= −ak

2

( z2

b2

)3/2

= − ak
2F3/2

. (15)

Finally, the antiderivative results in

ξ(ρ, z) = f (F) =
ak

F1/2
=

ak|z|
b

. (16)

The integration constant here is immaterial for our purposeand so
set to zero. It is a straightforward task to verify that equation (8)
with ξ given by equation (16) is indeed a constant of motion for a
particle moving under the potential of equation (10).

Similarly, if we consider the potential–density profile given by

ψ = − k
√

(ρ + a)2 + z2
;
∇2ψ

4πG
=

k
4πG

a

ρ
[

(ρ + a)2 + z2
]3/2

, (17)

then we find that the ratio in equation (7) is also constantβ = −a2 <

0 (but negative unlike the potential of eq. 10). Therefore, this po-
tential too admits a quadratic third integral of the form of equation
(8) with β = −a2. The corresponding functionξ is found similarly,
namely

ξ =
ka(a + ρ)

√

(ρ + a)2 + z2
. (18)

c© 2013 RAS, MNRAS000, 1–13
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Figure 1. yz-plane cross-section of prolate spheroidal coordinate surfaces.

4 SEPARABLE POTENTIAL

4.1 Prolate spheroidal coordinates

Let us consider the quadratic form onu (cf. Lynden-Bell 2003),

Q̃a(u) = (r+ × u) · (r− × u), (19a)

wherer± = r ± ak̂. Thenr± × u = L ± aℓ, whereℓ = k̂ × u, and so
Q̃a(u) = L2−a2ℓ2. Yetℓ2 = ‖ℓ‖2 = (k̂ · k̂)(u ·u)− (k̂ ·u)2 = v2−v2

z , and
thusQ̃a(u) is the kinetic part of an integral of motion,Ĩ = 2(I−a2H)
whereI is given by equation (7) with a positive constantβ = a2 > 0.

The quadratic formQ̃a(u) is useful in finding its diagonalizing
frame (in which kinetic parts ofI and Ĩ also diagonalize). First
note

Q̃a(u) =
[

(r± × u) × r∓
]

· u, (19b)

which further impliesQ̃a(u) = u · Ka(u) with

2Ka(u) = (r+ × u) × r− + (r− × u) × r+, (20)

which is a self-adjoint linear function ofu (i.e. a symmetric tensor).
If { ê1, ê2, ê3 } is the set of its orthonormal eigenvectors andκi is the
eigenvalue associated with ˆei such thatKa(êi) = κiêi, thenKa(u) =
∑3

i=1 κiviêi andQ̃a(u) =
∑3

i=1 κiv
2
i , wherevi = êi · u is the velocity

component projected on to ˆei. In other words,Q̃a diagonalizes in
the frame consisting of eigenvectors ofKa.

These eigenvectors are found by observing

2Ka(r±) = (r∓ × r±) × r± = (r+ · r−)r± − r2
±r∓;

2Ka(r̂±) = (r+ · r−)r̂± − r+r− r̂∓,
(21a)

wherer± = ‖r±‖ =
√

r± · r± and ˆr± = r±/r±. Hence,

2Ka(r̂+ ± r̂−) =
(

r+ · r− ∓ r+r−)(r̂+ ± r̂−), (21b)

that is, ˆr+± r̂− is the two of (orthogonal but not necessarily normal-
ized) eigenvectors ofKa. The remaining eigenvector is ˆeφ, which
is, up to signs, the only unit vector orthogonal to the first two.
The associated eigenvalue is found by direct calculations,namely,

Ka(êφ) = (r2 − a2)êφ. It follows that if v± is the velocity component
in the direction of ˆr+ ± r̂−, then the diagonalized̃Qa(u) is given by

2Q̃a(u) = (l − m) v2
+ + (l + m) v2

− + 2lv2
φ, (22)

wherem = r+r− andl = r+ · r− = r2 − a2.
In order to interpret these eigenvectors geometrically, wenote

r± = r ± a k̂ = ρêρ + (z ± a) k̂, r2
± = ρ

2 + (z ± a)2;

∇r2
± = 2ρeρ + 2(z ± a)ez = 2r±, ∇r2

± = 2r±(∇r±);

∴ r̂± = r±/r± = ∇r±.

(23)

Hence ˆr+ ± r̂− is normal to the surface defined by a constant
value of r+ ± r−, respectively. Sincer± = ‖r ± a k̂‖ is the re-
spective distance to the pointz = ∓a on thez-axis, the constant
sum defines a confocal set of prolate spheroids whilst the con-
stant difference does that of circular hyperboloids of two sheets –
see Fig. 1. Together with the meridional planes, they constitute a
pair-wise orthogonal foliation of the three-dimensional Euclidean
space (R3). Any set of monotonic differentiable functions on each
leaf in the family then defines an orthogonal coordinate in which
Q̃a diagonalizes. Within arbitrary scalings, this coordinatesystem
corresponds to the prolate spheroidal coordinate with the foci on
(x, y, z) = (0,0,±a). An intuitive choice for the meridional coor-
dinate variables is (ζ, η) = (r+ + r−, r+ − r−), that is, the sum of
and the difference between the distances to two foci. Hereζ/2
andη/2 are also the semimajor axes of the meridional ellipse and
hyperbola, and so each essentially labels the particular coordinate
surface. More common choice however is either (υ, ν, φ), where
(ζ, η) = (2a coshυ,2a cosν) (e.g., Kent & de Zeeuw 1991; Binney
2012) or (λ, µ, φ), where (ζ2, η2) = [4(λ+a2+α),4(µ+a2+α)] with
a constantα (e.g., Dejonghe & de Zeeuw 1988; Sanders 2012).

The potential admitting the integralĨ is characterized in the same
coordinate system by considering the vector field,

2Ka(∇ψ) = −[r+ × (r− × ∇ψ) + r− × (r+ × ∇ψ)
]

. (24a)

Sincer± × ∇ψ = êφ
(

∂θψ|r ± a∂ρψ|z
)

, we find (cf. eq. 9)

Ka(∇ψ) = rêθ∂θψ|r − a2êρ∂ρψ|z = ∇(ξ − a2ψ), (24b)

and soKa(∇ψ) is curl free. For the meridional coordinate (ζ, η) =
(r+ + r−, r+ − r−), equation (23) indicates that (∇ζ,∇η) = (r̂+ +
r̂−, r̂+ − r̂−) and∇ = (r̂+ + r̂−)∂ζ + (r̂+ − r̂−)∂η + eφ∂φ. Defining
D± = ∂ζ ± ∂η and also assuming∂φ = 0, we then have

r̂+ × ∇ = r̂+ × r̂−D−, r̂− × ∇ = r̂− × r̂+D+;
r± × (r∓ × ∇ψ) = r± × (r∓ × r̂±)D±(ψ) = (mr̂∓ − lr̂±)D±(ψ);

Ka(∇ψ) =
[

r̂+ (lD+ − mD−) + r̂− (lD− − mD+)
]

ψ, (25)

where againm = r+r− andl = r+ · r− = r2 − a2. Consequently

∇ × Ka(∇ψ) = 2aρêφ
(D2
− −D2

+

)

(mψ), (26)

provided that∂ζ∂η = ∂η∂ζ . Calculations ease usingD±(r±) = 1
andD∓(r±) = 0, which follows 2r± = ζ±η. In addition,D±(l) = r±
from ζ2 + η2 = 2(r2

+ + r2
−) = 4(r2 + a2) and sol = (r2

+ + r2
−)/2− 2a2.

Thus∇ × Ka(∇ψ) = 0 is equivalent to

(D2
+ −D2

−
)

(mψ) = 4
∂

2(mψ)
∂ζ∂η

= 0 ⇒ ψ =
f (ζ) + g(η)

m
, (27a)

where f andg are arbitrary functions of respective argument and

m = r+r− = (ζ2 − η2)/4 = λ − µ
= a2(cosh2 υ − cos2 ν) = a2(sinh2 υ + sin2 ν)

(27b)

with (υ, ν) and (λ, µ) as defined earlier. Hence, an axially sym-
metric potential with the ratio in equation (7) being a positive con-
stantβ = a2 > 0 is the Stäckel potential (e.g., Lynden-Bell 1962;

c© 2013 RAS, MNRAS000, 1–13
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de Zeeuw 1985c; Evans & Lynden-Bell 1989) separable in the pro-
late spheroidal coordinate with the foci located onz = ±a on the
symmetry axis.

