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Abstract

We show that the requirement that a SU(N) Yang-Mills action (gauge fixed in a linear covariant

gauge) is invariant under both the Becchi-Rouet-Stora-Tyutin (BRST) symmetry as well as the

corresponding antiBRST symmetry, automatically implies that the theory is quantized in the

(linear covariant) background field method (BFM) gauge. Thus, the BFM and its associated

background Ward identity naturally emerge from antiBRST invariance of the theory and need

not be introduced as an ad hoc gauge fixing procedure. Treating ghosts and antighosts on an

equal footing, as required by a BRST-antiBRST invariant formulation of the theory, gives also rise

to a local antighost equation that together with the local ghost equation completely resolve the

algebraic structure of the ghost sector for any value of the gauge fixing parameter. We finally prove

that the background fields are stationary points of the background effective action obtained when

the quantum fields are integrated out.
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I. INTRODUCTION

Quantization of gauge theories in the presence of background field configurations [1–12]

is known to be a very useful tool, for it allows to preserve gauge invariance with respect

to external background sources after a gauge-fixing choice has been made for the quantum

gauge modes of the theory.

This has led to a number of applications, both at the perturbative level – ranging from

calculations in Yang-Mills theories [11, 13] via the quantization of the Standard Model [14]

to gravity and supergravity calculations [15] – as well as at the non-perturbative level –

where the method has been instrumental in devising a gauge invariant truncation scheme

for the Schwinger-Dyson equations of Yang-Mills theories [16–19].

A common algebraic framework has emerged over the years in order to tame the de-

pendence of the vertex functional Γ on the background fields. In [20] it was first proposed

to introduce a BRST partner Ω for the background field Â. The corresponding extended

Slavnov-Taylor (ST) identity guarantees that the physics (described by the cohomology of

the linearized ST operator) is not affected by the introduction of the background. This

approach allows to acquire an algebraic control over the renormalization of the theory under

scrutiny [21, 22] and to prove the so-called Background Equivalence Theorem [23, 24].

Eventually it has been recognized in a series of papers [25–27] that the full dependence

on the background field, fixed by the extended ST identity, is induced through a canonical

transformation with respect to (w.r.t.) the Batalin-Vilkovisky (BV) bracket of the theory.

Such a canonical transformation is generated by the functional δΓ/δΩ. Since the latter

is in general background-dependent, one cannot obtain the finite form of the canonical

transformation by simple exponentiation; rather, one needs to resort to the Lie series of an

appropriate functional differential operator. The derivation proceeds in close analogy with

the case of parameter-dependent canonical transformations in classical mechanics [27].

In this paper this simple geometrical interpretation of the background field method will

be pushed one step further, as a very deep connection between the BFM and the so-called

antiBRST symmetry will be unveiled.

Indeed, since the advent of BRST quantization, it has been known that a further sym-

metry exists, induced by an antiBRST transformation [28–30] in which the antighost field

takes the place of the ghost in the variation of the gauge and matter fields of the theory.
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Though this symmetry turned out to be a useful tool for constraining possible terms in the

action and in simplifying relations between Green’s functions, it has however been far from

clear if there is any case in which it is indispensable, and thus its meaning has remained so

far somewhat mysterious.

The antiBRST symmetry generates an antiST identity, that can be shown to hold together

with the ST identity induced by the BRST transformations. Moreover, the requirement of

simultaneous BRST and antiBRST invariance can be fulfilled, so that both identities hold

true for the vertex functional Γ, provided that a suitable set of operators for the BRST-

antiBRST variation of the fields is introduced through the coupling to appropriate external

classical sources. As we will see the latter sources coincide precisely with the background

fields introduced in the BFM. Thus, for example, the BRST partner Ω of the background

gauge field Â is seen to be the antifield of the antiBRST transformation s̄A for the gauge

field A, while Â is the source coupled to the BRST-antiBRST variation ss̄A of A.

Similar identifications hold true for all the other scalar and fermionic matter fields of

the theory. In particular, we will show that for spontaneously broken gauge theories the

procedure automatically yields the correct background ’t Hooft gauge-fixing.

In addition, in a BRST-antiBRST invariant theory both a local ghost and a local antighost

equation exist. While the former equation has been known since a long time, the latter has

been derived up to now only in the background Landau gauge [31]. However, once the

sources required to establish the ST and the antiST identities are introduced, it can be

readily seen that there is nothing special in the Landau gauge choice and one can indeed

construct a local antighost equation valid for a general Rξ-gauge. The usual background

Ward identity arises then both as a consequence of the validity of the ST identity and the

local antighost equation, as well as of the antiST identity and the local ghost equation.

