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Abstract

Nambu-Goto action in classical bosonic string model for hadrons predicts quark-antiquark potential to
be[1] V (r) = −

γ

r
+ σr + µ0. In this report we present studies of masses of heavy flavour mesons in higher

dimension with our recently developed wave functions obtained following string inspired potential. We report
the dimensional dependence of the masses of mesons. Our results suggest that as the meson mass increases
with the number of extra spatial dimension, it will attain the Planck scale (∼ 1019GeV ) asymptotically at
an astronomically large spatial dimension (we call it Planck dimension) DPlanck ∼ 1011, which sets the limit
of applicability of Schrodinger equation in large dimension.
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1 Introduction:

Heavy flavour mesons with unequal-mass quarks have
been a subject of extensive theoretical investigation be-
cause of their simplified dynamics [2, 3]. Analysis of
masses of mesons gives a better and comprehensive in-
sight into the decay widths and other properties [4, 5],
which in turn opens up the way to study the CKM
matrix elements [6]. For such systems, non-relativistic
potential model approach has been successful in mak-
ing fairly acceptable predictions.
In this regard, a realistic potential model in higher di-
mension for quark-antiquark bound systems [7, 8] is be-
ing predicted from Nambu-Goto action for free bosonic
strings[9, 10, 11], which can be expressed as[1]:

V (r) = −
γ

r
+ σr + µ0 (1)

This is Cornell type[12] linear plus Coulombic poten-
tial for mesons in higher dimension. Here, γ

r is the

universal Lüscher term with γ = π(d−2)
24 as the Lüscher

coefficient[13]. σ is the string tension, whose value is
0.178 GeV 2 [14]and µ0 is a scale parameter. d is the
space-time dimension with d = D+1, D being the spa-
tial dimension.
Here it is worth mentioning that in this Cornell
type potential, linear term is basically dominant with
Coulombic term appearing as the first order correction
to it (eg, Arvis potential of reference [28]). The basic
difference with the Cornell potential is that, here the
coefficient of 1/r term (Lüscher term) does not con-
tain any gauge term and is only dimension dependent.
This Lüscher term being leading order correction term
to linear term, such approximation is generally valid
for short r. However, this can be made compatible for
large r by making proper choice of string tension σ
and tuning the coefficient the Lüscher correction term.
However, in our analysis, for simplification, we have
worked with fixed value of σ and increasing values of

dimension parameter D in γ to explore the variation
of meson masses.
With this potential based on effective string theory for
flux tube, recently we have developed meson wave func-
tion in higher dimension, by solving Schrodinger wave
equation in higher dimension[15, 16] following quan-
tum mechanical perturbation technique for both the
cases - (a) Lüscher term as parent(unperturbed term)
with linear term as perturbation [17, 18] and (b) linear
term as parent (unperturbed term) with Lüscher term
as perturbation[19]. In this letter, we report ground
state masses of heavy-light mesons in higher dimen-
sion making use of these wave functions. We study the
dimensional dependence of masses of mesons and also
compare our results in three dimension with recent the-
oretical and experimental expectations. As the meson
masses increase with dimension, here we explore pos-
sibility of some higher cut-off limit of dimension which
is compatible with the Planck mass limit.

2 Formalism:

Pseudoscalar meson mass can be computed from the
following relation [4, 20]:

MP = mQ +mQ +△E where, △E =< H > (2)

In D-spatial dimension, the Hamiltonian operator H
has the form [21]:

H = −
∇2

D

2µ
+ V (r) (3)

Here,µ =
mQmQ

mQ+mQ
is the reduced mass of the meson

with mQ and mQ are the quark and antiquark masses;
V (r) is the inter-quark potential given in equation (1)
and ∇2

D is the Laplace’s operator in D dimension which
at l = 0 is given by [22]:

∇2
D ≡

d2

dr2
+

D − 1

r

d

dr
(4)
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Now, < H > can be expressed as:

