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1 INTRODUCTION

Extrasolar planetary research has made great advances lasth
decade as a result of the data gathered by several groungacel s
based telescopes and thus far more than 900 extrasolatplave
been discovered. More and more planets with large orbitébge
and small velocity amplitudes are now being detected due-+to r
markable improvements in the accuracy of RV measuremerits. W
the flood of new data, more powerful statistical techniguesbe-
ing developed and applied to extract as much informationoas p
sible. Traditionally, the orbital parameters of the planahd their
uncertainties have been obtained by a two stage processttér
period of the planets is determined by searching for petitydin
the RV data using the Lomb-Scargle periodogram (Lomb |1976;
Scargle 1982). Other orbital parameters are then detedmnisieg
minimisation algorithms, with the orbital period of the péds fixed
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orous way of performing model selection which is requiredi¢e
cide the number of planets favoured by the data. The main-prob
lem in applying such Bayesian model selection techniquékes
computational cost involved in calculating the Bayesiaitence.
Nonetheless, Bayesian model selection has the potentraprove

the interpretation of existing observational data and ipbsdetect

yet undiscovered planets. Recent advances in Marko-ChaintéV
Carlo (MCMC) techniques (see elg. Mackay 2003) have made it
possible for Bayesian techniques to be applied to extraptdae-
tary searches (see elg. Gregory 2005; liFord|2005; Ford & @rego
2007;/Balan & Lahav 2009). Feroz, Balan & Hobson (2011) pre-
sented a new Bayesian method for determining the number-of ex
trasolar planets, as well as for inferring their orbital graeters,
without having to calculate directly the Bayesian evidefacenod-

els containing a large number of planets.

to the values determined by Lomb-Scargle periodogram. GJ667 is an M dwarf in a triple star system which lies at
Bayesian methods have several advantages over traditional@ distance of about.8 pc (22.1 lightyears) from Earth. GJ667C

methods, for example when the data do not cover a complete or-is the least massive component of this system with noa&s +

bital phase of the planet. Bayesian inference also provadeg- 0.03 Mg (Delfosse et al. 2013). Two other components of this
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system, GJ667AB, are a closer couple of K dwarfs with semi-
major axis of 1.82 AU, period of 42.15 years and mass of 1.27
Mg, (Soderhjelin_1999). GJ667C is at a projected distance of
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32.4"” from GJ667AB, giving an expected semi-major axis~of
300 AU (Delfosse et gll_ 2013). Using the data from the HARPS
spectrograph (with RVs obtained using cross-correlatiorction
‘CCF’ technique), Bonfils et al.| (2011) reported detectidnao
planet (GJ667Cb) with orbital period of 7.2d and minimum snas
of 5.9Mg,. They also found evidence for the presence two fur-
ther planets with orbital periods 28d and 90d respectivélgd
and 28d planets were confirmed by Anglada-Escude et al. [§2012
and| Delfosse et all (2013), both using HARPS data although re
duced using different techniques. GJ667Cc with orbitaliquer
of 28d is particularly interesting as it lies well within thab-
itable zone of the host star where it could support liquiderat
Anglada-Escude et al. (2012) further found evidence for autati-
tional planet with orbital period 75d, however they did notsider

it significant since it was affected by aliasing interactiovith an-
other 91d signal and the likely rotation period of the stail@$
days! Delfosse et al. (2013) found a signal with orbital ped06d

but attributed it to the stellar rotation due to it being velyse to
the rotation period of the star. A Bayesian analysis of theRRS
RVs for this system was performed by Gregary (2012), whotapar
from confirming the presence of first two planets GJ667Cb and c
also found evidence for four additional signals with orbjitariods
30.82d, 38.82d, 53.22d and 91.3d respectively. They dischihe
53.22d signal due to the high likelihood of it being the setbar-
monic of the stellar rotational period. Potential planet$\80.82d
and 38.82d orhital periods lie in the central region of tHest
star’s habitable zone and therefore are of much interest.

More recently,| Anglada-Escude et al. (2013) performed a
joint analysis of RV observations of this system from HARPS,
HIRES/Keck and PFS/Magellan spectrographs (availablen fro
Anglada-Escude & Butlsr 2012). Instead of using the CCF-tech
nigue to obtain RVs from observed spectra, they used the [Béeap
Enhanced Radial velocity Re-analysis Application ‘TERRZh-
nique which has been claimed to produce significantly more ac

including the likelihood function and choice of prior disutions.
We apply our method to RV data sets of GJ667C in §kc. 6 and
present our conclusions in SEt. 7.