As our analysis reveals that the background field method is naturally encoded in every

theory which is both BRST and antiBRST invariant, one might wonder whether the ST

and the antiST identities impose some physical condition on the backgrounds. For that

purpose, it is convenient to construct an effective action Γ̃ for the background fields, where

the quantum modes have been fully integrated out, i.e., one keeps connected graphs with

external backgrounds only (and therefore Γ̃ is one-particle reducible w.r.t. the quantum

fields). This approach is motivated by several applications of the BFM, e.g., in the effective

field theory of the Color Glass Condensate [32–34].
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As we will see, the ST and the antiST identities imply then that the background field

configurations are a stationary point for Γ̃. This leads to some interesting combinatorial

relations of a novel type between one-particle irreducible (1-PI) graphs involving external

background sources, whose origin can be ultimately traced back to the canonical transfor-

mation of [27], which dictates the dependence of Γ on the backgrounds.

The paper is organized as follows. In Section II we discuss the conventional and the

background (Rξ) gauge-fixing for a pure SU(N) Yang-Mills theory and derive the associated

extended ST identity. In Section III the antiBRST symmetry is introduced together with

the sources required to define the composite operators of the BRST-antiBRST algebra.

The equivalence between the BRST-antiBRST invariance and the BFM is then established.

Next, Section IV is dedicated to the derivation of the local antighost equation in a generic

Rξ gauge. In addition, we show how the background Ward identity emerges from both the

antiST identity combined with the local ghost equation or the ST identity combined with

the local antighost equation. The local ghost and antighost equations are then exploited to

fully constrain the ghost two-point sector in any gauge. In Section V we finally construct

the background effective action by integrating out all quantum fields, and show that the

background fields are stationary points of this action. Our conclusions are presented in

Section VI, with the following Appendix generalizing (some of) the main equations for the

case in which scalars and fermion fields are present.

II. CONVENTIONAL AND BFM GAUGE-FIXINGS

The action of a SU(N) Yang-Mills theory reads

S = SYM + SGF + SFPG. (2.1)

SYM represents the Yang-Mills (gauge invariant) action, which is written in terms of the

SU(N) field strength

SYM = −
1

4g2

∫
d4xF a

µνF
µν
a ; F a

µν = ∂µA
a
ν − ∂νA

a
µ + fabcAbµA

c
ν . (2.2)

SGF and SFPG represent respectively the (covariant) gauge-fixing functional and its associated

Faddeev-Popov ghost term. The most general way of writing these terms is through the
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expressions

SGF =

∫
d4x

[
−
ξ

2
(ba)2 + baFa

]
; SFPG = −

∫
d4x c̄asFa. (2.3)

In the formulas above F represents the gauge-fixing function, which, for the class of Rξ

gauges considered throughout this paper, reads

Fa = ∂µAaµ. (2.4)

In addition, b are auxiliary, non-dynamical fields (the so called Nakanishi-Lautrup multi-

pliers) that can be eliminated through their equations of motion, as a consequence of the

validity of the b-equation
δΓ

δba
= −ξba + Fa, (2.5)

for the full quantum effective action Γ. c (respectively, c̄) are the ghost (respectively,

antighost) fields, while, finally, s is the nilpotent BRST operator, which constitutes a sym-

metry of the gauge-fixed action Eq. (2.1), with the BRST transformations of the various

fields given by

sAaµ = Dab
µ c

b; sca = −
1

2
fabccbcc; sc̄a = ba; sba = 0, (2.6)

and the covariant derivative D is defined according to

Dab
µ = ∂µδ

ab + facbAcµ. (2.7)

We thus see that the sum of the gauge-fixing and Faddeev-Popov terms can be written as a

total BRST variation:

SGF + SFPG =

∫
d4x s

[
c̄aFa −

ξ

2
c̄aba

]
. (2.8)

This is of course expected, for it is well known that the physical observables of a theory admit

a mathematical characterization in terms of the local cohmology of the BRST operator [35–

37], and the latter is not affected by total BRST variations.