< H >=< −
∇2

D

2µ
> + < −

γ

r
> + < σr + µ0 >

=< H1 > + < H2 > + < H3 > (5)

2.1 Mass with Lüscher term as parent:

The meson wave function within string inspired poten-
tial model considering Lüscher (− γ

r ) term as parent
and linear term (σr) as perturbation (with µ0 = 0)has
been reported in [17, 18] as:

Ψ(r,D) = N1[1−K(D)r2]r
D−3

2 e−µγr (6)

Where, K(D) = σ(2D−3)
6γ ,CD = πD/2

Γ(D/2+1) [23] and N1

is the normalisation constant which is given as [18]:

N1 =
1

(D.CD)1/2
.

1

[ Γ(2D−3)

(2µγ)2D−3 − 2.K. Γ(2D−1)

(2µγ)2D−1 + K2. Γ(2D+1)

(2µγ)2D+1 ]1/2

(7)

Using this wave function, we compute terms in < H >
as (details discussed in Appendix:A):

< H1 >= −
DCDN2

1

2µ
Σ7

i=1JiIi (8)

< H2 >= −γDCDN1Σ
3
i=1J7+iIi (9)

< H3 >= DCDN2
1Σ

6
i=1J10+iI2+i (10)

The explicit expressions of integrals Iis and parameters
Jis are given in equations (A.8-A.14,A.27) and (A.31)
of Appendix:A.

2.1.1 In the large D limit:

We also extend our formalism for computing < H > in
the large D limit. Here, we take:

DCDN2
1 =

1

L0
(11)

Where from eqn (7) we find:

L0 =
Γ(2D − 3)

(2µγ)2D−3
− 2K

Γ(2D − 1)

(2µγ)2D−1
+K2 Γ(2D + 1)

(2µγ)2D+1

(12)
In the large D limit, D dependent terms transform as
shown in equations (A.32 - A.41) of Appendix-A. Un-
der such approximation, terms involved in < H > now
become:

< H1 >= −
D2

Lc

7
∑

i=1

Li(
2

πµ/12
)i−1 (13)

< H2 >= −
D

Lc

3
∑

i=1

L7+i(
2

πµ/12
)2i−1 (14)

< H3 >=
1

Lc

6
∑

i=1

L10+i(
2

πµ/12
)i+1 (15)

Here, the specific Li terms, in large D limit are D-
independent and are given in equations (A.42-A.57) of
Appendix-A.
It is thus found that, in the large D limit, < H > and
hence masses increase as D2, controlled mainly by the
kinematic term < H1 >.

2.1.2 Mass with only Lüscher Term:

With only Luscher term in potential (V (r) = − γ
r ,

< H >=< H1 > + < H2 >), the wave function is:

Ψ0(r) = Nr
D−3

2 e−µγr (16)

Here, normalisation constant N is:

N =
1

(D.CD)1/2
.
(2µγ)2D−3

Γ(2D − 3)
(17)

We ultimately find:

< H >= −

DCDN2

2µ
[g11I1 − g12I2 + g13I3] − γDCDN

2
I2 (18)

We have used:

DCDN2 =
(2µγ)2D−3

Γ(2D − 3)
(19)

g11 = g1, g12 = g2 (20)

g13 = (g3)K=0 = µ2γ2 (21)

In the large D limit, equation (18) transform as:

< H >= D2 1

2µ
(
µπ

12
)2

1

16
−Dµ(

π

24
)2 (22)

Here also, thus, meson mass increases with D2 as ev-
ident from equation (22). It might even reach the
Planck scale MPlanck ∼ 1019GeV at an astronomically
large dimension D.