2 BAYESIAN INFERENCE

Bayesian inference provides a consistent approach to tineed®n
of a set of paramete® in a model (or hypothesidy for the data
D. Bayes'’ theorem states that

Pr(D|®©, H)Pr(®|H) B

Pr(D|H) '
wherePr(®|D, H) = P(®|D) is the posterior probability distri-
bution of the parameter®r(D|®, H) = L£(®) is the likelihood,
Pr(®|H) = n(®) isthe prior, an®r(D|H) = Z is the Bayesian
evidence given by:

Pr(®|D, H) =

Z= /L(@)w(@)dNG, )
where N is the dimensionality of the parameter space. Bayesian
evidence being independent of the parameters, can be @jiore
parameter estimation problems and inferences can be ebtain
taking samples from the (unnormalized) posterior distidruus-
ing standard MCMC methods.

Model selection between two competing modgéls and H,
can be done by comparing their respective posterior prébebi
given the observed data-sB, as follows

_ Pr(Hy|D) _ Pr(D|Hy)Pr(Hi) _ 2 Pr(Hi)
- PI‘(H0|D) - PI‘(D|H0)PI‘(H0) B Zo PI"(.Ho)7
wherePr(H1)/ Pr(Hy) is the prior probability ratio for the two
models, which can often be set to unity in situations wheezeth

is not a prior reason for preferring one model over the othet,
occasionally requires further consideration. It can be $emn (3)

®)

curate RVs compared to RVs obtained using the CCF technique that the Bayesian evidence plays a central role in Bayesizem

(Anglada-Escude & Butlat 2012). Anglada-Escude etal. 01

found evidence for the existence of six (even seven) planets

selection.
As the average of the likelihood over the prior, the evidence

GJ667Ca-f with period 7.2d, 28d, 92d, 62d, 39d and 260d (sev- is larger for a model if more of its parameter space is likaiy a

enth one having period of 17d) respectively. They furthemsid
that this system is dynamically stable. All these planedatates
have relatively low masses-(few Mg,) with GJ667Cc, e and f
lying inside the habitable zone, which if confirmed, wouldkea
GJ667C one of the first systems with multiple low mass plaimets
its habitable zone. They also considered a model with cedl
noise (modified ARMA model describedlin Tuomi etlal. 2013 and
Sec[B.1 of this paper) but found that white noise model istiaed

by the data.

smaller for a model with large areas in its parameter spaciadpa
low likelihood values, even if the likelihood function isryenighly
peaked. Thus, the evidence automatically implements Osaam
zor.

Evaluation of the multidimensional integral il (2) is a chal
lenging numerical task. Standard techniques like thermanhc
integration are extremely computationally expensive Whitakes
evidence evaluation at least an order of magnitude moréydbsn
parameter estimation. Various alternative informatioiteda for

It has already been shown that noise in photometric observa- astrophysical model selection are discussed by Liddle 7Rt

tions of exoplanetary transits is often correlated (Poatl&2006).
Information content of correlated data is lower than if th¢edvere
uncorrelated, therefore ignoring correlated noise coraptscan
result in spurious detection. In this paper, we present seSiap
method for the analysis of RV data-sets with correlatedendige
also allow for the possibility of the reported uncertainglues on
RV measurement to be over or under-estimated and deal wjth an
inconsistencies between different data-sets in a stalktirobust
manner. We apply this method to the RV data-set of GJ667C.
The outline of this paper is as follows. We give a brief in-
troduction to Bayesian inference in SEE. 2 and describe bjgcb
detection method for calculating the number of planetsdasd by
the data in Se€]3. Our method for modelling RV data is desdrib
in Sec[4. In Se¢]5 we describe our Bayesian analysis metpdo

the evidence remains the preferred method.

The nested sampling approach, introduced by Skilling (2004
is a Monte Carlo method targeted at the efficient calculadicthe
evidence, but also produces posterior inferences as aduugr.
Feroz & Hobson [(2008); _Feroz etlal. (2009, 2013) built on this
nested sampling framework and have introduced the MINEST
algorithm which is very efficient in sampling from postegdhat
may contain multiple modes and/or large (curving) degemiesa
and also calculates the evidence. This technique has gnesatl
duces the computational cost of Bayesian parameter egtimeaid
model selection and has already been applied to severatnte
problems in astro and particle physics (see le.g. Feroz [2088B,
2009;| Bridges et al. 2009; Feroz et al. 2009; Bridges let al120
Strege et al. 2013; Karpenka etlal. 2013).
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3 BAYESIAN OBJECT DETECTION

To detect and characterise an unknown number of objects in a
data-set, one would ideally like to infer simultaneously till

set of parameter® = {Nopj, ©1,02,--- ,On,,;, On}, where
Nob; is the (unknown) number of object®; are the parameters
values associated with thgh object, and®,, is the set of (nui-
sance) parameters common to all the objects. This, howsser,

quires any sampling based approach to move between spaces of 4 standard deviatior(,,

different dimensionality as the length of the parametetorede-
pends on the unknown value &,;. Such techniques are dis-
cussed in_Hobson & McLachlan (2003) and Brewer etlal. (2013).
Nevertheless, due to this additional complexity of vaathimen-
sionality, these techniques are generally extremely coatipnally
intensive.

