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ABSTRACT
GJ667C is the least massive component of a triple star systemwhich lies at a distance of
about6.8 pc (22.1 light-years) from Earth. GJ667C has received much attention recently due
to the claims that it hosts up to seven planets including three super-Earths inside the habitable
zone. We present a Bayesian technique for the analysis of radial velocity (RV) data-sets in
the presence of correlated noise component (“red noise”), with unknown parameters. We also
introduce hyper-parameters in our model in order to deal statistically with under or over-
estimated error bars on measured RVs as well as inconsistencies between different data-sets.
By applying this method to the RV data-set of GJ667C, we show that this data-set contains
a significant correlated (red) noise component with correlation timescale for HARPS data of
order9 days. Our analysis shows that the data only provides strong evidence for the presence
of two planets: GJ667Cb and c with periods7.19d and28.13d respectively, with some hints
towards the presence of a third signal with period91d. The planetary nature of this third signal
is not clear and additional RV observations are required forits confirmation. Previous claims
of the detection of additional planets in this system are duethe erroneous assumption of white
noise. Using the standard white noise assumption, our method leads to the detection of up
to five signals in this system. We also find that with the red noise model, the measurement
uncertainties from HARPS for this system are under-estimated at the level of∼ 50 per cent.

Key words: stars: planetary systems – stars: individual: GJ667C – techniques: radial veloci-
ties – methods: data analysis – methods: statistical

1 INTRODUCTION

Extrasolar planetary research has made great advances in the last
decade as a result of the data gathered by several ground and space
based telescopes and thus far more than 900 extrasolar planets have
been discovered. More and more planets with large orbital periods
and small velocity amplitudes are now being detected due to re-
markable improvements in the accuracy of RV measurements. With
the flood of new data, more powerful statistical techniques are be-
ing developed and applied to extract as much information as pos-
sible. Traditionally, the orbital parameters of the planets and their
uncertainties have been obtained by a two stage process. First the
period of the planets is determined by searching for periodicity in
the RV data using the Lomb–Scargle periodogram (Lomb 1976;
Scargle 1982). Other orbital parameters are then determined using
minimisation algorithms, with the orbital period of the planets fixed
to the values determined by Lomb–Scargle periodogram.

Bayesian methods have several advantages over traditional
methods, for example when the data do not cover a complete or-
bital phase of the planet. Bayesian inference also providesa rig-
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orous way of performing model selection which is required tode-
cide the number of planets favoured by the data. The main prob-
lem in applying such Bayesian model selection techniques isthe
computational cost involved in calculating the Bayesian evidence.
Nonetheless, Bayesian model selection has the potential toimprove
the interpretation of existing observational data and possibly detect
yet undiscovered planets. Recent advances in Marko-Chain Monte
Carlo (MCMC) techniques (see e.g. Mackay 2003) have made it
possible for Bayesian techniques to be applied to extrasolar plane-
tary searches (see e.g. Gregory 2005; Ford 2005; Ford & Gregory
2007; Balan & Lahav 2009). Feroz, Balan & Hobson (2011) pre-
sented a new Bayesian method for determining the number of ex-
trasolar planets, as well as for inferring their orbital parameters,
without having to calculate directly the Bayesian evidencefor mod-
els containing a large number of planets.

GJ667 is an M dwarf in a triple star system which lies at
a distance of about6.8 pc (22.1 lightyears) from Earth. GJ667C
is the least massive component of this system with mass0.33 ±
0.03 M⊙ (Delfosse et al. 2013). Two other components of this
system, GJ667AB, are a closer couple of K dwarfs with semi-
major axis of 1.82 AU, period of 42.15 years and mass of 1.27
M⊙ (Söderhjelm 1999). GJ667C is at a projected distance of
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32.4′′ from GJ667AB, giving an expected semi-major axis of∼
300 AU (Delfosse et al. 2013). Using the data from the HARPS
spectrograph (with RVs obtained using cross-correlation function
‘CCF’ technique), Bonfils et al. (2011) reported detection of a
planet (GJ667Cb) with orbital period of 7.2d and minimum mass
of 5.9M⊕ . They also found evidence for the presence two fur-
ther planets with orbital periods 28d and 90d respectively.7.2d
and 28d planets were confirmed by Anglada-Escude et al. (2012)
and Delfosse et al. (2013), both using HARPS data although re-
duced using different techniques. GJ667Cc with orbital period
of 28d is particularly interesting as it lies well within thehab-
itable zone of the host star where it could support liquid water.
Anglada-Escude et al. (2012) further found evidence for oneaddi-
tional planet with orbital period 75d, however they did not consider
it significant since it was affected by aliasing interactions with an-
other 91d signal and the likely rotation period of the star at105
days. Delfosse et al. (2013) found a signal with orbital period 106d
but attributed it to the stellar rotation due to it being veryclose to
the rotation period of the star. A Bayesian analysis of the HARPS
RVs for this system was performed by Gregory (2012), who apart
from confirming the presence of first two planets GJ667Cb and c,
also found evidence for four additional signals with orbital periods
30.82d, 38.82d, 53.22d and 91.3d respectively. They discarded the
53.22d signal due to the high likelihood of it being the second har-
monic of the stellar rotational period. Potential planets with 30.82d
and 38.82d orbital periods lie in the central region of theirhost
star’s habitable zone and therefore are of much interest.