2.2 Mass with linear term as parent:

With linear term as parent (and Lüscher term as per-
turbation), the meson wave function has been calcu-
lated [19] as:

Ψ(r,D) = N1r
(1−D)

2 [1 +A1(r,D)r

+A2(r,D)r2 + .........](̺1r)
mAi[̺1r − ̺0] (23)

Here, terms involved have their explicit meaning as
stated in ref. [19]. The normalisation constantN1 in D
spatial dimension can be calculated from the equation:

DCD

∫

∞

0

rD−1|Ψ(r,D)|2dr = 1 (24)

This expression for normalisation constant involves in-
tegration in D-fold space (D-spatial dimension). The
surface element in D spatial dimension is DCDrD−1dr,
where the explicit expression of the terms CD has been
stated in section 2.1.
As the wave function in this case contains Airy’s in-
finite polynomial series, we calculate < H > through
numerical integration using the following integrals:

< H1 >=

∫

∞

0

DCDrD−1Ψ(r)[−
∇2

D

2µ
]Ψ(r)dr (25)

< H2 >=

∫

∞

0

DCDrD−1Ψ(r)[−
γ

r
]Ψ(r)dr (26)

< H3 >=

∫

∞

0

DCDrD−1Ψ(r)[σr]Ψ(r)dr (27)

In this case, with Airy’s function involved in the wave
function, simpler equations like (13-22) in the large D
limit are not possible as we follow numerical integra-
tion to evaluate terms < H1 >,< H2 >,< H3 >.
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3 Results and conclusion:

With the different expressions for < H >, for two
cases of Luscher parent and linear parent, we now pro-
ceed to calculate masses of D,Ds, B,Bs and Bc heavy
flavoured mesons in higher dimension. We take the
quark mass parameters from reference [5]. Here, we
set the mass scale parameter µ0 by making our calcu-
lated meson masses in three dimension compatible with
the corresponding standard PDG masses [24]. Results
are shown in Tables 1,2 and Figure 1,2.

Table 1: Dimensional dependence of meson masses (in
GeV) with Lüscher term as parent

D0 Ds B0 Bs Bc

µ0 → 0.074 0.182 0.165 0.256 0.260

D Mp Mp Mp Mp Mp

3 1.8649 1.9685 5.2796 5.3668 6.2770
5 1.8002 1.9201 5.2207 5.3235 6.2665
10 1.7645 1.8932 5.1881 5.2998 6.2615
20 1.7507 1.8840 5.1757 5.2916 6.2671
30 1.7486 1.8831 5.1751 5.2924 6.2832
40 1.7503 1.8876 5.1766 5.2968 6.3084
50 1.7543 1.8930 5.1812 5.3039 6.3425
100 1.7986 1.9533 5.2302 5.3725 6.6451
150 1.8786 2.0599 5.3179 5.4932 7.1671
200 1.9929 2.2118 5.4432 5.6650 7.9442
250 2.1413 2.4088 5.6058 5.8877 8.8684

Table 2: Dimensional dependence of meson masses (in
GeV) with linear term as parent

D0 Ds B0 Bs Bc

µ0 → 0.002 0.066 0.07 0.13 0.072

D Mp Mp Mp Mp Mp

3 1.8649 1.9685 5.2796 5.3668 6.2770
5 1.9270 2.0093 5.3276 5.4031 6.2419
10 2.0569 2.1230 5.4521 5.5102 6.2796
20 2.3278 2.3668 5.7139 5.7433 6.4180
30 2.5755 2.5901 5.9534 5.9570 6.5489
40 2.8027 2.7944 6.1629 6.1523 6.6681
50 3.0141 2.9843 6.3771 6.3338 6.7781
100 3.9267 3.8021 7.2577 7.1142 7.2451
150 4.7014 4.4949 8.0049 7.7749 7.6372
200 5.3968 5.1163 8.6754 8.3673 7.9874
250 6.0381 5.6891 9.2936 8.9132 8.3101
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Figure 1: Meson mass vs dimension:Luscher parent
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Figure 2: Meson mass vs dimension:linear parent
The above tables and figures show that, as the di-

