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ABSTRACT

An axially symmetric potentiab(o,2) = (r,0) is completely separable if the ratéo: t is
constant. Here = r9,0,(r%y) andt = 9,0. If B = s/t, then the potential admits an
integral of the form 2 = L2 + gv? + 2¢, where¢ is some function of positions determined
by the potentialy. More generally, an axially symmetric potential respelststhird axisym-
metric integral of motion — in addition to the classical mtals of the Hamiltonian and the
axial component of the angular momentum — if there existtheal constanta, b, ¢ (not all
simultaneously zer@? + b? + ¢ # 0) such thass + bp + ct = 0, where)) = r~19,,0,(ry) and
(o, 7) is the parabolic coordinate in the meridional plane sueldf = r + zandr?> =r -z
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1 INTRODUCTION

Numerical orbit integrations in realistic potentials icalie that reg-
ular orbits are the norms rather than the exceptions inglspics.

However, only known exact integrals of motion besides ttuseto

the Noether theorem are the separation constants of theltdami
Jacobi equation, which are limited to the class of potentiabwn

as the Stackel potential. None the less, behaviours ofaegtiits

of most astrophysical interests appear to be well appraeichby

those found in the Stackel potential (de Zeeuw 1985a). Hante
derstanding the Stéckel potential is not only the first stegott out
regular orbits but also of practical importance.

Unfortunately, the Stackel potential is usually defined ¢otlve
potential separable in an ellipsoidal (or one of its degateelim-
its) coordinate, which hinders easy understanding and wbate
obscures physical meaning. Lynden-Bgll (2003) on the diaed
presented an elementary derivation of the third integrahofion
in axially symmetric potentials using only vector calculublis
idea is based on the realization that the kinetic part of atrivial
guadratic integral of motion is the scalar product of theLdaigmo-
menta about two foci. The angular momentum with respeztt@a
on the symmetry axis is given Hy, = (r — ak) x v = L — a(k x v),
wherek is the unit vector in the direction of the symmetry axis.
Hence, the kinetic part considered by him is equivalemttd._, =
L2-a2(12-12), wherel = [[L||, v = |jvl| andv, = k-v. However? is
the kinetic part of the Hamiltoniar{ = %vz + ¢ and the assump-
tion is therefore equivalent to existence of an integralkimetic
part of which is given by.2 + a%2.

Here we explore the condition under which there exists sich a
integral of motion with the kinetic part df?> + gv2. This approach
is conceptually advantageous as imaginary magnitudesgplieced
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by negative constants, and thus unifies the separabilitgtim joro-
late and oblate spheroidal coordinates into variation afigis real
parameter. More importantly, thisfards us to express the neces-
sary condition for axially symmetric potentials to admie tthird
integralwithout prior knowledge on the constant itself.

In the next section (Seéil 2), we prove that, given the ax&l-
metric potentialy(p,2) = w(r,0) where p,¢,2) and ¢, 6, ¢) are
cylindrical and spherical polar coordinates, there exastintegral
of motion with its kinetic part given by.2 + gv2 if (and only if)
the ratio of two mixed partial derivatives;*d,9,(r%y) : 9,04/,
is constant (which is the same g An example, namely the
Kuzmin (1953) disc potential, is provided in Sdct. 3. In SEkt
it is shown that this encompasses the Stackel potentiatzsisle
in either prolate or oblate spheroidal coordinate as wel®r-
ical or cylindrical polar coordinate (the location of theocdinate
origin is assumed to be known). Discussion on generalizatlo
lowing unspecified origin (on the symmetry axis) and sepérgab
in the rotational parabolic coordinate follows in Sédt. B piar-
ticular, we find that, by considering the kinetic part of thoenh
al? — 2b(w x L) - k + &2, an axially symmetric potentiat admits
the third integral if and only if the null space of three mixeat-
tial derivatives including the earlier two and the thirdtd,.0,(ry),
is non-trivial (i.e. there exists a constant-fia@ent non-trivial lin-
ear combination of the three that is identically zero). Herer)
is the parabolic coordinate in the meridional plane. We kate
in Sect[® whilst the Appendices provide an overview of thelh
subject concerning separable (Stackel) potentials andrgtiain-
tegrals, which puts the present study on proper wider céntex

The treatment here is deliberately elementary, limiteddcter
calculus and linear algebra whenever possible, except ¢éh &
and the Appendices. The elliptic and parabolic coordinatesn-
troduced naturally via a modern geometric approach witlpoet
sumption on any prior knowledge. By contrast, the Apperglice
which are independent from the main body, introduce moréisep
ticated physical and mathematical ideas throughout.
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2 PROOF

Consider a conservative dynamic system governed by Nesvton’

laws of motion. The motion of a unit-mass tracer is deterhine
by
fr=v;

v=-Vy, 1)

wherey is the potential, which is a scalar function of positions.
The evolution of the angular momentum= r x v is then given
by L =ixo+rxd=—rxVy. Thus, forL2 = |[L|2=L-L,

IDL2=L-L=(oxr)-(rxVy)=v-[rx(rx Vy)], )

whereD; = d/dt. Lete? = Vgqanddy = 0/9q be the recipro-
cal frame vector and the partialfférential operator. TheN =
€9, + &9, + €9, in the spherical polar coordinate, ¢, ¢) whilst
{& =€,8 =rd, 8, =rsinge’ } constitutes the corresponding set
of orthonormal frame vectors. ThéhL? = —2v - s, where

S=—rx(rxVy) =r2Vy —r(r-vy)

3
=r2(Vy — € 0,¢) = (€9y + €0,)(r?y). )
Here we have used=r& =r€ and€ -€ =§& -& = 1.
Meanwhilev, = =9 and thus
1Dw? = v, = —v- kY, 4)

wherek is the fixed unit vector in the-direction so that, = v - k.
The set{ &, = & sind + & cosh, &,k } consists in the orthonormal
frame vectors for the cylindrical polar coordinate= r sing, ¢,z =
rcosg) whilst its reciprocal frame vector set is composed of
{¢=8,¢ =&/p.€=k}and soV = &0, + k0, + p'&0,.
Suppose @ = L2+ fv? with a constang. ThenQ = —v-u, where
u = &0,(r?y) + €0,(r’y) + Bk 0. (5)
If u= V& -V x Ais the Helmholtz decomposition of the vector
field u in equation[(b), the®@ +v-Vé =v- (VX A) = (v x V) - A.
Consequently, if1 is curl free, therl = Q + ¢ is conserved along
the motion of the tracer. Sindéx €1 = V x Vq = 0, we have
Vxu=¢ xed0(r2y) + € x ed,0,(r2w) - Bk x V()
_a |12 %] &0y 8
T oroe p0z| p  or p 0z’
where the partial derivatives with respect todf and p, 2) are, re-

spectively, in the spherical and cylindrical polar cooedes and
Yy = 04y, Which is consistently defined in both coordinates pro-

(6)

vided that thez-axis coincides. Hence, if; = 0 and
arae(f2¢)

e A S 4 7
b= oo 7)
is constant, then there exists a scalar functisach that
2A=L2+p2+2¢ 8)
is an integral of motion and

5¢/
V. — — 9

E=r187, y +Bk az 9)

Here the partial derlvatlves are done with holding the civats
variables in the subscripts fixed.

3 EXAMPLE
Consider the Kuzmin disc¢ (Kuzmin 1953, 1956) potential:

W= —g, b= vp2+ (a+|2)2 = r2 + 2ar|cosd| + a2, (10)

which is generated by an infinitesimally thin disc with theface
densityX(p) « (a2 + p?)~%/2 (Toomré 1963). It is easy to find
0%y 3k C9%(ry) 3a%k ,
apaz - ( +12); o0 - ——r (a+r|cosd|) sing, (11)
and thus the ratio of equatidn] (7) is const#@; a2. Therefore, the
potential of equatiorf (10) admits an integral that is qutcita the
velocities (e.gl, de Zeeliw 1985b) in the form of equatidn (8)
The functioné is a solution of the partial dierential equations
resulting from equatior{9). Using, = z&, — pk andd, = 20, -
p0,, equation[(P) for equatiof (IL0) with= a® reduces to

(3 zzza_éb Za¢ _akolZ,

op op 0z b3 ' (12)
8 o 5 a_w _ a_w zaK, ,

3, =@+ % 7 bg[P +a(a+|2)]

in the cylindrical polar coordinate. Note that the compiéitibcon-
dition 0,(0,¢) = 0,(0;€) is satisfied (i.e. ed.]6 being zero), and
so the solutiort(p, 2) exists. Let us next suppose that the integral
curve of constanf is parametrized bg, which then implies

d _0fdo 0&dz
dsg—'[p(s),z(s)] T 9pds dzds
Hence, the tangential slope of the constantirve is given by
G _p(9_ 3% _p +a(a+|21)
ra pz

(13a)

dz ~ z(9 (13b)

which is a first-order ordinary fierential equation op(2). Here
we have useth? = 2 for any realz. This is integrated through

}E(p_): pd _p°_aa+id),
2dz\ 2 2dz 2B B (14a)
P & a_c (@+ig?
27 22 |4 2 22

wherec’= (c — 1)/2 is an integration constant. Here the last is the

implicit equation of the integral curve. That is to say,
2+(a+2)? b?

