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ABSTRACT

We study structure formation in non-minimally coupled dankergy models, where there is a
coupling in the Lagrangian between a quintessence scdthafid gravity via the Ricci scalar.
We consider models with a range of different non-minimalglmg strengths and compare
these to minimally coupled quintessence models with timpetident dark energy densities.
The equations of state of the latter are tuned to either tem®the equation of state of the
non-minimally coupled models or their background histdityereby they provide a reference
to study the unique imprints of coupling on structure forimatWe show that the coupling
between gravity and the scalar field, which effectively hessim a time-varying gravitational
constantG, is not negligible and its effect can be distinguished fromiaimally coupled
model. We extend previous work on this subject by showing thajor differences appear
in the determination of the mass function at high massesrevive observe differences of
the order 0of40% at = = 0. Our new results concern effects on the non-linear matte/epo
spectrum and on the lensing signal (differences:af0% for both quantities), where we find
that non-minimally coupled models could be distinguishredf minimally coupled ones.
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1 INTRODUCTION A, a purely geometric term in Einstein’s field equations, abhar
terized by a constant equation of state & —1) and so far in
agreement with all available observations. Yet for a coswiobl
constant A\CDM model), fine-tuning and coincidence problems are
quite severe and remain unsolved.

An alternative is provided by quintessence scalar fields
(Wettericl 1988; Ratra & Peebles 1988). The scalar field ey
ical and its background evolution is slow enough to closefyro-
duce the behaviour of the cosmological constant and drieeth
celerated expansion today. However observations consiyzte
tightly the equation of state of the dark energy componeriieo
very close to -1 at present (Komatsu et al. 2011) and in this,c@s
pointed out by Bludman (2004), the basin of attraction inghdy
universe is shrinking and thus enhancing the fine tuningeptas
minimally quintessence models, as severe as\tbBM one.

Given these considerations, it is worth investigating exte
sions of General Relativity in which dark energy is assedab
a scalar field non-minimally coupled to gravity. In theseeexted
models, the field dynamics may differ from that of minimally
coupled models due to gravitational effects. In such séesahe
* E-mail: Francesco.Pace@port.ac.uk scalar field mediatesfifth force this happens when there is a uni-

In recent years, data ranging from observations of Type [seBu
novae (Riess et al. 1998; Perlmutter ef al. 1999; Riess &0aK,
2007), CMB and the integrated Sachs-Wolfe effect (Jaffé.et a
2001; [Giannantonio et al. 2008; Ho et al. 2008; Komatsu et al.
2011; ! Jarosik et al. 20171; Planck Collaboration et al. 2(Xl8x
large scale structure (LSS) and baryon acoustic oscifiatio
(BAO) (Tegmark et al. 2004; Eisenstein etlal. 2005; Peraail.
2010), globular clusters (Krauss & Chaboyer 2003), galdug-c
ters (Haiman et al. 2001; Allen etlal. 2004, 2008; Wang 2tG042
to weak lensingl(Hoekstra etlal. 2006; Jarvis et al. 2006) >nd
ray (Vikhlinin et al.|2009) have shown that the expansio® @it
the Universe is presently accelerating. In the framewoiGeferal
Relativity, this can be explained by supposing that appnately
three quarters of the total energetic budget of the Univisrgethe
form of an unknown component with negative pressure, gealdyi
known as ‘dark energy.’

The simplest form of dark energy is the cosmological coristan
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versal coupling to all species, as in scalar-tensor thedgHesvang
1991; |Demarque etall 1994; Barrow 1996; Mashhoonlet al.
1998; | Boisseau et al. 2000; Perrotta etlal. 2000; Faraonl;200
Torres | 2002;| Fujii & Maeda 2003; Banerjee & Ganguly 2009;
Jamil et al. | 2011;| Charmousis ef al. 2012; Wang et al. 12012),
or if the coupling is non-universal, as it happens in cou-
pled quintessence (Schmidt 1990; Wetterich 1995; Amenhdola
2000; | Holden & Wands 2000;_Sidherth _2000; Amendola et al.
2003;| Matarrese et al. 2003; Amendola 2004; Mota et al. |2008;
Pettorino & Baccigalupi | 2008; Guendelman & Kaganovich
2008;| Amendola et al. 2008; Zhao et al. 2010; Baldi et al. 2010
Pettorino et al. 2010; Amendola et lal. 2012; Pettorino e2@12);

it also occurs with physics associated to generalized ikinet
energy terms | (Armendariz-Picon et al. 2001; Calowell 2002;
Malguarti et all 2003). One effect of this class of modelhét the
gravitational constant?, appearing in Einstein’s field equations is
no longer a constant, but becomes a function of the scaldrdied
thus becomes time dependent.

In scalar-tensor theories the scalar field is non-minimally
coupled to gravity via the Ricci scalar and at present timas c
behave as dark energy. Models with this coupling are aldectal
extended quintessence models (Perrotta, Baccigalupi &iviste
(2000); Acquaviva, Baccigalupi & Perratta (2004),
Acquaviva et al.[(2005), Pettorino, Baccigalupi & Periq2a05);
Pettorino & Baccigalupi (2008)). One of the consequencekeaxfe
models is that the coupling of the scalar field to the Ricclada
the Lagrangian enhances the dynamics of the field at earlsstim
an effect known as R-boost (Baccigalupi, Matarrese & Pgrrot
2000 Pettorino, Baccigalupi & Mangeaho 2005). As a consegee
the range of attraction for tracking solutions is conseratzb
for models where the equation of state is close to -1 today
(Matarrese et al. 2004). Fine tuning is however still préserthe
choice of a flat potential.

In this paper we investigate the effects of extended
quintessence models on structure formation from an analyt-
ical point of view, thus complementing, validating and ex-
tending the work based on N-body numerical simulations
by |De Bonietal. [(2011). The novelty of this work is the
study of the spherical collapse in scalar tensor theories
(Bernardeeu 1994; Esposito-Farese & Polarski 2001; Qtah e
2003, [2004;| Mota & van de Bruck 2004; Perrotta etjal. 2004;
Acquaviva et all 2004; Nunes & Mota 2006; Abramo et al. 2007;
Pettorino & Baccigalupi 2008|; Basilakos et al. 2009; Pacalet
2010; Basilakos et &l. 2010; Wintergerst & Pettarino 20I0)this
purpose we generalize the semi-analytical sphericalpsdianodel
to take into account effects from the scalar field (which, $ion-
plicity is considered to be homogeneous) in order to studyithe
behaviour of the linearly extrapolated density contcasand the
linear growth factor. We will study five minimally coupledritzen-
ergy models, two of which with the same equation-of-stataipe-
ter of the simulated extended quintessence models and tilicawi
equation of state tuned to reproduce the same backgroutahhis
of the simulated non-minimally coupled models.

The paper is organized as follows: In Sectidn 2 we present
the models studied in this work and we describe how to tale int
account the scalar field for perturbation theory in the gséeic
Newtonian regime in scalar-tensor theories. In Se¢fion Bresent
our results for the linear growth factor (Sect[onl3.1), thkegical
collapse parameter& and Av (Section[3.R), the mass function
(Sectior3.B), the non-linear matter power spectrum (6ef3i4)
and the cosmic shear power spectrum (Sedtioh 3.5). Finalty S

tion[4 is devoted to our conclusions. Throughout we work iitsun
where the speed of light is= 1.