mension increases masses also increase. Each of the
terms in < H > is also found to follow the same
pattern in both the cases. However, the rate of in-
crease of meson masses with dimension depends upon
the flavour involved in the meson as well as on the
choice of ‘parent-child’. As an illustration, with lin-
ear parent, a typical D-meson mass becomes double at
around D = 100 (Table 3); however, for B meson such
twofold increase in mass occurs at around D = 300.
An interesting consequence of this pattern is that at
a very large value of spatial dimension (may be called
as Planck dimension DPlanck) the masses will attain
the cut-off value of Planck mass MPlanck ∼ 1019GeV
above which the quantum mechanics of higher dimen-
sion cannot be applied.
Analytic expression for this asymptotic dimension is
not possible in general, except in some special cases.
As an illustration, for D2 >> D limit, the equation
(22) can be written as:

< H >= D2 1

32µ
(
µπ

12
)2 (28)

This will yield the Planck dimension as:

DPlanck ≈
48

π

√

2MPlanck

mq
(29)

in the infinite heavy quark mass limit (µ → mq).

Here, MPlanck =
√

~c
G ∼ 1.22 × 1019GeV and mq is

the mass of the light quark constituent. For typical
mq = 0.2GeV , the numerical value of the Planck di-
mension is:

DPlanck ≈ 1.6× 1011 (for mq = 0.2GeV ) (30)

This astronomically large value of dimension sets the
natural limit of the applicability of the present quan-
tum mechanical approach based on higher dimensional
Schrodinger equation.
Further, we find through our analysis that the linear
parent case is perturbatively stable while the other one
- Luscher parent is not, within the model parameters
used in the work. We also observe that the kinematic
term < H1 > is the most dominant contributor in

3



higher dimension. We presumably conclude that this
may be a general feature of the Schrodinger equation in
higher dimension and for any reasonable potential, the
solution of Schrodinger equation might yield similar be-
havior of kinematic term in higher dimension. But, in-
dependent of perturbative stability or otherwise, both
the options indicate that meson masses increase with
dimension parameter.
Lastly, we conclude by making the following comment
on the limitations of the model and the scopes for im-
provement.
(a)In our analysis, we have worked with fixed value of
string tension σ. The effect of quark mass on string
tension and the subsequent consequence on our anal-
ysis will be an interesting analysis, which we plan to
carry out in future.
(b)The present work is based on a specific string
inspired potential model and does not incorporate
asymptotic freedom and hence the running of the
strong coupling constant αs(Q

2). The formalism can
be extended to incorporate such effect in future by
adopting higher dimensional Coulomb potential of
QCD [25, 26, 27] suitably. (c)In this work, we have
considered all the space dimensions to be large. In
fact, the analysis will be more physical and convincing
if the number of large dimensions is restricted to four
and the extra dimensions are considered as compact
ones. In that case, the work can be extended to derive
physical interpretation on masses of mesons in LED
which then can be applied to study other static and
dynamic properties of mesons. This is a major scope
for improvement of the present work which is under
consideration.
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[9] M. Lüscher, Nucl. Phy. B , 180 (1981) 317

[10] J. F. Arvis, Phy. Lett B, 127 (1983) 106.

[11] A. Antillon et al, Phy. Rev. D , 49(1994)1966.

[12] E. Eicheten et al, Phy. REv. D 17,3090(1978); Phy.
Rev. D 21, 203(1980).
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< H1 >=

∫

∞

0

DCDrD−1Ψ(r)[−
∇2

D

2µ
]Ψ(r)dr (A.1)

= −
DCD

2µ

∫

∞

0

rD−1Ψ(r)[
d2Ψ(r)

dr2
+

D − 1

r

dΨ(r)

dr
]dr (A.2)

We find,

dΨ(r)

dr
= [

D − 3

2
r

D−5
2 − µγr

D−3
2 −K

D + 1

2
r

D−1
2 + kµγr

D+1
2 ]e−µγr (A.3)

d2Ψ(r)

dr2
= [

(D − 3)(D − 5)

