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Abstract

We consider the Lorentz violated extension of the standard model. In this

framework, there are terms that explicitly violate CP-symmetry. We examine

the CPT-even dµν -term to find the electric dipole moment of charged leptons.

We show that the form factors besides the momentum transfer, depend on a

new Lorentz-scalar, constructing by dµν and the four momenta of the lepton, as

well. Such an energy dependence of the electric dipole form factor leads to an

enhancement of the lepton electric dipole moment at high energy, even at the zero

momentum transfer. We show that at
|d|p2

m2
l

∼ 1 the electric dipole moment of the

charged lepton can be as large as 10−14
e cm.
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1 Introduction

As the electron is a fundamental particle, discovering the nonzero electron electric dipole

moment (eEDM), can unambiguously provide an experimental test on new physics. In

fact, electric dipole moment (EDM) for fundamental particles violates CP symmetry.

Although in the standard model there is no term which explicitly violates the CP,

through the CKM-phase, a tiny EDM can be produced for all charged leptons. There-

fore, to have the eEDM, comparable with the experimental bounds, one needs a new

theory beyond the standard model. The new sources of CP-violations in such theories

might have the same origin as the SM. For instance, in the SUSY the electron EDM

originates in new CP-violating phases. In contrast, there might be theories with ex-

plicit CP-violating terms. In the framework of the standard model extension (SME),

introduced by D. Colladay and V. Alan Kostelecky [1]-[2], there is such terms. The

phenomenological aspects of the SME have been extensively considered by many au-

thors in terrestrial [3]-[16] and astrophysical systems [17]-[27], for more than a decade.

The bounds on the LV-parameters are collected in [28]. Here we examine the CPT-even

dµν-term that violates the CP symmetry to find the charged lepton EDM. The electric

dipole form factor, as well as the others, depends not only on the momentum transfer,

but also on this new constant tensor that violates the Lorentz symmetry. Therefore, one

can expect new effects at the zero momentum transfer. In fact, the form factors should

depend on the scalars constructed by dµν and four momenta of particles. Therefore,

even at the zero momentum transfer, the form factors may depend on the energy of the

particle and some enhancement for the particle’s EDM with the energy can occur.

In Sec. II, the QED part of the SME and subsequently, the electromagnetic form

factors and their impacts on the charged lepton EDM are introduced. In Sec. III, we

explore the one-loop correction on the lepton-photon vertex, in the extended QED, and

consequently, the lepton EDM, in high and low energy limits, are obtained. In Sec. IV,

some concluding remarks are given. In appendix A some useful identities is introduced.

The detail calculations of the vertex correction is given in appendix B.

2 Electromagnetic form factors

In the QED part of the SME the Lagrangian for a free particle is parameterized as

[1]-[2]

L = ψ̄(iΓµ∂
µ −M)ψ, (1)
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where

Γµ = γµ + cνµγ
ν − dνµγνγ5 + eµ + ifµγ

5 +
1

2
gλνµσ

λν ,

M = m+ aµγ
µ − bµγµγ5 +

1

2
Hµνσ

µν + im5γ
5. (2)

As in [29]-[30] was noted, the violating Lorentz parameters in Γµ are appeared in the

Lagrangian along with a momentum factor and therefore, at high energy limit, are more

important than the LV-parameters which is given in the mass term M . Furthermore,

in Γµ, at the lowest order in the Lorentz violating parameters, only fµ and dµν can

produce EDM for point particles. In this article, we are looking for some enhancement,

at high energy limit, on the EDM of the charged leptons. For this purpose, since fµ

is unphysical [31], we restrict ourselves to the parameter dµν . It should be noted that

although the particle Lorentz transformation symmetry is broken, the Lagrangian (1) is

fully covariant under the observer Lorentz transformations [1]-[2]. Therefore, under the

observer Lorentz transformation, dµν behaves as a new Lorentz quantity. Consequently,

the most general form for the electromagnetic current between Dirac leptons, consistent

with the Lorentz covariance and the Ward identity, can be written as follows

< ψ(p)|JEM
µ |ψ(p′) > = ū(p′)Gµ(q2)u(p), (3)

where qµ = p′µ − pµ and

Gµ(q2) = F1

[

γµ + γ5γ
νdνµ

]

+ F2 i
σµνq

ν

2m
+ F3

[

(qµ −
q2

2m
γµ)γ5 +

q2

2m
dνµγ

ν
]

+ F4 σµν
qν

2m
γ5 + Fd, (4)

in which m is the charged lepton mass and Fi’s i = 1− 4 are the usual electric charge,

magnetic dipole, anapole (axial charge) and electric dipole form factors, respectively.