F(p, Z) = p(Z—Z) = ? =C

coincides with the curve of constagitand thus there exists a real

function f: R — R such that(p,2) = f[F(p, 2)], which is found

usingd,&(p, 2) = f'[F(p, 2)] 9,F(p, 2). In other words,

(14b)

ey Of Ak ak(Z\7 ek
rF = 0,F 20 ~ 2 (b2) 2R3 (15)
Finally, the antiderivative results in
ak  akZ
&, = f(F) = Fiz = (16)

.
The integration constant here is immaterial for our purpase so
set to zero. It is a straightforward task to verify that etqpra(g)
with & given by equation[(16) is indeed a constant of motion for a
particle moving under the potential of equatibnl(10).

Similarly, if we consider the potential-density profile givby

__k . YWw_k_ a _
JoraZ+z2 4G 4G p[(p +a)? + 2%
then we find that the ratio in equatidd (7) is also conganat—a’ <
0 (but negative unlike the potential of éqJ] 10). Therefonés po-
tential too admits a quadratic third integral of the form gfiation

(8) with 8 = —a?. The corresponding functiahis found similarly,
namely

ka(a + p)

T JprariZ

¥ == (17

(18)
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Figure 1.yz-plane cross-section of prolate spheroidal coordinatiases.

4 SEPARABLE POTENTIAL
4.1 Prolate spheroidal coordinates

Let us consider the quadratic form offcf.|Lynden-Bell 2003),
Qa(®) = (r+ x ) - (r- x v), (19a)

wherer, = r + ak. Thenr, xv = L + af, wheref = k x v, and so
Qa(v) = L2—a22. Yet? = ||£|2 = (k-k)(v-v) - (k-v)? = 1?— 12, and
thusQa(v) is the kinetic part of an integral of motioh= 2(1 —a2H)
wherel is given by equatior {7) with a positive constgnt a® > 0.

The quadratic formQ,(v) is useful in finding its diagonalizing
frame (in which kinetic parts of and i also diagonalize). First
note

Qav) = [(rs xv) x r5] -0, (19b)
which further implieQ,(v) = v - Ka(v) with
2Ka() = (ry X o) X r_+ (r- xv) X ry, (20)

which is a self-adjoint linear function of(i.e. a symmetric tensor).
If {&,8&,8&}is the set of its orthonormal eigenvectors ani$ the
eigenvalue associated wighsuch thatk,(&) = «&, thenK,(v) =
Y2 k& andQa(v) = X2, «v?, wherey = & - v is the velocity
component projected on ®. In other wordsQ, diagonalizes in
the frame consisting of eigenvectorskf.

These eigenvectors are found by observing

2Kq(rs) = (F X 1e) X My = (T - 1) — rirg;

F 3 - (21a)
2Kq(Fe) = (ry - ro)fe —ror_fs,
wherer, = ||ry|| = \/fz Tz andry = r./r.. Hence,
2Ka(fy ) = (ry - r-Frr)(Fy £ 1), (21b)

that is,r; + f_ is the two of (orthogonal but not necessarily normal-
ized) eigenvectors oK,. The remaining eigenvector &, which

is, up to signs, the only unit vector orthogonal to the firso.tw
The associated eigenvalue is found by direct calculatioasely,
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Ka(&) = (r2 —a?)&,. It follows that if v, is the velocity component
in the direction ofr; + f_, then the diagonalize@.(v) is given by

2Qa) = (1 —m)v? + (I + m)v? + 2 uf,, (22)
wherem=r,r_andl =r, -r_ =r2 - a2
In order to interpret these eigenvectors geometricallynote

re=r+ak=p8 +(z+ak r2=p’+(z+a)?

Vr2 =20’ + 2(z+ @) = 2ry, Vr2 =2r.(Vr.); (23)
SoFe=ra/re =Vr,.

Hencer; + f_ is normal to the surface definedA by a constant
value ofr, = r_, respectively. Since. = ||r + ak]| is the re-

spective distance to the poimt= Fa on thez-axis, the constant
sum defines a confocal set of prolate spheroids whilst the con
stant diference does that of circular hyperboloids of two sheets —
see Fig[lL. Together with the meridional planes, they cursta
pair-wise orthogonal foliation of the three-dimensionaickdean
space R®). Any set of monotonic dferentiable functions on each
leaf in the family then defines an orthogonal coordinate inctvh
Q, diagonalizes. Within arbitrary scalings, this coordinsgstem
corresponds to the prolate spheroidal coordinate with dleedn
(% y,2 = (0,0,«a). An intuitive choice for the meridional coor-
dinate variables is{(n) = (ry +r_,r, —r_), that is, the sum of
and the diference between the distances to two foci. Hgt2
andn/2 are also the semimajor axes of the meridional ellipse and
hyperbola, and so each essentially labels the particulzndotate
surface. More common choice however is eithen(¢), where
(£,n) = (2acoshy, 2acosy) (e.g., Kent & de Zeeuw 1991; Binney
2012) or @, u, ¢), where ¢2,17%) = [4(1+ 82+ a), 4(u+ a° + )] with
a constantr (e.g./Dejonghe & de Zeeuiw 1988; Santers 2012).
The potential admitting the integriis characterized in the same
coordinate system by considering the vector field,

2Ka(Vy) = —[rye x (r- x V) + r_ x (ry x Vy)]. (24a)
Sincer, x Vi = &,(dg¢lr + ad,yl,), we find (cf. eq[D)
Ka(Vy) = ré&doyl: — a?8,0,4l, = V(£ - a%y), (24b)

and soK,(Vy) is curl free. For the meridional coordinatg §) =
(ry +r_,r. —r_.), equation[(2B) indicates thav{,Vry) = (f, +
f_,fy — f_)andV = (f, + f_)9, + (fy — F_)3, + €°0,. Defining
D, = 9, + 0, and also assumingy, = 0, we then have
foxV=FxF_D_., f_xV=F%xFD,;

e X (rz X Vip) = 1y X (rz X f2)D.(¥) = (Mfz = 1F2) D= ();
Ka(Vy) = [f+ (1D, —mD_) + f_ (ID- — mD,)] ¥, (25)
where agairm = r_r_andl = r, - r_ = r? — a. Consequently

V x Ka(Vy) = 2808,(D? — DY) (my), (26)

provided thatd,0, = 0,0,. Calculations ease usirg.(r.) = 1
and?D-(r.) = 0, which follows 2, = ¢ +7. In addition,D.(l) =r.
from 2 +n% = 2(r2 +r2) = 4(r2 + a®) and sd = (r2 +r?)/2 - 2a°.
ThusV x K,(Vy) = 0 is equivalent to

_ ,9%(my)
(D} - D2) (my) = 4= Zon

wheref andg are arbitrary functions of respective argument and
m=r.r_=(-n)/4=21-p
= a?(costf v — cog v) = a(sintf v + sirf v)

_o :H/,:f@);-‘/(”), (27a)

(27b)
with (v,v) and @,u) as defined earlier. Hence, an axially sym-

metric potential with the ratio in equationl (7) being a p@siton-
stantg = @ > 0 is the Stackel potential (e.q., Lynden-Rell 1962;
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de Zeeuw 1985c¢; Evans & Lynden-Bell 1989) separable in the pr
late spheroidal coordinate with the foci locatedor +a on the
symmetry axis.

The opposite implication, that any Stackel potential seipiarin a
prolate spheroidal coordinate results in a positive cani$ta equa-
tion (@), is trivial from its transformations back to the inydrical
and spherical polar coordinates. For instance, with thedioate
transform @, 1) — (0%, 2) (see e.gl, Lynden-Bell 1962),

o Wra)uta) o (@+Bu+p)
= a—-p - B—a

the diferential equation in equatiop [27) transforms to

Pl(A-myl % _ A-p
oy ( 36W)
ki

010u ou 04 00~ 4(B-a)
10 10 pPrP-Z+B—-a %y
x [?a—z(f 3 F ) T | @)
in the cylindrical polar coordinate. We furthermore findttha
13( sa_w)_ ii(zsa_w)_/ﬂ %y
P2 op\ )T Z202\"9z2) T " pz dpoz
_(_1 o A YAy -ka_kff)
- (p’<23‘k op * plrkzzk az)(p z op Pz 0z/ (292)
wherek is any fixed real number. However, the transformation to

the spherical polar coordinatg = sing o, + r-lcos# 9, ando, =
cost 9, — r~1sing 9, indicates that

12,1 2 1 d
p*BKdp  plk2Kdz  3ginttkgcogky or’

0 0 0
kK — _ pttk2*— = r25infgcogko—.
pe 5 F oz 06

. (28a)

s

+(-p

(29b)

So the Stéckel potential separable in a prolate sphercidatimate

satisfies the dierential equation (cf. Sanders 2012, eq. 9)

PlA-pmy] _A-p s _ lﬂ(rza_‘”)
040y 4p75 | 0p0z ror\ 06

wheres = 8 — a, which is a positive constant.

0,

(30)

4.2 Oblate spheroidal coordinates

If 8 = —a? < 0 in equation[{l) is a negative constant, the integral of
motion | in equation[(B) may be written down to bé 2 Qa(v) +
a(8, - v)? + £(r) introducing another quadratic form:

Qa(v) = (ds X 0) - (G- X V), (1)
whereqg, = r + ag,. Essentially verbatim calculations as in the
preceding section establish ti@i(v) diagonalizes in the frame de-
fined by{ §, + §-,&,}, whered; = q./||g.ll. So does the kinetic
part ofl sinceuf, trivially diagonalizes in the same frame.