The opposite implication, that any Stäckel potential separable in a
prolate spheroidal coordinate results in a positive constant for equa-
tion (7), is trivial from its transformations back to the cylindrical
and spherical polar coordinates. For instance, with the coordinate
transform (λ, µ)→ (ρ2, z2) (see e.g., Lynden-Bell 1962),

ρ2 =
(λ + α)(µ + α)

α − β , z2 =
(λ + β)(µ + β)

β − α , (28a)

the differential equation in equation (27) transforms to

∂
2[(λ − µ)ψ

]

∂λ∂µ
=

∂ψ

∂µ
− ∂ψ

∂λ
+ (λ − µ)

∂
2ψ

∂λ∂µ
=

λ − µ
4(β − α)

×
[

1
z3

∂

∂z

(

z3∂ψ

∂z

)

− 1
ρ3

∂

∂ρ

(

ρ3∂ψ

∂ρ

)

+
ρ2 − z2 + β − α

ρz
∂

2ψ

∂ρ∂z

]

(28b)

in the cylindrical polar coordinate. We furthermore find that

1
ρ3

∂

∂ρ

(

ρ3∂ψ

∂ρ

)

− 1
z3

∂

∂z

(

z3∂ψ

∂z

)

− ρ
2 − z2

ρz
∂

2ψ

∂ρ∂z

=

( 1
ρkz3−k

∂

∂ρ
+

1
ρ1+kz2−k

∂

∂z

) (

ρkz3−k ∂ψ

∂ρ
− ρ1+kz2−k ∂ψ

∂z

)

, (29a)

wherek is any fixed real number. However, the transformation to
the spherical polar coordinate∂ρ = sinθ ∂r + r−1cosθ ∂θ and∂z =

cosθ ∂r − r−1sinθ ∂θ indicates that

1
ρkz3−k

∂

∂ρ
+

1
ρ1+kz2−k

∂

∂z
=

1

r3 sin1+kθ cos3−kθ

∂

∂r
,

ρkz3−k ∂

∂ρ
− ρ1+kz2−k ∂

∂z
= r2 sinkθ cos2−kθ

∂

∂θ
.

(29b)

So the Stäckel potential separable in a prolate spheroidal coordinate
satisfies the differential equation (cf. Sanders 2012, eq. 9)

∂
2[(λ − µ)ψ

]

∂λ∂µ
=
λ − µ
4ρzδ

[

δ
∂

2ψ

∂ρ∂z
− 1

r
∂

∂r

(

r2∂ψ

∂θ

)

]

= 0, (30)

whereδ = β − α, which is a positive constant.

4.2 Oblate spheroidal coordinates

If β = −a2 < 0 in equation (7) is a negative constant, the integral of
motion I in equation (8) may be written down to be 2I = Q̄a(u) +
a2(êφ · u)2 + ξ(r) introducing another quadratic form:

Q̄a(u) = (q+ × u) · (q− × u), (31)

whereq± = r ± aêρ. Essentially verbatim calculations as in the
preceding section establish thatQ̄a(u) diagonalizes in the frame de-
fined by{ q̂+ ± q̂−, êφ }, where ˆq± = q±/‖q±‖. So does the kinetic
part of I sincev2

φ trivially diagonalizes in the same frame.
The meridional cross-section of the coordinate surfaces defined

by this frame set is basically the same as before except for the R-
andz-axes switched (see again Fig. 1). That is to say, the symme-
try axis now lies along the minor axis of the ellipse. These result
in the coordinate surfaces being the confocal oblate spheroids and
circular hyperboloids of one sheet whilst the resulting coordinate
system is identified with the oblate spheroidal coordinate with the
meridional foci on the mid-plane pointR = (±)a. Note that the
derivation of equation (27) in the preceding section considers only
the two-dimensional coordinates restricted to the meridional plane.
Therefore, the same calculations (with ther± → q± replacement)
can be used to show that the axially symmetric potential thatresults
in a negative constantβ = −a2 in equation (7) is also the Stäckel
potential but separable in an oblate spheroidal coordinate.

4.3 Degenerate cases

If ∂r∂θ(r2ψ) = 0 or∂ρ∂zψ = 0, equation (7) is also considered con-
stant. In fact, this indicates that the axially symmetric potential is of
the separable form in the spherical or cylindrical polar coordinate,

∂r∂θ(r
2ψ) = 0 ⇐⇒ ψ = f (r) + r−2g(θ); (32)

∂ρ∂zψ = 0 ⇐⇒ ψ = f (ρ) + g(z). (33)

Given arbitrary functionsf andg, the third integrals besides the
energy,H , and the axial angular momentum component,Lz, are,
1
2 L2 + g(θ) and 1

2v
2
z + g(z), respectively. These are consistent

with equations (8) and (9), either settingβ = 0 or considering
limβ→∞ β

−1I. With equation (33), thez-motion decouples and the
third integral is basically the corresponding one-dimensional en-
ergy. The third integral for equation (32) on the other hand is es-
sentially the Hamiltonian of the angular motion projected along the
radial direction on to the unit sphere. Ifg = 0 in either case, the
quadratic integral is simply the square of momentum, namelyL or
vz. Note that equation (32) then reduces to spherically symmet-
ric potentials and is actually superintegrable sinceL counts as two
additional integrals, (Lx, Ly).

If both ∂r∂θ(r2ψ) = 0 and∂ρ∂zψ = 0, the potential is completely
specified. That is to say, the general solution is then given by

ψ = k0r2 + k1ρ
−2 + k2z−2 + k3, (34)

which involves constants but not arbitrary functions. The particular
example includes the harmonic potential (ψ = k0r2). This potential
is separable in both the spherical and cylindrical polar coordinates
as well as any prolate or oblate spheroidal coordinates witharbi-
trary parametera (formally β = 0/0 is an indeterminate constant).
Dynamics in the potential of equation (34) is not only superinte-
grable (i.e. the orbit projected on to the meridional plane becomes
a closed curve) but also completely soluble in a closed form using
only elementary functions. Ifk1 = 0, the potential is further sepa-
rable in the Cartesian coordinate and so maximally superintegrable
(i.e. the orbits are thus truly periodic).

5 SEPARABILITY WITH AN UNSPECIFIED ORIGIN

The discussion so far has implicitly assumed that the coordinate
origin of the frame about which the angular momentum is defined
is known a priori. Relaxing this restriction is equivalent to allowing
the coordinate origin to be an arbitrary point on the symmetry axis.
The angular momentum with respect to the pointz = α on the
symmetry axis is given byLα = (r − αk̂) × u = L − αℓ, whereL is
the angular momentum with respect toz = 0 andℓ = k̂ × u. Then
L2
α = L2−2αω+α2ℓ2, whereω = ℓ ·L = (u×L) · k̂ andℓ2 = v2− v2

z .
From equation (1),̇ℓ = −k̂ × ∇ψ and so

1
2 Dtℓ

2 = ℓ · ℓ̇ = (u × k̂) · (k̂ × ∇ψ) = u ·
[

k̂ × (k̂ × ∇ψ)
]

, (35a)

ω̇ = ℓ̇ · L + ℓ · L̇ = (u × r) · (k̂ × ∇ψ) + (u × k̂) · (r × ∇ψ)

= u ·
[

r × (k̂ × ∇ψ) + k̂ × (r × ∇ψ)
]

.
(35b)

Hence,DtL2
α = −2u · (s − αh + α2k), wheres is as in equation (3),

s = −r× (r × ∇ψ) = r2(∇ψ − er
∂rψ), (36a)

and also introduced are the vector fields

h = −[r × (k̂ × ∇ψ) + k̂ × (r × ∇ψ)
]

,

k = −k̂ × (k̂ × ∇ψ) = ∇ψ − k̂ ∂zψ.
(36b)
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Following a similar argument as in Sect. 2, we conclude that,if
there exist real constantsa, b, c such that (NB:∇ × ∇ψ = 0)

a∇ × s − b∇ × h − c∇ × k = 0 (a2 + b2 + c2
, 0), (37)

then there exists the scalar functionξ which is the solution of

∇ξ = as − bh − ck, (38)

and therefore the potential admits an integral of motion,

2I = aL2 − 2bω − cℓ2 + 2ξ, (39a)

or equivalently

2Ĩ = 2(I + cH) = aL2 − 2bω + cv2
z + 2(ξ + cψ). (39b)

If a , 0, we can find an integral with the kinetic part given by
2Qa = L2

α+βv
2
z , namelya−1I+βH = a−1Ĩ+α2H = Qa+a−1ξ+βψ,

whereα = b/a andβ = α2 + c/a. This indicates that, depending on
β, the potential is separable in the prolate spheroidal (β > 0), the
spherical polar (β = 0) or the oblate spheroidal (β < 0) coordinate
with the origin displaced toz = α on the symmetry axis.

For an axisymmetric system (∂φ = 0),

s = eθ∂θ(r2ψ), ∇ × s = êφs, s = r−1
∂r∂θ(r

2ψ);

k = eρ∂ρψ, ∇ × k = êφk, k = ∂z∂ρψ.
(40)

However, the vector field∇ × h = êφh, whilst still parallel toêφ,
results in rather complicated expressions, (ψr = ∂rψ & ψθ = ∂θψ)

h = ρ(∂2
ρ − ∂2

z )ψ + 3∂ρψ + 2z∂z∂ρψ

= r sinθ ∂2
rψ + 2(sinθ + cosθ ∂θ)ψr + r−1(cosθ − sinθ ∂θ)ψθ

=
sinθ

r
∂(r2ψr)

∂r
− 1

r sin2θ

∂(ψθ sin3θ)
∂θ

+
2 cosθ

r2

∂
2(r2ψ)
∂r∂θ

(41)

in the cylindrical and spherical polar coordinates (NB: thesimplest
coordinate expression is obtained with the rotational parabolic co-
ordinate as shall be shown). The condition in equation (37) for an
axisymmetric potential is then equivalent to three functions s, h, k
being linearly dependent. Here the linear dependence is considered
within the infinite-dimensional functional space, not in the sense of
the vector field on the three-dimensional configuration space. The
algebraic necessary (but not sufficient) condition is for all the gen-
eralized Wronskians{W(s, h, k) } to identically vanish and also
∣

∣

∣

∣

∣

∣

∣

∣

s h k

∂1s ∂1h ∂1k

∂2s ∂2h ∂2k

∣

∣

∣

∣

∣

∣

∣

∣

= 0, (42)

where∂i = ∂/∂xi and (x1, x2) represents any coordinate on the
meridional plane – e.g., (ρ, z) or (r, θ).