More recently, Anglada-Escude et al. (2013) performed a
joint analysis of RV observations of this system from HARPS,
HIRES/Keck and PFS/Magellan spectrographs (available from
Anglada-Escude & Butler 2012). Instead of using the CCF tech-
nique to obtain RVs from observed spectra, they used the Template-
Enhanced Radial velocity Re-analysis Application ‘TERRA’tech-
nique which has been claimed to produce significantly more ac-
curate RVs compared to RVs obtained using the CCF technique
(Anglada-Escude & Butler 2012). Anglada-Escude et al. (2013)
found evidence for the existence of six (even seven) planets
GJ667Ca-f with period 7.2d, 28d, 92d, 62d, 39d and 260d (sev-
enth one having period of 17d) respectively. They further showed
that this system is dynamically stable. All these planet candidates
have relatively low masses (∼ few M⊕) with GJ667Cc, e and f
lying inside the habitable zone, which if confirmed, would make
GJ667C one of the first systems with multiple low mass planetsin
its habitable zone. They also considered a model with correlated
noise (modified ARMA model described in Tuomi et al. 2013 and
Sec. 5.1 of this paper) but found that white noise model is favoured
by the data.

It has already been shown that noise in photometric observa-
tions of exoplanetary transits is often correlated (Pont etal. 2006).
Information content of correlated data is lower than if the data were
uncorrelated, therefore ignoring correlated noise components can
result in spurious detection. In this paper, we present a Bayesian
method for the analysis of RV data-sets with correlated noise. We
also allow for the possibility of the reported uncertainty values on
RV measurement to be over or under-estimated and deal with any
inconsistencies between different data-sets in a statistically robust
manner. We apply this method to the RV data-set of GJ667C.

The outline of this paper is as follows. We give a brief in-
troduction to Bayesian inference in Sec. 2 and describe our object
detection method for calculating the number of planets favoured by
the data in Sec. 3. Our method for modelling RV data is described
in Sec. 4. In Sec. 5 we describe our Bayesian analysis methodology

including the likelihood function and choice of prior distributions.
We apply our method to RV data sets of GJ667C in Sec. 6 and
present our conclusions in Sec. 7.

2 BAYESIAN INFERENCE

Bayesian inference provides a consistent approach to the estimation
of a set of parametersΘ in a model (or hypothesis)H for the data
D. Bayes’ theorem states that

Pr(Θ|D,H) =
Pr(D|Θ,H)Pr(Θ|H)

Pr(D|H)
, (1)

wherePr(Θ|D,H) ≡ P (Θ|D) is the posterior probability distri-
bution of the parameters,Pr(D|Θ,H) ≡ L(Θ) is the likelihood,
Pr(Θ|H) ≡ π(Θ) is the prior, andPr(D|H) ≡ Z is the Bayesian
evidence given by:

Z =

∫

L(Θ)π(Θ)dNΘ, (2)

whereN is the dimensionality of the parameter space. Bayesian
evidence being independent of the parameters, can be ignored in
parameter estimation problems and inferences can be obtained by
taking samples from the (unnormalized) posterior distribution us-
ing standard MCMC methods.

Model selection between two competing modelsH0 andH1

can be done by comparing their respective posterior probabilities
given the observed data-setD, as follows

R =
Pr(H1|D)

Pr(H0|D)
=

Pr(D|H1)Pr(H1)

Pr(D|H0)Pr(H0)
=

Z1

Z0

Pr(H1)

Pr(H0)
, (3)

wherePr(H1)/Pr(H0) is the prior probability ratio for the two
models, which can often be set to unity in situations where there
is not a prior reason for preferring one model over the other,but
occasionally requires further consideration. It can be seen from (3)
that the Bayesian evidence plays a central role in Bayesian model
selection.

As the average of the likelihood over the prior, the evidence
is larger for a model if more of its parameter space is likely and
smaller for a model with large areas in its parameter space having
low likelihood values, even if the likelihood function is very highly
peaked. Thus, the evidence automatically implements Occam’s ra-
zor.

Evaluation of the multidimensional integral in (2) is a chal-
lenging numerical task. Standard techniques like thermodynamic
integration are extremely computationally expensive which makes
evidence evaluation at least an order of magnitude more costly than
parameter estimation. Various alternative information criteria for
astrophysical model selection are discussed by Liddle (2007), but
the evidence remains the preferred method.