The BRST symmetry of the Yang-Mills action can be most conveniently exposed thorugh

the so-called Batalin-Vilkoviski (BV) method, i.e., introducing a set of antifields Φ∗ and

coupling them to the BRST variation of the corresponding fields through the term [38]

SBV =

∫
d4x

∑
Φ∗sΦ. (2.9)
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Then the (tree-level) vertex functional is given by the sum

Γ(0) = SYM + SGF + SFPG + SBV, (2.10)

and the BRST symmetry of the action is encoded by the ST identity

∫
d4x

[
δΓ

δA∗a
µ

δΓ

δAµa
+
δΓ

δc∗a

δΓ

δca
+ ba

δΓ

δc̄a

]
= 0, (2.11)

where now Γ is the full quantum effective action.

Turning to the case of BFM type of gauges, traditionally one starts by splitting the gauge

field into a background part (Â) and a quantum part (Q) according to

Aaµ = Âaµ +Qa
µ. (2.12)

Next, one retains the background gauge invariance of the gauge-fixed action by choosing a

gauge-fixing function that transforms in the adjoint representation of SU(N) through the

general replacements

∂µδ
ab → D̂ab

µ ≡ ∂µδ
ab + facbÂcµ; Aaµ → Qa

µ, (2.13)

that is one has the background Rξ gauge

F̂a = D̂ab
µ Q

µ
b . (2.14)

Finally, in addition to the anti-fields Φ∗, the quantization of the theory in the BFM re-

quires the introduction of an additional (vector) anticommuting source Ω, implementing

the equation of motion of the background field at the quantum level, with [20]

sÂaµ = Ωaµ; sΩaµ = 0. (2.15)

The BRST transformation of the quantum field Q is given by

sQa
µ = Dab

µ c
b − Ωaµ. (2.16)

Eq. (2.15) ensures that Â and Ω are paired in a so-called BRST-doublet [35, 39] (as already

happens for c̄ and b), thus preventing the background field from modifying the physical

observables of the theory.
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It then follows that the conventional ST identity Eq. (2.11) gets modified into the ex-

tended ST identity

∫
d4x

[
δΓ

δA∗a
µ

δΓ

δQµ
a

+
δΓ

δc∗a
δΓ

δca
+ ba

δΓ

δc̄a
+ Ωµa

(
δΓ

δÂaµ
−

δΓ

δQa
µ

)]
= 0. (2.17)

By “undoing” the shift of the gauge field (2.12) the ST identity above may be cast in the

somewhat more compact form

∫
d4x

[
δΓ

δA∗a
µ

δΓ

δAµa
+
δΓ

δc∗a

δΓ

δca
+ ba

δΓ

δc̄a
+ Ωµa

δΓ

δÂaµ

]
= 0. (2.18)

In particular, this formulation of the BFM in terms of the field variables A and Â turns out

to be the most suitable for the ensuing analysis.

III. ANTI-BRST SYMMETRY AND THE BFM

In the BRST transformations the role of the ghost field c is very prominent, as it re-

places the gauge transformation parameter of the conventional gauge transformations and

its behavior can be understood in an intrinsic manner in terms of the cohomology of the Lie

algebra (see, e.g., [35, 40]). On the other hand, the antighost c̄ and its doublet partner b play

the role of Lagrange multipliers introduced to enforce the gauge-fixing condition F = 0 and

its BRST transform sF = 0. In addition, c̄ obeys an equation of motion which is different

from that of c as the former is not the hermitian conjugate of the latter field.

Though all these seemed to rule out the possibility that c̄ and c can be interchanged, a

nilpotent ‘antiBRST’ transformation symmetry in which this is exactly what happens was

introduced long ago [28–30]. Indeed, the antiBRST transformations can be obtained from

the BRST ones of Eq. (2.6) by exchanging the role of the ghost and antighost fields; that is

one has

s̄Aaµ = Dab
µ c̄

b; s̄c̄a = −
1

2
fabcc̄bc̄c; s̄ca = b̄a; s̄b̄a = 0. (3.1)

In particular, the antiBRST transformation of the gauge field is obtained from the gauge

variation of A by replacing the gauge parameter by the antighost field c̄.

In order to close the algebra the transformations above need to be supplemented with

the additional transformations

sb̄a = fabcb̄bcc; s̄ba = fabcbbc̄c. (3.2)
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On the other hand, as both s and s̄ are nilpotent, the additional (natural) requirement

that their sum is also nilpotent (or that {s, s̄} = 0), results in the constraint [28]

b̄a = −ba − fabccbc̄c, (3.3)

which, upon use of the Jacobi identity, is readily seen to be consistent with Eq. (3.2).