2 COSMOLOGICAL MODELS
2.1 ACDM and quintessence dark energy models

In this work we will consider as fiducial model tieCDM model,
characterized by the presence of a cosmological constaotided
by an equation of statee = —1, constant at all times. This im-
plies that the amount of dark energy will not change and exadiyt
comes to dominate the total energy density. In other darkggne
models we consider, the equation-of-state parameter isriergl a
function of time. In a homogeneous and isotropic Univetse cbs-
mological expansion can be written in terms of the first Friadn
equation

H? = H§ [Qr0a™* + Quoa™® + Qk 00”2 + Qq09q(a)]

@
where(2, o represents the radiatiof,, o the matterQ2x o the cur-
vature andlq 0 the dark energy densities today, respectively. The
functiong(a) describes the time evolution of the dark energy den-
sity component. For a perfect fluid, where the pressi®eand en-
ergy density f) are related by some dark energy equation of state,

P = w(a)p, gala) is
da') .

o) = esp ([ 2D
1 a

As one can easily see from Hd. 2, for the cosmological cohstan

9ga(a) = 1.

The idea of replacing the cosmological constant by the gnerg
density of a scalar field was explored in several works (\ietie
1985%5,/1988| 1995; Ratra & Peebles 1988) and if the scalar field
does not experience any direct coupling to any of the other co
stituents of the models it is said to be minimally coupled &l
action reads

— 4 R
Sf/d l’\/—g<m +£¢+£ﬂ) 5

whereg is the determinant of the metri& the Ricci scalarLg is
the Lagrangian of all fluids except the dark energy scalad feld
L4 represents the Lagrangian of the scalar field

@)

©)
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whereV (¢) denotes the self-interaction potential @af Below we
will generally assume the potential takes Ratra-Peeblegorm,

M4+a
=g
whereM is a typical energy scale andis a free positive exponent.

Varying the action in EQ.13 with respect to the meyic gives
the usual Einstein field equations

V($)

©)

G = 870G [T;E) n T;ﬂ 7 6)

where G, is the Einstein tenso ,5‘3) is the stress-energy ten-
sor for a homogeneous and isotropic cosmic fluid (here domi-
nated by dark matter) aﬁﬂﬁ‘f) is the stress-energy tensor for the
quintessence scalar field:

T = VudVid = g (%V“wm ; v(¢)) @



Assuming a spatially flat Friedmann-Robertson-Walker
(FRW) metricds® = —dt® + a*(t)dz* wherea(t) is the scale
factor we can identify the energy density and pressure cé¢héar
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andf’ = df/0R. The Klein-Gordon equation for the scalar field
is also modified with respect to the minimally coupled case,

) 1 [fdw of

field as 1 $+3H)=—— <%¢ 8¢R+ d¢) (16)

py = §¢52 + V() (8) The energy-momentum tensor for the scalar field now reads
1.

pe = 50 =V(®). ©) Ty, :w(d))( WV — —ng $Va ¢) — 9w V(9), (17)

Varying the actionS with respect to the scalar field itself we derive
the equations of motion which resemble the Klein-Gordonaequ
tion for a spatially homogeneous field on an isotropicallpand-
ing space-time

and it is interesting to note that, unlike in the minimallyupted
models, these modifications imply that the energy densitihef
scalar field no longer satisfies the continuity equationtierliack-
ground quantitie$p + 3H (p + p) = 0) (Hwang 1991).

4 3HG+ d‘ggﬁ) o (10) We assume thaf(¢, R) is Iin;a(r(;)n the Ricci scalar,
f(6.R) = -5 R: (18)

With the assumption of a flat FRW metric, the scalar field fiatis
the continuity equation

then by identifying the energy-momentum tensor of the sdedhl
with that of a perfect fluid, we can derive expressions forrthe-

po+3H (py +py) =0, (11) conserved background energy density and pressure of tiar sca
so that we can writgs = pg,0gq(a), With g4 (a) defined in EqCR. field:
po = (@)’ + V() —3HF(¢) (19)
2.2 Scalar-tensor models . .. .
po = Fw(@)d* —V(9) + F(¢) +2HF(9) . (20)
Scalar-tensor (sometimes called extended quintesseruz®)lsare
instead described by the action These models can be related to the original Brans-Dickeitgrav

S = /d%\/—( f(9, )+£¢+Lﬂ) , (12)
where this formulation was first introduced in a cosmologacen-
text bylHwang|(1991). With respect to General Relativitg tbrm
R/167G is replaced by an arbitrary function of the Ricci scalar
and scalar field’(¢, R)/2. In addition, the scalar field is described
by the Lagrangian
Lo= 0@V 6Vt~ V(9), 13)

wherew(¢) is a function of the scalar field only which generalizes
the kinetic term.

These models are interesting because they are related
to the original Brans-Dicke idea| (Brans & Dicke 1961)
and to the attempt to explain cosmic acceleration exclu-
sively in terms of modifications of General Relativity.
Such models have been studied in several works (see also
Wetterich| 1995] Barrow & Parsans 1997; Sahni & Habib 1998;
Uzam 11999; | Bartolo & Pietronil _2000] Boisseau et al._2000;

(Brans & Dickel 1961) wherF” = ¢ andw(¢) = wsp¢, while
non-minimally coupled theories are obtained with the idfiat-

tionsw(¢) = F(¢) = 1.
With this linear ansatz fof (¢, R), Friedmann’s equations be-
come
2 _ 81G 1 _ sl
= 52 (5o veo) o) (21)
o _ _dnG [ + 3pa + 20° — 2V (¢) — 3(F + HF)@zz)
a 3F pa Pa
If we define an effective Jordan-Brans-Dicke parameter as,
F(¢)
w. = ——t 23
TP = (Fo(9) 23)

then General Relativity is recovered whepgp > 1.

Any changes to the gravitational physics require matchieg t
GR behaviour on solar system scales where gravity is webdes
while still reproducing the observed effects of dark enamgyarge
scales. Here we require that

R

,R) = ——, 24

Perrotta et al.. 2000; Faraoni 2000; Esposito-Farese &$§lola f(90, R) 8nG 4)
2001; [Torres | 2002; | Perrotta & Baccigalupi__2002;__Linder wheregy is the value of the scalar field today aadis the gravi-
2004, Matarrese et al. 2004, Pettorino et al. 2005; tational constant measured today. In the following we wakiame

Pettorino & Baccigalupi. 2008;_Tsujikawa et al. 2008; Bo@se
2011; Bueno Sanchez & Perivolaropoulos 2011; JamilletQdl12
Charmousis et al. 2012; Wang etlal. 2012). Here we just summa-
rize the most important aspects that will be relevant forttesent
work.