The nested sampling approach, introduced by Skilling (2004),
is a Monte Carlo method targeted at the efficient calculationof the
evidence, but also produces posterior inferences as a by-product.
Feroz & Hobson (2008); Feroz et al. (2009, 2013) built on this
nested sampling framework and have introduced the MULTI NEST

algorithm which is very efficient in sampling from posteriors that
may contain multiple modes and/or large (curving) degeneracies
and also calculates the evidence. This technique has greatly re-
duces the computational cost of Bayesian parameter estimation and
model selection and has already been applied to several inference
problems in astro and particle physics (see e.g. Feroz et al.2008,
2009; Bridges et al. 2009; Feroz et al. 2009; Bridges et al. 2011;
Strege et al. 2013; Karpenka et al. 2013).

c© 2013 RAS, MNRAS000, 1–10
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3 BAYESIAN OBJECT DETECTION

To detect and characterise an unknown number of objects in a
data-set, one would ideally like to infer simultaneously the full
set of parametersΘ = {Nobj,Θ1,Θ2, · · · ,ΘNobj

,Θn}, where
Nobj is the (unknown) number of objects,Θi are the parameters
values associated with theith object, andΘn is the set of (nui-
sance) parameters common to all the objects. This, however,re-
quires any sampling based approach to move between spaces of
different dimensionality as the length of the parameter vector de-
pends on the unknown value ofNobj. Such techniques are dis-
cussed in Hobson & McLachlan (2003) and Brewer et al. (2013).
Nevertheless, due to this additional complexity of variable dimen-
sionality, these techniques are generally extremely computationally
intensive.

An alternative approach for achieving virtually the same re-
sult is the ‘multiple source model’. By considering aseriesof
modelsHNobj

, each with afixed number of objects, i.e. with
Nobj = 0, 1, 2, . . .. One then infersNobs by identifying the model
with the largest marginal posterior probabilityPr(HNobj

|D). As-
suming that there arenp parameters per object andnn (nuisance)
parameters common to all the objects, forNobj objects, there would
beNobjnp + nn parameters to be inferred, Along with this in-
crease in dimensionality, the complexity of the problem also in-
creases withNobj due to the exponential increase in the number of
modes as a result of counting degeneracy (there aren! more modes
for Nobj = n than forNobj = 1).

If the contributions to the data from each object are reason-
ably well separated and the correlations between parameters across
objects is minimal, one can use the alternative approach of ‘single
source model’ by settingNobj = 1 and therefore the model for the
data consists of only a single object. This does not, however, restrict
us to detecting only one object in the data. By modelling the data
in such a way, we would expect the posterior distribution to pos-
sess numerous peaks, each corresponding to the location of one of
the objects. Consequently the high dimensionality of the problem
is traded with high multi-modality in this approach, which,depend-
ing on the statistical method employed for exploring the parameter
space, could potentially simplify the problem enormously.For an
application of this approach in detecting galaxy cluster from weak
lensing data-sets see Feroz et al. (2008).

Calculating Bayesian evidence accurately for large numberof
objects is extremely difficult, due to the increase in dimensionality
and severe complexity of the posterior, but parameter estimation
can still be done accurately. In order to circumvent this problem,
Feroz et al. (2011) proposed a new general approach to Bayesian
object detection called the ‘residual data model’ that is applicable
even for systems with a large number of planets. This method is
based on the analysis of residual data after detection ofNobj ob-
jects. We summarize this method below.

Let HNobj
denote a model withNobj objects. The observed

(fixed) data is denoted byD = {d1, d2, · · · , dM}, with the asso-
ciated uncertainties being{σ1, σ2, · · · , σM}. In the general case
thatNobj = n, the random variableDn is defined as a realisation
of the data that would be collected if the modelHn were correct,
and the random variableRn ≡ D − Dn, as the corresponding
data residuals in this case. If one analyses the observed dataD to
obtain samples from the posterior distribution of the modelparam-
etersΘ, it is straightforward to obtain samples from the posterior
distribution of the data residualsRn. This is given by

Pr(Rn|D,Hn) =

∫

Pr(Rn|Θ,Hn)Pr(Θ|D,Hn) dΘ, (4)

where

Pr(Rn|Θ, Hn) =

M
∏

i=1

1
√

2πσ2
i

exp

{

− [Di −Ri −Dp,i(Θ)]2

2σ2
i

}

,

(5)
andDp(Θ) is the (noiseless) predicted data-set corresponding to
the parameter valuesΘ. Assuming that the residuals are indepen-
dently Gaussian distributed with mean〈Rn〉 = {r1, r2, · · · , rM}
and standard deviations{σ′

1, σ
′

2, · · · , σ′

M} obtained from the pos-
terior samples,〈Rn〉 can then be analysed withNobj = 0, giving
the ‘residual null evidence’Zr,0, which is compared with the ev-
idence valueZr,1 obtained by analysing〈Rn〉 with Nobj = 1.
The comparison is thus being made between the modelH0 that the
residual data does not contain an additional object and the model
H1 in which an additional object is present.