Finally, the nontrivial BRST-antiBRST transformations of the fields read

ss̄Aaµ = Dab
µ b

b + fabc
(
Dbd
µ c

d
)
c̄c; ss̄ca = sb̄a; ss̄c̄a = −s̄ba. (3.4)

At this point it is straightforward to realize that to render our theory (2.1) simultaneously

BRST and antiBRST invariant, requires, before gauge-fixing, the introduction of 8 sources:

the usual antifields A∗ and c∗, the antiBRST sources A#, c#, c̄# and b#, and, finally, the

BRST-antiBRST sources Â and ĉ. Notice that we do not add any source associated to sb̄,

for, due to the constraint (3.3), the BRST transformation of this field can be completely

recovered from the corresponding transformations of b, c, and c̄. One has then that the

BRST-antiBRST invariant action reads

SI = SYM +
∑∫

d4x
(
Φ∗sΦ+ Φ#s̄Φ + Φ̂ss̄Φ

)
, (3.5)

where the sum extends over all the nonzero sources, and (with the exception of b#)

sΦ∗ = s̄Φ∗ = 0; s Φ̂ = Φ#;

sΦ# = s̄Φ# = 0; s̄ Φ̂ = −Φ∗. (3.6)

For the source b# one has instead

s b#a = c̄#a ; s̄ b#a = 0. (3.7)

Finally, the ghost charge assignments are

gh(Φ∗) = −gh(Φ)− 1; gh(Φ#) = −gh(Φ) + 1; gh(Φ̂) = −gh(Φ), (3.8)

where we have set gh(c, c̄) = (1,−1). Notice that the usual BV action [38] is recovered by

setting the Φ# and Φ̂ sources to zero.

We are now ready to establish the central result of this paper. Consider, in fact, the BFM

covariant gauge-fixing (2.14) with its associated Faddeev-Popov ghost action; a straightfor-

ward calculation yields

s

[
c̄aF̂a −

ξ

2
c̄aba

]
= s

[
c̄aFa −

ξ

2
c̄aba

]
+ Âµa(D

ab
µ b

b + fabcc̄bDcd
µ c

d) + Ωµa(D
ab
µ c̄

b)

= s

[
c̄aFa −

ξ

2
c̄aba

]
+ Âµa(ss̄A

a
µ) + Ωµa(s̄A

a
µ), (3.9)
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where Fa is now the covariant gauge-fixing (2.4). As a result of the anticommutation relation

{s, s̄} = 0 and the identity

s(c̄a∂µAaµ) = −s̄(ca∂µAaµ), (3.10)

we observe that also the first term in the right-hand side (r.h.s.) of Eq. (3.9) is both BRST

and antiBRST invariant (the term b2 is obviously invariant under these transformations).

Then we see that by adding to the BRST-antiBRST invariant action (3.5) the Rξ gauge-

fixing and Faddev-Popov term (2.8) we automatically obtain a theory formulated in the

background Rξ gauge, provided that the following identification is made:

Ωaµ ≡ A#a
µ . (3.11)

From Eq. (3.9) one also sees that the background gauge field Â is the source of the BRST-

antiBRST variation ss̄A of the gauge field A. Notice however that ĉ cannot be interpreted

as a background for the ghost c, since it has ghost number −1; it is also clear that it is not a

background for the antighost field, as a shift of the latter field would lead to totally different

couplings w.r.t. the ones that are generated for the source ĉ.

Thus one arrives at the somewhat surprising conclusion that requiring the invariance of a

SU(N) Yang-Mills action gauge-fixed in an Rξ gauge under both BRST as well as antiBRST

symmetry is equivalent to quantizing the theory in the (Rξ) BFM:

Γ(0) = SI + SGF + SFPG = SYM + ŜGF + ŜFPG + SBV +

∫
d4x

(
c#a s̄ca + ĉass̄ca

)
, (3.12)

where the background gauge-fixing functional and the background Faddeev-Popov terms are

ŜGF =

∫
d4x

[
−
ξ

2
(ba)2 + baF̂a

]
; ŜFPG = −

∫
d4x c̄asF̂a. (3.13)

The standard BFM tree-level vertex functional is recovered by setting c# = ĉ = 0 in the

r.h.s. of Eq. (3.12). In this sense the BFM is not fundamental, as it is naturally emerging

from the requirement of antiBRST invariance.