The variation of the action described in Egl 12 with respect t
the metricg,.. yields the field equations

1 / /
T + T8 + 290 (f — F'R) + Auu (f)

G =8rGTy,, = 1 5
(14)

fl
where the tensad .. is defined for an arbitrary scalaras
Apw(h) =

V. Voh — guOh, (15)

the modifications take the following form:

-w(p)=1
- F(¢) = 1+ 87GLE(¢% — ¢3)

where ¢ is the coupling constant, and, is the present
value of the scalar fieldG. is the bare gravitational constant
(Esposito-Farese & Polarski 2001) which in general diffeom
the gravitational constan” appearing in Einstein’s or Newton’s
field equations.

Very tight constraints§ ~ 10~2) on the coupling parameter
come from solar system tests (Reasenbergl et all 1979]|U£&n 19
Chiba [ 1999; Will| 2001; Riazuelo & Uzah 2002; Bertotti et al.
2003), from cosmological scale measurements (Clifton.&Q05;
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Acquaviva et all 2005; Appleby & Weller 2010; Farajollahadt Table 1. Values of the parameters adopted for the referek€®M model
2011) and nucleosynthesis (Accetta etial. 1990; Tolres ;1995 and the dynamical dark energy models. The exponent of tteesaypower-
Santiago et all_1997: Coc et al. 2006; |Lee 2011). These works law potential is indicated with; £ is the strength of the couplingijsp,o
assume no screening mechanism, while other works assumeis the present value of the effective Jordan-Brans-Dickarpater andrs
screening, either exploiting the chameleon effect (MotaarBw represents the normalization of the matter power spectugah that fluctu-
2004; [Khoury & Weltman 2004) or the Vainshtein mechanism ations are the same a¢s.

(Vainshtein 1972). Many simulations now take into accounths
screening mechanism_(Oyaizu 2008; Schmidt 2009; Zhad et al.

2011) Model [e% f WJBD,0 [of]
ACDM - - - 0.776
NMC1 0.229 +0.085 120 0.748
2.3 Model parameters NMC2 0.435 -0.072 120 0.729
. . . . MCw1 - - - 0.752
We will compare analytic results presented in Secfion 3.th wi MCw2 . . . 0.745
N-body simulations discussed lin De Boni et al. (2011). Todo s MCH1 - - - 0.744
we adopt the WMAP| (Spergel etlal. 2007) cosmological parame- MCH2 - - - 0.760
ters which had been used in these simulatidis, ( = 0.268, wCDM - - - 0.753
Q4.0 = 0.732, ho = 0.704) and throughout the paper we assume a
spatially flat cosmological backgroun@k o = 0. These parame-
ters are slightly different from the ones found by PIdhdsut here
we want to emphasise the comparison of models having the same 0 T T IR PR S
cosmological parameters, therefore this does not reprasdasue PR o
for the conclusions of our work. 0.2+ _
We consider two non-minimally coupled models and five min- :
imally coupled models (see Tallé 1). These models are &bell 04 L ';" NMC1, MCw1 ------- 1
NMCn, MCwn or MCHn respectively, where the index runs . s NMC2, MCW2 «xxx=-=
o - S ¢ MCH1
from one to two. The non-minimally coupled models differerss Y K MCHZ =« = -
tially in their coupling strengths. They correspond to theximum 0.6 |7 w=-0.9 7
deviation from General Relativity allowed by current ohsgions ACDM ——
on cosmological scales. The minimally coupled models MCad. a -0.8 - .
MCw2 have the same equation of state as the simulated extende BT Lt
quintessence models (NMC1 and NMC2) and the minimally cou- 1
pled models MCH1 and MCH2 have the same background history L . L . .
of the models NMC1 and NMC2 in order to independently evaluat 0 1 2 3 4 5 6
the effect of the coupling and of the time dependent gravitat z
constant. A fifth model, wCDM, has a constant equation oegtat 1.06 : : : : :
rameterw = —0.9, the highest value consistent with observational NMC1 ---=----
constraints (Unnikrishnan & Seshadri 2008). MCle\I\/fgﬁ """"
We normalize the amplitude of the primordial power spectrum 1.04 1 '
for the fiducialACDM cosmology to have a value of the quadratic |
deviation on a comoving scale of 8 Mfic of o = 0.776. Dark N 102 F eesmsmmTTTIIITTTTT g
energy models are normalized to match the amplitude of fictu % /'"
tions at the CMB epochcvs = 1089 according to the relation = 1
O8,DE = US,ACDMM . (25 | el
D pe(zcMmB) 008 b T
In the previous equatioD (z) is the linear growth factor nor-
malised to unity today (see Sdct.]3.1). An alternative ntinaiion 0.96 ! ! ! L L
which is often adopted in the literature is to fix the exporant 0 1 2 3 4 5 6

tail of the mass function to be approximately the same at 0;
therefore differences will arise at earlier times. Howesgarce the . ) )

lization of the fluctuations is bounded to high acopiag Figure 1. Upper panel: equation of state for the dark energy models con
norma . . . sidered in this work as a function of redshift. Lower panetshift depen-
the CMB measurements, we exclusively adopt the first n.ozmall dence of the functiod—1(¢) ~ 1 — 87G.&(¢? — ¢2). The red dashed
tion. The values of the parameters for the ?Xtended qum curve represents the model NMC1 with coupling constart 0.085, the
models are chosen so that the energy density of the scaltdiel blue short-dashed curve represents the model NMC2 withlicopgonstant

day is approximately the same as that of the cosmologicatann & = —0.072. The two minimally coupled models MCw1 and MCw?2 have
The other differences arising at= 0 may be used to discriminate  the same equation-of-state parameter of the extendedegs@rice mod-
among the different cosmological models. els NMC1 and NMC2 and are shown with the same curve. Models MCH

In Fig. [ we show the redshift evolution of the equation of and MCH2 are shown with violet short-dashed-dotted and brdwt-dotted

statew (upper panel) and of the functialy F(¢) (lower panel) line. Finally, the referenc CDM (w = —1) and wCDM (v = —0.9)
models are shown with a black and grey solid line, respdgtive

1 planck.esa.int/
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Figure 2. Upper (lower) panel: redshift evolution of the ratio of tteakar
field (Hubble) parameter for the different models studiethocorrespond-
ing quantity in the fiduciaACDM model. Line types and colours for the
non-minimally coupled models are as in the upper panel afEifylodels
MCw1 and MCw?2 are shown with dark dot-dashed-dotted and tighen
dotted curves, respectively.

for the quintessence models studied in this work. We refehé¢o
caption for the different colours and line styles adoptetk Value

of the equation of state at = 0 is close tow = —0.9 for all
the dynamical models investigated, except for the modelHIC
and MCH2. The equations of state become essentially cdrfstan
z > 3. The minimally coupled dark energy models MCw1 and
MCw2 are described by the sameas models NMC14 = 0.085)
and NMC2 € = —0.072). The equation of state for the minimally
coupled models MCH is derived using the following expression:

2 dln E(a) 1 Q 1 QK0
_ T+ 30 4q + 3a%E(a)Z = 3a’E(a)2 (26)
w(a) - 1 Qm.0 Qr QK0 ’
T 4@3E(a)2 ~ @fE(a)? = a2E(a)?

whereH (a) = HoE(a).