The meridional cross-section of the coordinate surfacésete
by this frame set is basically the same as before except édRth
andz-axes switched (see again Hig. 1). That is to say, the symme-
try axis now lies along the minor axis of the ellipse. Thesailte
in the coordinate surfaces being the confocal oblate spieend
circular hyperboloids of one sheet whilst the resultingrdomate
system is identified with the oblate spheroidal coordinaté the
meridional foci on the mid-plane poiflR = (x)a. Note that the
derivation of equatior[{27) in the preceding section coersidnly
the two-dimensional coordinates restricted to the meniiplane.
Therefore, the same calculations (with the— q. replacement)
can be used to show that the axially symmetric potentialrdsatlts
in a negative constarit = —a? in equation[{F) is also the Stéckel
potential but separable in an oblate spheroidal coordinate

4.3 Degenerate cases

If 9;:94(r?¥) = 0 0rd,d,y = 0, equation[{7) is also considered con-
stant. In fact, this indicates that the axially symmetritgmtial is of
the separable form in the spherical or cylindrical polarrdotate,

w="fr)+r%g06); (32
¥ = f(p) +9(2). (33)

Given arbitrary functiond andg, the third integrals besides the
energy,H, and the axial angular momentum componént,are,
3L2 + g(h) and 302 + ¢(2), respectively. These are consistent
with equations[{B) and19), either settigg= 0 or considering
lims_e 8711, With equation[(3B), the-motion decouples and the
third integral is basically the corresponding one-dimenal en-
ergy. The third integral for equatioh {32) on the other hands-
sentially the Hamiltonian of the angular motion projecttahg the
radial direction on to the unit sphere. df= 0 in either case, the
guadratic integral is simply the square of momentum, narhedy
v;. Note that equatior (32) then reduces to spherically symmet
ric potentials and is actually superintegrable sihaeounts as two
additional integrals,l(, L,).

If both 8,9(r%y) = 0 andd,d,y = O, the potential is completely
specified. That is to say, the general solution is then giyen b

5r59(f2¢/) =0
9,04 =0

—

—

W =Kor? + ko2 + Koz 2 + ks, (34)

which involves constants but not arbitrary functions. Theipular
example includes the harmonic potentigl= kor?). This potential
is separable in both the spherical and cylindrical polardioates
as well as any prolate or oblate spheroidal coordinates avii
trary parametea (formally 8 = 0/0 is an indeterminate constant).
Dynamics in the potential of equatiopn_{34) is not only supieri
grable (i.e. the orbit projected on to the meridional plasedmes
a closed curve) but also completely soluble in a closed fosimgu
only elementary functions. K; = 0, the potential is further sepa-
rable in the Cartesian coordinate and so maximally supsgiable
(i.e. the orbits are thus truly periodic).

5 SEPARABILITY WITH AN UNSPECIFIED ORIGIN

The discussion so far has implicitly assumed that the coatdi
origin of the frame about which the angular momentum is ddfine
is known a priori. Relaxing this restriction is equivalemttlowing
the coordinate origin to be an arbitrary point on the symynatis.
The angular momentum with respect to the paint « on the
symmetry axis is given by, = (r — aﬂg) xv=L-af,wherelL is
the angular momentum with respectze: 0 and¢ = k x v. Then

L2 = L2 20w+ %, wherew = £-L = (vx L)-kand(? = v? - 2.
From equation{1)f = —k x Vi and so

iD=t =(xk)-(kxVy)=v-[kx kxVy),
w=b-L+e-L=@xr)-(kxVy)+@xk)-(rxVy
=v-[rx(kx Vy)+kx(rxvy).

(35a)

(35b)

Hence,D;L2 = —2v - (s— ah + a?k), wheresis as in equatior{3),
S=—rx(rxVy) =r3(Vy — €d,y), (36a)
and also introduced are the vector fields
h=—[rx (kx Vy) +k x (r x Vy)],

[rx( ) ( )] (36b)

k=—kx (kxVy)=Vy-kouy.
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Following a similar argument as in Selct. 2, we conclude fiat,
there exist real constanash, ¢ such that (NBV x Vy = 0)

avxs—-bVxh-cVxk=0 @ +b*+c*#0), (37)

then there exists the scalar functi®mwhich is the solution of

Vé = as— bh - ck, (38)
and therefore the potential admits an integral of motion,

2l = al? - 2bw — cf? + 2¢, (39a)
or equivalently

21 = 2(1 + cH) = al.? - 2bw + Cv? + 2(& + ). (39b)

If a # 0, we can find an integral with the kinetic part given by
2Q. = L2+ 802, namelya | +H = a i+ a®H = Qu+a ¢+ By,
wherea = b/aandg = o2 + ¢/a. This indicates that, depending on
B, the potential is separable in the prolate spheroidat (0), the
spherical polarg = 0) or the oblate spheroidab (< 0) coordinate
with the origin displaced ta = « on the symmetry axis.

For an axisymmetric systend{ = 0),

s= 0,(r2y), s = 1719, 04(r2y);
k = €0,y, t=0,0,u.

However, the vector fiel@ x h = &b, whilst still parallel to€,
results in rather complicated expressions, € 0,y & yy = 0g¢)

V x s= &5, (40)
V x k=8t

b = p(0F — 02 + 30, + 220,0,
=1 SiNG 0%y + 2(SiNG + coSO Dy, + I (COSH — SiNG Dy
sind (ray,) 1 desirtd) 2 cosd d3(r3y)
ST T or  rside 08 T 1z orow

in the cylindrical and spherical polar coordinates (NB: shaplest
coordinate expression is obtained with the rotational lpalia co-
ordinate as shall be shown). The condition in equafioh (87 ah
axisymmetric potential is then equivalent to three funuie, b, t
being linearly dependent. Here the linear dependence Sdened
within the infinite-dimensional functional space, not ie gense of
the vector field on the three-dimensional configuration spdthe
algebraic necessary (but notfBcient) condition is for all the gen-
eralized WronskiangW(s, b, f) } to identically vanish and also

(41)

s 5} t
815 alb alf = 0, (42)
825 azb azf

whered; = 0/9x and , x;) represents any coordinate on the
meridional plane — e.g.p(2) or (r, ).

5.1 Rotational parabolic coordinates

If p/t = 2y is constant, then Os + 1-§ — 2yt = 0 and so

l=w-yl+&  (VE=h-2yk) (43)
is an integral of motion. Here the kinetic part is given by
w-yl=t-(L-yb)=£-(r,xv) =v-P,(0), (44)
wherer, = r — yk and

2P,(v) = —[r, x (k x v) + k x (1, x v)] (45)
is a self-adjoint linear function af. Next we find

2P,(r)) = -1, x (kxr,)=(r,-B)r, - r’k, (45a)

2P, (k) = -k x (r, xk) = (r, - )k -r,,
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wherer, = ||r,|| is the distance tox y,2) = (0,0, y). Then
2P, (F, + k) = (r, - &) F, -1,k [(r,-B)k-r, )]

A - (46b)
=(ry - k¥r,)(f, +k),
wherer, = r,/r,. Thatis,r; + k is the two of eigenvectors of
P,. Here we noter,” = Vr, (cf. eq.[28) whilstvz = k. Hence,
two eigenvectors are, respectively, normal to the surfdeised
by constant values af, = r, + z> 0. The geometry of conic sec-
tions indicates that the meridional cross-sections ofdlsesfaces
are confocal parabolae with the focuszat y on the symmetry
axis (which is also the axis of symmetry of all parabolae) el
directrix given by the horizontal line af= +c. (see FiglR). These
eigenvectors thus define a pair of orthogonal foliationseiimg of
the set of paraboloids of revolution. They, together with tinerid-
ional planes, constitute the complete set of coordinatiases of
the rotational parabolic (or circular paraboloidal) cdoede with
the origin at & y,2) = (0,0,vy). The standard choice for the scal-
ing functions of the coordinate variables is given by, ¢), where
o?=r1,+z andr® =1, -z withz, = z—y andr? = p* + Z.
The inverse transformation is then= ot and Z, = o2 - 7°
(and 2, = o2 + 7°). However, alternative choices of coordinate
variables such that'(n) = (02, 72) (e.g./,Landau & Lifshilz 1976;
Sridhar & Touma 1997, who used= —72) are not uncommon.