An alternative approach for achieving virtually the same re
sult is the ‘multiple source model’. By consideringsaries of
models Hn,,;, each with afixed number of objects, i.e. with
Nob; = 0,1,2,.... One then infersV,ps by identifying the model
with the largest marginal posterior probabiligy(Hx,,;| D). As-
suming that there are,, parameters per object amg (nuisance)
parameters common to all the objects, #4,; objects, there would
be Nopinp + nn parameters to be inferred, Along with this in-
crease in dimensionality, the complexity of the problenoals
creases withiV,,; due to the exponential increase in the number of
modes as a result of counting degeneracy (therelamore modes
for Nob; = n than forNgp; = 1).

If the contributions to the data from each object are reason-
ably well separated and the correlations between parastenss
objects is minimal, one can use the alternative approachingle
source model’ by setting/,,; = 1 and therefore the model for the
data consists of only a single object. This does not, howesstrict
us to detecting only one object in the data. By modelling thiad
in such a way, we would expect the posterior distribution ae-p
sess numerous peaks, each corresponding to the locatiore affo
the objects. Consequently the high dimensionality of thebjem
is traded with high multi-modality in this approach, whidepend-
ing on the statistical method employed for exploring theapzater
space, could potentially simplify the problem enormouBigr an
application of this approach in detecting galaxy clustenfiwveak
lensing data-sets see Feroz etlal. (2008).

Calculating Bayesian evidence accurately for large nuraber
objects is extremely difficult, due to the increase in diniamality
and severe complexity of the posterior, but parameter asim
can still be done accurately. In order to circumvent thisbfem,
Feroz et al.|(2011) proposed a new general approach to Bawyesi
object detection called the ‘residual data model’ that igliapble
even for systems with a large number of planets. This metkod i
based on the analysis of residual data after detectiaNgf ob-
jects. We summarize this method below.

Let Hy,,; denote a model withNop,; objects. The observed
(fixed) data is denoted blp = {d1,ds, - - ,dm}, with the asso-
ciated uncertainties beinfpi, 02, -+ ,om}. In the general case
that No»; = n, the random variabl®,, is defined as a realisation
of the data that would be collected if the modé), were correct,
and the random variabl®, = D — D,, as the corresponding
data residuals in this case. If one analyses the observadl&b
obtain samples from the posterior distribution of the mguehm-
etersO, it is straightforward to obtain samples from the posterior
distribution of the data residuaR,,. This is given by

Pr(Rn|D,Hn):/Pr(Rn|®,Hn)Pr(®|D,Hn)d®, @)
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(5)
and D, (®) is the (noiseless) predicted data-set corresponding to
the parameter valug®. Assuming that the residuals are indepen-
dently Gaussian distributed with meaR.,,) = {r1,r2, -+ ,7m}

o4, -+ , 00+ Obtained from the pos-
terior samples(R,,) can then be analysed wiftN,,; = 0, giving
the ‘residual null evidenceZ, o, which is compared with the ev-
idence valueZ, ; obtained by analysingR,) with No,; = 1.
The comparison is thus being made between the migddhat the
residual data does not contain an additional object and thaem
H, inwhich an additional object is present.

With no prior information about the number of objects in a
data-set, the original data-sBtis first analysed wittNo,; = 1. If,
in the analysis of the corresponding residuals d&tajs favoured
over Ho, then the original datdD are analysed wittNop; = 2
and the same process is repeated. In this Wy, is increased
in the analysis of the original dat®, until H, is favoured over
H, in the analysis of the corresponding residual data. Théthegu
value for Nob; gives the number of objects favoured by the data.
This approach thus requires the detection and estimatiorbitl
parameters folN,,; = n model but the Bayesian evidence needs
to be calculated only for th&/,,; = 1 model (and theVop; = 0
model, which is trivial); this reduces the computationadtaaf the
problem significantly. We use this method for analysing the R
data-sets in this paper.

where

_[Di = Ri — Dy.i(©))?