5.1 Rotational parabolic coordinates

If h/k = 2γ is constant, then 0· s + 1 · h − 2γk = 0 and so

I = ω − γℓ2 + ξ (∇ξ = h − 2γk) (43)

is an integral of motion. Here the kinetic part is given by

ω − γℓ2 = ℓ · (L − γℓ) = ℓ · (rγ × u) = u · Pγ(u), (44)

whererγ = r − γk̂ and

2Pγ(u) = −
[

rγ × (k̂ × u) + k̂ × (rγ × u)
]

(45)

is a self-adjoint linear function ofu. Next we find

2Pγ(rγ) = −rγ × (k̂ × rγ) = (rγ · k̂) rγ − r2
γ k̂,

2Pγ(k̂) = −k̂ × (rγ × k̂) = (rγ · k̂) k̂ − rγ,
(46a)

whererγ = ‖rγ‖ is the distance to (x, y, z) = (0, 0, γ). Then

2Pγ(r̂γ ± k̂) = (rγ · k̂) r̂γ − rγ k̂ ± [(rγ · k̂) k̂ − rγ r̂γ]

= (rγ · k̂ ∓ rγ)(r̂γ ± k̂),
(46b)

where ˆrγ = rγ/rγ. That is, ˆrγ ± k̂ is the two of eigenvectors of
Pγ. Here we note ˆrγ = ∇rγ (cf. eq. 23) whilst∇z = k̂. Hence,
two eigenvectors are, respectively, normal to the surfacesdefined
by constant values ofc± = rγ ± z > 0. The geometry of conic sec-
tions indicates that the meridional cross-sections of these surfaces
are confocal parabolae with the focus atz = γ on the symmetry
axis (which is also the axis of symmetry of all parabolae) andthe
directrix given by the horizontal line ofz = ±c± (see Fig. 2). These
eigenvectors thus define a pair of orthogonal foliations consisting of
the set of paraboloids of revolution. They, together with the merid-
ional planes, constitute the complete set of coordinate surfaces of
the rotational parabolic (or circular paraboloidal) coordinate with
the origin at (x, y, z) = (0,0, γ). The standard choice for the scal-
ing functions of the coordinate variables is given by (σ, τ, φ), where
σ2 = rγ + zγ andτ2 = rγ − zγ with zγ = z − γ andr2

γ = ρ2 + z2
γ.

The inverse transformation is thenρ = στ and 2zγ = σ2 − τ2

(and 2rγ = σ2 + τ2). However, alternative choices of coordinate
variables such that (ζ, η) = (σ2, τ2) (e.g., Landau & Lifshitz 1976;
Sridhar & Touma 1997, who usedη = −τ2) are not uncommon.

The conditionh/k = 2γ may be expressed in the parabolic coordi-
nate via explicit coordinate transformations, but utilizing the tensor
Pγ simplifies calculations. First we have 2Pγ(∇ψ) = h − 2γk,
and so 2∇ × Pγ(∇ψ) = êφ(h − 2γk). Hence,h = 2γk is equiv-
alent to Pγ(∇ψ) being curl free. Equation (46a) together with
∇ = r̂γ∂rγ + k̂∂zγ + eφ∂φ then indicates (NB:rγ · k̂ = zγ)

2Pγ(∇ψ) = (zγ r̂γ − rγk̂)∂rγψ + (zγk̂ − rγ)∂zγψ

= r̂γ(zγ∂rγ − rγ∂zγ )ψ − k̂ (rγ∂rγ − zγ∂zγ )ψ.
(47a)

Next using the identity∇ × (au) = (∇a) × u + a(∇ × u),

2∇×Pγ(∇ψ)

= k̂ × r̂γ[∂zγ (zγ∂rγ − rγ∂zγ ) + ∂rγ (rγ∂rγ − zγ∂zγ )]ψ

= r−1
γ ρêφ (∂2

rγ − ∂
2
zγ )(rγψ) = r−1

γ êφ ∂σ∂τ(rγψ),

(47b)

where∂σ and∂τ are the coordinate partial derivative with respect
to (σ, τ) = (

√
rγ + zγ,

√
rγ − zγ). Also used are∇× r̂γ = ∇× k̂ = 0

andrγ = rγ r̂γ = ρêρ + zk̂, which results inrγk̂× r̂γ = ρk̂× êρ = ρêφ.
Finally, the general solution of∇ × Pγ(∇ψ) = 0 is then given by

ψ =
f (rγ + zγ) + g(rγ − zγ)

rγ
=

f̃ (σ) + g̃(τ)
σ2 + τ2

, (48)

where f̃ (x) = 2 f (x2) andg̃(x) = 2g(x2). This is simply any poten-
tial separable in the rotational parabolic coordinate withthe origin
at (x, y, z) = (0,0, γ) (e.g., Sridhar & Touma 1997). In other words,
h/k = 2γ is constant if and only ifψ is the Stäckel potential separa-
ble in a rotational parabolic coordinate with the origin located at a
point on the symmetry axis (z = γ in particular). The resulting in-
tegral is in the form ofI = ℓ ·Lγ+ξ, whereξ is found by integrating
∇ξ = 2Pγ(∇ψ). In particular (herec± = rγ ± zγ),

ξ =
c+ g(c−) − c− f (c+)

rγ
=
σ2g̃(τ) − τ2 f̃ (σ)

σ2 + τ2
. (49)

If h = 0, thenh/k = 0. Consequently, the potential withh = 0 is
separable in the rotational parabolic coordinate with the coordinate
origin at (x, y, z) = (0,0,0). In addition, this also implies that given
the parabolic coordinate (σ, τ, φ) with γ = 0, namelyσ2 = r+ z and
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6 An

Figure 2.yz-plane cross-section of rotational parabolic coordinate surfaces.

τ2 = r − z, the fieldh is expressible to be

h = êφ ·
[

2∇ × P0(∇ψ)
]

=
1

σ2 + τ2

∂
2[(σ2 + τ2)ψ

]

∂σ∂τ
, (50)

in the same coordinate – noteh = r−1ρ(∂2
r − ∂

2
z )(rψ) in the non-

orthogonal skew coordinate (r, φ, z), which may also be useful in
some situations.

5.2 Superintegrable cases

Linear algebra dictates that if three functionss, h, k are linearly de-
pendent, the dimension of the linear space spanned by the same
three (i.e. the rank) is less than three. Moreover, if the rank is one,
then there exist two independent combinations (a, b, c) that result
in equation (37), which implies existence of two additionalinde-
pendent integrals of motion. In other words, the potential is super-
integrable and thus separable in at least two different axisymmetric
Stäckel coordinates if the rank of the set{ s, h, k } is one (or zero).

The rank of { s, h, k } is one if all three are constant (possibly
zero) multiples of a common function. The superintegrable po-
tential with k , 0 is separable in the spheroidal or spherical coor-
dinate with the origin at (x, y, z) = (0,0, α) with an arbitraryα and
β = α2 − 2γα + β̃ = (α − γ)2 − γ2 + β̃, where (̃β,2γ) = (s/k, h/k).
As before, theβ > 0, β < 0, andβ = 0 cases correspond to the sep-
arability in the prolate and oblate spheroidal, and spherical polar
coordinates, respectively. Asα → ∞, the coordinate tends to the
rotational parabolic coordinate with the origin at (x, y, z) = (0, 0, γ),
in which the potential is also separable. Ifk = 0 on the other
hand, the potential is separable in the cylindrical polar coordi-
nate. In addition, ifs/h = α̃ (h , 0) is also constant, then
s − α̃h − c · 0 = 0 with an arbitraryc, and so the potential is further
separable in any spheroidal and spherical coordinate with the ori-
gin at (x, y, z) = (0,0, α̃), which basically corresponds to equation
(34) with a displaced origin. The last remaining possibility of the
superintegrable potential is theh = k = 0 case, which is discussed
shortly.

As in the s = k = 0 case (eq. 34), degenerate superintegrable
cases thats = h = 0 andh = k = 0 also completely specify the
axisymmetric potentials up to constant coefficients. In particular,

s = h = 0 ⇔ ψ = −k0r−1 + (k1 + k2 cosθ) ρ−2 + k3, (51)

h = k = 0 ⇔ ψ = k0(ρ2 + 4z2) + k1ρ
−2 + k2z + k3. (52)

The potential in equation (51) is separable in the sphericalpolar
and rotational parabolic coordinates with the origin at (0,0, 0) as
well as any prolate spheroidal coordinate one of the foci of which
is at (0,0, 0) (NB: as + bh + 0 · k = 0 for anya, b, and thusα = b/a
is arbitrary andβ = α2 ≥ 0). If (s/k, h/k) = (β̃,2γ) is constant and
β̃ = γ2, the corresponding potential reduces to equation (51) once
the origin is relocated to (x, y, z) = (0,0, γ). On the other hand,
the potential in equation (52) is separable in the cylindrical polar
coordinate and any rotational parabolic coordinate with anarbitrary
origin on the symmetry axis (2γ = h/k = 0/0 is indeterminate). The
superintegrability of both cases implies that the meridional orbit
projections are closed. The maximal superintegrability isachieved
for equation (51) withk1 = k2 = 0 (spherically symmetric) or for
equation (52) withk1 = 0 (separable in the Cartesian coordinate).
Every orbit in either potential is therefore all truly periodic.