The condition)/t = 2y may be expressed in the parabolic coordi-
nate via explicit coordinate transformations, but utiigthe tensor
P, simplifies calculations. First we havePAVy) = h — 2yKk,
and so ¥ x P,(Vy) = &(h — 2yf). Hence,h = 2yt is equiv-
alent to P,(Vy) being curl free. Equatior_(4ba) together with
V = ,d;, + k3, +€d, then indicates (NBr, - k = z,)

2P,(Vy) = (z,f, - 1,000 v + (k- 1,)0, ¢

A (47a)
=fy(z,0r, — 1,0, )¢ —k(,0r, — 2,0, ).
Next using the identitW x (av) = (Va) x v + a(V x v),
2VxP,(Vy)
=kx 7,00, (2,0, —1,0,) +0:,(r,0r, —2,0,)l¢  (47b)

=108 (arzy - ai)(wﬂ) = r;lédb 05-0:(ry¥),

whered, andd. are the coordinate partial derivative with respect
to (o, 7) = (\, ¥ 2, \T, — 2,). Alsoused ar& x i, = Vxk =0
andr, =r,f, = p&, + zk, which results im k x f, = pkx &, = p&;.
Finally, the general solution & x P,(Vy) = 0 is then given by

y- f(ry+2)+ 90y -2) _ f(0) +3()

r o2+ 12

) (48)
Y
wheref(x) = 2f(x) andg(x) = 2g(x?). This is simply any poten-
tial separable in the rotational parabolic coordinate it origin
at (x,y,2) = (0,0, y) (e.g., Sridhar & Toumia 1997). In other words,
h/t = 2y is constant if and only i/ is the Stackel potential separa-
ble in a rotational parabolic coordinate with the origindted at a
point on the symmetry axiz & v in particular). The resulting in-
tegral is in the form of = £-L, +¢&, where¢ is found by integrating
Vé = 2P, (Vy). In particular (here, =r, +z,),

¢ g(c) —cf(c,)  o%(r) - 2f(0)
ry B o2+ 12 )

&= (49)

If h = 0, thenp/t = 0. Consequently, the potential with= 0 is
separable in the rotational parabolic coordinate with tierdinate
origin at (X, ¥, 2) = (0,0, 0). In addition, this also implies that given

the parabolic coordinater(r, ¢) with y = 0, namelyo? = r + zand
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Figure 2. yz-plane cross-section of rotational parabolic coordinatéases.

72 =1 — z, the field} is expressible to be

1 (e?+ 7yl
o2+ 12 000t ’
in the same coordinate — nobe= r~2p(32 — 32)(ry) in the non-

orthogonal skew coordinater(¢, z), which may also be useful in
some situations.

h=8&-[2V x Po(Vy)] = (50)

5.2 Superintegrable cases

Linear algebra dictates that if three functians, t are linearly de-
pendent, the dimension of the linear space spanned by the sam
three (i.e. the rank) is less than three. Moreover, if th& iamne,
then there exist two independent combinatioad(c) that result
in equation [(3]), which implies existence of two additioirale-
pendent integrals of motion. In other words, the potensiatiper-
integrable and thus separable in at least twiedent axisymmetric
Stackel coordinates if the rank of the ¢stb, t} is one (or zero).
The rank of{s,D,t} is one if all three are constant (possibly
zero) multiples of a common function. The superintegralde p
tential witht # O is separable in the spheroidal or spherical coor-
dinate with the origin atx, y, 2) = (0, 0, @) with an arbitrarya and
B =0a?=2ya+f = (a-y)? -+, where §,2y) = (s/1.b/D).
As before, thgg > 0,8 < 0, andB = 0 cases correspond to the sep-
arability in the prolate and oblate spheroidal, and sphépolar
coordinates, respectively. As — oo, the coordinate tends to the
rotational parabolic coordinate with the origin &4, z) = (0,0, 7y),
in which the potential is also separable. tlf= 0 on the other
hand, the potential is separable in the cylindrical polaordb
nate. In addition, ifs/h = @ () # O) is also constant, then
s —alh — ¢- 0= 0 with an arbitraryc, and so the potential is further
separable in any spheroidal and spherical coordinate Wwétoti-
gin at (x,¥,2) = (0,0, @), which basically corresponds to equation
(34) with a displaced origin. The last remaining possipitif the
superintegrable potential is thye= t = 0 case, which is discussed
shortly.

As in thes = t = 0 case (ed_34), degenerate superintegrable
cases that = h = 0 andh = t = 0 also completely specify the
axisymmetric potentials up to constant fia@ents. In particular,

¥ = —kor ™t + (kg + ko COS8) p~2 + k,
¥ = ko(p? + 42) + ko2 + koz + ks.

The potential in equatiod (b1) is separable in the sphepoddr
and rotational parabolic coordinates with the origin a0(0) as
well as any prolate spheroidal coordinate one of the foci loichy
isat (Q0,0) (NB:as+hbh+0-t =0 for anya, b, and thusr = b/a

is arbitrary ang3 = a? > 0). If (s/%, /%) = (B, 2y) is constant and

B = y2, the corresponding potential reduces to equafioh (51) once
the origin is relocated tox(y,2) = (0,0,y). On the other hand,
the potential in equatioi (b2) is separable in the cyliralrfwolar
coordinate and any rotational parabolic coordinate withrditrary
origin on the symmetry axis §2= 5/t = 0/0 is indeterminate). The
superintegrability of both cases implies that the meridiaorbit
projections are closed. The maximal superintegrabiligcisieved
for equation[(BIL) withk; = k, = O (spherically symmetric) or for
equation[(5R) withk; = O (separable in the Cartesian coordinate).
Every orbit in either potential is therefore all truly petio.

The potentialy = kyp~2+ks, is the intersection of equatiods{34),
(&) and[[(5R), and se= b = t = 0 (the null rank), indicating that it
is separable imny axisymmetric Stackel coordinate. Note that the
meridional é€fective potential of an axially symmetric potentiais
given byyer = ¥+ (20?)71L2. Here the centrifugal barrier is of this
form, and thus relevant mixed partial derivatived 8f(20?) in any
axisymmetric Stéckel coordinate also vanish. We infer éimaaxi-
ally symmetric potential is separable in an axisymmetrimrdmate
if the effective potential is separable in the meridional plane.

Equation [(Bl) withk; = k, = 0 is the Kepler potentialy( =
—kor71). In other words, the Kepler potential is separable in the
prolate spheroidal coordinate provided that the point niads-
cated at either focus defining the coordinate system (thisaes
to the parabolic coordinate as the other focus tends to thety).
This is already anticipated by the example in 9éct. 3 as thenfial
in equation[(ID) in the upper or lower half is actually indligtish-
able from that of a point mass located on the symmetry axisén t
opposite side at the distance affrom the mid-plane. The clas-
sical consequences of this include that the gravitatioogrgial
(¥ = —kallr — all™* = kylIr = bjI™?) due to two point masses (as well
as the electric potential of two point charges) is also inStickel
form separable in the prolate spheroidal coordinate witt @aass
lying at either focus|(Landau & Lifshitz 1976, prob. 48:2;néid
1989, sect. 47C). In the limit when one of the point massesasiov
to the infinity, this results in the=2-force plus an external uni-
form force field (corresponding linear potentials), whosteptial
(¢ = —kor™* + ky2) is separable in the rotational parabolic coor-
dinate with the external force acting along the symmetrg axid
the coordinate origin at the point mass location (Landau &Hhitz
1976, prob. 48-1).

s=h=0
h=t=0

& (51)

& (52)

6 CONCLUSION

Let us consider three vector-valued linear functions ofcore

S(@) = -r x (rx a) =r[a—(f- a)f]; (53)
P(a):_rx(kx a);kx(rxa) oo (r-a)k;(k-a)r; (54)
Z(a) = -kx (kx a) = a- (k- a)k. (55)
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The stfficient condition for an axisymmetric (abokit potentialy
to admit the third integral of motion is that the vector fieWg s =
&s, Vxh =8&bandV x k = &t (ors, h andt) are linearly
dependent in the functional space. Here S(Vy), h = P(Vy)
andk = Z(Vy). That is, there exist three readnstants a, b, ¢ such
thatas + bh + ct = 0 (@ + b2 + ¢ # 0). Equivalently we may
say 1) the null space of the det b, t} is non-trivial (i.e. non-zero
nullity), 2) the same set, considered as elements in theiturat
space, is rank deficient and 3) the dimension of the lineatespa
spanned by the same set is less than three, etc. The thigiahte
is given by 2 = al.? + 2bw + c£2 + 2¢ or equivalently # = 2(I -
cH) = al? + 2bw — &2 + 2(¢ — ). Here¢ is the solution of
V¢ = as+ bh + ck whilst the kinetic part of the integral consists of
the quadratic forms associated with the ten&m®R andZ, namely
v-SW)=L20-PE)=k-(xL)=w andv- Z(v) = v? — 12 = (2.
The same condition is also necessary for the potential tepe s
arable in an axisymmetric Stackel coordinate and thus tdteatm
axisymmetric quadratic integral in addition to the Hamiln and
the axial component of the angular momentum. The threeifumet
s, h andt reduce to simple mixed partial derivatives of the potential
in a particular coordinate, that is to say,

5 =r719,0,(r%) the spherical polary (6, ¢); (56)
h =r10,0.(ry) the rotational parabolico( 7, ¢);  (57)
t=10,04 the cylindrical polar, 4, ¢, 2), (58)

where the parabolic coordinate in the meridional plane fsdd
such that¢?,7?) = (r+zr -2 and so 2 = o + 72 (h transformed
to the cylindrical or spherical polar coordinate is founceon[41).
In general, the potential is separable in the cylindricdhpooor-
dinate with the third integral in the form ofl 2= v2 + 2¢(2) if and
only if t = 0 (hereg’ = 9). On the other hand, i/t = 2y
is constant, the potential is separable in the displaceatiooial
parabolic coordinate with the origin ak.§,2) = (0,0,y) with
Iy = k- (@x L,) + ¢, wherel, is the angular momentum about
z = y and¢ is the solution oV¢ = h — 2yk. The special casg= 0
results iny = 0, and thus the corresponding potential is separable
in the same rotational parabolic coordinate used for exprg$§ in
the above. Lastly, it = ab + (8 — o?)t for some constants and
B, then the potential is separable in the prolate spheroiial ),
the spherical polard = 0) or the oblate spheroidab (< 0) co-
ordinate with the origin atx,y,2) = (0,0, ). The corresponding
third integral may be expressed to blg 2 L2 + v + 2¢, where
V(£ -pBy) = s—ah + (@® - B)k. This includes the case thaft = 3
is constant (i.ea = 0), for which the potential is, depending gn
separable in the spheroidal or spherical (corresponditigeto= 0
case, for whichr = g = 0) coordinate with the origin at (0, 0).