Meanwhile, Fd stands for all the new terms in the current that vanishes at d = 0. This

part contains the new form factors which can be defined, for a symmetric and traceless

dµν , as follows

Fd = (iF5 + F6γ5)[dµασ
αν − dνασαµ]

qν

2m
+ (F7 + F8γ5)[q · d · γqµ − q2dµαγα]. (5)

All the form factors are Lorentz scalars and depend on the scalars q2, p · d · p′, p′ · d · p,
p · d · p and p′ · d · p′. One can easily see that the electric dipole form factor F4 leads to

a nonzero EDM for a charged lepton as

de = −
F4|q2=0

2m
. (6)
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It should be noted that in the ordinary standard model F3

[

(qµ − q2

2m
γµ)γ5

]

shows the

anapole term in the matrix element of a conserved four-current for a free spin-1
2
fermion

[32]. Meanwhile, in the SME the Dirac equation is modified ( see (13)) and therefore

the current conservation leads to a new term for the anapole as given in (4).

In the Lorentz conserving QED only virtual quarks, in the loops, can violate the

CP-symmetry that in turn, leads to a tiny nonzero value for F4. However, in the LV

counterpart of the QED not only F4 is nonzero, even at the leading order, but also it

depends on the new scalars such as p · d · p′ that can enhance the lepton’s EDM at

the high energy limit. It should be noted that the other new form factors given in (5)

have also some contribution to the lepton’s EDM as well. For instance, the F6-term can

couple to an external field Aµ = (φ, 0, 0, 0) as

G(6)µ (q2)Aµ = iF6γ5(dµασ
αν − dνασαµ)

qνA
µ

2m
=
iF6

2m
γ5(d00σ

0i + dijσ0j + d0jσ
ji)qiA0. (7)

Meanwhile, in the limit p and p′ ≪ m one has

u(p) ≃
√
m

(

(1− p·σ
2m

) ξ

(1 + p·σ
2m

) ξ

)

, (8)

therefore, the spin dependent part of the current, at the zero momentum transfer and

up to the first order of the LV-parameter, can be easily casted into

ū(p′)G(6)0 (q2)u(p) ≃ −F6(0)[d00ξ̄σ
iξ + djiξ̄σ

jξ]qi. (9)

It should be noted that since G(6)µ depends on the LV-parameter, then the spinors in the

current, at the first order of the LV-parameter d, are the free ones. In the high energy

limit, the spinors can be given as

u(p) ≃
√
2E

2

(

(1− p̂ · σ) ξ
(1 + p̂ · σ) ξ

)

, (10)

though the spin dependent part of the current does not change. Therefore, the form

factor F6 leads to the electric dipole interaction as

− de · E =
eF6|q2=0

m
(d00S · E + SidijEj). (11)

Before calculating the form factors, some comments are in order. As (5) shows, the

Lorentz vector Fd is constructed by the Lorentz tensor dµν . Therefore, up to the first

order of dµν , only the form factors F1-F4 depend on the LV-parameter. In fact, at the
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leading order, all the new form factors are d-independent and, at the zero recoil, they

are of the order of α
2π
. Thus, the form factors such as the F6, see Eq.(11), lead to

de ∼ α
2π

e|d|
2me

or |d| ∼ 10−14 for the eEDM of the order of 10−27e cm. Meanwhile, at

the leading order, F4|q2=0 ∼ α
2π

pidijpj
m2

e
that in turn results in de ∼ α

2π
e|d|p2

2m3
e
. In the other

words, in the relativistic limit, there is an enhancement on the eEDM through the form

factor F4. It should be noted that, in any case it is assumed that |d|p2

m2
e
≤ 1 and the LV

parameter dµν is symmetric and can be taken traceless [1]-[2].