2
20;

M
1
Pr(R,|®,H,) = ex
(rajo. 1) = 1] s of

4 MODELLING RADIAL VELOCITIES

Observing planets at interstellar distances directly issexely dif-
ficult, since the planets only reflect the light incident oarthfrom
their host star and are consequently many times fainteretien
less, the gravitational force between the planets and ltosir star
results in the planets and star revolving around their comosm-
tre of mass. This produces doppler shifts in the spectrunhef t
host star according to its RV, the velocity along the linesight to
the observer. Several such measurements, usually oveterdex
period of time, can then be used to detect extrasolar planets

Following the formalism given in Balan & Lahav (2009), for
N, planets and ignoring the planet-planet interactions, tfieaR
an instant; observed ajth observatory can be calculated as:

NP
v(ti,j) = Vi = Y Ky sin(fip + @) + epsin(w,)],  (6)
p=1
where
V; = systematic velocity with reference jth observatory
K, = velocity semi-amplitude of thgth planet
wp = longitude of periastron of theth planet
fip = true anomaly of theth planet
ep orbital eccentricity of theth planet

start of data taking, at which periastron occurred.

Note thatf; , is itself a function ofe,,, the orbital periodP, of the
pth planet, and the fractiog, of an orbit of thepth planet, prior to
the start of data taking, at which periastron occurred. @/thiere
is a uniqgue mean line-of-sight velocity of the center of rootiit is
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important to have a different velocity referenggfor each obser-
vatory/spectrograph pair, since the velocities are meaisdiffer-
entially relative to a reference frame specific to each olagery.
Occasionally, there is a long-term linear drift in the RValat

owing to the presence of a distant stellar companion. In sasbs,
one adds a corresponding linear drift term[fb (6) as follows:

Np
v(ti, j) = VJ—Z Ky [sin(fi,p + @p) + ep sin(wp)]+g(ti—to),

p=1

(M

whereg is the drift acceleration ant} is the time of first RV ob-
servation.

planet’s orbital plane and the observer’s line of sightcBincan-
not be measured with RV data, only a lower bound on the planeta
massm can be estimated.

5 BAYESIAN ANALYSISOF RADIAL VELOCITY
MEASUREMENTS

There are several RV search programmes looking for exaasol
planets. The RV measurements consist of the tigmef the ith
observation, the measured RY relative to a reference frame and
the corresponding measurement uncertaintyrhese RV measure-

The measurement uncertainties on the RV data are assumed tgnents can be analysed using Bayes’ theorem giveld in (1) &irobt

be uncorrelated and Gaussian-distributed. In order tovatow-
ever, for the possibility that the quoted measurement taicties
are over- or under-estimated, we introduce a hyper-pasmet
for each observatory. The uncertaintyim RV measurement from
jth observatoryg; ; is modified to become; ;/«;. As discussed
in [Hobson, Bridle & Lahavi (2002), these hyper-parametefescef
tively assign a weight to each data-set that is determinestity
by its own statistical properties, and which are then malgiad
over. This approach allows for the consistent statisticellysis
of multiple data-sets even when they would otherwise be mutu
ally inconsistent assuming the quoted measurement uitéta
This contrasts sharply with the common subjective praaifcem-
ply excluding certain data-sets altogether, thereby asgighem a
weight of zero.

In order to model the possible presence of an additional cor-
related noise component between RVs, which also simultesigo
allows us to model intrinsic stellar variability (jitte'we adopt the
red noise model of Baluey (2011, 2013). This approach isvegui
lent to assuming the presence of an additional tefty j) on the
right-hand side of(6) of{7) that has a covariance functigamby

Rs(ti, ), s(tir, 5)] = 530, exp(—[t: — tul/75),  (8)
whered,;, is the Kronecker delta symbol ang is an unknown

parameter characterising the correlation timescale ferjth ob-
servatory. For large enough, (8) becomes:

R[S(tivj)7 S(ti’vj/)] = S?5jj'5“'7 (9)
which is the often used ‘jitter’ noise model with no correldicom-
ponent. It is worth noting, however, that the correlatecsaa@om-
ponent modelled by {8) is generic and need not arise frormsitr
stellar variability. Indeed, the standard white noise nisteuld be
considered as nested within the red noise model used in this w

Therefore, in our model for the RV data, we have five free pa-
rameterss, @, e, P andy for each planet, and an additional linear
drift acceleration parametegrwhen there is linear drift in the data,
common to all the planets. In addition to these parameters tre
four nuisance parametel§, s;, a; andr; per observatory. The
orbital parameters can be used along with the stellar mast
calculate the lengtlh of the semi-major axis of the planet’s orbit
around the centre of mass and the planetary maas follows:

N )
assini = KZ#, (10)
2
L KmsgP%\/1—62
msini . —————, (11)
(2nG)3
@ n~ DetS (12)
msini

whereas is the semi-major axis of the stellar orbit about the centre-
of-mass and; is the angle between the direction normal to the

the posterior probability distributions of the model paeders dis-
cussed in the previous section. We now describe the formeof th
likelihood and prior probability distributions.