The potential,ψ = k1ρ
−2+k3, is the intersection of equations (34),

(51) and (52), and sos = h = k = 0 (the null rank), indicating that it
is separable inany axisymmetric Stäckel coordinate. Note that the
meridional effective potential of an axially symmetric potentialψ is
given byψeff = ψ+ (2ρ2)−1L2

z . Here the centrifugal barrier is of this
form, and thus relevant mixed partial derivatives ofL2

z/(2ρ
2) in any

axisymmetric Stäckel coordinate also vanish. We infer thatan axi-
ally symmetric potential is separable in an axisymmetric coordinate
if the effective potential is separable in the meridional plane.

Equation (51) withk1 = k2 = 0 is the Kepler potential (ψ =
−k0r−1). In other words, the Kepler potential is separable in the
prolate spheroidal coordinate provided that the point massis lo-
cated at either focus defining the coordinate system (this reduces
to the parabolic coordinate as the other focus tends to the infinity).
This is already anticipated by the example in Sect. 3 as the potential
in equation (10) in the upper or lower half is actually indistinguish-
able from that of a point mass located on the symmetry axis in the
opposite side at the distance ofa from the mid-plane. The clas-
sical consequences of this include that the gravitational potential
(ψ = −ka‖r − a‖−1 − kb‖r − b‖−1) due to two point masses (as well
as the electric potential of two point charges) is also in theStäckel
form separable in the prolate spheroidal coordinate with each mass
lying at either focus (Landau & Lifshitz 1976, prob. 48-2; Arnold
1989, sect. 47C). In the limit when one of the point masses moves
to the infinity, this results in ther−2-force plus an external uni-
form force field (corresponding linear potentials), whose potential
(ψ = −k0r−1 + k2z) is separable in the rotational parabolic coor-
dinate with the external force acting along the symmetry axis and
the coordinate origin at the point mass location (Landau & Lifshitz
1976, prob. 48-1).

6 CONCLUSION

Let us consider three vector-valued linear functions of a vector:

S(a) = −r × (r × a) = r2[a − (r̂ · a)r̂
]

; (53)

P(a) = − r × (k̂ × a) + k̂ × (r × a)
2

= za − (r · a)k̂ + (k̂ · a)r
2

; (54)

Z(a) = −k̂ × (k̂ × a) = a − (k̂ · a)k̂. (55)
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The sufficient condition for an axisymmetric (aboutk̂) potentialψ
to admit the third integral of motion is that the vector fields∇× s =
êφs, ∇ × h = êφh and∇ × k = êφk (or s, h and k) are linearly
dependent in the functional space. Heres = S(∇ψ), h = P(∇ψ)
andk = Z(∇ψ). That is, there exist three realconstants a, b, c such
that as + bh + ck = 0 (a2 + b2 + c2

, 0). Equivalently we may
say 1) the null space of the set{ s, h, k } is non-trivial (i.e. non-zero
nullity), 2) the same set, considered as elements in the functional
space, is rank deficient and 3) the dimension of the linear space
spanned by the same set is less than three, etc. The third integral
is given by 2I = aL2 + 2bω + cℓ2 + 2ξ or equivalently 2̃I = 2(I −
cH) = aL2 + 2bω − cv2

z + 2(ξ − cψ). Hereξ is the solution of
∇ξ = as+ bh + ck whilst the kinetic part of the integral consists of
the quadratic forms associated with the tensorsS, P andZ, namely
u · S(u) = L2, u · P(u) = k̂ · (u × L) = ω, andu · Z(u) = v2 − v2

z = ℓ
2.

The same condition is also necessary for the potential to be sep-
arable in an axisymmetric Stäckel coordinate and thus to admit an
axisymmetric quadratic integral in addition to the Hamiltonian and
the axial component of the angular momentum. The three functions
s, h andk reduce to simple mixed partial derivatives of the potential
in a particular coordinate, that is to say,

s = r−1
∂r∂θ(r

2ψ) the spherical polar, (r, θ, φ); (56)

h = r−1
∂σ∂τ(rψ) the rotational parabolic, (σ, τ, φ); (57)

k = ∂ρ∂zψ the cylindrical polar, (ρ, φ, z), (58)

where the parabolic coordinate in the meridional plane is defined
such that (σ2, τ2) = (r+ z, r− z) and so 2r = σ2+ τ2 (h transformed
to the cylindrical or spherical polar coordinate is found ineq. 41).
In general, the potential is separable in the cylindrical polar coor-
dinate with the third integral in the form of 2I3 = v

2
z + 2g(z) if and

only if k = 0 (hereg′ = ∂zψ). On the other hand, ifh/k = 2γ
is constant, the potential is separable in the displaced rotational
parabolic coordinate with the origin at (x, y, z) = (0,0, γ) with
I3 = k̂ · (u × Lγ) + ξ, whereLγ is the angular momentum about
z = γ andξ is the solution of∇ξ = h− 2γk. The special caseh = 0
results inγ = 0, and thus the corresponding potential is separable
in the same rotational parabolic coordinate used for expressingh in
the above. Lastly, ifs = αh + (β − α2)k for some constantsα and
β, then the potential is separable in the prolate spheroidal (β > 0),
the spherical polar (β = 0) or the oblate spheroidal (β < 0) co-
ordinate with the origin at (x, y, z) = (0,0, α). The corresponding
third integral may be expressed to be 2I3 = L2

α + βv
2
z + 2ξ, where

∇(ξ − βψ) = s− αh+ (α2 − β)k. This includes the case thats/k = β
is constant (i.e.α = 0), for which the potential is, depending onβ,
separable in the spheroidal or spherical (corresponding tothes = 0
case, for whichα = β = 0) coordinate with the origin at (0,0, 0).

If two amongsts, h, k simultaneously vanish, then the potential is
superintegrable. In particular,

ψH = k0r2 + k1ρ
−2 + k2z−2 + k3 ⇔ s = k = 0; (59)

ψK = −k0r−1 + (k1 + k2 cosθ)ρ−2 + k3 ⇔ s = h = 0; (60)

ψA = k0(ρ
2 + 4z2) + k1ρ

−2 + k2z + k3 ⇔ h = k = 0. (61)

In addition to two coordinate systems resulting in the vanishing
mixed partial derivatives, these are also separable in any (prolate
or oblate) spheroidal coordinate with the origin at (0,0, 0) for ψH,
any prolate spheroidal coordinate with one focus at (0, 0,0) for ψK

or any rotational parabolic coordinate with an arbitrary origin on
the symmetry axis forψA . Note that additional superintegrability
is also possible if the tri-ratios : h : k is constant (i.e. all three are
constant – including zero – multiples of a single function).

The necessity of these conditions for the separable potential

(and existence of the third integral) is the consequence of the fact
that the kinetic part of a quadratic integral of motion (in the Eu-
clidean space) is limited to be a particular type of functions. In
R

2, this has been known since Bertrand (1857, see also Whittaker
1937, sect. 152). In particular, the kinetic part of any integral of
motion in R2 quadratic to the momenta must be in the form of
a1v

2
x+2a2vxvy+a3v

2
y+a4vxLz+a5vyLz+a6L2

z , whereai’s are constants
andLz = xvy − yvx. In other words, the kinetic part is a constant-
coefficient degree-two homogeneous polynomial of all the linear
and angular momentum components. This is also true inR3 (in
fact, in Rn). If pi and p j are any two components of the linear
or angular momenta, thenpi p j forms the kinetic part of an integral,
and so the linear space spanned by all suchpi p j is a subspace of the
kinetic part of all quadratic integrals. Although there are21 such
factors (i.e. 2-combination with repetition out of six, i.e. three lin-
ear and three angular, elements), the dimension of this subspace is
in fact 20 thanks tou · L = 0.1 However, Chandrasekhar (1939) had
shown that the kinetic part of a quadratic integral of motionin R3

contains 20 integration constant.2 As the linear spaces of the same
dimension, the space of the kinetic part of quadratic integrals is thus
isomorphic to that of constant-coefficient degree-two homogeneous
polynomials of the linear or angular momentum components,3 and
the kinetic part of any quadratic integral should be expressible as
one such polynomial.

Considering only axisymmetric kinetic parts leaves six indepen-
dent bases, e.g.,{ v2, L2, v2

z , L
2
z , vzLz, ω }, for quadratic polynomials.