3 Charged Lepton EDM in the standard model ex-

tension

To obtain the Fi’s in the electromagnetic current, we examine the lepton-photon vertex

in the QED part of the SME. In this section, as a crosscheck, we assume both symmetric

and antisymmetric parts of dµν are nonzero, however, at the end we show that the lepton

EDM as a physical quantity depends only on the symmetric part of dµν . The effective

lagrangian for the only non vanishing LV-parameter dµν is

LCPT−even
electron =

i

2
ψ̄γµ
←→
D µψ −mψ̄ψ +

i

2
dµνψ̄γ5γ

µ←→D νψ. (12)

The Lagrangian (12) leads to the equation of motion for a free lepton as

( 6p−m+ dµνp
νγ5γ

µ)u(p) = 0. (13)

Meanwhile, the modified Gordon identities can be obtained as follows

ūγµu = ū
(p+ p′)µ

2m
u+ ū

iσµνq
ν

2m
u+ ūi

σµαd
αν(p+ p′)ν
2m

γ5u+ ū
dµνq

ν

2m
γ5u, (14)

and

ūγµγ5u = ū
qµγ5

2m
u+ ū

iσµν(p+ p′)νγ5
2m

u+ ūi
σµαd

ανqν

2m
u+ ū

dµα(p+ p′)α

2m
u. (15)

Therefore, to the leading order of the LV-parameter dµν , the lepton-photon vertex

ie(γµ + dνµγ5γν) can be written as

ū(γµ + γ5γ
νdνµ)u = ū(

(p+ p′)µ
2m

+
iσµνq

ν

2m
)u

+ ū[
(dµν − dνµ)qν

2m
+ i

(σµαd
αν + σναdαµ)(p+ p′)ν

2m
]γ5u. (16)
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In (16) the antisymmetric tensor dAµν = (dµν − dνµ) can couple to an electric field

as dAi0Ei which is a constant and, as is expected, it has not any contribution to the

EDM. Meanwhile, to avoid a nonstandard time derivatives in the canonical quantization

procedure of the fermion fields, Γ0 in (2) must be equal to γ0 or dµ0 = 0 [29]-[30]. In

fact, to support Γ0 = γ0 in (1), one needs a field redefinition ψ = Aχ [33]-[34] where its

existence was shown in [35] and is given in [36] for Γ0 = cν0γ
ν . In our case, to leading

order of dµν , we introduce A = 1+ 1
2
dµ0γ

0γµγ5. Therefore, the lagrangian (12) in terms

of the new field χ transforms into

LCPT−even
electron =

i

2
χ̄η̃µνγ

µ←→D νχ− m̃χ̄χ, (17)

where

η̃µν = ηµν +Dµνγ5,

Dµν = dµν − ηµνd00 + η0µdν0 − η0νdµ0,
m̃ = m(1 + idα0σ

α0γ5). (18)

One can easily see thatDµ0 = 0. Here, for simplicity, we assume dµ0 = 0 thenDµν = dµν ,

m̃ = m and the fermion propagator for the new field is

SF (p) =
1

η̃µνγµpν −m
. (19)

Since the electromagnetic current, at the tree level, has not any contribution on

the lepton EDM, then to find a nonzero value for the EDM we consider the one loop

correction on the lepton-photon vertex in the framework of the QED part of SME. As

is shown in Fig. 1, there are five places which are affected by the LV parameter d. To

evaluate the one loop correction in the QED extension (QEDE), one has

Γµ
QEDE =

∫

d4k

(2π)4
−igρα
(p− k)2 ū(p

′)(−ieΓα)SF (k
′)ΓµSF (k)(−ieΓρ)u(p), (20)

in which Γµ
QEDE = ū(p′)Gµ(q2)u(p), SF is given in (19) and Γµ = (γµ + dνµγ5γν).