If two amongsts, b, f simultaneously vanish, then the potential is
superintegrable. In particular,

M = kor? + kip 2 + koz % + kg e  s=t=0; (59)
P = —kor T+ (ky + kocost)p2+ks o s=pH=0; (60)
P = ko(o? +48) +kip 2+ koz+ks © Dh=t=0. (61)

In addition to two coordinate systems resulting in the ainig
mixed partial derivatives, these are also separable in poate

or oblate) spheroidal coordinate with the origin atq®) for y",
any prolate spheroidal coordinate with one focus ab,(0) for yX

or any rotational parabolic coordinate with an arbitrarigior on
the symmetry axis fog”. Note that additional superintegrability
is also possible if the tri-ratie : J) : f is constant (i.e. all three are
constant — including zero — multiples of a single function).

The necessity of these conditions for the separable patenti
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(and existence of the third integral) is the consequenceefact
that the kinetic part of a quadratic integral of motion (i tBu-
clidean space) is limited to be a particular type of funciionn
R?, this has been known since Bertrand (1857, seelalso Whittake
1937, sect. 152). In particular, the kinetic part of any gnéé of
motion in R? quadratic to the momenta must be in the form of
ay05+ 28900, +8a0] +a4vx L+ 850, L, +86LZ, wherea's are constants
andL, = xv, — yox. In other words, the kinetic part is a constant-
codficient degree-two homogeneous polynomial of all the linear
and angular momentum components. This is also truR3irin
fact, inR"). If p; and p; are any two components of the linear
or angular momenta, themp; forms the kinetic part of an integral,
and so the linear space spanned by all sughis a subspace of the
kinetic part of all quadratic integrals. Although there @desuch
factors (i.e. 2-combination with repetition out of six,.iteree lin-
ear and three angular, elements), the dimension of thippaabss

in fact 20 thanks to - L = OFl However| Chandrasekhar (1939) had
shown that the kinetic part of a quadratic integral of mofioiR3
contains 20 integration const&has the linear spaces of the same
dimension, the space of the kinetic part of quadratic irgtlsgs thus
isomorphic to that of constant-cieient degree-two homogeneous
polynomials of the linear or angular momentum compor@n:md
the kinetic part of any quadratic integral should be expbéssas
one such polynomial.

Considering only axisymmetric kinetic parts leaves sixejpen-
dent bases, e.d.y?, L?,12,L2,v,L,, w}, for quadratic polynomials.
However,v? is the kinetic part ofH wheread., (and soL?2) is the
known integral for any axially symmetric potential. Funtmere,
Di(v,L,) = v,L; = =(L - k)0 = v- (r x ko) = —v - &0,(o¢).
That is, ifv,L, + £ is an integral, theiV¢ = &,0,(oy). Restricting
to axisymmetric integrals, the only possibility is that fhetential
is translation invariant ag = (o) and therv, becomes an inte-

1 The argument generalizes f@f, i.e. there aren linear and(g) angular
momentum components, the sum of which corresponds to thendiion
m= %n(n+1) of Euclidean isometry groug(n). This results in% m(m+1) =
%n(n+ 1)(n+n+2) quadratic ‘monomials’, but they are not all independent
due to the 3-vector relatianA J = 0, which counts fo(g) components, and

the further 4-vector ond, A J = 0, which constitute@) linear constraints.
HereJ = r A v is the angular momentum 2-vector. Hence, the vector space
spanned by all quadratic ‘monomials’ is of the dimens{én(n+1)2(n+2).

2 Note thaty, j Kijuivj is the kinetic part of an integral of motion if and
only if Kijx = O (see Appendik), which reduces (g) homogeneous
linear partial diferential equations off)) independent functions;; in any

Cartesian coordinate @t". Here(([:)) = (”*';‘1) is thek-combination with
repetition out ofn. In the Cartesian coordinate, the covariant derivative re-
duces to the coordinate partial derivative, which is symmiméar permuting
indices. ThereforeKijim = 0, which results |r((g)) . ((2)) homogeneous
linear equations on the same number of independent fursctiGm, all

of which identically vanish. Hence, aKij's are quadratic polynomials
of Cartesian coordinate components whilst they are the lsmepus so-
lutions ofKjk = 0. SinceKjk = 0 areq = ((g)) - nlinear equations on
p= ((2)) . ((g)) independent functionsj, integratingKjim = O intro-
ducesp-q = liznz(n + 1)(n — 1) constants of integration. Similarly, the
next integration oKjx = 0 introduces((g)) ‘n- ((g)) = n(n+1)(n- 1)
whereas the final integration &fjjx = 0 involves((})) additional constants.
Summing them up, the total number of independent integratanstants
amounts tolizn(n + 1)2(n + 2), which is the same as the dimension of the
linear space spanned by quadratic monomials of the geng@ft&(n).

3 Thatis, the space of the Killing 2-tensor is the grade-2 sgmimalgebra
over the space of the Killing vectors, which are the genesatbisometry.
The argument so far in the footnotes indicates that thisigs fior anyR".
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gral, which is again a trivial integral. This leaves thregrées of
freedom (amongst these, one is simply the overall scale emlser
another can be subsumed into the choice of the origin) fokithe
netic part of the non-classical integral of motion. Therefahe
assumed fornal2 + 2bw — cv? is indeed the most general form for
the kinetic part of a nontrivial quadratic axisymmetriceigtal.
Traditionally, separable (Stackel) potentials are urtdecsto be
given by the particular global functional forms in the spécet
of coordinate systems whilst overlooking the fact that ¢hiesms
have originally been derived as general solutions to thefsgar-
tial differential equations (relating to integrability conditipnBy
focusing back on these underlyingférential equations, separable
potentials are in principle characterizable in any coatéirsystem
and not just in the preferred coordinate system in which tterp
tial is expressible in the separable form. This is impor&inte,
for a given potential, it is typically not known a priori whnetr the
special coordinate indeed exists and what the particulardooate
is, even if it exists. We note that existence of the thirddna and
regular orbits in an arbitrary (not necessarily separaptegntial
may be understood by local approximations to a separabémpak

(Dejonghe & de Zeeuw 1988; Binney 2012; Sanders 2012). Under

this scenario, the ability of characterizing separablepils lo-
cally (via differential equations) is clearly crucial.

In recent time, after relative neglepbst the influential works
by Tim de Zeeuw and collaborators, astrophysical interastthe
Stackel potential appear to resurrect in light &bes to construct
a three-integral distribution model of the Galaxy using phase-
space action—angle coordinate (€.g., Binney 2012; Sa@dr3).
The Stackel potentials are the most general class of thateale
in which the actions can be calculated for all orbits via Igtiel
(up to matrix inversion and integral quadratures) meansd&es
2012, see also AppendiX B). In order to find the transfornmatioo
the action integral$H, L, 13} — {J1, J, J, }, it needs to specify
the frame se{&,,&,,&,} — and the orthogonal coordinate system
(G, 02, #) — in which the third integrals = k10? + ko3 + kg2 + €
diagonalizes. Assuminig is independent frorit{ andL2 (i.e.x; #
k2), the squares of diagonalized velocity components areesgpd
as a linear combination of three quadratic integrals,

(I3 = &) = 2k2(H - ) _K3—K2|—_§_

v = ;

K1 — K2 K1 — ko p? (62)
2o 2aH-y) - (s-¢8) K- ks LZ
2 K1 — K2 K1 = kg p?

andv? = LZ/p?. For an orthogonal frame, the coordinate scale fac-

tor can be found usinlg? = ||Vq||? (cf. hy = p) and the momentum
component byp; = hjv; (cf. ps = pvy, = L,). For a separable poten-
tial, p? = h?v? with v? in equation[(ER) is then a function gfalone.
Hence, the orbits in a separable potential are bounded hgyotbre
dinate surfaces with accessildgrestricted to an interval where
p2 = h%? > 0 for fixed values of the integrals (if the frequency
in each coordinate direction is independent from one amothe
bound orbit is dense in the bounded region). The transfortheo
action on the other hand is given by an integral quadrature,

21, = édq ﬂhlzl)l2

andJ, = L,. In practice however, if the Stackel coordinate in
which the potential separates is known, it is straightfodita pro-
ceed with separation of variables of the Hamilton—Jacobagqgn,
which results in the expression for the momentum as a fumcifo
the separation constants. Examples are provided in Apphdi

(63)
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APPENDIX A: SEPARABLE POTENTIALS WITH
QUADRATIC INTEGRALS OF MOTION