5.1 Likelihood function

As discussed in_Gregory (2007), the errors on RV measurement
can be treated as Gaussian and therefore the likelihoodidunc
can be written as

L(O) = B2 exp [-3(v—v)'C (v —2")], (13)
wherew is the vector with RV measurement§, ), v’ is the vec-

tor with RVsv(0; ¢, j) calculated usind(7), an@ is the covari-
ance matrix. As discussed above, our model for the RV data in-
cludes hyper-parameters that scale the independent reezsotr
uncertainties for each observatory and a correlated rezkremm-

ponent in[(8), such that the total covariance function iegilsy

C[v(tivj)vv(ti’vj,)]
= [(04,/;) %8s + 55 exp(—|t: — tur| /7)]055.  (14)

This should be contrasted with the common practice when
analysing RV data-sets of adopting a ‘white’ noise modetgishe
guoted measurement uncertainties directly and ignoringcan-
related noise component, but still including a stellagejitterm, in
which case the covariance function is simply

Comite[v(ti, §), v(ter, 7)) = (07 + 83)8:0,50.  (15)

It should be noted that the red noise model used in this
work differs markedly from the so-called ‘ARMA’ (autoregsve
moving-average) model usedlin Tuomi et al. (2013) for manuigll
the correlated noise component. The AR part of the ARMA model
with orderp models a time serieX; as follows:

Xi=c+ zp: Y Xy + €4,

/=1

(16)

wherey,;, are the AR coefficients;is a constant ané is the white
noise term. ARg) works well for regularly spaced time series but
since the RV measurements are almost always irregularigespa
in time, this model in its original form is not applicable. énder

to circumvent this problem, Tuomi etlal. (2013) modified the A
model given in[(IB) as follows:

Xi=c+ Ep: Vi Xi—or + €5,

/=1

(17

where
Vi = Py €xp |’Y(ti - tz")|~ (18)

© 2013 RAS, MNRASD00, [IHI0
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Parameter Prior Mathematical Form Lower Bound Upper Bound
1
P (days) Jeffreys W 0.2 365, 000
K (m/s Mod. Jeffreys +Xo 0 Kumax(Ponin/P)Y3(1/4/1 — €2
( ) Y ln(1+(Krmax/KO)(Pmin/Pi)l/S(l/ 176?)) max( mm/ ) ( / €{ )
V (m/s) Uniform m —Kmax Kmax
e Uniform 0 1
w (rad) Uniform = 0 2
X Uniform 1 0 1
(s+s0) ™"
s (m/s) Mod. Jeffreys m 0 Kmax
«a Exponential e 0 oo
T (days) Uniform 1 0 100

Table 1. Prior probability distributions.

One potential problem with this approach is that the sargptih
time series at different points in time or at different tinesolu-
tions can have quite a large impact on the way the correlaisgn
component is modelled, as the AR(part for calculatingX; in-
cludes the previoug time series values closest16, regardless of
their actual temporal separations. The red noise modehtbatave
adopted correlates every single pair of RV measuremengs tak
a given observatory (with the magnitude of correlation deleat
on the temporal separation within the pair) and therefoesduot
suffer from this shortcoming.

5.2 Choiceof priors

For parameter estimation, priors become largely irrelesane the
data are sufficiently constraining, but for model selecttomprior
dependence always remains. Therefore, it is importantptiats
are selected based on physical considerations. We follewttbice
of priors given in_Gregory (2007), as shown in Table 1.

The modified Jeffreys prior,

1
(6 4 60) In(1 + Omax/60)’

behaves like a uniform prior fd# < 6y and like a Jeffreys prior
(uniform in log) for 8 > 6y. We setKy = so = 1 m/s and
Kmax = 2129 m/s, which corresponds to a maximum planet-star
mass ratio 0f).01.

The prior distribution imposed on hyper-parameters ex-
ponential with expectation value unity. This is becauseexec-
tation is that the uncertainty values on observed RVs artherei
over nor under-estimated, i.€[a] = 1. With this constraint, and
the fact that each is a positive quantity, the correct prior distri-
bution according to the maximum-entropy principle is th@aex
nential prior (see e.g. Hobson etlal. 2002; Sivia & Skillif@D8).
When analysing multiple data-sets jointly, inferred valoéhyper-
parameters which are significantly away from unity, may hirin-
consistency between the data-sets. Nonetheless, inclabihese
hyper-parameters ensures a statistically consisterysiaalf mul-
tiple data-sets even in this case (see Hobson et all 2002 dog m
details).