Replacing SF with its expansion up to the first order of d cast the vertex function into

Γµ
QEDE =

∫

d4k

(2π)4
−ie2

(p− k)2 ū(p
′){Γα (6 k′ +m)

k′2 −m2
Γµ (6 k +m)

k2 −m2
Γα

+ Γα (6 k′ +m)

k′2 −m2
Γµ (6 k +m)

k2 −m2
γ · d · kγ5

(6 k +m)

k2 −m2
Γα

+ Γα (6 k′ +m)

k′2 −m2
γ · d · k′γ5

(6 k′ +m)

k′2 −m2
Γµ (6 k +m)

k2 −m2
Γα}u(p). (21)
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Figure 1: The one loop diagrams for lepton-photon vertex in the extended QED up to the first order of the lorentz violation parameter.

The solid circle on each diagram shows the first order LV-contribution from the extended QED. a-c represent the LV-correction on the

vertex while d and e show the corrected propagators.

As is already mentioned, the most important term for the EDM, in the high energy

limit, is F4. In fact, this form factor at the zero recoil depends on the scalar p · d · p
which enhances the value of the EDM in the higher energies. Therefore, to evaluating

the vertex function, we only retain those terms which are proportional to p · d · p. To

simplify (21), we introduce two identities as follows

Γαdµνγ
νγ5Γα = γαdµνγ

νγ5γα

= 2dµνγ
νγ5, (22)

and

ΓαΓµΓα = ΓαγµΓα − Γαdµνγ
νγ5Γα

= 2γα(dµα + dαµ)− 2dµνγ
νγ5 − 2γµ(1 + dαα). (23)

Then, the expression for F4, after manipulating some algebra that is given in appendix

B, can be obtained at the zero recoil and up to the first order of d, as in

F4 =
275α

18π

{

p.dS.p

m2

}

, (24)
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in which dS is the symmetric part of the LV parameter dµν . Consequently, one finds

de = 7× 10−13p · dS · p
m2

e

e cm , (25)

for the electron’s EDM and

dµ = 3× 10−15p · dS · p
m2

µ

e cm , (26)

for the muon’s EDM. One should note that, at the low energy limit where the EDM of

the electron as a stable particle is measured, the correction given in (25) in comparison

with (11) is irrelevant. In contrast, the heavy charged leptons due to their short lifetimes

should be measured in apparatus like the storage ring, as is suggested in [38] for the

charged leptons and in [39] for the other heavy charged particles. Therefore, for instance,

(26) can be used to put an upper bound on the LV-parameter d for the muon. In the

storage ring, muons are in the xy plane therefore, besides pz = 0 both px and py, in

average, are equal to zero. Therefore, at the high energy limit (26) leads to

dµ = 3× 10−15 p
2
0(dxx + dyy)

2m2
µ

e cm . (27)

To compare (27) with different experiments, it is convenient to use the standard Sun-

centered inertial reference frame [40]-[41]. Denote a non rotating basis by (X ; Y ;Z),

with Z parallel to the earths axis along the north direction and the X and Y axes lying

in the plane of the earths equator. Thus, the quantity dxx + dyy in this frame is

dxx + dyy = (1− sin2 χ cos2Ωt)dXX −
1

2
sin2 χ sin 2Ωt(dXY + dY X)

− 1

2
sin 2χ cosΩt(dXZ + dZX)−

1

2
sin 2χ sinΩt(dY Z + dZY )

+ (1− sin2 χ sin2Ωt)dY Y + sin2 χdZZ , (28)

where χ is the geographic colatitude of the experiment location. As (28) shows the

µEDM is a time dependent quantity. Meanwhile, the time average of (28) leads to

dxx + dyy = (dXX + dY Y )−
1

2
sin2 χ(dXX + dY Y − 2dZZ), (29)

where for measurements made at different χ one has

δ(dxx + dyy) =
1

2
(sin2 χ1 − sin2 χ2)(dXX + dY Y − 2dZZ). (30)