However,v2 is the kinetic part ofH whereasLz (and soL2
z ) is the

known integral for any axially symmetric potential. Furthermore,
Dt(vzLz) = v̇zLz = −(L · k̂)∂zψ = u · (r × k̂∂zψ) = −u · êφ∂z(ρψ).
That is, if vzLz + ξ is an integral, then∇ξ = êφ∂z(ρψ). Restricting
to axisymmetric integrals, the only possibility is that thepotential
is translation invariant asψ = ψ(ρ) and thenvz becomes an inte-

1 The argument generalizes forRn, i.e. there aren linear and
(

n
2

)

angular
momentum components, the sum of which corresponds to the dimension
m = 1

2n(n+1) of Euclidean isometry groupE(n). This results in1
2m(m+1) =

1
8n(n+1)(n2+n+2) quadratic ‘monomials’, but they are not all independent

due to the 3-vector relationu∧ J = 0, which counts for
(

n
3

)

components, and

the further 4-vector one,J ∧ J = 0, which constitutes
(

n
4

)

linear constraints.
HereJ = r ∧ u is the angular momentum 2-vector. Hence, the vector space
spanned by all quadratic ‘monomials’ is of the dimension1

12n(n+1)2(n+2).
2 Note that

∑

i, j Ki jviv j is the kinetic part of an integral of motion if and

only if K(i j;k) = 0 (see Appendix A), which reduces to
((

n
3

))

homogeneous

linear partial differential equations on
((

n
2

))

independent functions,Ki j in any

Cartesian coordinate ofRn. Here
((

n
k

))

=
(

n+k−1
k

)

is thek-combination with
repetition out ofn. In the Cartesian coordinate, the covariant derivative re-
duces to the coordinate partial derivative, which is symmetric for permuting
indices. Therefore,K(i j,k)lm = 0, which results in

((

n
3

))

·
((

n
2

))

homogeneous
linear equations on the same number of independent functions, Ki j,klm, all
of which identically vanish. Hence, allKi j’s are quadratic polynomials
of Cartesian coordinate components whilst they are the simultaneous so-
lutions ofK(i j,k) = 0. SinceK(i j,k)l = 0 areq =

((

n
3

))

· n linear equations on

p =
((

n
2

))

·
((

n
2

))

independent functions,Ki j,kl, integratingK(i j,k)lm = 0 intro-

ducesp − q = 1
12n2(n + 1)(n − 1) constants of integration. Similarly, the

next integration ofK(i j,k)l = 0 introduces
((

n
2

))

· n −
((

n
3

))

= 1
3n(n + 1)(n − 1)

whereas the final integration ofK(i j,k) = 0 involves
((

n
2

))

additional constants.
Summing them up, the total number of independent integration constants
amounts to 1

12n(n + 1)2(n + 2), which is the same as the dimension of the
linear space spanned by quadratic monomials of the generators of E(n).
3 That is, the space of the Killing 2-tensor is the grade-2 symmetric algebra
over the space of the Killing vectors, which are the generators of isometry.
The argument so far in the footnotes indicates that this is true for anyRn.
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gral, which is again a trivial integral. This leaves three degrees of
freedom (amongst these, one is simply the overall scale whereas
another can be subsumed into the choice of the origin) for theki-
netic part of the non-classical integral of motion. Therefore, the
assumed formaL2 + 2bω − cv2

z is indeed the most general form for
the kinetic part of a nontrivial quadratic axisymmetric integral.

Traditionally, separable (Stäckel) potentials are understood to be
given by the particular global functional forms in the special set
of coordinate systems whilst overlooking the fact that these forms
have originally been derived as general solutions to the setof par-
tial differential equations (relating to integrability conditions). By
focusing back on these underlying differential equations, separable
potentials are in principle characterizable in any coordinate system
and not just in the preferred coordinate system in which the poten-
tial is expressible in the separable form. This is importantsince,
for a given potential, it is typically not known a priori whether the
special coordinate indeed exists and what the particular coordinate
is, even if it exists. We note that existence of the third integral and
regular orbits in an arbitrary (not necessarily separable)potential
may be understood by local approximations to a separable potential
(Dejonghe & de Zeeuw 1988; Binney 2012; Sanders 2012). Under
this scenario, the ability of characterizing separable potentials lo-
cally (via differential equations) is clearly crucial.

In recent time, after relative neglectpost the influential works
by Tim de Zeeuw and collaborators, astrophysical interestson the
Stäckel potential appear to resurrect in light of efforts to construct
a three-integral distribution model of the Galaxy using thephase-
space action–angle coordinate (e.g., Binney 2012; Sanders2012).
The Stäckel potentials are the most general class of the potentials
in which the actions can be calculated for all orbits via ‘analytic’
(up to matrix inversion and integral quadratures) means (Sanders
2012, see also Appendix B). In order to find the transformation to
the action integrals{H , Lz, I3 } → { J1, J2, Jφ }, it needs to specify
the frame set{ ê1, ê2, êφ } – and the orthogonal coordinate system
(q1, q2, φ) – in which the third integralI3 = κ1v

2
1 + κ2v

2
2 + κφv

2
φ + ξ

diagonalizes. AssumingI3 is independent fromH andL2
z (i.e.κ1 ,

κ2), the squares of diagonalized velocity components are expressed
as a linear combination of three quadratic integrals,

v2
1 =

(I3 − ξ) − 2κ2(H − ψ)
κ1 − κ2

− κ3 − κ2

κ1 − κ2

L2
z

ρ2
;

v2
2 =

2κ1(H − ψ) − (I3 − ξ)
κ1 − κ2

− κ1 − κ3

κ1 − κ2

L2
z

ρ2

(62)

andv2
φ = L2

z/ρ
2. For an orthogonal frame, the coordinate scale fac-

tor can be found usingh−2
i = ‖∇qi‖2 (cf. hφ = ρ) and the momentum

component bypi = hivi (cf. pφ = ρvφ = Lz). For a separable poten-
tial, p2

i = h2
i v

2
i with v2

i in equation (62) is then a function ofqi alone.
Hence, the orbits in a separable potential are bounded by thecoor-
dinate surfaces with accessibleqi restricted to an interval where
p2

i = h2
i v

2
i ≥ 0 for fixed values of the integrals (if the frequency

in each coordinate direction is independent from one another, the
bound orbit is dense in the bounded region). The transform tothe
action on the other hand is given by an integral quadrature,

2πJi =

∮

dqi

√

h2
i v

2
i (63)

and Jφ = Lz. In practice however, if the Stäckel coordinate in
which the potential separates is known, it is straightforward to pro-
ceed with separation of variables of the Hamilton–Jacobi equation,
which results in the expression for the momentum as a function of
the separation constants. Examples are provided in Appendix B.
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axisymmetric separable potentials 9

APPENDIX A: SEPARABLE POTENTIALS WITH
QUADRATIC INTEGRALS OF MOTION

If the motion of a tracer respects the same number of independent
integrals of motion (that are ‘in involution’) as the degrees of free-
dom (‘Liouville-integrable’), the Liouville–Arnold theorem (see
Arnold 1989, sect. 49) indicates that its (bound and bounded) orbit
is characterized to be a superposition of simple periodic motions
in each degree of freedom. The motion is referred to as condition-
ally periodic (Arnold 1989) or quasi-periodic (Binney & Tremaine
2008), which results in a ‘regular’ orbit. It is thus of greattheoret-
ical importance to discover potentials in three-dimensional space
that admit at least three integrals of motion, in which all orbits
are regular. Of particular interest amongst such are ‘separable’
potentials for which the Hamilton–Jacobi equation (HJE) issolu-
ble through additive separation of variables in a suitably chosen
coordinate (see e.g., Landau & Lifshitz 1976, sect. 48). Orbits in
such separable potentials are characterized by a filled subregion
of the space bounded by the level surfaces of the same coordinate
provided that periods of motion in each degree of freedom arenot
commensurable. Notwithstanding C. G. J. Jacobi’s scepticism4, the
separable potentials and the associated coordinates with which the
Hamilton–Jacobi method is applicable have been completelychar-
acterized at least for natural dynamical systems. Note thata natural
dynamical system is characterized by the Lagrangian of the form
L = T − ψ, whereT is a homogeneous quadratic function of ve-
locities andψ is the potential, which is a scalar field on the space.
Then pi = ∂L /∂q̇i = ∂T/∂q̇i and

∑

i q̇i pi =
∑

i q̇i
∂T/∂q̇i = 2T ,

and so the Hamiltonian is given byH = ∑

i q̇i pi −L = T + ψ.
It was Paul Stäckel (1891, 1893) who had first shown that, if the

coordinates (q1, . . . , qn) are orthogonal (i.e. the metric is diagonal-
ized) such that the line element is given by ds2 =

∑

i h2
i (dqi)2 and

2T =
∑

i h2
i (q̇

i)2 =
∑

i p2
i /h

2
i (wherepi = h2

i q̇i is the conjugate mo-
mentum to the coordinateqi), then the necessary and sufficient con-
dition for the HJE to have a solution whose dependences on differ-
ent coordinates are separated (that is to say, any mixed coordinate
partial derivative vanishes) is that (1) there exists a nonsingular (i.e.
invertible) matrix of functions{G j

i (q
i) } such that∂G j

i /∂qk = 0 for
k , i and

∑

i G j
i /h

2
i = δ

j
1 (whereδ j

i is the Kronecker delta) – which
is equivalent toh2

i = G/C1
i , whereC j

i is the cofactor of the matrix
{G j

i } andG = det{G j
i } =

∑

i G j
i C

j
i is its determinant (known as

the Stäckel determinant) – and (2) the potential in the givencoor-
dinate system is in the form of 2ψ =

∑

i fi(qi)/h2
i , where fi(qi) is

an arbitrary function of the sole coordinate componentqi. This is
collectively known as the Stäckel condition (Goldstein 1980).

The condition (1) does not involve the potential at all. Thatis,
separation of variables of the HJE in an orthogonal coordinate is
possibleonly if the coordinate scale factorshi ’s are given such that
a particular matrix of functions{G j

i (q
i) } exists, irrespective ofψ.