If the motion of a tracer respects the same number of indegyend
integrals of motion (that are ‘in involution’) as the degseax free-
dom (‘Liouville-integrable’), the Liouville—Arnold theem (see
Arnold|1989, sect. 49) indicates that its (bound and bounddait

is characterized to be a superposition of simple perioditians

in each degree of freedom. The motion is referred to as donelit
ally periodic (Arnold 1989) or quasi-periodic (Binney & Traine
2008), which results in a ‘regular’ orhit. It is thus of grehéoret-
ical importance to discover potentials in three-dimensi®pace
that admit at least three integrals of motion, in which albity
are regular. Of particular interest amongst such are ‘sdyber
potentials for which the Hamilton—-Jacobi equation (HJE3aku-
ble through additive separation of variables in a suitatiigsen
coordinate (see e.d., Landau & Lifshitz 1976, sect. 48).it®ih
such separable potentials are characterized by a filledegigor
of the space bounded by the level surfaces of the same catedin
provided that periods of motion in each degree of freedormate
commensurable. Notwithstanding C. G. J. Jacobi’s scespﬁ:ithe
separable potentials and the associated coordinates Withthe
Hamilton—-Jacobi method is applicable have been completedy-
acterized at least for natural dynamical systems. Notesthatural
dynamical system is characterized by the Lagrangian ofdha f
< =T -y, whereT is a homogeneous quadratic function of ve-
locities andy is the potential, which is a scalar field on the space.
Thenp, = 0.2/04 = 8T/3q andY, dp = X, q0T/0¢ = 2T,
and so the Hamiltonian is given %y = 3, p - L =T + .

It was Paul Stackel (1891, 1893) who had first shown that gf th
coordinatesd, . .., q") are orthogonal (i.e. the metric is diagonal-
ized) such that the line element is given bf & Y h3(dg)? and
2T = ¥, h%(d)? = 3; p?/h? (wherep;, = h?{ is the conjugate mo-
mentum to the coordinatg), then the necessary andiscient con-
dition for the HJE to have a solution whose dependencesftar-di
ent coordinates are separated (that is to say, any mixedicate
partial derivative vanishes) is that (1) there exists a imgnsar (i.e.
invertible) matrix of functiong G/(d) } such tha®G! /og* = 0 for
k#iandy; Gi“/hi2 = 611 (whereéij is the Kronecker delta) — which
is equivalent td? = G/Ct, whereC/ is the cofactor of the matrix
{Gij } andG = det{ Gij b= 2 Gij(:ij is its determinant (known as
the Stackel determinant) — and (2) the potential in the go@or-
dinate system is in the form of2= Y} fi(q)/h?, where fi(q) is
an arbitrary function of the sole coordinate comporgntThis is
collectively known as the Stackel condition (Goldstein 0P8

The condition (1) does not involve the potential at all. Tisat
separation of variables of the HJE in an orthogonal cootdiig
possibleonly if the coordinate scale factdhnss are given such that
a particular matrix of functionsei‘(qi)} exists, irrespective af.
Mildly abusing terminology, we refer to such orthogonal i@ho
nates as the ‘Stéckel coordinates’. Note that the Stacketoute
is equivalent to the coordinate in which the HIJE of geodesie m
tions (¢ = 0) is additively separable. Somewhat confusingly, the
potential as in the form of the condition (2) is sometime mefe

4  Die Hauptschwierigkeit bei der Integration gegebeneff@®entialglei-
chungen scheint in der Einfihrung der richtigen Variablarbestehen, zu
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to be in a separable formelative to the specified coordinate. By
contrast, the separable potential itself is defined abslgluch
that there exists a Stéckel coordinate in which the poteistiex-
pressible in the separable form. In this paper, to alle\patssible
confusion, the separable potential in the absolute sensdeised
to as the ‘Stéckel potential’ whereas the potential is nodee in
the separable form if it is written down ag 2 3 fi(q)/h? using
some functiond;(g) and the scale factois's of the orthogonal co-
ordinate system whose line element & & ¥; h?(dg’)? (the metric
is diagonalized, ant? andh;?, respectively, are the diagonal com-
ponents of covariant and contravariant metricfiognts).

The Stéackel condition as given is operational; or{l@;’(q‘)}
is known, it is trivial to solve the HJE via separation of vari
ables and to show that; = ¥;(p? + fi)Hij is an integral of mo-
tion, where{Hij(ql,...,q")} is the inverse matrix of G/} (i.e.

Hij = Cij /G). However, it is fairly dificult to verify directly
whether the particular coordinate is ‘Stackel’ using théefiri-
tion. For this purpose, we refer to the insight of Tulio L&iiite
(1904) who had realized that the solution of the HJE via separ
tion of variables is also the solution to the system of oviende
mined first-order quasi-linear partialffirential equations, namely
opi/oq; = Ofori # janddp/dok = —(OkH)/(d“H), where
H = H(d,....q" pr,..., pn) is the Hamiltonian, andH =
OH /0g¢ andd*H = dH/dpk. Thanks to the Frobenius integra-
bility theorem, the compatibility condition on the system.e.
(0/0)(dp;/0a)) = (3/00;)(dp;/dg) = O fori # j — is the nec-
essary and dficient condition for the HJE to be solvable via sep-
aration of variables. This is known as the Levi-Civita sejpdlity
condition.

In a natural dynamical system, the Levi-Civita separabdandi-
tion reduces toég) quartic even polynomial equations @n whose
codficients on each power @ must identically vanish, should the
integrability condition be satisfied. Whilst the zeroth fimgent
becomesyly;y; = O (the subscript comma notation for the coor-
dinate partial derivative) for # j, which is trivial in orthogonal
coordinates, the fourth and second ff@éents in an orthogonal co-
ordinate result in the second-order partidfetiential equations on
the metric cofficients and the potential, name$(h?) = 0 and
Sjk(lﬂ) = 0 with j #Kk, WhereSjk(f) = f,jk+(ln hﬁ)l f’k+ (In hjz)k fJ
Hence, the scale factors of the Stackel coordinate mustlbgsts
to Si(h72) = 0 for j # k whereas the potential is in the separable
form if it is the solution ofSjk(y) = 0 for j # k (NB: Sj depends
on the chosen coordinate) and is ‘Stackel’ if there exist&akel
coordinate in whictS;. () = 0 for all pairsj andk with j # k.

An alternative characterization of the Stackel conditiohofvs
the observation that the integrals of motion of a naturalatyia
cal system resulting from separation of variables of the ldd&
guadratic top;. Consequently, existence of an integral of mo-
tion that is quadratic tq; (other than the Hamiltonian) is in fact
necessary for the HJE to be soluble through separation of var
ables. In general, the quadratic integral of motion is inftren of
I = Klipipj + & (the Einstein summation convention is used in this
paragraph) wher&'l is a symmetric tensor anglis a scalar field.
Explicit calculations establish that K G §/d<+ (€ — 2Ky g
(where the semicolon and parentheses in the subscriptsseyr
the covariant derivative and the index symmetrization)nédg if
one defines the vector-valued linear function of a vecta. @-

deren Adfindung es keine allgemeine Regel giebt. Man muss daher das tensor) such thakK(a) = QKijaj for a = de, where{g } is the

umgekehrte Verfahren einschlagen und nach erlangter Kisnginer merk-
wirdigen Substitution die Probleme aufsuchen, bei weldieselbe mit
Gliick zu brauchen ist.| (Clebsc¢h 1866, pp.198-199). |Seenl&r(1989,
p.266) for an English translation.
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coordinate basis, then existencekotind¢ such thakj.y = 0 and
V¢é = 2K(Vy) is equivalent td = K(i) -t + £ being an integral, and
also necessary for separation of variables of the HIE. @krieg



10 An

the Killing (after Wilhelm Killing; 1847-1923) vector fielX, for
which X,y = 0, the symmetric tensdf;; such thatk;;,y = O is
referred to as the Killing 2-tensor. Then, sifgée\ V¢ = 0 (which

is the same as the Frobenius integrability condition), thediion
of | being an integral is also equivalent to existence of thergjll
2-tensdi K such thatv A K(Vy) = 0, which also characterizes the
Stackel potential intrinsically in a coordinate-free fatdation.