8



The experimental bound on the µEDM is about 1.8×10−19 e cm [42] where χ = 49.1

for the E821 experiment and the muon energy is of the order of 3GeV . Therefore, (27)

and (29) results in

dµ = 1.2× 10−12[0.71(dXX + dY Y ) + 0.57dZZ ] e cm , (31)

or

[0.71(dXX + dY Y ) + 0.57dZZ] < 1.5× 10−7, (32)

which is the first bound on the combination of dii components of the Lorentz violation

parameter d for muon. One should note that to see the enhancement on the eEDM at

the high energy limit one needs to examine an indirect experiment such as e−e+ → l−l+

at the LEP. As was shown in [43], the EDM of leptons about 10−17 e cm ∼ 10−3GeV −1

may have some measurable contribution on the e−e+ → l−l+ which is comparable to

the interference term coming from the one Z-boson exchange channel. In fact, besides

the ordinary one photon exchange diagram, there are diagrams at the lowest order in

which one of the vertices is replaced by the electric-dipole one. Therefore, for the non

vanishing interference term, there is an extra power of the momentum in the amplitude

and the fractional correction with respect to the ordinary QED is of the order of dlE

where dl is the lEDM. This correction is about 20 percent for dl ∼ 10−3GeV −1 and

E ∼ 200GeV . Unfortunately, the interference term is zero and the fractional correction

is of the order of (dlE)
2 ∼ .02. Consequently, the LV-parameter d = 8.9× 10−17 for the

electron leads to a few percent fractional correction to the e−e+ → l−l+. Meanwhile,

since mµ ∼ 200me then to have the same order of magnitude correction, through the

µEDM, the LV-parameter d for the muon should be 9× 10−10.

4 Conclusion

We examined the electric dipole moment of the charged fermions in the QED part of

the SME. Besides the ordinary form factors there are a lot of new form factors in the

SME framework, see (4). In addition to the q2, the ordinary form factors, up to the

first order of the LV parameter, depend on new Lorentz scalars such as p.d.p, see (24).

Meanwhile, the new form factors, to the leading order of the LV-parameter d, depend

only on the q2, see (11). Therefore, the ordinary form factors in contrast with the QED

counterpart, at the zero momentum transfer, depend on the energy of the particles, see

(24). The energy dependence of the form factors lead to an enhancement of the electric
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dipole moment of leptons at high energy limit, see (25). In fact, at the high energy limit,

but low enough to satisfy |d|p2

m2
e
≤ 1, the eEDM can be as large as ∼ 10−14 e cm, see (25).

Consequently, the LEP data can be used to put bounds on d, via the enhanced EDM, of

the order of 9× 10−17 and 9× 10−10 for the electron and muon, respectively. Using the

storage ring data for the muon, a bound on [0.71(dXX + dY Y ) + 0.57dZZ] ∼ 1.5× 10−7

has been obtained for the mu-lepton. In fact, this is the first bound on the components

|dij| of the muon [28].

5 Appendix A

Here we introduce some useful identities. The Dirac equation in the SME is

( 6p−m+ dµνp
νγ5γ

µ)u(p) = 0, (33)

and

ū(p)( 6p−m+ dµνp
νγ5γ

µ) = 0. (34)

These equations can be easily casted into

ū(p′)( 6q)u(p) = −ū(p′)(γ5γ.d.q)u(p), (35)

and

ū(p′)( 6qγ5)u(p) = ū(p′)(2mγ5 + γ.d.q)u(p). (36)

Also one has

p2u(p) = (m2 − 2mdµνp
µγ5γ

ν + 2p.d.pγ5)u(p), (37)

and

ū(p)p2 = ū(p)(m2 − 2mdµνp
µγ5γ

ν − 2p.d.pγ5). (38)

The Gordon identity for a Dirac particle in a LV-background dµν can be obtained as

ūγµu = ū
(p+ p′)µ

2m
u+ ū

iσµνq
ν

2m
u+ ūi

σµαd
αν(p+ p′)ν
2m

γ5u+ ū
dµνq

ν

2m
γ5u, (39)

and

ūγµγ5u = ū
qµγ5

2m
u+ ū

iσµν(p+ p′)νγ5
2m

u+ ūi
σµαd

ανqν

2m
u+ ū

dµν(p+ p′)ν

2m
u. (40)