The functionF'(¢) changes rapidly at low redshifts and be-
comes practically constant for > 2, differing from the min-
imally coupled case by at mo&5%. Since in the field equa-
tions the usual gravitational consta#tis replaced by the function
1/F(¢), according to the sign of the coupling constant, gravity wil
be stronger{ > 0) or weaker compared(< 0) to the mini-
mally coupled case. This happens because of the functional f
of F(¢) =14 8nG.E(¢* — ¢3).
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2.4 Background properties

As the values of the coupling constants are small, we expeall s
differences at the background level between these moddlshan
referenceACDM model. Our expectations are confirmed by Eig. 2
where we show the ratio of the scalar field density and the Hub-
ble parameter (upper and lower panel respectively) as difumc
of redshift for the eight models considered here with respethe
cosmological constant model. For the Hubble parametemtioe
imum differencex~ 4%, takes place at =~ 1. These differences
in the Hubble function render the differences in the age eflthi-
verse or in distances to be very small, of the order of a feweyer
Similar differences are present in the comoving and in tiei-u
nosity distance. Ratios of the matter density fraction ballsimply
related to the corresponding Hubble functions.

Since the Hubble parameter is a key ingredient in determinin
the time evolution of the perturbations, we can infer thatwill
not substantially differ from results expected in th€DM case, as
explained in detail in the following sections.

It is worth noticing that the minimally coupled models MCw1,
MCw2 and wCDM have very similar expansion histories, while
the other models differ more. This is due to the fact that they
characterised by the same coupling constant, and arispiaite
fact that the dark energy equations of state are expliaithed to
match. This shows the importance, already at the backgrizwet|
of the coupling constant. In fact we can also see from the dowe
panel of Fig[® that models having the same coupling corstant
show very similar expansion histories and time evolutiohthe
matter content.

2.5 Perturbations

We now review the main features of linear perturbation the-
ory within non-minimally coupled cosmologies in the New-
tonian limit. For an extended review we refer the reader
to |Pettorino & Baccigalupi| (2008) and Wintergerst & Pettori
(2010).

In the Newtonian limit, time derivatives are negligible kvie-
spect to spatial derivatives and the conditioy> H holds. In other
words we are considering a quasi-static regime and tha¢scdl
interest are much smaller than the horizon. In this limig per-
turbed continuity, Euler and Poisson equations are (in c@mgo
coordinates)

b5 = —Vz-u (27)
ou L 1
Vioe = Tpu0ud, (29)

whered is the matter perturbatiod,the comoving peculiar velocity
and+ is the Newtonian gravitational potential. The potential
appearing in the Poisson equation is defined as

N

The Poisson equation can be rewritten also in terms of thétgra
tional potentiak)g

(30)

ﬁ%'(/)E = _%ﬁmgmé 3

7 31)



6 Paceetal.

wherey is defined as

pe=(1-1Fe )y
B 2F +2F2% ) 7
The Euler equation can therefore be modified to
F2
1 7¢
< TEL 2
Combining now all the three equations, we obtain a second or-

der differential equation describing the time evolutioritaf linear
growth factor:

(32)

ou
— +2Hu
It + U+

) Vi =0. (33)

6+ 2H6 — 47Gegipmad = 0 (34)

where G.g is defined as (see also_Esposito-Farese & Polarski
(2001))

_ G2AF+F%)

et = For13r7,

G
N5 (35)
for§ <« 1.

As the coupling constant < 1, in our models, we can use
the approximatioiZes = G/ F'. The equation for the growth factor
is similar the one obtained ifi( R) models. This approximation is
valid since, in our models; 4 /F < 1.

3 RESULTS

In this section we will present results concerning struetfor-
mation for the quintessence models described above in beth t
linear and non-linear regimes. In particular we study theadin
factor (Sect[3]1), the linear and non-linear overdensiyameter
(Sect[3.P), the mass function (Séctl3.3), the analytioatimear
dark matter power spectrum (Séct]3.4) and the cosmic slearp
spectrum (Sedi. 35).

3.1 Growth factor

The linear growth factor has been extensively studied in sev
eral works (see e.g., Copeland et al. 2006; Perivolarosa2007;
Tsujikawa et al!_2008;_Pettorino & Baccigalupi 2008; [Lee 201
Bueno Sanchez & Perivolaropoulos 2011). In Eig. 3 we shav th
growth factor divided by the scale factab (a)/a) for the dark
energy models considered in this work, as compared to theiéidu
ACDM model. We show two normalisations for the fluctuations,
matching the amplitudes at the present time={ 0) or at the last
scattering of the CMB (see elg. Bartelmann et al. (2006)).

D.(a)la

MCw1 == MCH1 wCDM
MCwz2 MCH2 ACDM —
0.5 1 1 1 1
0 2 4 6 8 10

Figure3. The linear growth factor divided by the scale facfor. (a)/a as a
function of the redshift. Upper (lower) curves show the dingrowth factor
normalised to unity today (at the CMB epoch). Line styles eolburs for
the quintessence models are the same as ifLFig. 2, while tredid CDM
model is shown with the solid black line.

The study of the growth factor is relevant also for the evalu-
ation of the integrated Sachs-Wolfe (ISW) (Sachs & Wolfe 7096
and of the Rees-Sciama (RS) effects (Rees & Sciama 1968). The
ISW effect is due to the interaction of CMB photons with a time
varying gravitational potential. The relative change of (tMB
temperature is given by

__Ar
TcmB

2 XH

(36)

2 a
a H(a)%
wherexy is the horizon distance. The gravitational potentials are
related to each other (EQ.]30 and 32) and via the Poisson equa-
tion (Eq[31) to the matter overdensity. The ISW effect isefiare
proportional to the quantity(D+ (a)/a)/da, whereD4 (a) is the
growth factor. Here we are in particular interested in the I8W
effect because it is affected by the dark energy dynamics.

The Rees-Sciama (RS) effect is similar to the ISW, but in-
cludes non-linear evolution of the gravitational potelstiavhich
we include to second order, following Schafer (2008). T&&VI
effect depends on the time derivative of the gravitatioratkep-
tial @ that, via Poisson’s equation is related to the overdensity
V2® o 6. It is therefore possible to replace the gravitational po-
tential with the overdensity itself simply inverting Paisés equa-
tion: ® o« A~16. Expanding the overdensity ds= D (a)6™") +
D3 ()5 we obtain the desired expression for the RS effect.

The ISW and RS effects are shown in £ify. 4 where, for clarity,
we present differences between the cosmological modelsowe ¢
sidered and thd CDM model. The upper panel shows the ISW ef-

dX (Q)—\Il)7

o3

We observe that differences between the dark energy modelsfect, the lower panel the RS effect. The largest differehetaeen

and theACDM model are of few percent, ranging betwegt

for the NMC1 model and% for the NMC2 model. The mini-
mally coupled model MCH1 (MCH2) behaves very similarly to
the non-minimally coupled model NMC2 (NMC1). This is easily
explained taking into account that the source term in Eq) 84
modified by the coupling functiof’(¢) and this function compen-
sates the differences in the background expansion higBeyer-
ally, the quintessence models show less growth compareleto t
ACDM model. When the growth factor is normalised to unity now,
primordial perturbations have to be higher to give the sanmber

of structures today. When instead the growth factor is nbse@to
unity at early times, the growth factor is lower because tigadr
amount of dark energy slows down structure growth.

models occur at =~ 1 and are of the order df0%. As expected,
the largest differences arise for the different couplinghile the
non-minimally coupled dark energy models are all very samib
each other.