The integrals due to separation of variables of the HJE in an
orthogonal coordinate have diagonalized quadratic term®0-
menta, namely = o; = X;(p? + fi)Hij. Consequently, only such
Killing tensors that are globally diagonalizable in an odbnal
coordinate are of relevance in the characterization of tiéeksl
coordinate. Note the tensét is globally diagonalizable in an or-
thogonal coordinate if there exists a pair-wise orthogdolétion
of space such that each leaf is normal to one of the eigemgecto
of K at every locatiofi. In the orthogonal coordinate that diago-
nalizes the Killing tensor such thf = 8! (no summation), the
Killing equationKgj. = O results in the system of first-order lin-
ear partial diferential equations on the set of eigenvalues, namely
9k /99 = (ki —«;)(3 Inh2/2g’). Then the integrability condition on
existence of sucky’s —i.e. 0/00%)(d;/9q!) = (9/0q)(dx;/0q*) —
reduces tox; — ki)h2Sj(h2) = 0 for j # k. Hence, the orthogonal
coordinate is ‘Stackel’ if there exists a Killing tensor ths diag-
onalizable in the given coordinate and has all distinct migkies
(cf.[Eisenhart 1934). Conversely, in the Stackel coordinsepara-
tion of variables of the HJE leads ixintegrals of motion and thus
there actually existn(— 1) independent Killing tensors (other than
the metric) that all diagonalize in the same Stéckel coaitdin

This approach to the Stackel coordinates via the Killingsten
provides its geometric interpretation. Instead of algedmalytic
constraints,Sj(h?) = O for j # k, we find that the Stackel coordi-
nate surfaces must be the integral surfaces of particuf@rential
systems defined by the Killing tensors. Further developmefthe
idea have led to intrinsic (coordinate-free) charact¢ioreof sepa-
ration of variables (see Benenti 1980, 1997; Kalnins & Ml1680,
1981,1982, 1986). An important result following this (it
1924;| Eisenhdrt 1934; Kalnins & Miller 1986; Benenti 199%) i
that, in the two or three-dimensional Euclidean (i.e. flpgce, the
only possible Stackel coordinates are the Jacobi ellgitipsoidal
coordinates| (Clebsch 1866, the 26th lecture) and theirrdegée
forms (Morse & Feshbach 1953) up to rotations and translations.
This follows the fact that the integral surfaces of the IKijitensor
system are confocal quadrics (or degenerate planes).

5 Any integral of motion that is anth polynomial ofp; implies existence

of the Killing n-tensor such thak, i..i;) = 0. In particular, existence of
the Killing vector fieldX such thatX - V¢ = 0 indicates that the natural
Lagrangian is invariant along the integral curveXofand there exists an
integral of motion which is a liner combination pf (the Noether theorem).

6 This leads to the Pfian system. Its integrability condition resulting from
the Frobenius theorem reduceseta (V A €) = 0, which is equivalent to
e-(V x e = 0inR3, whereeis an eigenvector of.

7 They correspond to the elliptic, parabolic, polar, and €san coordi-
nates inR?. In R3, they are the ellipsoidal, elliptic-paraboloidal, comjca
prolate and oblate spheroidal, rotational-parabolicesphl-polar, elliptic-
cylindrical, parabolic-cylindrical, cylindrical-polaand Cartesian coordi-
nates. These 11 coordinates are exactly the same in whiddeimeholtz
and also the (time-independent) Schrodinger equationcdvalse through
multiplicative separation of variables. This is not a coincidence since the
Robertsan|(1928) condition for separation of variableshef $chrodinger
equation consists of the Stackel condition plif i)/G being multiplica-
tively separable wher6& is the Stackel determinant (see also Eisehhart
1934; Morse & Feshbach 1953; Kalnins & Miller 1980).

The equation on the potenti®l A K(Vy) = 0, on the other hand
reduces to« —«;)Sij(y) = O fori # j in the Stackel coordinate that
diagonalizes the given Killing tensor such tiat= /. As noted
earlier, the general solution &;(¥) = 0 is given by the potential
in the separable form@2= 3; f,(q;)/h? in the particular coordinate
(e.g.,l Darboux 1901, see also Whittaker 1937; Hietarinii)9
Consequently, existence of a quadratic integral of motiat ts
globally diagonalizable with all distinct eigenvalues liscathe suf-
ficient condition for the potential to be ‘Stackel’ (and irethepa-
rable form in the coordinate that diagonalizes the giverdopatic
integral) and for the HJE to be soluble via separation ofaldes
(in the same coordinate that diagonalizes the integra§lsti fol-
lows that the given potential is ‘Stéackel’ if and only if tleegxists a
non-degenerately diagonalizable (i.e. with all distingeavalues)
Killing 2-tensor such tha¥V A K(Vy) = 0. This last equation is
also coordinate-independent and can thus specify (theapdit-
ferential equation for) the Stackel potential in an arlpjtreoor-
dinate once the coordinate components of the Killing terasser
specified, the idea of which forms the basis for the algorithest
for the potential to be ‘Stackel’ (Marshall & Wojciechow$l988;
Waksjo & Rauch-Wojciechowski 2003).

In astrophysical contexts, the Stackel potential was firsbi
duced by Eddington (1915), who studied the potentials coersi
with the so-called Schwarzschild ellipsoidal hypothesiamely
that the local velocity distribution of tracers in equililm is in the
form of ellipsoidal Gaussian (i.e. anisotropic Maxwellidistribu-
tions). However, thanks to the Jeans (1915) theorem, ttiebdis
tion is an integral of motion if it is a solution to the collisiless
Boltzmann equation and therefore the ellipsoidal hypashiesact
implies existence of an integré) that is a quadratic function of
velocities. (The converse however is not true as the eliijagdy-
pothesis assumes the specific one-integral distributiere=2.) In
effect,| Eddingtan| (1915) had assumed existence of a globally di
agonalizable Killing tensor and shown that the integrabondi-
tion on the Killing equations implied that the orthogonabodinate
that diagonalizes the Killing tensor must be charactertzgdon-
focal set of quadric coordinate surfaces — which had unheksb
been proven earlier by Levi-Civita (1904). Then Eddingid91®%)
showed that, in the two- and three-dimensional Euclideatep
the ellipsoidal hypothesis (existence of a nondegenenaedrqtic
integral in actuality) further led to the conclusion thas fhotential
must be the separable form in the same coordinate that difiges
the Killing tensor, which is a suitably chosen ellipsoidabodinate
or its degenerate form — and thus the Stéackel potential.

Chandrasekhar (1939) had investigated the dynamics of stel
lar systems governed by the one-integral distributf¢@) of a
guadratic integralQ. Although his discussion of velocity ellip-
soids and associated potentials was based on the nomiredlyer
assumption than that of Eddingtdn (1915), the crux of theuiarg
ment in actuality hinged on existence of a quadratic infe@a
His approach was essentially the three-dimensional gkretian
of that of|Bertrand| (1857, see also Whittaker 1937, sect).162
terms of the language here so far, he basically obtained t2®§e
differential equations comprising ten defining the Killing Bger
K = 0, six for the Killing vectorX;;; = 0, three corresponding
to the components d¥¢ = 2K(Vy) and one forX - V¢ = 0. In
Euclidean space, if one adopts a Cartesian coordinateinguiie
whole space, the 10 sets of the Killing equations for therade
are integrated into quadratic functions of coordinate$\2@d pa-
rameters whilst those for the Killing vector into linear @tions
with 6 integration constants. By integrating the remairdifgeren-
tial equations on the potential with these explicitly giy€itling
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2-tensor and vector, he was then able to sort out the poientia
consistent with the assumption, the conclusion of which ess
sentially identical to that of Eddington (1915) (see howdweans
2011, sect. 3).

However, the interest in the Stackel potentials (then knas/Rd-
dington’s potentials in astrophysical literature) had agmad lim-
ited untilLynden-Belll(1962) as they were believed not talgmod
approximation of ‘real’ potential given the noticeablddaé of the
ellipsoidal hypothesis, which had soon become clear in &rog
following the initial work of Eddington[(1915). On the othieand,
Lynden-Bell (1962) based his work on assumption of exisefc
‘local integral’. That is to say, he assumed that there sxadixed
foliation in space such that the family of potentials givgndn
arbitrary function on the foliation all admits integrals wfotion
similarly through the variation of functions. In naturalrémic
systems, this then led to integrals whose dependence ondhe m
mentum component normal to the foliation leaf is only thriotge
Hamiltonian. He then showed that this implied that the ddpene
of the HJE on the coordinate components tangential to tHadea
separated 6. Consequently, his tabulation of potentials admitting

a ‘local integral’ is equivalent to the list of potentialsttviwhich
the HJE is at least partially separable including all thecigtbpo-
tentials (for which the HJE isompletely separable). In addition, he
also figured that in the given ellipsoidal coordinate, tHree func-
tions f; in the separable potential2= 3; fi(q)/h? can be ‘glued’
together to a single real-valugf-function C2 if one forces the
continuity on the mass density) of one real variable.

This last fact was noted independently |by Kuzmin (1956), who
had investigated the mass profile generating the Stackehpals

(see also de Zeeuw & van de Ven 2011 for discussion on the con-

tribution by Grigori G. Kuzmin to the subject). Note that theme
fact implies that the potential along the long-axis of thecfied
ellipsoidal (or prolate spheroidal for axially symmetriotentials)
coordinate determines a unique Stéckel potential segamlhe
given coordinate — that i A K(Vy) = 0 is uniquely integrated
into the particular solutiog given the one-dimensional boundary
condition specified along the preferred axis of the giverifgl
tensor| Kuzmin((1956) also showed that the Laplacian ofredyba
potentials along the long axis of the prolate spheroidarégener-
ally, ellipsoidal) coordinate was only related to the bebawrof the
potential along the same axis and subsequently the Poisg@ e
tion resulted in a linear second-ordedinary differential equation
for the potential along the same axis with the density aldmeg t

axisymmetric separable potentials 11
APPENDIX B: THE HAMILTON-JACOBI EQUATION
AND ACTION-ANGLE COORDINATES
Suppose that the Hamiltonian is given in the form of
Ezn: ﬂ (gt ") (Bla)
> e +y(q,....q".