Pr(0|H) =

(19)

6 RESULTS
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Figure 1. Top panel shows the radial velocity measurements for GJ667C
from Dccr data-set, with the quotetb errorbars. Bottom panel shows a
blow-up of the mean fitted radial velocity curve to the datatfeo plan-

ets found orbiting GJ667C, with the red noise componenua®d in the
analysis.

1200

20 measurements obtained with HIRES/Keck and 32 measure-
ments with PFS/Megallan, we call this data-$8tgrra. We
also analysed a separate data-set calleg:r, containing 170
RV measurements obtained by HARPS with the CCF tech-
nigue, along with the same RV measurements from HIRES/Keck

We used the 172 RV measurements of GJ667C obtained byand PFS/Megallan. Both TERRA and CCF HARPS RV mea-

the HARPS spectrograph with the HARPS-TERRA technique,

© 2013 RAS, MNRAS000, [1H10

surements are given in_Anglada-Escude et al. (2013), while
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Dccr DrERRA

Np white noise red noise white noise red noise
1 17.05£0.16 4.224+0.16 16.95+0.16 6.82+£0.16

2 9.80£0.16 2.24+0.15 18944+0.16 5.00+0.16

3 2.57+£0.15 0.44+0.14 4.224+0.15 0.89+£0.15

4 0.13+£0.14 0.16+0.14 1.374+0.15 0.00+0.15

5 —0.49+0.14

Table 2. A In Z, values for the system GJ667C.

ology outlined in Sed]3 and analyse the RV data, for both the
correlated red noise and uncorrelated white noise modelging
with N, = 0 and increasing it until the residual evidence ratio
Aln Z, ~ 0. These evidence ratios, obtained from the residuals
after analysing the original data with a model containivig plan-

ets, are presented in Talile 2. For each valu&gfwe also plot in
Figs[2 and B the corresponding marginalised posterior jititya
distributions for the orbital perio@ obtained from the analysis of
the residuals data, for data-sé¥%s:cr and DrTerra respectively.
The combination of these residual posterior plots with #&d-

ual evidence values can be viewed as the Bayesian analogioe of
Lomb-Scargle periodogram, with the residual evidencestifya

HIRES/Keck and PFS/Megallan RV measurements are available ing the level of confidence in the presence of any additiolzalgs.

from|Anglada-Escude & Butler (2012). Throughout this wonle
ignore the planet-planet interactions and calculate the Ry as-
suming Keplerian orbits for the planets.

The RVs fromDccr along with theirl — o uncertainty values
are plotted in the top panel of F{g. 1. There is an evident@mm
linear driftin RVs of GJ667C induced by its companion stgtlair
GJ667AB, with expected value 3 m s~ ! yr—! (for a total mass
of GJ667AB of 1.27M~, and separation between GJ667AB and
GJ667C of~ 300 AU) (Delfosse et al. 2013). We therefore added
an additional drift component to RVs calculated, as giveifZn
There is some hint of correlation between nearby values leita
irregular temporal sampling, it is difficult to discern arstigrn by
visual inspection.

We reiterate, however, that in our main object detectiotyais if
AlnZ, 2 0 for N, = n, we analyse theriginal (rather than
residual) data with th&V, = n + 1 planet model.

For the red noise model, one sees from Thble 2 thatDetr
andDrerra Show strong evidence for the presence of no more
than three planets. For both data-sets, Mje = 2 model yields
the planets GJ667Cb and c, with periodd9d and28.13d re-
spectively. For theV, = 3 model, however, one finds that the
third planet has a period of 106d f@ccr and 91d for data-set
Drrrra- Indeed, this is consistent with the posterior distribugio
of orbital period from the analysis of residuals data after tle-
tection of three planets; as shown in Figs 2 hhd 3 these ldlistri
tions peak at 91d and 106d, respectively, for data-Beisr and