As we can see from Fi@l 4, at early times when the dark en-
ergy contribution is negligible, all the models approxim#te EAS
model. We will therefore have thdD; (a) « a, hence the ISW
vanishes while the RS effect approaches an asymptotic.vehie
might appear surprising since non-minimally coupled medek
characterized by a non-negligible amount of dark energyady e
times. However, for the models we consider, the couplingtzont
is very small and the amount of dark energy at early timesgéine
gible, as it is evident from FifLl 5.



Figure 4. Upper (lower) panel: redshift evolution of the differenaar f
the quantity characterising the ISW (Rees-Sciama) sigeaivden the

dark energy models and theCDM one. Line styles and colours for the
quintessence models are the same as ifFig. 3.
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Figure 5. Amount of dark energy for the non-minimally coupled models a
a function of redshift. Line styles and colours are as in Hig. 1.

3.2 Spherical collapse

We next summarise theoretical arguments required to eeatha
spherical collapse parameteis (the linear evolution overdensity
parameter) and\v (the virial overdensity parameter).

In the spherical collapse model, objects forming under grav
itational collapse of matter over-densities are assumeiktnon-
rotating and spherical. Even though this is clearly a crusbeiap-
tion, since cosmic structures originate from the primdrdizeds
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are triaxial and rotating (Shaw et al. 2006; Bett el al. 20@/[¢
model provides predictions that can reproduce the reséiltsio
merical simulations quite well. Spherical collapse hasnbaeal-
ysed in the literature very extensively (see, 2.9. Berrmarde94;
Ohta et all. 2003, 2004; Mota & van de Brlick 2004; Nunes & IMota
2006;| Abramo et al. 2007; Basilakos etlal. 2009; Pace|et 400;20
Basilakos et all 2010; Wintergerst & Pettorino 2010); todgtu
perturbations in non-minimally coupled models we will @i
closely| Esposito-Farése & Polarski (2001); Perrotta.e(2004);
Acquaviva et al.|(2004); Pettorino & Baccigalupi (2008).

In order to derive the differential equation describing tihge
evolution of the linear overdensity factor, we can simplyeat the
derivation described above (Sdct]2.5), taking into actthanfull
non-linearity of the continuity and Euler equations. Dosw the
continuity and Euler equations read

5+(1+0)Vs-u 0 (37)
o

S L1 _
E+2Hu+(u~vw)u+ EVMZ) = 0. (38)
We take the time derivative of EJ_{[37) and inserting intohi¢ t
divergence of Eq[{38), with the help of the Poisson equatien
obtain an exact second order non-linear differential egonade-
scribing the evolution of matter perturbations,

. .4 52
whereG.g is given by Eq.[(3b).
This is the non-linear equation we will use to infer the time

evolution of the linear overdensity parameder Its linearised ver-
sion is

— 4nGegpmd(1+6) =0,  (39)

8+ 2H6 — 4rGegpmd = 0 , (40)

reproducing the classical result, but with — Geg. It is worth
pointing out that the correct linear growth has to be obtiine
from the non-linear equation for matter perturbations, &8).
(For a more complete discussion on this point, we refer to
Wintergerst & Pettorinol (2010).) In order to evaluate thaedr
overdensity parametek., we use Eq.[(39) to find the initial con-
ditionsé; andé; such that diverges at the chosen time of collapse.
Once the two initial conditions are found, we evolve thentwtfite
linear Eq. [(40), and its density contrast at the collapse tijines

dc.

Our main results are presented in IEih. 6. In the upper panel we
show the time evolution of. while in the lower panel we present
the time evolution ofAy,. We see that differences i are very
small, much belowl% at 2 = 0, while at high redshifts all the
models converge to the Einstein-de Sitter (EdS) results Ehdue
to the stringent solar system constraints which requireraweak
coupling between the scalar field and the Ricci scalar. As see
the lower panel of Fid.]1, gravity changes rapidly at low tefis
(where we expect the highest differences), while at higlshigts
the gravitational constaudt is practically constant and differs from
the usual value by +2%. We also notice that models with a lower
(higher) growth factor also have a smaller (larg&r) The NMC1
model is virtually indistinguishable from th€CDM model, while

the largest differences appear for models with negativeplooy
(NMC2). Model MCH2 shows lower values for the linear overden
sity parameted. with respect to thddCDM model also at high red-
shifts. We checked that this is not the case at high redshifiere
it is expected to approach the behaviour of an EdS model.

In the lower panel of Fid.]6, we present results for the virial
overdensityAy. The virial overdensity is related to the non-linear
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Figure 6. The redshift evolution of the linear overdensity paraméte(top
panel) and of the virial overdensity, (bottom panel) for the models here
considered. Each panel consists of two insets: the uppestones the ab-
solute values of the quantities analysed, while the lower the ratio be-
tween the dark energy models and the referef@DM one. Line types
and colours are as in Figl 3.

evolution of the spherical overdensity. Given the turnsabscale
factorasa, Wwhen the radius of the collapsing sphere reaches its max-
imum value and starts shrinking, the virial overdensity esirtkd
asAv = du + 1 = ((z/y)?, wherez = a/aa is the normalised
scale factor ang is the radius of the sphere normalised to its value
at the turn-around. For details on how to evaluate and the ra-
dius of the spherg, we refer the reader 10 Pace et al. (2010). The
differences between the models studied here are also stnailfst

10 — 15%, once again largest at low redshifts. It is important to
notice that at high redshifts, when naively we would expeatet
cover the result for thA CDM model, this does not happen for the
models with strongest absolute coupling value (models N
NMC2); the differences are small in these cases, of dzder3%,

but still appreciable. This kind of behaviour is expectéd¢cas Ay,

is related to the solution of the non-linear equation forrdeasi-
ties (Eq[39) and we expect that the models will stronglyediffom
each other at the non-linear level.

Here we have assumed that the traditional recipes avail-
able in literature to evaluate the virial overdensity aié galid
(Wang & Steinhardt (1998)). This should be valid here, siwee
assume the scalar field only modifies the background; howenisr
might not necessarily be the case if perturbations in thias@ald
are accounted for.

Itis interesting to notice that both at linear and non-lirewel
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Figure 7. Comparison between the theoretical cumulative mass fumcti
and the results from N-body simulations. Black solid lin&l gtuses rep-
resent theACDM model, the cyan dotted line and crosses the EQp model
(named NMCL1 in this work) and red dashed line and stars the faQuel
(named NMC2 in this work). Models EQp and EQn are scaled of@i&b

and 25 respectively, for visualization purposes. Showmftop to bottom
are comparisons at different redshifts= 0, z = 0.5 andz = 1.

itis possible to see the effect of a time-dependent grawitat con-
stant. In particular, for the linear overdensity paramétewhile all
the models show similar values, the minimally coupled medst-
cept for the wCDM model, have a higher value with respect ¢o th
non-minimally coupled ones. The non-minimally coupled eisd
have a very distinct signature: the lower is the value of thepting
constant, the lower is the linear overdensity parameteimiar ar-
gument, albeit with reversed conclusions, applies to thelimear
virial overdensity.