Then the Hamilton—-Jacobi equation (HJE) is the partiiédential
equation for the Hamilton principal functid®(g?, ..., q"; t),

130 h2(@S)2+y +0,S = 0, (B1b)

Sinced(H = 0, we may instead consider the reduced HJE

T (W) +2( - E) =

by settingS = W(q, ..., q") — Et, whereE is a constant.
Assuming that the chosen orthogonal coordinate satisfies th

Stéckel condition, that is, there exists an invertililex(n)-matrix

of functions{ G/ () } such that

(Blc)

N Gl(q j =
2 '(f)={1 =y (822)
~ 0 (j=2...,n
and that the potential is of the separable form
n ‘
fi(q)
= B2b
v Z e (B2b)
in the same coordinate, the HIE further reduces to
n 1 f J
Z‘F o) * - ZaJG(q) (B2c)
i= |

where{a; = 2E, ..., o,
wi(d) = [p@)dg; (p)? =

thenS = X wi(d; &, . . ., ) — a1t/2 is the complete solution of
the HJE. The canonical transform given by the generatingtfom

S = YL, wi — Et leaves the transformed Hamiltonian identically
zero, and thus every; is conserved. The expression farin the
old coordinate is found frory = 9;S = uj,

} are a set oh constants. Hence, if

", aGl(d) - fi(d), (B2d)

same axis as the source term. From these, he was able to derlve

the flattened three-dimensional mass profile generatin§ tfekel
potential separable in the prolate spheroidal coordinatngarbi-
trary nonnegative — which is fiicient for the nonnegativity of the
3D profile (‘the Kuzmin—de Zeeuw theorem’; see &lso de Zeeuw
1985¢) — function for the density along the short axis (whscac-
tually the long axis of the coordinate surface). Partidylaotable
amongst his models igp, 2) « (1+p?/a? +22/b%)2. In fact, its tri-
axial generalizations (‘the perfect ellipsoid’; see de #gd985h)
are the only ellipsoidally stratified density profile with@ingular-
ity that generate the Stéackel potentials (de Zeeuw & LynBeli-
1985).
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S aqn, (B2e)

= SiLlp? + fi(d)] H(d ..
where{ Hij(ql, ...,g" } is the inverse matrix o{Gij }. Hencey; is
anisolating integral of motion. They are also in involutions and
therefore the dynamic system is Liouville integrable. Thagural
phase-space coordinate for such a system is the actiore-emoyi-
dinate, in which the bound orbit specified by the level swefaicthe
full set of nisolating integrals is equivalent tetorus embedded in
the h-dimensional phase space.

The action variable is formally defined to be

1 L
Haswan) = 55  SLprcdl. (B3a)
Yi

where{vy,...,yn} is the set of cycles that forms the basis of the
orbital torus (i.e. the level set of theisolating integrals). If the in-
tegrals are the separation constants of the HJE as in equBa),

we can choose the cycles such that algpgnly g varies and all
otherg! (j # i) are held fixed. The action variable is then given by
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an integral quadratu&,

'_1 i'_l qimax P
3= padn =7 [ adn)

'min

(B3b)

where the integral is over the intervgl € [, 0. in which
p? > 0 (eq[B2Zd). The complete setwequations fod;(az., . . ., @n)
then defines the transformatiom(. .., an) — (J1,..., Jn).

The conjugate set of the angle variables is found using therge
ating functionW = Y, w; with «; given by the inverse functions

ai = ai(J1,...,Jn). Thatis to say,

AW & Qux 1T

L i 7K [t
’=33 ij:lA, oa, M= 3 (B3c)
whereAij is the Jacobian matrix element @f(Js, ..., J,). Strictly

A'J is a function of J;, but with equation[{B3b) they can also be
considered as functions @f. Then sincex;(Jy, ..., Jy) is the in-
verse ofJi(a, ..., an), the Jacobian matrix ofi(as, ..., an) is the
inverse matrix ofA‘j). That is,Aij as a function ofy; may be found
using i, JAY = Y, AN = 9, where

i ) 1 . Gl(d)

MNan, ..., =—=—9§d"—.. B3d
oo = 2 = 52 ped e (B3d)
In addition, we infer from equatiofi_ (BR2d) that

duy f « GL(@)

— = |d , B3e
(L7 T 20 (B3e)
which is a function ofg¢ and the parameter s¢t,...,an ).

Equation [[B3t) therefore provides with us the transfor-
mation @,....,q% a1, ...,an) —  (@%...,9". Finally,
the canonical transformation to the action—angle cootdina
(% ....9%pe,....pn) = @ ...,9™ J, ..., Jn). is then given by
combining equation {B3c) with equatioris_(B2e) ahd (B3b).teNo
that the resulting transformation only involves analytpemtions
up to integral quadratures (i.e. simple antiderivativex eatrix
inversions.

Since the generating function of the canonical transforrthéo
action—angle coordinate does not explicitly involve thedj the
Hamiltonian in the action—angle coordinate is simgly = E =

a1(J1,...,Jdn)/2, and the Hamilton equations of motion are

: OH - OH  10m

J=--—=0 ¢'=—"=_— B3f
! o 7 93~ 203 (B3

Hence, the angle variabl# evolves linearly with time in the con-
stant angular frequenc®'(Js, ..., Jo) = A} /2. The frequency as a
function of the orbital torus defined by the integrals,( .., ay) is
again found by the matrix element of the inverse matrixJ3¥ ¢
for n = 2, 3, this is easily found using the cofactors.

Bl Axisymmetric Stackel potentials

For any axisymmetric potential, the axial component of thgusar
momenturrL, = p, is also the action integral:

1 1 27T
Y=g Poon= 5 [asli-La (B4)

8 Here we have assumed that the motion indhdirection is basically an
oscillation betweeru]‘mirl andqimax. Depending on the precise nature of the
actual motion in they' coordinate, the integral limits and the multiplicative
factor accounting for symmetry must be chosen appropyiatstead.

If the potential is separable in the cylindrical polar canate,
v = (o) + g(2) (eq.[33), therE, = %uﬁ + ¢g(2) is the independent
integral whilst the momentum is separated as in

P =2[E-E,~f(0)l -p°LZ  p;=2[E,~g(d]. (B5)
For the potentialy = f(r) + r—2g(6) separable in the spherical

polar coordinate (ef_B2); = 112+ ¢(¢) is the third integral. Then

the separated momentum components are (Bs ruvy)

PP =2[E-r2ls—f()]; pf=2[ls-g(6)] - LzcsCo (B6)

In the rotational parabolic coordinate.,, ¢) defined such that
o? =r +zand7? = r -z, the general separable potential is in the
form of equation[[2B) with the third integral given by =k - (v x
L) + & with £ in equation[(4P). With the coordinate scale factors
h2 = h? = 02 + 72 = 2r, we then find

p2 = 2rv? = 2[0’E — I3 - f(o)] - ol B
p2 =2r? = 2[P°E + I3 - §(r)] - 7 °LL.
As for the case that the potential is separable in a spheroida

ordinate, we need to define a specific coordinate system. \ere
consider the coordinate variables given by two solutjpia$

X P+ +B) 2 =1, (B8)
which we sefl > u. The inverse transformi(u) — (p?, 2) is given
by equation[(Z8a) witkx = 0 whilst the coordinate scale factors are

(B7)

h2 — A- H . h2 — H— A

YT MQA+p) T du(u+ )
This is the prolate coordinateff= a? > 0 for whichA > 0> u >
-3, and the oblate coordinate 3 = a® > 0 for whichd > -8 >
u > 0. The general separable potential is then given by[{dg. 27)

(B9)

PO (B10)
A-p
with the corresponding third integral in the form of
L2 2 _
o= E2PE G DI -GpIG) B11)

A-p
Finally, the momentum component as a function of its cortiga
coordinate is found to be
AA+P)P = (A=)} = 2+ PE ~la= ()] - L
du(u +B)p; = (= )v; = 2[(u +BE ~13— ()] - BuLL.
The action integrall; corresponding to the coordinagecan now
be found using equatiofi (BBb), which then results in thesfi@n
mationJi(E, I3, L;) and Jo(E, I3, L,). Next sincep, = L, = J;, we
havew,(¢) = ps¢ = J4¢, and so the generating function is written
down asW = w1(q; E, 3, Ly) +wa(?; E, I3, L) + Jy¢ With w; given
by equation[(BZH). The angle variables are then found using

(B12)

D, \dl3 0E  QE 0l3)’
1 (3J, 00 03 0
2_ 1 (0how 0d4dw
v Dl(aE dl3 alsaE)' (B13)
1 i AN
¢ _ il aw 20, 2
g ¢+D1(D26E+ 3a|3)+a|_z’
wherew(q?, o?; E, I3, L;) = w1 + wp and
o _0h0% 0%0%
YT Q3E 3l dE 0l3’
93,93, 03} 03M
D, = — 2= _ Zte %
27 2I;9L, oL, (B14)
D, 0% 0% 2% 0h
7 3L, 0E oL, oE
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GivenH = E(J1, Jp, J5), the angular frequenc®!(E, I3, L,) of the
evolution ford' is given by

OH _ 13k (3% 9%034/3l5)"
93, Didl; \0E OE 33/dl;

-1
o QM _ 10% (6J2 0d an/alg) (@)

3, Dlal3 E 2J,/015
- H
Q= = — =
0J, Dl
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