We first address the question of whether there is evidence for Dterra. For the N, = 4 model, one finds that all four signals

the presence of correlated noise in the RV data-set of GJ667C
By comparing the evidence values for models with white ari re
noise, one could attempt to answer the question whethesythiem
favours correlated red noise model over uncorrelated widtse.
For theDcocr (Drerra) data-setA In Z in favour of red noise for
N, = 0andN, = 1 is found to bel8.50 4 0.37 (19.77 4 0.37)
and35.83 £0.34 (45.46 £+ 0.35) respectively, clearly showing very
strong evidence in favour of the correlated noise model.tiAe0
way to distinguish between these two noise models would be to
determine whether very large values of correlation timescare
ruled out when the red noise component is included in theyaizal
Looking ahead, the 1-D marginalised posterior probabiitstri-
butions for correlation timescaleg;, 7« andp of HARPS, Keck
and PFS, forV, = 2 planets in the analysis of data-$etcr are
shown in Fig[®. It is clear from these plots that there is soaa
ably tight constraint orrg around~ 9 days while the posteriors
for 7k and7p are largely unconstrained. Posterior distributions of
7 from the analysis of data-s&rgrra are similar. We can there-
fore be confident that the HARPS data strongly favours cateell
red noise model over the uncorrelated white noise model KEio&
and PFS data-sets are not sufficiently discriminative glgrdue to
not having enough data points, to rule out either the whitther
red noise model.

The origin of this correlated red noise is not entirely cléar
has already been shown that noise in photometric obsengatib
exoplanetary transits is often correlated (Pont gt al. [p@aéther-
more, O'Toole et &l.. (2008) showed that RV noise is not neress
ily white due to stellar oscillations. Studies of couple tfier M

(with periods 7.19d, 28.13d, 91d and 106d) are detected tin bo
(original) data-set®ccr andDrerraA -

The presence of the 106d signal has already been debated
quite extensively (see elg. Delfosse et al. 2013), withredwtud-
ies attributing it to stellar rotation, since it is very obo® the ro-
tation period of the star of 105d. Moreover, the full widthhatf-
maximum (FWHM) of the CCF, and the Ca-Il H+K S-index in the
Mount Wilson system (S-index), which are used as indicatdrs
stellar activity, both show a peak at 105d (Anglada-Escudd e
2012). We also cannot be sure about the presence of 91d,signal
it was detected as the fourth planet in the analysi®etr and
the residual evidence fav, = 3 in this case was found to be
0. Furthermore, both FWHM of the CCF, and the S-index show a
peak at 91d, although the 105d peak in these indicators if muc
more prominent than the 91d peak (Anglada-Escude et all)2012
We are therefore confident in our conclusion that the curiRnt
data-set provides strong evidence only for 2 planets insyssem.
However, the presence of a third signal with period 91d can no
be ruled out, but the confirmation of its planetary origind amly
be possible with more RV observations. Adopting the twaipta
model with the red noise component included, the estimated p
rameter values obtained from the analysisiufcr are listed in
Table[3 while the 1-D marginalised posterior probabilitgtdbu-
tions are shown in FigEl[4-6. The mean RV curve for the twogtia
model is overlaid on the RV measurements in Eig. 1. The poste-
rior distributions obtained from the analysis Bfrerra are very
similar and therefore we do not re-produce them here.

Assuming the white noise model, one can see from Table 2

dwarves GJ876 and GJ581 have also found strong evidence forthat there is evidence for the presence of at least 4 and perha

the presence of red noise (Baluev 2011, 2013). The comwalati
timescale of orde# days found in this study, is too long to be ex-
plained by stellar oscillations alone and therefore coaldbe to a
combination of several stellar effects.

In order to determine the number of planets supported by the
RV data-sets of GJ667C, we follow the object detection naktho

5 signals depending on whether th&:cr or Drerra data-set
is used. Apart from the four signals with orbital periods9d1
28.13d, 91d and 106d, there are additional signals withogsri
39d, 60d, 180d and 350d, as can be seen in Eigs. Zhnd 3. Some of
these signals have already been presented as detecteis jpegey/-
eral studies (see e.g. Gregory 2012; Anglada-Escude | e®sR)2
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Figure2. 1-D marginalised posterior probability distributions tbe orbital period of planets found in the analysis of realdiata calculated after the detection

of N}, planets. Data-séDPccr Was used in all cases.

Comparing the marginalised posterior probability disttibns for
the orbital period obtained from the analysis of residughdeom

white noise model (FigEl 2 arld 3 left panel) to the red noisdeho
(Figs.[2 and[B right panel), we can see that there are quite a fe
more peaks in the white noise case, showing clear eviderate th

erroneously assuming the white noise model leads to smudeu
tections of planets. This also gives an explanation for thiens of

detection of up to seven planets in this system.

Finally we note from Figl 6 that the hyper-parametey, al-

lowing for any under or over-estimation of measurement unce

tainty from the HARPS spectrograph is found to®&0 + 0.06
(0.74 £ 0.08) in the analysis ofDccr (Drerra) data-set, ruling
outa = 1 (no under or over-estimation in measurement uncertain- culating the probabilities for models with, = 0,1, 2, --- plan-

© 2013 RAS, MNRAS000, [1HI0

ties) with high confidence. Therefore we conclude that tha-me
sured uncertainties from HARPS spectrograph for GJ667@ hav
been under-estimated at the50 per cent level.