The linear overdensity parametgris not directly observable,
but it is an important quantity entering into the mass fumttiThis
subject will be discussed in the following section. Thealidver-



density is instead related to the definition of observedtehgsin
order to define virial mass and virial radius. As seen beforié
lower panel of Fig[h, differences are smait (20%), therefore
using theACDM value will not result in a big error on the halo
definition.

3.3 Massfunction

We next discuss the mass function, which describes the numbe
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By z = 0 the models have substantial differences from the
ACDM model, in particular they all show fewer structures. As
expected, largest differences occur in the high mass taites
rare events are affected more by changes in the growth af-stru
ture. Similar differences should appear in the void staistAt
z = 0, the differences range from0% to 15% for objects of
massM = 10" My/h up to 40% for very massive objects
M =~ 10" Mg /h. At higher redshifts, the differences are even
larger, in particular, at = 2 the model NMC2 has abo@0% of

of collapsed objects of a given mass that are formed at a given the number of very massive objects compared to that seerein th

time in a unit volume. The mass function depends cruciallywam
factors, the linear growth factdp (a) and the linear overdensity
parameted.. Since these quantities, or more precisely their ratio,
appear quadratically in an exponential term, small demiatifrom
the fiducial model can give rise to huge differences in thesmas
function. Whiled, is not an observable, the mass function, or its
integral over the mass, can be directly observed using tzogeo-
logical surveys, once the survey selection functions dtertanto
account.

Another important ingredient for the mass function is the-va
ance, defined via the relation

1

272

/Mo KT (k)W7 (k) Po (k)dk

on = (41)
where Py (k) represents the primordial matter power spectrum,
T'(k) is the matter transfer function, ard’r (k) is the Fourier
transform of the real space top-hat window function. Since
quintessence models differ slightly from the fiducd&ZDM model
(see e.d. Ma et al. 1999), for simplicity we assume that alhtiod-

els have the same power spectrum shape, therefore the ffiefy di
ence will be in the spectrum normalization. For the différetues
adopted, we refer to Taté 1. To evaluate the mass functieryss
the expression derived by Sheth & Tortnen (1999).

To validate our work, we compare our theoretical prediction
for the cumulative mass function with the simulation resudy
De Boni et al.|(2011) at the same redshifts presented in Wk,
namelyz = 0, 0.5, 1. In Fig.[2, we show the total number of objects
in the simulated cube compared to the theoretical predisti¢For
presentation purposes, we scaled the cumulative massdoraft
the model NMC1 and NMC2 by a factor of 5 and 25, respectively.)
As it is clearly seen, at = 0 (upper panel) we have a very good
agreement between the theoretical predictions and the nicahe
results up to5 — 6 x 10 Mg, while for higher masses devia-
tions are noticeable. This is expected, because in the sfioné
there are only very few objects in those mass bins, due toaitte f
that the simulated box size is only 300 Mpc/h. The error bass,
can be seen in Fig. 6 In_ De Boni et al. (2011), are quite large an
our theoretical expectations are well within the- o error bar. At
z = 0.5 (middle panel) the agreement between the theoretical pre-
dictions and the numerical mass function is still good ovethae
mass range available from the simulationszAt 1 (lower panel),
the agreement becomes substantially worse, especialthédmwo
non-minimally coupled models. This is due to the lack of otge
at that redshifts in the simulated volume; for the more nuusr
lower mass objects, up @ x 10'* Mg, the agreement between
simulations and analytic predictions remains good.

In Fig.[8 we show the ratio of the cumulative mass function
for the dark energy models analysed with respect to the fdluci
ACDM model. We evaluated the cumulative mass function, défine
as the comoving number density of objects with mass excgedin
M at different redshifts, at four different redshifts, naynel= 0,
z2=0.5z=1andz = 2.

ACDM model. Unfortunately at such high redshifts, the number
of such massive clusters is so low that even large diffeeiace
difficult to observe unless a very large volume of space isolesl.

Differences between the non-minimally coupled models in-
crease much faster than differences between the correisgond
minimally coupled models. In general, the minimally cowupheod-
els MCw1 and MCw2 show more structures than the correspond-
ing non-minimally coupled models NMC1 and NMC2. The wCDM
model, with constant equation of state, is one of the clasetite
ACDM predictions. This shows how important the evolutionta t
dark energy equation-of-state parameter is for the masgifum
As we are normalising to the amplitude at early times, ngioele
might expect that the agreement with th€ DM model would be
best at high redshifts, and in fact this is true for the MCH1delo
However, at higher redshifts one is looking further into thiés of
the distribution for a fixed mass, making the mass functiomemo
sensitive to small changes in the growth of structure to tinae.
Due to the variation of the gravitational constant, thea#hces for
the growth factor are higher for the non-minimally coupleddals,
therefore the produdd (z)os will be equal to theACDM one at
much higher redshifts. This is shown in Fig. 9 where we shaw th
the productD (z)os for the different models studied here for the
redshift intervald < z < 2. At higher redshifts massive objects are
rare, therefore a small variation in the quantities relébestructure
formation (growth factor and linear overdensity parametenpli-
fies relative differences.

Many previous studies have dealt with alternative formu-
lations of the halo mass function, based on fitting formulés o
the numerical mass function in the N-body simulations and as
suming as fundamental variable the variance of the linedtema
power spectrunary; defined in Eq_41, (see elg. Jenkins et al. 2001;
Reed et al. 2003; Warren etlal. 2006; Reed &t al.|2007; Craade e
2010; Tinker et &l. 2008; Courtin etlal. 2011). These forriofs
differ mainly on the high mass tail of the mass function arelyth
could provide an higher fraction of massive objects.

In this work we adopt the prescription for the mass function
following the work by Sheth & Tormen (1999). The reason for do
ing so is that the formulation of the mass function is motdaby
the ellipsoidal collapse model and allowed us to verify théds
ity of our calculations in the framework of the sphericallapke
model. It has therefore a well defined theoretical motivatdiffer-
ently from the fitting formulas obtained foxCDM cosmologies,
whose validity for different cosmological models is not @us. In
particular, the numerical parameters used to evaluate &éiss fanc-
tion depend on the cosmological model studied and it is naibois
how to modify them for a new dark energy model without having
to determine them again from new simulations. This intredube
problem of the non-universality of the mass function, deefis-
cussed in recent works by Luki€ et al. (2007); Courtin e(2011);
Reed et al. (2013).

The interesting conclusion is that while a varyiGgimpacts
on structure formation more strongly than a simple non-maily
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Figure 9. Time evolution of the varianceg for the different models stud-
ied. The square of this quantity is important for the high sntasl of the
mass function. Labels are like in Fid. 3.

coupled dark energy model, one can infer differences betwhee
models having the same background history only at high ifidsh

We will see in Sec{_3]5 how important this is when we study
the cosmic shear power spectrum.