Mildly abusing terminology, we refer to such orthogonal coordi-
nates as the ‘Stäckel coordinates’. Note that the Stäckel coordinate
is equivalent to the coordinate in which the HJE of geodesic mo-
tions (ψ = 0) is additively separable. Somewhat confusingly, the
potential as in the form of the condition (2) is sometime referred

4 „Die Hauptschwierigkeit bei der Integration gegebener Differentialglei-
chungen scheint in der Einführung der richtigen Variablen zu bestehen, zu
deren Auffindung es keine allgemeine Regel giebt. Man muss daher das
umgekehrte Verfahren einschlagen und nach erlangter Kenntnis einer merk-
würdigen Substitution die Probleme aufsuchen, bei welchendieselbe mit
Glück zu brauchen ist.“ (Clebsch 1866, pp.198-199). See Arnold (1989,
p.266) for an English translation.

to be in a separable formrelative to the specified coordinate. By
contrast, the separable potential itself is defined absolutely such
that there exists a Stäckel coordinate in which the potential is ex-
pressible in the separable form. In this paper, to alleviatepossible
confusion, the separable potential in the absolute sense isreferred
to as the ‘Stäckel potential’ whereas the potential is notedto be in
the separable form if it is written down as 2ψ =

∑

i fi(qi)/h2
i using

some functionsfi(qi) and the scale factorshi’s of the orthogonal co-
ordinate system whose line element is ds2 =

∑

i h2
i (dqi)2 (the metric

is diagonalized, andh2
i andh−2

i , respectively, are the diagonal com-
ponents of covariant and contravariant metric coefficients).

The Stäckel condition as given is operational; once{G j
i (q

i) }
is known, it is trivial to solve the HJE via separation of vari-
ables and to show thatα j =

∑

i(p2
i + fi)Hi

j is an integral of mo-

tion, where{Hi
j(q

1, . . . , qn) } is the inverse matrix of{G j
i } (i.e.

Hi
j = C j

i /G). However, it is fairly difficult to verify directly
whether the particular coordinate is ‘Stäckel’ using this defini-
tion. For this purpose, we refer to the insight of Tulio Levi-Civita
(1904) who had realized that the solution of the HJE via separa-
tion of variables is also the solution to the system of overdeter-
mined first-order quasi-linear partial differential equations, namely
∂pi/∂q j = 0 for i , j and ∂pk/∂qk = −(∂kH)/(∂kH), where
H = H(q1, . . . , qn; p1, . . . , pn) is the Hamiltonian, and∂kH =

∂H/∂qk and∂kH = ∂H/∂pk. Thanks to the Frobenius integra-
bility theorem, the compatibility condition on the system –i.e.
(∂/∂qi)(∂p j/∂q j) = (∂/∂q j)(∂p j/∂qi) = 0 for i , j – is the nec-
essary and sufficient condition for the HJE to be solvable via sep-
aration of variables. This is known as the Levi-Civita separability
condition.

In a natural dynamical system, the Levi-Civita separability condi-
tion reduces to

(

n
2

)

quartic even polynomial equations onpi, whose
coefficients on each power ofpi must identically vanish, should the
integrability condition be satisfied. Whilst the zeroth coefficient
becomesgi jψ,iψ, j = 0 (the subscript comma notation for the coor-
dinate partial derivative) fori , j, which is trivial in orthogonal
coordinates, the fourth and second coefficients in an orthogonal co-
ordinate result in the second-order partial differential equations on
the metric coefficients and the potential, namelyS jk(h−2

i ) = 0 and
S jk(ψ) = 0 with j , k, whereS jk( f ) = f, jk + (ln h2

k), j f,k+ (ln h2
j ),k f, j.

Hence, the scale factors of the Stäckel coordinate must be solutions
to S jk(h−2

i ) = 0 for j , k whereas the potential is in the separable
form if it is the solution ofS jk(ψ) = 0 for j , k (NB: S jk depends
on the chosen coordinate) and is ‘Stäckel’ if there exists a Stäckel
coordinate in whichS jk(ψ) = 0 for all pairs j andk with j , k.

An alternative characterization of the Stäckel condition follows
the observation that the integrals of motion of a natural dynami-
cal system resulting from separation of variables of the HJEare
quadratic topi. Consequently, existence of an integral of mo-
tion that is quadratic topi (other than the Hamiltonian) is in fact
necessary for the HJE to be soluble through separation of vari-
ables. In general, the quadratic integral of motion is in theform of
I = Ki j pi p j + ξ (the Einstein summation convention is used in this
paragraph) whereKi j is a symmetric tensor andξ is a scalar field.
Explicit calculations establish thatİ = K(i j;k)q̇iq̇ jq̇k + (ξ,i−2K j

iψ, j)q̇
i

(where the semicolon and parentheses in the subscripts represent
the covariant derivative and the index symmetrization). Hence, if
one defines the vector-valued linear function of a vector (i.e. 2-
tensor) such thatK(a) = eiKi

ja
j for a = aiei, where{ ei } is the

coordinate basis, then existence ofK andξ such thatK(i j;k) = 0 and
∇ξ = 2K(∇ψ) is equivalent toI = K(ṙ) · ṙ+ ξ being an integral, and
also necessary for separation of variables of the HJE. Generalizing

c© 2013 RAS, MNRAS000, 1–13
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the Killing (after Wilhelm Killing; 1847-1923) vector fieldXµ for
which X(µ;ν) = 0, the symmetric tensorKi j such thatK(i j;k) = 0 is
referred to as the Killing 2-tensor. Then, since∇ ∧ ∇ξ = 0 (which
is the same as the Frobenius integrability condition), the condition
of I being an integral is also equivalent to existence of the Killing
2-tensor5 K such that∇ ∧ K(∇ψ) = 0, which also characterizes the
Stäckel potential intrinsically in a coordinate-free formulation.

The integrals due to separation of variables of the HJE in an
orthogonal coordinate have diagonalized quadratic terms in mo-
menta, namelyI = α j =

∑

i(p2
i + fi)Hi

j. Consequently, only such
Killing tensors that are globally diagonalizable in an orthogonal
coordinate are of relevance in the characterization of the Stäckel
coordinate. Note the tensorK is globally diagonalizable in an or-
thogonal coordinate if there exists a pair-wise orthogonalfoliation
of space such that each leaf is normal to one of the eigenvectors
of K at every location.6 In the orthogonal coordinate that diago-
nalizes the Killing tensor such thatK j

i = κiδ
j
i (no summation), the

Killing equationK(i j;k) = 0 results in the system of first-order lin-
ear partial differential equations on the set of eigenvalues, namely
∂κi/∂q j = (κi−κ j)(∂ ln h2

i /∂q j). Then the integrability condition on
existence of suchκi’s – i.e. (∂/∂qk)(∂κi/∂q j) = (∂/∂q j)(∂κi/∂qk) –
reduces to (κ j − κk)h2

iS jk(h−2
i ) = 0 for j , k. Hence, the orthogonal

coordinate is ‘Stäckel’ if there exists a Killing tensor that is diag-
onalizable in the given coordinate and has all distinct eigenvalues
(cf. Eisenhart 1934). Conversely, in the Stäckel coordinate, separa-
tion of variables of the HJE leads ton integrals of motion and thus
there actually exist (n − 1) independent Killing tensors (other than
the metric) that all diagonalize in the same Stäckel coordinate.

This approach to the Stäckel coordinates via the Killing tensor
provides its geometric interpretation. Instead of algebro-analytic
constraints,S jk(h−2

i ) = 0 for j , k, we find that the Stäckel coordi-
nate surfaces must be the integral surfaces of particular differential
systems defined by the Killing tensors. Further developments of the
idea have led to intrinsic (coordinate-free) characterization of sepa-
ration of variables (see Benenti 1980, 1997; Kalnins & Miller 1980,
1981, 1982, 1986). An important result following this (Weinacht
1924; Eisenhart 1934; Kalnins & Miller 1986; Benenti 1997) is
that, in the two or three-dimensional Euclidean (i.e. flat) space, the
only possible Stäckel coordinates are the Jacobi elliptic/ellipsoidal
coordinates (Clebsch 1866, the 26th lecture) and their degenerate
forms7 (Morse & Feshbach 1953) up to rotations and translations.
This follows the fact that the integral surfaces of the Killing tensor
system are confocal quadrics (or degenerate planes).

5 Any integral of motion that is annth polynomial ofpi implies existence
of the Killing n-tensor such thatK(i1...in ;i0) = 0. In particular, existence of
the Killing vector fieldX such thatX · ∇ψ = 0 indicates that the natural
Lagrangian is invariant along the integral curve ofX and there exists an
integral of motion which is a liner combination ofpi (the Noether theorem).
6 This leads to the Pfaffian system. Its integrability condition resulting from
the Frobenius theorem reduces toe ∧ (∇ ∧ e) = 0, which is equivalent to
e · (∇ × e) = 0 in R3, wheree is an eigenvector ofK.
7 They correspond to the elliptic, parabolic, polar, and Cartesian coordi-
nates inR2. In R3, they are the ellipsoidal, elliptic-paraboloidal, conical,
prolate and oblate spheroidal, rotational-parabolic, spherical-polar, elliptic-
cylindrical, parabolic-cylindrical, cylindrical-polar, and Cartesian coordi-
nates. These 11 coordinates are exactly the same in which theHelmholtz
and also the (time-independent) Schrödinger equation are solvable through
multiplicative separation of variables. This is not a coincidence since the
Robertson (1928) condition for separation of variables of the Schrödinger
equation consists of the Stäckel condition plus (

∏

i hi)/G being multiplica-
tively separable whereG is the Stäckel determinant (see also Eisenhart
1934; Morse & Feshbach 1953; Kalnins & Miller 1980).