7 CONCLUSIONS

Detection of extrasolar planets using radial velocity (F\ser-
vations requires the use of statistical model selectiohrtiegies.
Most of these techniques assume the noise to be uncorrelzeed
termining the number of planets from RV data-sets is alreadsry
challenging task due to the problems associated with atsyical-
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Figure 3. 1-D marginalised posterior probability distributions tbe orbital period of planets found in the analysis of realdiata calculated after the detection
of N}, planets. Data-séDrrrra Was used in all cases.
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Figure 4. 1-D marginalised posterior probability distributions tbe systematic velocities and drift acceleration of GJ66y§tem, obtained by assuming

a two planet model, with red noise component included inyaiglof data-seDccr. Subscripts H, K and P refer to HARPS, Keck and PFS/Magellan
spectrographs respectively.
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Figure 5. 1-D marginalised posterior probability distributions the orbital
Dccr, with the red noise component included.

parameters of the two planets, found orbitin@&3L, in analysis of data-set
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Figure 6. 1-D marginalised posterior probability distributions the parameters specific to the noise model, with red noisgpooemt included, obtained by
assuming a two planet model in analysis of dataf3etr. Subscripts H, K and P refer to HARPS, Keck and PFS/Magelt@cstsographs respectively.

ets. Allowing for correlated noise adds an additional layfezom-
plexity to this problem. In this work, we have presented ad3én

By applying this method to the RV data-set of GJ667C, we
find conclusive evidence that the HARPS data favours cdeela

method for determining the number of planets supported by RV red noise model over uncorrelated white noise model wittctre

data-set in the presence of correlated red noise. The red nwdel
adopted collapses to a white noise model if correlated régkrie
not supported by the data. Furthermore, we have introdugeerh
parameters allowing for any over or under-estimation of snea
ment uncertainties on RV observations. These hyper-paease
also allow us to deal with any inconsistencies between rdiffe
data-sets in a statistically robust manner. In order toaepthe
parameter space of these models and perform Bayesian dleject
tection, using the MLTINEST(Feroz & Hobson 2008; Feroz etlal.

relation timescale- 9 days. Adopting the red noise model, we con-
firm the presence of planets GJ667Cb and c with periot¥d and
28.13d respectively. There is some evidence for a third signdi wit
orbital periodd1d, but the planetary origins of this signal are doubt-
ful. We have also shown conclusively that erroneously ddgphe
white noise model can result in detection of multiple furthkan-
ets, which also explains the recent claims of the detectiapdo
seven planets in this system. We also found strong evidematbd
under-estimation of measurement uncertainties from th& P&

2009,/ 2013) algorithm whose accuracy has already been demon spectrograph for GJ667C at the50 per cent level which may hint

strated in many diverse problems in astro and particle physi

© 2013 RAS, MNRAS000, [1H10

towards some systematics in this data-set.
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Parameter GJ667Chb GJ667CcC

P (days) 7.200 4 0.001  28.143 4+ 0.029

(7.200) (28.126)

K (m/s) 3.977 +0.193 1.663 + 0.291

(4.116) (1.854)

e 0.122 4 0.078 0.133 4 0.098

(0.121) (0.081)

w (rad) 3.206 + 0.395 3.659 £ 2.048

(3.304) (0.443)

b% 0.241 4+ 0.070 0.549 £+ 0.236

(0.222) (0.430)

msin (M@) 5.661 £ 0.437 3.709 £ 0.682

(5.826) (4.150)

a (AU) 0.050 4 0.002 0.125 4 0.004

(0.050) (0.125)

Table 3. Estimated parameter values for the two planets found odoiti
GJ667C, with the red noise component included in the armlysidata-
setDccr. The estimated values are quoteguas o wherep ando are the
posterior mean and standard deviation respectively. Th&ets in paren-
thesis are the maximume-likelihood parameter values.

The level of correlation found in the RV data-set of this epst
emphasizes the need to check robustly for such correlaieftse
claiming detections of multi-planet systems. This is o&hitpor-
tance as these multi-planet systems, especially thosephdttets
inside the habitable zone, provide important data for resean
many areas of planetary astrophysics.

Finally, we note that although the noise model adopted & thi
study does a far better job than a white noise model, it is@t#-
nomenological and therefore it does not provide much inédrom
about the origin of correlated noise component. One woupgetx
to improve the analysis even further by adopting physicadbti-
vated noise models.
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