Some other useful identities are

ū[σµνqνγ5]u = iū(p+ p′)µγ5u+ iūdµνqνu− ūσµαdαν(p+ p′)νu, (41)

and

ū[σµν(p+ p′)ν ]u = iūqµu+ iūdµν(p+ p′)νγ5u− ūγ5σµαdανq
νu. (42)
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6 Appendix B

In this appendix we give the details of the vertex function calculations. As a crosscheck,

we assume both symmetric and antisymmetric parts of dµν are nonzero, however, at the

end we show that the lepton EDM as a physical quantity depends only on the symmetric

part of dµν . To this end, the equation (21) can be written as follows

Γµ
QEDE = Γ1 + Γ2 + Γ3, (43)

where

Γ1 =

∫

d4k

(2π)4
−ie2

(p− k)2 ū(p
′){Γα (6 k′ +m)

k′2 −m2
Γµ (6 k +m)

k2 −m2
Γα}u(p), (44)

Γ2 =

∫

d4k

(2π)4
−ie2

(p− k)2 ū(p
′){Γα (6 k′ +m)

k′2 −m2
Γµ (6 k +m)

k2 −m2
γ · d · kγ5

(6 k +m)

k2 −m2
Γα}u(p), (45)

and

Γ3 =

∫

d4k

(2π)4
−ie2

(p− k)2 ū(p
′){Γα (6 k′ +m)

k′2 −m2
γ · d · k′γ5

(6 k′ +m)

k′2 −m2
Γµ (6 k +m)

k2 −m2
Γα}u(p). (46)

Now, we use the identities (22) and (23) to simplify Γi’s as follows

Γ1 =

∫

d4k

(2π)4
2ie2

(p− k)2(k′2 −m2)(k2 −m2)

ū(p′){6 kγµ 6 k′ − dαα 6 k′γµ 6 kγ5 − dµα 6 kγµ 6 k′γ5 − dsαβkβ 6 k′γµγαγ5
+ dsαµ 6 k′ 6 kγαγ5 − dsαβk′βγµ 6 kγαγ5 − 2m(k′ + k)µ − 2mdµβq

βγ5

− 2miσαβd
αβqµγ5 −m 6 qdAµαγαγ5 +mqβdAβαγµγ

αγ5 −m2dααγµγ5

+ m2(γµ + dµαγ
αγ5) +m2dsαµγ

αγ5}u(p), (47)

Γ2 =

∫

d4k

(2π)4
−2ie2

(p− k)2(k′2 −m2)(k2 −m2)2

ū(p′){γ · d · kγµ 6 k′(k2 +m2)− 2 6 kγµ 6 k′k · ds · k − 2mk2dµαk
α

− 2m(γ · d · k 6 k′γµ 6 k+ 6 kγµ 6 k′γ · d · k) + 4m(k′ + k)µk · ds · k
+ 2m2(γ · d · k 6 kγµ − γµk · ds · k)− 2m3dµαk

α}γ5u(p), (48)

and

Γ3 =

∫

d4k

(2π)4
−2ie2

(p− k)2(k′2 −m2)2(k2 −m2)

ū(p′){6 kγµγ · d · k′(k′2 +m2)− 2 6 kγµ 6 k′k′ · ds · k′

+ 2m(k′2 +m2)dµαk
′α + 2m(6 kγ · d · k′ 6 k′γµ + γµ 6 k′γ · d · k′ 6 k)

− 4mk′ · ds · k′qµ − 8mk′ · ds · k′kµ − 2m2k′ · ds · k′γµ

+ 2m2γµ 6 k′γ · d · k′}γ5u(p), (49)
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Now, we evaluate the integrals using the standard procedures. We use the method of