It is interesting to study the case in which (complex) scalars and/or fermions are added

to the theory. Let’s start from the former fields, where one has

s φ = icataφ; s̄ φ = ic̄ataφ; sφ† = −icaφ†ta; s̄φ† = −ic̄aφ†ta, (3.14)

with ta the generators of the SU(N) representation chosen for φ. The corresponding BRST-

antiBRST transformation reads

ss̄ φ = ibataφ+ c̄acbtatbφ; ss̄ φ† = −ibaφ†ta + c̄acbφ†tbta, (3.15)
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from which it is immediate to infer that {s, s̄}φ = 0.

The extra sources one needs to add to render the action BRST and antiBRST invariant

in the presence of the scalar field φ are then1

∫
d4x

[
φ∗†sφ+ sφ†φ∗ + φ#†s̄ φ+ (s̄ φ†)φ# + φ̂†ss̄ φ+ (ss̄ φ†)φ̂

]
. (3.16)

Again by identifying φ̂ and φ̂† with the background for the scalars φ and φ† respectively, as

well as φ#, φ#† with their corresponding BRST doublet partners (i.e., sφ = φ#, sφ† = φ#†,

as prescribed by Eq. (3.6)), one recovers the background ’t Hooft gauge after the background

field φ̂ has acquired an expectation value v.

For fermions ψ and ψ̄ the analysis proceeds in the same way as in the scalar case, since

Eqs. (3.14) and (3.15) still hold once ta is identified with the generator of the representation

of the fermionic matter field and φ replaced by ψ, i.e.,

sψ = icataψ; s̄ψ = ic̄ataψ; sψ̄ = −icaψ̄ta; s̄ψ̄ = −ic̄aψ̄ta. (3.17)

Notice that the requirement of antiBRST invariance generates unavoidably the sources ψ̂

and ̂̄ψ which correspond to background fields for the fermions2, as the action will be rendered

BRST-antiBRST invariant through the addition of the term

∫
d4x

[
ψ̄∗sψ − (sψ̄)ψ∗ + ψ̄#s̄ ψ − (s̄ ψ̄)ψ# − ̂̄ψss̄ ψ + (ss̄ ψ̄)ψ̂

]
, (3.18)

where

ss̄ ψ = ibataψ + c̄acbtatbψ; ss̄ ψ̄ = −ibaψ̄ta + c̄acbψ̄tbta. (3.19)

IV. LOCAL ANTIGHOST EQUATION

The presence of the antiBRST symmetry leads, as we will explicitly show below, to

the existence of a local antighost equation. It should be noticed that for a SU(N) Yang-

Mills theory with a conventional Rξ gauge-fixing only an integrated antighost equation can

be derived, while in the BFM case the existence of a local version of this equation was

1 We assume that a suitable (gauge invariant) action term Sφ (and Sψ when adding fermions) is added to

the classical action (2.1); its concrete form is however irrelevant for the following analysis.
2 Fermionic backgrounds have been considered, e.g., in [41]; their physical relevance is however unclear to

us at the moment.
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established in the background Landau gauge in [31] and believed to be valid only for that

specific gauge-fixing choice.

On the other hand, the correspondence just found between BRST and antiBRST invari-

ance and the BFM shows that there should not be anything special neither when formulating

the theory in the BFM nor when choosing ξ = 0. Indeed as the existence of the antiBRST

symmetry puts the ghost and antighost fields on the same footing, and given that a local

ghost equation (sometimes also referred to as Faddeev-Popov equation) is known to hold,

we would expect a local antighost equation to hold as well.

To show that this is indeed the case, let us start by setting to zero the scalar and fermionic

matter sector (the complete case will be discussed in Appendix A); then the tree-level

action (3.5) can be cast in the form

Γ(0) = SYM + sX = SYM + s̄ Y, (4.1)

where

X =

∫
d4x

[∑(
(−1)gh(Φ

∗)Φ∗Φ + Φ̂s̄Φ
)
+ c̄aFa −

ξ

2
c̄aba

]
,

Y =

∫
d4x

[∑(
(−1)gh(Φ

#)Φ#Φ+ Φ̂sΦ
)
− caFa +

ξ

2
caba

]
, (4.2)

and the sum is intended, as familiar by now, over all nonzero sources.

To derive the local antighost equation the fastest route turns out to be to calculate the

anticommutator between the derivative w.r.t. the ghost field and the antiBRST operator.