With no prior information about the number of objects in a
data-set, the original data-setD is first analysed withNobj = 1. If,
in the analysis of the corresponding residuals data,H1 is favoured
overH0, then the original dataD are analysed withNobj = 2
and the same process is repeated. In this way,Nobj is increased
in the analysis of the original dataD, until H0 is favoured over
H1 in the analysis of the corresponding residual data. The resulting
value forNobj gives the number of objects favoured by the data.
This approach thus requires the detection and estimation oforbital
parameters forNobj = n model but the Bayesian evidence needs
to be calculated only for theNobj = 1 model (and theNobj = 0
model, which is trivial); this reduces the computational cost of the
problem significantly. We use this method for analysing the RV
data-sets in this paper.

4 MODELLING RADIAL VELOCITIES

Observing planets at interstellar distances directly is extremely dif-
ficult, since the planets only reflect the light incident on them from
their host star and are consequently many times fainter. Nonethe-
less, the gravitational force between the planets and theirhost star
results in the planets and star revolving around their common cen-
tre of mass. This produces doppler shifts in the spectrum of the
host star according to its RV, the velocity along the line-of-sight to
the observer. Several such measurements, usually over an extended
period of time, can then be used to detect extrasolar planets.

Following the formalism given in Balan & Lahav (2009), for
Np planets and ignoring the planet-planet interactions, the RV at
an instantti observed atjth observatory can be calculated as:

v(ti, j) = Vj −
Np
∑

p=1

Kp [sin(fi,p +̟p) + ep sin(̟p)] , (6)

where

Vj = systematic velocity with reference tojth observatory,

Kp = velocity semi-amplitude of thepth planet,

̟p = longitude of periastron of thepth planet,

fi,p = true anomaly of thepth planet,

ep = orbital eccentricity of thepth planet,
start of data taking, at which periastron occurred.

Note thatfi,p is itself a function ofep, the orbital periodPp of the
pth planet, and the fractionχp of an orbit of thepth planet, prior to
the start of data taking, at which periastron occurred. While there
is a unique mean line-of-sight velocity of the center of motion, it is

c© 2013 RAS, MNRAS000, 1–10
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important to have a different velocity referenceVj for each obser-
vatory/spectrograph pair, since the velocities are measured differ-
entially relative to a reference frame specific to each observatory.

Occasionally, there is a long-term linear drift in the RV data
owing to the presence of a distant stellar companion. In suchcases,
one adds a corresponding linear drift term to (6) as follows:

v(ti, j) = Vj−
Np
∑

p=1

Kp [sin(fi,p +̟p) + ep sin(̟p)]+g(ti−t0),

(7)
whereg is the drift acceleration andt0 is the time of first RV ob-
servation.

The measurement uncertainties on the RV data are assumed to
be uncorrelated and Gaussian-distributed. In order to allow, how-
ever, for the possibility that the quoted measurement uncertainties
are over- or under-estimated, we introduce a hyper-parameter αj ,
for each observatory. The uncertainty onith RV measurement from
jth observatory,σi,j is modified to becomeσi,j/αj . As discussed
in Hobson, Bridle & Lahav (2002), these hyper-parameters effec-
tively assign a weight to each data-set that is determined directly
by its own statistical properties, and which are then marginalized
over. This approach allows for the consistent statistical analysis
of multiple data-sets even when they would otherwise be mutu-
ally inconsistent assuming the quoted measurement uncertainties.
This contrasts sharply with the common subjective practiceof sim-
ply excluding certain data-sets altogether, thereby assigning them a
weight of zero.

In order to model the possible presence of an additional cor-
related noise component between RVs, which also simultaneously
allows us to model intrinsic stellar variability (‘jitter’), we adopt the
red noise model of Baluev (2011, 2013). This approach is equiva-
lent to assuming the presence of an additional terms(ti, j) on the
right-hand side of (6) or (7) that has a covariance function given by

R[s(ti, j), s(ti′ , j
′)] = s2jδjj′ exp(−|ti − ti′ |/τj), (8)

whereδjj′ is the Kronecker delta symbol andτj is an unknown
parameter characterising the correlation timescale for the jth ob-
servatory. For large enoughτj , (8) becomes:

R[s(ti, j), s(ti′ , j
′)] = s2jδjj′δii′ , (9)

which is the often used ‘jitter’ noise model with no correlated com-
ponent. It is worth noting, however, that the correlated noise com-
ponent modelled by (8) is generic and need not arise from intrinsic
stellar variability. Indeed, the standard white noise model should be
considered as nested within the red noise model used in this work.