3.4 Dark matter power spectrum

A closely related statistic that can be used to study the ateatter
clustering is the two-point correlation functigir) and its Fourier
transform, the matter power spectrum. On large scales gitlirth

ear or mildly non-linear regime, the power spectrum can baist
analytically, while for the fully non-linear regime it is oessary to
use either numerical N-body simulations or semi-analyt@sprip-
tions fitted against simulations (see e.g. Peacock & Dod@%;19
Smith et all 2003). Such approaches are limited in theiditslby

the scales that can be reached by numerical simulationsratieeo
models one can simulate. An alternative, physically-naaéd ap-
proach is given by the halo model developed by Ma & Fry (2000);
Seljak (2000) and others.

The halo model requires understanding in detail the mass
function and the average dark matter density profile for @miv
model. Since these potentially depend on how the halo cencen
tration changes with the coupling, it can be difficult to bedite
for non-minimally coupled models. However, it may be hopeat t
most of the physics will be captured in tAeCDM model to first
order, and in the following we will use power spectra obtdingth
the prescription of the halofit, as outlined|in_Smith et aDQ2).
However, such uncertainties in the calibration must be keptind
here and in the following section which relates to the sheargp
spectrum (see Se€f. B.5).

In Fig.[IQ we show the ratio of the dark matter power spec-
trum for the quintessence models to the same quantity eealua
for the fiducial ACDM model as a function of the wave number.
The matter power spectrum is evaluated at 0, using the CMB
normalization described in SeEt.R.3, where we refer foretkesct
normalization for each model. Using this normalisatior thod-
els have different power at all scales, which on linear scate
sults from integrating the different growth rates. As sebova,
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Figure 10. Non-linear dark matter power spectrum fer = 0 for the
quintessence models here studied. Line types and colaziesan FiglB.

the largest differences arise for the NMC2 model while theleho
differing least is MCH2, as its normalization is very closethe
ACDM one.

The differences from the fiducidl CDM model are highest at
the scale ok ~ 1 h/Mpc, where the dynamical dark energy mat-
ter power spectra show a dip (see also Ma (2007)). Since therpo
at all scales is significantly smaller than for tA&DM model,
this results in a different scale where the power spectrucornes
non-linear and halofit corrections kick in. From a quanii&apoint
of view, at large scales differences span a range betweanxapp
mately4% and12% to increase up t@6% —17% atk ~ 1 h/Mpc.
The behaviour we found for the analytic power spectra isitpal
tively in agreement with the analysis done|by Fedeli et 81¢)
on the simulations presented by De Boni etlal. (2011).

Nonetheless we see that our results differ quantitativelgnf
their analysis. In particular, comparing our results witbit model
labelledD My, we see that in our case the models differ more from
what is seen in the simulations of approximataly (see the lower
panels in their Fig. 6). The major source of difference iated to
the recipe we adopted to evaluate the full non-linear maiberer
spectrum. From our figure, it is evident that the halofit prigsion
can reproduce the nonlinear behaviour of the power spectipm
to few percent accuracy. We also notice that the offset batwiee
halofit prescription and the numerical simulations is rdygton-
stant for the different models analysed. Similarly to Feeeal.
(2012), we also find that the dip slightly changes positiorewh
different cosmological model is analysed. Moreover, astlspec-
ulated, the location of the dip is the same if the backgroustbty
of the models does not change. This is indeed the case fopthe ¢
ple of models NMC1 and MCH1 and NMC2 and MCH2.

3.5 Cosmic shear power spectrum

Gravitational lensing, where the images of backgroundatbjare
distorted gravitationally, is an essential tool for undiengling the
distribution of dark matter. Measurements of weak lensivigere
the distortions to the shapes of objects are of order a feaeper
or less, are straightforward to predict and interpret faneolog-

ical models. One common weak lensing observable is the shear

power spectrum, which is related to an integral along the &f
sight of the matter power spectrum. To evaluate the modificat
to the form of the shear power spectrum, we follow the apgradic
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Figure 11. Weak lensing power spectrum for the models analysed in this
work. We present the ratio with respect to th€ DM shear power spectrum.
Line types and colours are as in Hig. 3.
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Figure 12. The S/N ratio to distinguish between the concordance casmol
ogy and each of the quintessence models here considereduastia of
the multipole. Line types and colours are as in Elg. 3.

Tsujikawa & Tatekawal (2008) and Schimd et al. (2005). Here we
will just describe the most important steps in the derivatd the
final formula and we refer to their papers for more details. &o
detailed analysis on the general derivation of the lensirantities
for scalar-tensor theories, we refer to the work of Acquaétal.
(2004). Recently, CMB lensing maps for a coupling in the Eims
frame that only involves dark matter were shown in Carborsd/et
(2013).

Starting from the perturbed metric

ds® = —(1 +2¢)dt*> + a®(t)(1 + 2¢)d;;dx"da’ |

we can define thdeflecting potential

(I)Wl = (yb + w ) (42)
and the effective density field
_ a 2
Ocft = SHZ0ms Dy, (43)
where the relation betweenandd.s is given by
Ooft = % . (44)

F
(Unlike in|Tsujikawa & Tatekawa (2008), we do not have therter
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Fp since in our case it is equal to one.) The magnification marix
defined as

X
A =1, _/ %%u@md% 7
0

(45)

wherey is the comoving distance ardds the identity matrix; from
this, the effective convergence is given by

K=1— %tr(A) . (46)

The shear power spectrum is related to the matter powerrspect
W2(x)

by
XH e
/o 200F (@) o {fK(x)’X] R
(a7)

wheref (x) is the comoving-angular diameter distance which de-
pends onkK, the spatial curvature of the Universe, afy, is
the matter power spectrum analysed in Secll 3.4. The intégra
the previous equation formally extends up to the horizoa giz,
however since the number density of sources (see below¥ doop
zero much before that, the integral can be effectively tated at

z ~ 10. The kernelW (x) is an integral over the source redshift
distribution which must be inferred from observations. he fol-
lowing we will adopt the source redshift distribution dexivby
Fu et al. [(2008) using data from the Canada-France-Hawé&i Te
scope Legacy Survey (CFHTLS) and the parametrization fer th
non-linear matter power spectrum given' by Smith et al. (2088
discussed above.

In Fig.[11 we show the ratio of the cosmic shear power spec-
trum for the models studied with respect to the predictionhef
ACDM model. These follow to a large extent the trends observed
in the matter power spectrum (Figl10). On large scales pspes-
tra differ from 6% to 13% already, reflecting the normalization at
high redshifts. The model with the smallest differences GH2,
while the model with the highest differences is the model NMC
As expected, deviations from the fiducial model increaseatds
smaller angular scales, where the effects due to non-liyeae
more pronounced. The dip & ~ 10° is a consequence of the
analogous dip ak ~ 1 h/Mpc seen in the power spectrum (see
Fig.[10). We stress that these results are valid only foripalks
up to¢ ~ 2000 — 3000 since for smaller angular scales we would
have to take into account baryonic physics.