2
r

D−7
2 − 2µγ

D − 3

2
r

D−5
2 − (K

(D − 1)(D + 1)

2
− µ2γ2)r

D−3
2

+2Kµγ
D + 1

2
r

D−1
2 −Kµ2γ2r

D+1
2 ]e−µγr (A.4)

< H1 >= −
DCDN2

1

2µ

∫

∞

0

[g1r
2D−6 − g2r

2D−5 − (g3 +Kg1)r
2D−4

+(g4 +Kg2)r
2D−3 + (Kg3 − g5)r

2D−2 −Kg4r
2D−1 +Kg5r

2D]e−2µγrdr (A.5)

= −
DCDN2

1

2µ
[g1I1 − g2I2 − (g3 +Kg1)I3 + (g4 +Kg2)I4 + (Kg3 − g5)I5 −Kg4I6 +Kg5I7] (A.6)

gi’s are given as follows-

g1(D) =
(D − 1)(D − 3)

2
+

(D − 3)(D − 5)

4
, g2(D) = 2µγ(D − 2)

g3(D) =
3

4
K(D + 1)(D − 1)− µ2γ2, g4(D) = 2DµγK, g5(D) = Kµ2γ2 (A.7)

Also we find,

I1 =

∫

∞

0

r2D−6e−2µγrdr =
Γ(2D − 5)

(2µγ)2D−5
(A.8)

I2 =

∫

∞

0

r2D−5e−2µγrdr =
Γ(2D − 4)

(2µγ)2D−4
(A.9)

I3 =

∫

∞

0

r2D−4e−2µγrdr =
Γ(2D − 3)

(2µγ)2D−3
(A.10)

I4 =

∫

∞

0

r2D−3e−2µγrdr =
Γ(2D − 2)

(2µγ)2D−2
(A.11)

I5 =

∫

∞

0

r2D−2e−2µγrdr =
Γ(2D − 1)

(2µγ)2D−1
(A.12)

I6 =

∫

∞

0

r2D−1e−2µγrdr =
Γ(2D)

(2µγ)2D
(A.13)

I7 =

∫

∞

0

r2De−2µγrdr =
Γ(2D + 1)

(2µγ)2D+1
(A.14)

Appling equations (A.8-A.14) in equation (A.6) we get:

< H1 >= −
DCDN2

1

2µ
[g1

Γ(2D − 5)

(2µγ)2D−5
− g2

Γ(2D − 4)

(2µγ)2D−4
− (g3 +Kg1)

Γ(2D − 3)

(2µγ)2D−3

+(g4 +Kg2)
Γ(2D − 2)

(2µγ)2D−2
+ (Kg3 − g5)

Γ(2D − 1)

(2µγ)2D−1
−Kg4

Γ(2D)

(2µγ)2D
+Kg5

Γ(2D + 1)

(2µγ)2D+1
] (A.15)
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Similarly,

< H2 >=< −
γ

r
>=

∫

∞

0

DCDrD−1Ψ(r)[−
γ

r
]Ψ(r)dr (A.16)

= −

∫

∞

0

γDCDrD−2[Ψ(r)]2dr (A.17)

= −γDCDN2
1

∫

∞

0

[r2D−5 − 2Kr2D−3 +K2r2D−1]e−2µγrdr (A.18)

= −γDCDN2
1 [

∫

∞

0

r2D−5e−2µγrdr − 2K

∫

∞

0

r2D−3e−2µγrdr +K2

∫

∞

0

r2D−1e−2µγrdr] (A.19)

= −γDCDN2
1 [I2 − 2KI4 +K2I6] (A.20)

= −γDCDN
2
1 [

Γ(2D − 4)

(2µγ)2D−4
− 2K

Γ(2D − 2)

(2µγ)2D−2
+K2 Γ(2D)

(2µγ)2D
] (A.21)