Therefore, in our model for the RV data, we have five free pa-
rametersK,̟, e, P andχ for each planet, and an additional linear
drift acceleration parameterg when there is linear drift in the data,
common to all the planets. In addition to these parameters there are
four nuisance parametersVj, sj , αj and τj per observatory. The
orbital parameters can be used along with the stellar massms to
calculate the lengtha of the semi-major axis of the planet’s orbit
around the centre of mass and the planetary massm as follows:

as sin i =
KP

√
1− e2

2π
, (10)

m sin i ≈ Km
2
3
s P

1
3

√
1− e2

(2πG)
1
3

, (11)

a ≈ msas sin i

m sin i
, (12)

whereas is the semi-major axis of the stellar orbit about the centre-
of-mass andi is the angle between the direction normal to the

planet’s orbital plane and the observer’s line of sight. Since i can-
not be measured with RV data, only a lower bound on the planetary
massm can be estimated.

5 BAYESIAN ANALYSIS OF RADIAL VELOCITY
MEASUREMENTS

There are several RV search programmes looking for extrasolar
planets. The RV measurements consist of the timeti of the ith
observation, the measured RVvi relative to a reference frame and
the corresponding measurement uncertaintyσi. These RV measure-
ments can be analysed using Bayes’ theorem given in (1) to obtain
the posterior probability distributions of the model parameters dis-
cussed in the previous section. We now describe the form of the
likelihood and prior probability distributions.

5.1 Likelihood function

As discussed in Gregory (2007), the errors on RV measurements
can be treated as Gaussian and therefore the likelihood function
can be written as

L(Θ) =
1

|2πC|1/2 exp
[

− 1
2
(v − v

′)tC−1(v − v
′)
]

, (13)

wherev is the vector with RV measurementsv(ti, j), v′ is the vec-
tor with RVsv(Θ; ti, j) calculated using (7), andC is the covari-
ance matrix. As discussed above, our model for the RV data in-
cludes hyper-parameters that scale the independent measurement
uncertainties for each observatory and a correlated red noise com-
ponent in (8), such that the total covariance function is given by

C[v(ti, j), v(ti′ , j′)]
= [(σi,j/αj)

2δii′ + s2j exp(−|ti − ti′ |/τj)]δjj′ . (14)

This should be contrasted with the common practice when
analysing RV data-sets of adopting a ‘white’ noise model using the
quoted measurement uncertainties directly and ignoring any cor-
related noise component, but still including a stellar jitter term, in
which case the covariance function is simply

Cwhite[v(ti, j), v(ti′ , j
′)] = (σ2

i,j + s2j )δii′δjj′ . (15)

It should be noted that the red noise model used in this
work differs markedly from the so-called ‘ARMA’ (autoregressive
moving-average) model used in Tuomi et al. (2013) for modelling
the correlated noise component. The AR part of the ARMA model,
with orderp models a time seriesXi as follows:

Xi = c+

p
∑

i′=1

ψi′Xi−i′ + ǫi, (16)

whereψi′ are the AR coefficients,c is a constant andǫi is the white
noise term. AR(p) works well for regularly spaced time series but
since the RV measurements are almost always irregularly spaced
in time, this model in its original form is not applicable. Inorder
to circumvent this problem, Tuomi et al. (2013) modified the AR
model given in (16) as follows:

Xi = c+

p
∑

i′=1

ψi,i′Xi−i′ + ǫi, (17)

where

ψi,i′ = ψi′ exp |γ(ti − ti′)|. (18)

c© 2013 RAS, MNRAS000, 1–10
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Parameter Prior Mathematical Form Lower Bound Upper Bound

P (days) Jeffreys 1
P ln(Pmax/Pmin)

0.2 365, 000

K (m/s) Mod. Jeffreys (K+K0)
−1

ln(1+(Kmax/K0)(Pmin/Pi)
1/3(1/

√

1−e2
i
))

0 Kmax(Pmin/Pi)
1/3(1/

√

1− e2i )

V (m/s) Uniform 1
Vmin−Vmax

−Kmax Kmax

e Uniform 1 0 1

̟ (rad) Uniform 1
2π

0 2π

χ Uniform 1 0 1

s (m/s) Mod. Jeffreys (s+s0)
−1

ln(1+smax/s0)
0 Kmax

α Exponential e−α 0 ∞

τ (days) Uniform 1 0 100

Table 1. Prior probability distributions.

One potential problem with this approach is that the sampling of
time series at different points in time or at different time resolu-
tions can have quite a large impact on the way the correlated noise
component is modelled, as the AR(p) part for calculatingXi in-
cludes the previousp time series values closest toXi, regardless of
their actual temporal separations. The red noise model thatwe have
adopted correlates every single pair of RV measurements taken by
a given observatory (with the magnitude of correlation dependent
on the temporal separation within the pair) and therefore does not
suffer from this shortcoming.