To see how likely it is to observe the differences between the
models considered, we look at the signal-to-noise (S/NQ ita
fixed multipole. The S/N ratio is defined as

Sy [PP0 — PPN
N(Z)*{ APACDM (y) }

where A PACPM () js the Gaussian statistical error on the power
spectrum in the framework of the concordance cosmologyoAkc
ing tolKaiserl(1992, 1998); Seljak (1998); Huterer (20028, latter
can be evaluated approximately as

2 |:PACDM
20+ DAy | ®

wherefn, is the average surface number density of observed galax-
ies, fsxy is the fraction of sky area surveyed, apdepresents the
rmsintrinsic shape noise for the average galaxy. For pracpiasl
poses, we assume typical values for a future weak lensinggur
and we setn = 40 arcmin 2, foey = 1/2 andy = 0.22 (see
Zhang et all 2009). As suggested [by Takada & Bridle (2007) and
Takada & Jain[(2009) we usk/ = 1.

_ 9HiO,

Pu(6) 4ct

; (48)

() + 7’

Ng

APAPM(p)

} . (49)

In Fig.[12 we show the&/N ratio for the cosmic shear power
spectrum as a function of the multipoleWe notice that at inter-
mediate scales these models have a signifisgdif ratio and that
it decreases very quickly for lower and higher multipoldss tis
in agreement with what was seen|by Fedeli & Moscardini (2010)
in the context of non-Gaussianity in weak lensing and Pae¢ et
(2012) in the context of oscillating dark energy models.sT$ug-
gests that it will be very easy to differentiate the modelsweak
lensing techniques by summing just over few multipoles. ston
tently with Fig.[11, the model with the higheSy/N ratio is the
NMC2, which differs most from the fiducial model.

A very important tool used to increase the power of cos-
mic shear is by using the tomography of lensing |(Hu 1999;
Takada & Jain _2004) and it consists in the subdivision of the
sources in several bins, and computing the shear powergpeirt
each bin and the cross correlation between different rédsihis.
More precisely, the cross power spectrum between two bins is

N 9H4Q / P (leExwX) Wg;?f(o?

and now the redshift distribution has to be normalized tdyuimi
each redshift bin, rather than the whole redshift range.

We considered four different bins, close to the maximum num-
ber that should give appreciable improvement given thedleras-
ing kernel [(Sun et al. 2009), using the redshift interval.5],
[0.5,1], [1,1.5] and [1.5, cc]. The results are shown in Fig.]13.
In the bottom row we show the results for the ratio of the auto-
correlation power spectra while in the other panels we prtethe
cross-correlated power spectra. The lalxek n, wherem andn
run from one to four (total number of redshift bins), indesithe
cross-correlation between bins andn.

As it appears clear from Fif. 113 we notice that the informa-
tion carried by the auto-correlation power spectrum is \&ny-
ilar for all the models. We see similar behaviour in the cross
correlated shear power spectrum. All the minimally couptezt-
els behave very similarly and differ from theCDM model of
10%. As shown in Figs[Q1 12 arld 13 differences between
the dark energy models we consider are quite pronounced. Ac-
cording ta Beynon et ali (2012), future lensing surveys adliefli
(Laureijs et all 2011; Amendola et al. 2012) will be able ttied
entiate models at the level 8f- 3%. Since all the models analysed
here differ by the referenckCDM model for more thas% at all
scales, we can safely conclude that future lensing survédysas-
ily say whether these models will be compatible with the data
not.

PI(0) dx ,

~
~

4 CONCLUSIONS

In this work we studied the structure growth and evolution of
quintessence models, with particular emphasis on nonrmaihy
coupled models (scalar-tensor theories) where the efeegtiav-
itational constantz’ changes in time. We compared representative
scalar-tensor models to standard GR models which are desldy

the same equation of state, and also to a simple constarti@yof
state model® = —0.9). We also considered two additional mini-
mally coupled models where the background expansion igicdn

to the non-minimally coupled models. Our principle aim hasib

to isolate the influence of a varying gravitational constanon

2 www.euclid-ec.org
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Figure 13. The cosmic shear power spectrum for the quintessence mioelelsanalysed derived in a specific source redshift bin. \&eent the ratio with
respect to the predictions of the fiducisCDM model. The redshift bins are as followd< z < 0.5,0.5 < 2 < 1,1 < z < 1.5 and1.5 < z < co. The
first three rows represent the cross-correlation powertspeghile the last row shows the auto-correlation powecspeWe refer to the labels in the panels

for the corresponding redshift bins. Line types and colauesas in Fig.13.

structure formation, extending recent numerical work as sub-
ject (De Boni et al. 2011) by carrying out analytic prediogdor
the same models that were previously simulated.

We studied several quantities, ranging from the lineanesisl
of the growth factor to the non-linearity of the mass funetand
of the weak lensing power spectrum. To validate our thetakti
considerations, we compared our mass function to the oraéneiot
directly from the N-body simulation (see Fig. 7). We showleat tin
analytical analysis of the linear growth factdp((a)) and linear
overdensity parametér can largely reproduce the numerical mass
function over two orders of magnitude in mass.

A time-dependentz has a greater impact on all the quan-
tities we considered, as compared to a conventional dariggne
model whose dark energy component possesses the sameequati
of state, but interestingly enough, differences are mitidaat least
at the linear level, when the minimally coupled models hde t
same background expansion history predicted in the frameofo
scalar-tensor theory. The strength of gravity changes tiver for
scalar-tensor theories, adding one more degree of freeddhet
standard general relativistic framework. In the models mesa-
eredG varied up to2%, leading to changes in background quanti-
ties at a similar level; however, at the perturbation leviéétences
are amplified. For example, the growth factor can change up%o
and the range of variation is dictated by the models with tlestm
extreme coupling (NMC1 and NMC2).

Similar comparisons can be made for the critical linear den-
sity contrast for spherical collapsg(z) and the virial overden-

sity Av(z). These remain similar to the predictions foA&DM
model, differing from it by only few percent or less. As exfeat;
the models converge to the prediction for an Einstein-deSii-
verse at high redshifts, but the rate of convergence is mdelel
pendent and it is influenced by the amount of dark energy &t ear
times.

These small differences are amplified when looking at the
mass function for rare objects; differences from the fidutiadel
are large, of the order af0% for very massive objects already at
z = 0 and can be as large 88% at a redshiftz: = 2, where one is
probing even rarer objects. Deviations from th€ DM model are
generally amplified if the gravity strength changes in time.

The dark matter power spectrum shows differences of the or-
der of10% — 15% at most, particularly on mildly non-linear scales.
On large scales differences are mostly due to integratéeteifces
in the growth rate, ranging froif% to 10%. These conclusions are
in qualitative agreement with those found|by Fedeli et 169 of
the analysis of N-body simulations and differ by only a few-pe
cent, showing that the usual recipes for the matter powestspa
can reproduce these models reasonably well without futhir
bration. The small differences are due to the fact that warass
that the assumptions used to build the halofit model arevstiil
in non-minimally coupled models (see discussion of how the-n
linear matter power spectrum was evaluated in their Sect. 4)

Finally, the effective convergence power spectrum is &dfg:c
at the level of~ 10 — 15% at intermediate/small angular scales.
Since the corresponding observations are in principle serny
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sitive, it will be possible to discriminate these modelshnit-
ture lensing surveys, such as Euclid. In particular, asudised in
Beynon et al.[(2012) a precision of few percent can be reached
This implies that all the models could in principle be faksifiif
ACDM is the true cosmological model.
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