And,

< H3 >=< σr + µ0 >=

∫

∞

0

DCDrD−1[σr + µ0][Ψ(r)]2dr (A.22)

= DCDN2
1

∫

∞

0

[µ0 + σr − 2µ0Kr2 − 2σKr3 + µ0K
2r4 + σK2r5]r2D−4e−2µγrdr (A.23)

= DCDN2
1

∫

∞

0

[µ0r
2D−4 + σr2D−3 − 2µ0Kr2D−2 − 2σKr2D−1 + µ0K

2r2D + σK2r2D+1]e−2µγrdr (A.24)

= DCDN2
1 [µ0I3 + σI4 − 2µ0KI5 − 2σKI6 + µ0K

2I7 + σK2I8] (A.25)

= DCDN2
1 [µ0

Γ(2D − 3)

(2µγ)2D−3
+ σ

Γ(2D − 2)

(2µγ)2D−2
− 2µ0K

Γ(2D − 1)

(2µγ)2D−1

−2σK
Γ(2D)

(2µγ)2D
+ µ0K

2 Γ(2D + 1)

(2µγ)2D+1
+ σK2 Γ(2D + 2)

(2µγ)2D+2
] (A.26)

As also,

I8 =

∫

∞

0

r2D+1e−2µγrdr =
Γ(2D + 2)

(2µγ)2D+2
(A.27)

Now, equations (A.6), (A.20) and (A.25) can be represented in more compact form as:

< H1 >= −
DCDN2

1

2µ
Σ7

i=1JiIi (A.28)

< H2 >= −γDCDN1Σ
3
i=1J7+iIi (A.29)

< H3 >= DCDN2
1Σ

6
i=1J10+iI2+i (A.30)

Here, Ji terms involved in equations (A.28 - A.30) are given as follows.

J1 = g1, J2 = −g2, J3 = −(g3 +Kg1), J4 = g4 +Kg2, J5 = Kg3 − g5, J6 = −Kg4, J7 = Kg5, J8 = 1

J9 = −2K, J10 = K2, J11 = µ0, J12 = σ, J13 = −2Kµ0, J14 = −2Kσ, J15 = K2µ0, J16 = K2σ(A.31)
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gi terms involved in equation (12), in the large D approximation, are given below.

γ → D
π

24
, (A.32)

2µγ → D
µπ

12
, (A.33)

K →
8σ

π
, (A.34)

g1 → D2 3

4
(A.35)

g2 → D2µπ

12
, g3 → D2[

3

4
(
8σ

π
)− (

µπ

24
)2], (A.36)

g4 → D2(
8σ

π
)
µπ

12
, (A.37)

g5 → D2(
8σ

π
)(
µπ

24
)2, (A.38)

L0 → LcI1 (A.39)

where :

Lc = (
2
πµ
12

)2[1− 2(
8σ

π
)(

2
πµ
12

)2 + (
8σ

π
)2(

2
πµ
12

)4]I1 (A.40)

Ii → I1.(
2
πµ
12

)i−1 (i 6= 1) (A.41)

Li terms involved in equations (14-16), in the large D approximation, are given below.

L1 =
g1

2µD2
→

1

2µ

3

4
(A.42)

L2 = −
g2

2µD2
→ −

µπ

12

1

2µ
(A.43)

L3 = −
g3 +Kg1
2µD2

→ −
1

2µ
[
3

2
(
8σ

π
)− (

µπ

24
)2] (A.44)

L4 =
Kg2 + g4
2µD2

→
1

2µ
2(

8σ

π
)(
µπ

12
) (A.45)

L5 =
Kg3 − g5
2µD2

→
1

2µ
[
3

4
(
8σ

π
)2 − 2(

8σ

π
)(
µπ

12
)2] (A.46)

L6 = −
Kg4
2µD2

→ −
1

2µ
(
8σ

π
)2(

µπ

12
) (A.47)