5.2 Choice of priors

For parameter estimation, priors become largely irrelevant once the
data are sufficiently constraining, but for model selectionthe prior
dependence always remains. Therefore, it is important thatpriors
are selected based on physical considerations. We follow the choice
of priors given in Gregory (2007), as shown in Table 1.

The modified Jeffreys prior,

Pr(θ|H) =
1

(θ + θ0) ln(1 + θmax/θ0)
, (19)

behaves like a uniform prior forθ ≪ θ0 and like a Jeffreys prior
(uniform in log) for θ ≫ θ0. We setK0 = s0 = 1 m/s and
Kmax = 2129 m/s, which corresponds to a maximum planet-star
mass ratio of0.01.

The prior distribution imposed on hyper-parametersα is ex-
ponential with expectation value unity. This is because ourexpec-
tation is that the uncertainty values on observed RVs are neither
over nor under-estimated, i.e.E[α] = 1. With this constraint, and
the fact that eachα is a positive quantity, the correct prior distri-
bution according to the maximum-entropy principle is the expo-
nential prior (see e.g. Hobson et al. 2002; Sivia & Skilling 2006).
When analysing multiple data-sets jointly, inferred values of hyper-
parameters which are significantly away from unity, may hintat in-
consistency between the data-sets. Nonetheless, inclusion of these
hyper-parameters ensures a statistically consistent analysis of mul-
tiple data-sets even in this case (see Hobson et al. 2002 for more
details).

6 RESULTS

We used the 172 RV measurements of GJ667C obtained by
the HARPS spectrograph with the HARPS-TERRA technique,
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Figure 1. Top panel shows the radial velocity measurements for GJ667C
from DCCF data-set, with the quoted1σ errorbars. Bottom panel shows a
blow-up of the mean fitted radial velocity curve to the data for two plan-
ets found orbiting GJ667C, with the red noise component included in the
analysis.

20 measurements obtained with HIRES/Keck and 32 measure-
ments with PFS/Megallan, we call this data-setDTERRA. We
also analysed a separate data-set calledDCCF, containing 170
RV measurements obtained by HARPS with the CCF tech-
nique, along with the same RV measurements from HIRES/Keck
and PFS/Megallan. Both TERRA and CCF HARPS RV mea-
surements are given in Anglada-Escude et al. (2013), while

c© 2013 RAS, MNRAS000, 1–10
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DCCF DTERRA

Np white noise red noise white noise red noise

1 17.05 ± 0.16 4.22± 0.16 16.95± 0.16 6.82± 0.16
2 9.80 ± 0.16 2.24± 0.15 18.94± 0.16 5.00± 0.16
3 2.57 ± 0.15 0.44± 0.14 4.22± 0.15 0.89± 0.15
4 0.13 ± 0.14 0.16± 0.14 1.37± 0.15 0.00± 0.15
5 −0.49± 0.14

Table 2. ∆ lnZr values for the system GJ667C.

HIRES/Keck and PFS/Megallan RV measurements are available
from Anglada-Escude & Butler (2012). Throughout this work,we
ignore the planet-planet interactions and calculate the RVs by as-
suming Keplerian orbits for the planets.

The RVs fromDCCF along with their1−σ uncertainty values
are plotted in the top panel of Fig. 1. There is an evident long-term
linear drift in RVs of GJ667C induced by its companion stellar pair
GJ667AB, with expected value∼ 3 m s−1 yr−1 (for a total mass
of GJ667AB of 1.27M⊙ and separation between GJ667AB and
GJ667C of∼ 300 AU) (Delfosse et al. 2013). We therefore added
an additional drift component to RVs calculated, as given in(7).
There is some hint of correlation between nearby values but due to
irregular temporal sampling, it is difficult to discern any pattern by
visual inspection.

We first address the question of whether there is evidence for
the presence of correlated noise in the RV data-set of GJ667C.
By comparing the evidence values for models with white and red
noise, one could attempt to answer the question whether thissystem
favours correlated red noise model over uncorrelated whitenoise.
For theDCCF (DTERRA) data-set,∆lnZ in favour of red noise for
Np = 0 andNp = 1 is found to be18.50 ± 0.37 (19.77 ± 0.37)
and35.83±0.34 (45.46±0.35) respectively, clearly showing very
strong evidence in favour of the correlated noise model. Another
way to distinguish between these two noise models would be to
determine whether very large values of correlation timescale τ are
ruled out when the red noise component is included in the analysis.
Looking ahead, the 1-D marginalised posterior probabilitydistri-
butions for correlation timescalesτH, τK andτP of HARPS, Keck
and PFS, forNp = 2 planets in the analysis of data-setDCCF are
shown in Fig. 6. It is clear from these plots that there is a reason-
ably tight constraint onτH around∼ 9 days while the posteriors
for τK andτP are largely unconstrained. Posterior distributions of
τ from the analysis of data-setDTERRA are similar. We can there-
fore be confident that the HARPS data strongly favours correlated
red noise model over the uncorrelated white noise model. TheKeck
and PFS data-sets are not sufficiently discriminative, largely due to
not having enough data points, to rule out either the white orthe
red noise model.