The equation on the potential∇ ∧ K(∇ψ) = 0, on the other hand
reduces to (κi−κ j)Si j(ψ) = 0 for i , j in the Stäckel coordinate that
diagonalizes the given Killing tensor such thatK j

i = κiδ
j
i . As noted

earlier, the general solution ofSi j(ψ) = 0 is given by the potential
in the separable form 2ψ =

∑

i fi(qi)/h2
i in the particular coordinate

(e.g., Darboux 1901, see also Whittaker 1937; Hietarinta 1987).
Consequently, existence of a quadratic integral of motion that is
globally diagonalizable with all distinct eigenvalues is also the suf-
ficient condition for the potential to be ‘Stäckel’ (and in the sepa-
rable form in the coordinate that diagonalizes the given quadratic
integral) and for the HJE to be soluble via separation of variables
(in the same coordinate that diagonalizes the integral). Italso fol-
lows that the given potential is ‘Stäckel’ if and only if there exists a
non-degenerately diagonalizable (i.e. with all distinct eigenvalues)
Killing 2-tensor such that∇ ∧ K(∇ψ) = 0. This last equation is
also coordinate-independent and can thus specify (the partial dif-
ferential equation for) the Stäckel potential in an arbitrary coor-
dinate once the coordinate components of the Killing tensorare
specified, the idea of which forms the basis for the algorithmic test
for the potential to be ‘Stäckel’ (Marshall & Wojciechowski1988;
Waksjö & Rauch-Wojciechowski 2003).

In astrophysical contexts, the Stäckel potential was first intro-
duced by Eddington (1915), who studied the potentials consistent
with the so-called Schwarzschild ellipsoidal hypothesis,namely
that the local velocity distribution of tracers in equilibrium is in the
form of ellipsoidal Gaussian (i.e. anisotropic Maxwelliandistribu-
tions). However, thanks to the Jeans (1915) theorem, the distribu-
tion is an integral of motion if it is a solution to the collisionless
Boltzmann equation and therefore the ellipsoidal hypothesis in fact
implies existence of an integralQ that is a quadratic function of
velocities. (The converse however is not true as the ellipsoidal hy-
pothesis assumes the specific one-integral distributionf ∝ e−Q.) In
effect, Eddington (1915) had assumed existence of a globally di-
agonalizable Killing tensor and shown that the integrability condi-
tion on the Killing equations implied that the orthogonal coordinate
that diagonalizes the Killing tensor must be characterizedby con-
focal set of quadric coordinate surfaces – which had unbeknownst
been proven earlier by Levi-Civita (1904). Then Eddington (1915)
showed that, in the two- and three-dimensional Euclidean space,
the ellipsoidal hypothesis (existence of a nondegenerate quadratic
integral in actuality) further led to the conclusion that the potential
must be the separable form in the same coordinate that diagonalizes
the Killing tensor, which is a suitably chosen ellipsoidal coordinate
or its degenerate form – and thus the Stäckel potential.

Chandrasekhar (1939) had investigated the dynamics of stel-
lar systems governed by the one-integral distributionf (Q) of a
quadratic integralQ. Although his discussion of velocity ellip-
soids and associated potentials was based on the nominally weaker
assumption than that of Eddington (1915), the crux of the argu-
ment in actuality hinged on existence of a quadratic integral Q.
His approach was essentially the three-dimensional generalization
of that of Bertrand (1857, see also Whittaker 1937, sect. 152). In
terms of the language here so far, he basically obtained 20 sets of
differential equations comprising ten defining the Killing 2-tensor
K(i j;k) = 0, six for the Killing vectorX(i; j) = 0, three corresponding
to the components of∇ξ = 2K(∇ψ) and one forX · ∇ψ = 0. In
Euclidean space, if one adopts a Cartesian coordinate covering the
whole space, the 10 sets of the Killing equations for the 2-tensor
are integrated into quadratic functions of coordinates with 20 pa-
rameters whilst those for the Killing vector into linear functions
with 6 integration constants. By integrating the remainingdifferen-
tial equations on the potential with these explicitly givenKilling
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2-tensor and vector, he was then able to sort out the potentials
consistent with the assumption, the conclusion of which wases-
sentially identical to that of Eddington (1915) (see however Evans
2011, sect. 3).

However, the interest in the Stäckel potentials (then knownas Ed-
dington’s potentials in astrophysical literature) had remained lim-
ited until Lynden-Bell (1962) as they were believed not to bea good
approximation of ‘real’ potential given the noticeable failure of the
ellipsoidal hypothesis, which had soon become clear in the period
following the initial work of Eddington (1915). On the otherhand,
Lynden-Bell (1962) based his work on assumption of existence of
‘local integral’. That is to say, he assumed that there exists a fixed
foliation in space such that the family of potentials given by an
arbitrary function on the foliation all admits integrals ofmotion
similarly through the variation of functions. In natural dynamic
systems, this then led to integrals whose dependence on the mo-
mentum component normal to the foliation leaf is only through the
Hamiltonian. He then showed that this implied that the dependence
of the HJE on the coordinate components tangential to the leaf is
separated off. Consequently, his tabulation of potentials admitting
a ‘local integral’ is equivalent to the list of potentials with which
the HJE is at least partially separable including all the Stäckel po-
tentials (for which the HJE iscompletely separable). In addition, he
also figured that in the given ellipsoidal coordinate, threefree func-
tions fi in the separable potential 2ψ =

∑

i fi(qi)/h2
i can be ‘glued’

together to a single real-valuedC2-function (C3 if one forces the
continuity on the mass density) of one real variable.

This last fact was noted independently by Kuzmin (1956), who
had investigated the mass profile generating the Stäckel potentials
(see also de Zeeuw & van de Ven 2011 for discussion on the con-
tribution by Grigori G. Kuzmin to the subject). Note that thesame
fact implies that the potential along the long-axis of the specified
ellipsoidal (or prolate spheroidal for axially symmetric potentials)
coordinate determines a unique Stäckel potential separable in the
given coordinate – that is,∇ ∧ K(∇ψ) = 0 is uniquely integrated
into the particular solutionψ given the one-dimensional boundary
condition specified along the preferred axis of the given Killing
tensor. Kuzmin (1956) also showed that the Laplacian of separable
potentials along the long axis of the prolate spheroidal (more gener-
ally, ellipsoidal) coordinate was only related to the behaviour of the
potential along the same axis and subsequently the Poisson equa-
tion resulted in a linear second-orderordinary differential equation
for the potential along the same axis with the density along the
same axis as the source term. From these, he was able to derive
the flattened three-dimensional mass profile generating theStäckel
potential separable in the prolate spheroidal coordinate given arbi-
trary nonnegative – which is sufficient for the nonnegativity of the
3D profile (‘the Kuzmin–de Zeeuw theorem’; see also de Zeeuw
1985c) – function for the density along the short axis (whichis ac-
tually the long axis of the coordinate surface). Particularly notable
amongst his models is̺(ρ, z) ∝ (1+ρ2/a2+ z2/b2)−2. In fact, its tri-
axial generalizations (‘the perfect ellipsoid’; see de Zeeuw 1985b)
are the only ellipsoidally stratified density profile without singular-
ity that generate the Stäckel potentials (de Zeeuw & Lynden-Bell
1985).

APPENDIX B: THE HAMILTON–JACOBI EQUATION
AND ACTION–ANGLE COORDINATES

Suppose that the Hamiltonian is given in the form of

H = 1
2

n
∑

i=1

p2
i

h2
i

+ ψ(q1, . . . , qn). (B1a)

Then the Hamilton–Jacobi equation (HJE) is the partial differential
equation for the Hamilton principal functionS (q1, . . . , qn; t),

1
2

∑n
i=1 h−2

i (∂iS )2 + ψ + ∂tS = 0. (B1b)

Since∂tH = 0, we may instead consider the reduced HJE

∑n
i=1 h−2

i (W,i)2 + 2(ψ − E) = 0 (B1c)

by settingS = W(q1, . . . , qn) − Et, whereE is a constant.
Assuming that the chosen orthogonal coordinate satisfies the

Stäckel condition, that is, there exists an invertible (n × n)-matrix
of functions{G j

i (q
i) } such that

n
∑

i=1

G j
i (q

i)

h2
i

=















1 ( j = 1)

0 ( j = 2, . . . , n)
, (B2a)

and that the potential is of the separable form

ψ =

n
∑

i=1

fi(qi)

2h2
i

(B2b)

in the same coordinate, the HJE further reduces to

n
∑

i=1

1

h2
i

















(

∂W
∂qi

)2

+ fi(qi) −
n

∑

j=1

α jG
j
i (q

i)

















= 0, (B2c)

where{α1 = 2E, . . . , αn } are a set ofn constants. Hence, if

wi(qi) =
∫

pi(qi) dqi ; (pi)2 =
∑n

j=1 α jG
j
i (q

i) − fi(qi), (B2d)

thenS =
∑n

i=1wi(qi;αi, . . . , αn) − α1t/2 is the complete solution of
the HJE. The canonical transform given by the generating function
S =

∑n
i=1 wi − Et leaves the transformed Hamiltonian identically

zero, and thus everyαi is conserved. The expression forαi in the
old coordinate is found frompi = ∂iS = w′i ,

α j =
∑n

i=1[ p2
i + fi(qi)] Hi

j(q
1, . . . , qn), (B2e)

where{Hi
j(q

1, . . . , qn) } is the inverse matrix of{G j
i }. Hence,αi is

an isolating integral of motion. They are also in involutions and
therefore the dynamic system is Liouville integrable. The natural
phase-space coordinate for such a system is the action–angle coor-
dinate, in which the bound orbit specified by the level surface of the
full set ofn isolating integrals is equivalent ton-torus embedded in
the 2n-dimensional phase space.