L7 =
Kg5
2µD2

→
1

2µ
(
8σ

π
)2(

µπ

24
)2 (A.48)

L8 =
γ

D
→

π

24
(A.49)

L9 = −
2Kγ

D
→ −2(

8σ

π
)
π

24
(A.50)

L10 =
K2γ

D
→ (

8σ

π
)2

π

24
(A.51)

L11 = µ0 (A.52)

L12 = σ (A.53)

L13 = −2µ0K → −2µ0
8σ

π
(A.54)

L14 = −2σK → −2σ
8σ

π
(A.55)

L15 = µ0K
2 → µ0(

8σ

π
)2 (A.56)

L16 = σK2 → σ(
8σ

π
)2 (A.57)

B Appendix:B

Determination of terms involved in < H > in the case of Linear term as Parent.
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Considering up to third term in the first infinite series of the wave function mentioned in equation (24), we
obtain:

Ψ(r,D) = N1r
(1−D)

2 [1 +A1(r,D)r +A2(r,D)r2](̺1r)
mAi[̺1r − ̺0] (B.1)

We simplify A1(r,D) and A2(r,D) in terms of power series in r as below:

A1(r,D) = −h1(D)r2 + h2(D)r3 + h3(D)r4 (B.2)

A2(r,D) = −h4(D)r2 + h5(D)r3 + h3(D)r4 (B.3)

where,

h1(D) =
2µγ

̺21k
2

(B.4)

h2(D) =
2µγ(2g +D + 1)

̺31k
3

(B.5)

h3(D) =
2µγ

̺41k
4
[2g + (D − 1) + 2̺1 + g(g − 1)− (D − 1)g + (2g +D − 1)̺1] (B.6)

h4(D) =
2µW ′

̺21k
2

(B.7)

h5(D) =
2µW ′(2g +D + 3)

̺31k
3

(B.8)

h6(D) =
2µW ′

̺41k
4
[2 + g(g −D + 4) + 2(D − 1 + 2̺1) + (2g +D − 1)̺1] (B.9)

with g =
1−D + 2m

2
(B.10)

Other terms like ̺1, ̺0,W
′, k etc are mentioned in ref. [19]. Using equations (B.2-B.3) in (B.1) we obtain:

Ψ(r,D) = N1̺
m
1 rg[1− h1r

3 + (h2 − h4)r
4 + (h3 + h5)r

5 + h6r
6]Ai[̺] (B.11)

= N1̺
m
1 rg [1− h1r

3 + h7r
4 + h8r

5 + h6r
6]Ai[̺] (B.12)

where h7 = h2 − h4, h8 = h3 + h5

The derivatives of Ψ(r,D) are obtained as:

d

dr
[Ψ(r,D)] = N1̺

m
1 rg[(

g

r
+ Z(r))(1 − h1r

3 + h7r
4 + h8r

5 + h6r
6)

+(−3h1r
2 + 4h7r

3 + 5h8r
4 + 6h6r

5)]Ai[̺] (B.13)

d2

dr2
[Ψ(r,D)] = N1̺

m
1 rg[

g2

r2
(1− h1r

3 + h7r
4 + h8r

5 + h6r
6) +

2g

r
(−3h1r

2 + 4h7r
3 + 5h8r

4 + 6h6r
5)

−
g

r2
(1− h1r

3 + h7r
4 + h8r

5 + h6r
6) + (−6h1r + 12h7r

2 + 20h8r
3 + 30h6r

4)

+((
g

r
+ 1)(1− h1r

3 + h7r
4 + h8r

5 + h6r
6) + (−3h1r

2 + 4h7r
3 + 5h8r

4 + 6h6r
5))Z(r)

+(1− h1r
3 + h7r

4 + h8r
5 + h6r

6)(Z2(r) + Z ′(r))]Ai[̺] (B.14)

We use (B.13) and (B.14) to numerically calculate < H1 > given in equation (26) for the case of linear parent.
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