The origin of this correlated red noise is not entirely clear. It
has already been shown that noise in photometric observations of
exoplanetary transits is often correlated (Pont et al. 2006). Further-
more, O’Toole et al. (2008) showed that RV noise is not necessar-
ily white due to stellar oscillations. Studies of couple of other M
dwarves GJ876 and GJ581 have also found strong evidence for
the presence of red noise (Baluev 2011, 2013). The correlation
timescale of order9 days found in this study, is too long to be ex-
plained by stellar oscillations alone and therefore could be due to a
combination of several stellar effects.

In order to determine the number of planets supported by the
RV data-sets of GJ667C, we follow the object detection method-

ology outlined in Sec. 3 and analyse the RV data, for both the
correlated red noise and uncorrelated white noise models, starting
with Np = 0 and increasing it until the residual evidence ratio
∆ lnZr ≃ 0. These evidence ratios, obtained from the residuals
after analysing the original data with a model containingNp plan-
ets, are presented in Table 2. For each value ofNp, we also plot in
Figs 2 and 3 the corresponding marginalised posterior probability
distributions for the orbital periodP obtained from the analysis of
the residuals data, for data-setsDCCF andDTERRA respectively.
The combination of these residual posterior plots with the resid-
ual evidence values can be viewed as the Bayesian analogue ofthe
Lomb–Scargle periodogram, with the residual evidences quantify-
ing the level of confidence in the presence of any additional planets.
We reiterate, however, that in our main object detection analysis, if
∆ lnZr & 0 for Np = n, we analyse theoriginal (rather than
residual) data with theNp = n+ 1 planet model.

For the red noise model, one sees from Table 2 that bothDCCF

andDTERRA show strong evidence for the presence of no more
than three planets. For both data-sets, theNp = 2 model yields
the planets GJ667Cb and c, with periods7.19d and28.13d re-
spectively. For theNp = 3 model, however, one finds that the
third planet has a period of 106d forDCCF and 91d for data-set
DTERRA. Indeed, this is consistent with the posterior distributions
of orbital period from the analysis of residuals data after the de-
tection of three planets; as shown in Figs 2 and 3 these distribu-
tions peak at 91d and 106d, respectively, for data-setsDCCF and
DTERRA. For theNp = 4 model, one finds that all four signals
(with periods 7.19d, 28.13d, 91d and 106d) are detected in both
(original) data-setsDCCF andDTERRA.

The presence of the 106d signal has already been debated
quite extensively (see e.g. Delfosse et al. 2013), with several stud-
ies attributing it to stellar rotation, since it is very close to the ro-
tation period of the star of 105d. Moreover, the full width athalf-
maximum (FWHM) of the CCF, and the Ca-II H+K S-index in the
Mount Wilson system (S-index), which are used as indicatorsof
stellar activity, both show a peak at 105d (Anglada-Escude et al.
2012). We also cannot be sure about the presence of 91d signal, as
it was detected as the fourth planet in the analysis ofDCCF and
the residual evidence forNp = 3 in this case was found to be∼
0. Furthermore, both FWHM of the CCF, and the S-index show a
peak at 91d, although the 105d peak in these indicators is much
more prominent than the 91d peak (Anglada-Escude et al. 2012).
We are therefore confident in our conclusion that the currentRV
data-set provides strong evidence only for 2 planets in thissystem.
However, the presence of a third signal with period 91d can not
be ruled out, but the confirmation of its planetary origins will only
be possible with more RV observations. Adopting the two-planet
model with the red noise component included, the estimated pa-
rameter values obtained from the analysis ofDCCF are listed in
Table 3 while the 1-D marginalised posterior probability distribu-
tions are shown in Figs. 4-6. The mean RV curve for the two-planet
model is overlaid on the RV measurements in Fig. 1. The poste-
rior distributions obtained from the analysis ofDTERRA are very
similar and therefore we do not re-produce them here.

Assuming the white noise model, one can see from Table 2
that there is evidence for the presence of at least 4 and perhaps
5 signals depending on whether theDCCF or DTERRA data-set
is used. Apart from the four signals with orbital periods 7.19d,
28.13d, 91d and 106d, there are additional signals with periods
39d, 60d, 180d and 350d, as can be seen in Figs. 2 and 3. Some of
these signals have already been presented as detected planets in sev-
eral studies (see e.g. Gregory 2012; Anglada-Escude et al. 2013).
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Figure 2. 1-D marginalised posterior probability distributions forthe orbital period of planets found in the analysis of residual data calculated after the detection
of Np planets. Data-setDCCF was used in all cases.