Feynman parameters to rewrite the denominators as follows

1

(p− k)2(k′2 −m2)(k2 −m2)2
=

∫

dxdydzδ(x+ y + z − 1)
6x

D4
, (50)

and

1

(p− k)2(k′2 −m2)2(k2 −m2)
=

∫

dxdydzδ(x+ y + z − 1)
6y

D4
, (51)

where D = l2 −∆+ iǫ and

∆ = (1− z)2m2 − xyq2 , l = k − zp + yq. (52)

Here we are interested in the momentum dependent part of the F4 form factor. Mean-

while, Eq.(41) shows that the F4 comes as the coefficient of (p + p′)µγ5. Therefore, we

only retain those momentum dependent terms, in Γ1 to Γ3, which are proportional to

(p + p′)µγ5. One can see that only Γ2 and Γ3 have such terms which after performing

the integrals on the momenta they can be obtained as follows

Γ2 p·d·p =
2e2

(4π2)

∫

dxdydzδ(x+ y + z − 1)
x

∆2
ū(p′){−2[−my(1− y)

+ m(z + y)(z − 2y + 2)][y2q · ds · q − 2zyq · ds · p + z2p · ds · p]
− 2m[2y2zp′ · ds · p′ + 2(z + y)2zp · ds · p− 4yz(z + y)p′ · ds · p]
+ 4m[y2q · ds · q − 2yzq · ds · p+ z2p · ds · p]z}(p+ p′)µγ5u(p), (53)

where at q2 = 0 is

Γ2 p·d·p =
2e2

(4π2)

∫

dxdydzδ(x+ y + z − 1)
x

∆2(q2 = 0)

ū(p′){−2m[−y(1− y) + (z + y)(z − 2y + 2)]z2

− 2m[2y2z + 2(z + y)2z − 4yz(z + y)]

+ 4mz3}p · ds · p(p+ p′)µγ5u(p), (54)

and

Γ3 p·d·p =
2e2

(4π2)

∫

dxdydzδ(x+ y + z − 1)
y

∆2
ū(p′){

− 2m[y(z − y + 1) + z(z − 2y + 2)][z2p · ds · p+ (1− y)2q · ds · q
+ 2z(1 − y)q · ds · q] + 2m[2(z + y)(1− y)2p′ · ds · p′

+ 2(z + y − 1)2(1− y)p · ds · p+ 4z(1− y)(z + y − 1)p′ · ds · p]
− 4mz((1 − y)q + zp) · ds · ((1− y)q + zp)}(p + p′)µγ5u(p), (55)

12



where at q2 = 0 one has

Γ3 p·d·p =
2e2

(4π2)

∫

dxdydzδ(x+ y + z − 1)
y

∆2(q2 = 0)
ū(p′){−2m[y(z − y + 1)

+ z(z − 2y + 2)]z2 + 2m[2(z + y)(1− y)2 + 2(z + y − 1)2(1− y)
+ 4z(1 − y)(z + y − 1)]− 4mz3}p · ds · p(p+ p′)µγ5u(p), (56)

where the subscript p · d · p stands for the momentum dependent parts of the form

factors. It should be noted that in our manipulations we retained both the symmetric

and the antisymmetric parts of dµν . However, as is expected the results only depend

on the symmetric part of dµν . Now the total contribution on the EDM form factor can

be found by adding (54) and (56) as

Γ2 p·d·p + Γ3 p·d·p =
2e2

(4π2)

∫

dxdydzδ(x+ y + z − 1)
2m

((1− z)2m2)2
ū(p′){

+ (x− y)z2y(1− y)− z3y2 − z3(x+ y)(z − 2y + 2)

− z2xy(z − 2y + 2) + 2y[3z(1− y)(z + y − 1) + (1− y)2]
− 2xz3}p · ds · p(p+ p′)µγ5u(p), (57)

which after performing the integrals on the Feynman parameters, leads to

Γ2 p·d·p + Γ3 p·d·p = − 2e2

(4π2)
ū(p′)(

275

18m3
)p · ds · p(p+ p′)µγ5u(p) + IR, (58)

in which IR stands for the infrared terms. By comparing (58) and (41), one can easily

see that

F4 = −275α
18π

p.ds.p

m2
. (59)
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