The action variable is formally defined to be

Ji(α1, . . . , αn) =
1

2π

∮

γi

∑n
j=1p j dq j, (B3a)

where{ γ1, . . . , γn } is the set of cycles that forms the basis of the
orbital torus (i.e. the level set of then isolating integrals). If the in-
tegrals are the separation constants of the HJE as in equation (B2e),
we can choose the cycles such that alongγi, only qi varies and all
otherq j ( j , i) are held fixed. The action variable is then given by

c© 2013 RAS, MNRAS000, 1–13
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an integral quadrature,8

Ji =
1

2π

∮

dqi pi =
1
π

∫ qi
max

qi
min

dqi pi(q
i), (B3b)

where the integral is over the intervalqi ∈ [qi
min, q

i
max] in which

p2
i ≥ 0 (eq. B2d). The complete set ofn equations forJi(α1, . . . , αn)

then defines the transformation (α1, . . . , αn)→ (J1, . . . , Jn).
The conjugate set of the angle variables is found using the gener-

ating functionW =
∑n

i=1wi with αi given by the inverse functions
αi = αi(J1, . . . , Jn). That is to say,

ϑi =
∂W
∂Ji
=

n
∑

j,k=1

Ai
j

∂wk

∂α j
, Ai

j =
∂α j

∂Ji
, (B3c)

whereAi
j is the Jacobian matrix element ofαi(J1, . . . , Jn). Strictly

Ai
j ’ is a function of Ji, but with equation (B3b) they can also be

considered as functions ofαi. Then sinceαi(J1, . . . , Jn) is the in-
verse ofJi(α1, . . . , αn), the Jacobian matrix ofJi(α1, . . . , αn) is the
inverse matrix of (Ai

j). That is,Ai
j as a function ofαi may be found

using
∑n

k=1 Ji
kAk

j =
∑n

k=1 Ai
kJ

k
j = δ

i
j, where

J j
i (α1, . . . , αn) =

∂Ji

∂α j
=

1
2π

∮

dqi G j
i (q

i)

2pi(qi)
. (B3d)

In addition, we infer from equation (B2d) that

∂wk

∂α j
=

∫

dqk
G j

k(q
k)

2pk(qk)
, (B3e)

which is a function ofqk and the parameter set{α1, . . . , αn }.
Equation (B3c) therefore provides with us the transfor-
mation (q1, . . . , qn;α1, . . . , αn) → (ϑ1, . . . , ϑn). Finally,
the canonical transformation to the action–angle coordinate
(q1, . . . , qn; p1, . . . , pn) → (ϑ1, . . . , ϑn; J1, . . . , Jn). is then given by
combining equation (B3c) with equations (B2e) and (B3b). Note
that the resulting transformation only involves analytic operations
up to integral quadratures (i.e. simple antiderivatives) and matrix
inversions.

Since the generating function of the canonical transform tothe
action–angle coordinate does not explicitly involve the time, the
Hamiltonian in the action–angle coordinate is simplyH = E =
α1(J1, . . . , Jn)/2, and the Hamilton equations of motion are

J̇i = −
∂H
∂ϑi
= 0, ϑ̇i =

∂H
∂Ji
=

1
2
∂α1

∂Ji
. (B3f)

Hence, the angle variableϑi evolves linearly with time in the con-
stant angular frequencyΩi(J1, . . . , Jn) = Ai

1/2. The frequency as a
function of the orbital torus defined by the integrals (α1, . . . , αn) is
again found by the matrix element of the inverse matrix of (J j

i ) –
for n = 2, 3, this is easily found using the cofactors.

B1 Axisymmetric Stäckel potentials

For any axisymmetric potential, the axial component of the angular
momentumLz = pφ is also the action integral:

Jφ =
1

2π

∮

dφ pφ =
1

2π

∫ 2π

0
dφ Lz = Lz. (B4)

8 Here we have assumed that the motion in theqi direction is basically an
oscillation betweenqi

min andqi
max. Depending on the precise nature of the

actual motion in theqi coordinate, the integral limits and the multiplicative
factor accounting for symmetry must be chosen appropriately instead.

If the potential is separable in the cylindrical polar coordinate,
ψ = f (ρ) + g(z) (eq. 33), thenEz =

1
2v

2
z + g(z) is the independent

integral whilst the momentum is separated as in

p2
ρ = 2

[

E − Ez − f (ρ)
] − ρ−2L2

z ; p2
z = 2

[

Ez − g(z)
]

. (B5)

For the potentialψ = f (r) + r−2g(θ) separable in the spherical
polar coordinate (eq. 32),I3 =

1
2 L2+g(θ) is the third integral. Then

the separated momentum components are (NB.pθ = rvθ)

p2
r = 2

[

E − r−2I3 − f (r)
]

; p2
θ = 2

[

I3 − g(θ)
] − L2

z csc2θ (B6)

In the rotational parabolic coordinate (σ, τ, φ) defined such that
σ2 = r + z andτ2 = r − z, the general separable potential is in the
form of equation (48) with the third integral given byI3 = k̂ · (u ×
L) + ξ with ξ in equation (49). With the coordinate scale factors
h2
σ = h2

τ = σ
2 + τ2 = 2r, we then find

p2
σ = 2rv2

σ = 2[σ2E − I3 − f̃ (σ)] − σ−2L2
z ;

p2
τ = 2rv2

τ = 2[τ2E + I3 − g̃(τ)] − τ−2L2
z .

(B7)

As for the case that the potential is separable in a spheroidal co-
ordinate, we need to define a specific coordinate system. Herewe
consider the coordinate variables given by two solutionsχ of

χ−1ρ2 + (χ + β)−1z2 = 1, (B8)

which we setλ ≥ µ. The inverse transform (λ, µ)→ (ρ2, z2) is given
by equation (28a) withα = 0 whilst the coordinate scale factors are

h2
λ =

λ − µ
4λ(λ + β)

; h2
µ =

µ − λ
4µ(µ + β)

. (B9)

This is the prolate coordinate ifβ = a2 > 0 for whichλ ≥ 0 ≥ µ ≥
−β, and the oblate coordinate if−β = a2 > 0 for whichλ ≥ −β ≥
µ ≥ 0. The general separable potential is then given by (eq. 27)

ψ =
f (λ) − f (µ)
λ − µ (B10)

with the corresponding third integral in the form of

I3 =
L2 + βv2

z

2
+

(µ + β) f (λ) − (λ + β) f (µ)
λ − µ . (B11)

Finally, the momentum component as a function of its conjugate
coordinate is found to be

4λ(λ + β)p2
λ = (λ − µ)v2

λ = 2
[

(λ + β)E −I3− f (λ)
] − βλ−1L2

z ;

4µ(µ + β)p2
µ = (µ − λ)v2

µ = 2
[

(µ + β)E −I3− f (µ)
] − βµ−1L2

z .
(B12)

The action integralJi corresponding to the coordinateqi can now
be found using equation (B3b), which then results in the transfor-
mationJ1(E, I3, Lz) andJ2(E, I3, Lz). Next sincepφ = Lz = Jφ, we
havewφ(φ) = pφφ = Jφφ, and so the generating function is written
down asW = w1(q1; E, I3, Lz)+w2(q2; E, I3, Lz)+ Jφφ with wi given
by equation (B2d). The angle variables are then found using

ϑ1 =
1

D1

(

∂J2

∂I3

∂w̃

∂E
− ∂J2

∂E
∂w̃

∂I3

)

;

ϑ2 =
1

D1

(

∂J1

∂E
∂w̃

∂I3
− ∂J1

∂I3

∂w̃

∂E

)

;

ϑφ = φ +
1

D1

(

D2
∂w̃

∂E
+ D3

∂w̃

∂I3

)

+
∂w̃

∂Lz
,

(B13)

wherew̃(q1, q2; E, I3, Lz) = w1 + w2 and

D1 =
∂J1

∂E
∂J2

∂I3
− ∂J2

∂E
∂J1

∂I3
,

D2 =
∂J1

∂I3

∂J2

∂Lz
− ∂J2

∂I3

∂J1

∂Lz
,

D3 =
∂J1

∂Lz

∂J2

∂E
− ∂J2

∂Lz

∂J1

∂E
.

(B14)
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GivenH = E(J1, J2, Jφ), the angular frequencyΩi(E, I3, Lz) of the
evolution forϑi is given by

Ω1 = ϑ̇1 =
∂H
∂J1
=

1
D1

∂J2

∂I3
=

(

∂J1

∂E
− ∂J2

∂E
∂J1/∂I3

∂J2/∂I3

)−1

,

Ω2 = ϑ̇2 =
∂H
∂J2
= − 1

D1

∂J1

∂I3
=

(

∂J2

∂E
− ∂J1

∂E
∂J2/∂I3

∂J1/∂I3

)−1

,

Ωφ = ϑ̇φ =
∂H
∂Jφ
=

D2

D1
.

(B15)
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