Comparing the marginalised posterior probability distributions for
the orbital period obtained from the analysis of residual data from
white noise model (Figs. 2 and 3 left panel) to the red noise model
(Figs. 2 and 3 right panel), we can see that there are quite a few
more peaks in the white noise case, showing clear evidence that
erroneously assuming the white noise model leads to spurious de-
tections of planets. This also gives an explanation for the claims of
detection of up to seven planets in this system.

Finally we note from Fig. 6 that the hyper-parameterαH, al-
lowing for any under or over-estimation of measurement uncer-
tainty from the HARPS spectrograph is found to be0.60 ± 0.06
(0.74 ± 0.08) in the analysis ofDCCF (DTERRA) data-set, ruling
outα = 1 (no under or over-estimation in measurement uncertain-

ties) with high confidence. Therefore we conclude that the mea-
sured uncertainties from HARPS spectrograph for GJ667C have
been under-estimated at the∼ 50 per cent level.

7 CONCLUSIONS

Detection of extrasolar planets using radial velocity (RV)obser-
vations requires the use of statistical model selection techniques.
Most of these techniques assume the noise to be uncorrelated. De-
termining the number of planets from RV data-sets is alreadya very
challenging task due to the problems associated with accurately cal-
culating the probabilities for models withNp = 0, 1, 2, · · · plan-
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Figure 3. 1-D marginalised posterior probability distributions forthe orbital period of planets found in the analysis of residual data calculated after the detection
of Np planets. Data-setDTERRA was used in all cases.
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ets. Allowing for correlated noise adds an additional layerof com-
plexity to this problem. In this work, we have presented a Bayesian
method for determining the number of planets supported by RV
data-set in the presence of correlated red noise. The red noise model
adopted collapses to a white noise model if correlated red noise is
not supported by the data. Furthermore, we have introduced hyper-
parameters allowing for any over or under-estimation of measure-
ment uncertainties on RV observations. These hyper-parameters
also allow us to deal with any inconsistencies between different
data-sets in a statistically robust manner. In order to explore the
parameter space of these models and perform Bayesian objectde-
tection, using the MULTI NEST(Feroz & Hobson 2008; Feroz et al.
2009, 2013) algorithm whose accuracy has already been demon-
strated in many diverse problems in astro and particle physics.

By applying this method to the RV data-set of GJ667C, we
find conclusive evidence that the HARPS data favours correlated
red noise model over uncorrelated white noise model with thecor-
relation timescale∼ 9 days. Adopting the red noise model, we con-
firm the presence of planets GJ667Cb and c with periods7.19d and
28.13d respectively. There is some evidence for a third signal with
orbital period91d, but the planetary origins of this signal are doubt-
ful. We have also shown conclusively that erroneously adopting the
white noise model can result in detection of multiple further plan-
ets, which also explains the recent claims of the detection of up to
seven planets in this system. We also found strong evidence for the
under-estimation of measurement uncertainties from the HARPS
spectrograph for GJ667C at the∼ 50 per cent level which may hint
towards some systematics in this data-set.
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Parameter GJ667Cb GJ667Cc

P (days) 7.200± 0.001 28.143 ± 0.029
(7.200) (28.126)

K (m/s) 3.977± 0.193 1.663± 0.291
(4.116) (1.854)

e 0.122± 0.078 0.133± 0.098
(0.121) (0.081)

̟ (rad) 3.206± 0.395 3.659± 2.048
(3.304) (0.443)

χ 0.241± 0.070 0.549± 0.236
(0.222) (0.430)

m sin i (M⊕) 5.661± 0.437 3.709± 0.682
(5.826) (4.150)

a (AU) 0.050± 0.002 0.125± 0.004
(0.050) (0.125)

Table 3. Estimated parameter values for the two planets found orbiting
GJ667C, with the red noise component included in the analysis of data-
setDCCF. The estimated values are quoted asµ±σ whereµ andσ are the
posterior mean and standard deviation respectively. The numbers in paren-
thesis are the maximum-likelihood parameter values.

The level of correlation found in the RV data-set of this system
emphasizes the need to check robustly for such correlationsbefore
claiming detections of multi-planet systems. This is of vital impor-
tance as these multi-planet systems, especially those withplanets
inside the habitable zone, provide important data for research in
many areas of planetary astrophysics.

Finally, we note that although the noise model adopted in this
study does a far better job than a white noise model, it is still phe-
nomenological and therefore it does not provide much information
about the origin of correlated noise component. One would expect
to improve the analysis even further by adopting physicallymoti-
vated noise models.
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