Since

s̄ =
∑∫

d4x s̄ ϕ(x)
δ

δϕ(x)
; ϕ = Φ,Φ∗,Φ#, Φ̂, (4.3)

one finds that for any functional F = F [ϕ] with zero ghost charge
{
δ

δca
, s̄

}
F =

∑∫
d4x

[
δ

δca
s̄ ϕ(x)

]
δF

δϕ(x)
. (4.4)

and therefore

δΓ

δca
=

δ

δca
(s̄ Y ) =

∑∫
d4x

[
δ

δca
s̄ ϕ(x)

]
δY

δϕ(x)
− s̄

δY

δca
. (4.5)

Then through a lengthy but relatively straightforward calculation, we arrive at the local

antighost equation

ḠaΓ ≡
δΓ

δca
+ fabc

δΓ

δbb
c̄c + ξ

δΓ

δb#a
− D̂ab

µ

δΓ

δA#b
µ

− fabcĉb
δΓ

δc#c
− fabcb#b

δΓ

δc̄#c

= Dab
µ A

∗µ
b + fabcc∗bc

c, (4.6)
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where D̂ab
µ = ∂µδ

ab + facbÂcµ. Notice that all the (possibly present) trilinear terms in the

ghost and antighost fields have cancelled out.

In the case of the local ghost equation one computes the anticommutator of the derivative

w.r.t. the antighost field and the BRST operator s:

δΓ

δc̄a
=

δ

δc̄a
(sX) =

∑∫
d4x

[
δ

δc̄a
s ϕ(x)

]
δX

δϕ(x)
− s

δX

δc̄a
. (4.7)

One then has

GaΓ ≡
δΓ

δc̄a
+ D̂ab

µ

δΓ

δA∗b
µ

+ fabcĉb
δΓ

δc∗c

= Dab
µ A

#µ
b + fabcc#b c

c + fabcc̄#b c̄
c − fabcb#b b

c. (4.8)

Finally, the b equation assumes the form

δΓ

δba
= D̂ab

µ (Aµb − Âµb )− ξba − fabcb#b c̄
c − c#a − fabcĉbc

c, (4.9)

while the ST and antiST identities read respectively3

∫
d4x

[
δΓ

δA∗a
µ

δΓ

δAµa
+
δΓ

δc∗a

δΓ

δca
+ A#a

µ

δΓ

δÂaµ
+ c#a

δΓ

δĉa
+ c̄#a

δΓ

δb#a
+ ba

δΓ

δc̄a

]
= 0, (4.10)

∫
d4x

[
δΓ

δA#a
µ

δΓ

δAµa
+

δΓ

δc#a

δΓ

δca
+

δΓ

δc̄#a

δΓ

δc̄a
+

δΓ

δb#a

δΓ

δba
− A∗a

µ

δΓ

δÂaµ
− c∗a

δΓ

δĉa

]
= 0. (4.11)

The background Ward identity follows as a consequence of the local antighost equation

and the ST identity, since

0 = SΓ(ḠaΓ−Dab
µ A

∗µ
b − fabcc∗bc

c) + GaS(Γ) = WaΓ . (4.12)

In the above equation SΓ is the linearized ST operator

SΓ ≡

∫
d4x

[
δΓ

δA∗a
µ

δ

δAµa
+

δΓ

δAµa

δ

δA∗a
µ

+
δΓ

δc∗a

δ

δca
+
δΓ

δca
δ

δc∗a

+A#a
µ

δ

δÂaµ
+ c#a

δ

δĉa
+ c̄#a

δ

δb#a
+ ba

δ

δc̄a

]
, (4.13)

3 From here we see that an alternative way of deriving the local antighost equation is to take the derivative

w.r.t. b of the antiST identity (4.11) and next use the b equation (4.9) to replace the various terms

involving the functional derivative w.r.t. b.
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while the background Ward operator reads

Wa ≡−Dab
µ

δ

δAbµ
− D̂ab

µ

δ

δÂbµ
+ fabccc

δ

δcb
+ fabcc̄c

δ

δc̄b
+ fabcbc

δ

δbb

+ fabcc∗c
δ

δc∗b
+ fabcc#c

δ

δc#b
+ fabcc̄#c

δ

δc̄#b
+ fabcA∗

µc

δ

δA∗
µb

+ fabcA#
µc

δ

δA#
µb

+ fabcĉc
δ

δĉb
+ fabcb#c

δ

δb#b
. (4.14)

In a similar fashion, the background Ward identity can also be obtained by taking the an-

ticommutator between the linearized antiST operator and the local ghost equation operator

G and then using the antiST identity and the local ghost equation.

A. Two-point ghost sector

The presence of the antighost equation allows to fully constrain the ghost two-point

sector in any gauge. In this sector there are four superficially divergent Green’s functions,

namely Γcac̄b, Γc̄aΩb
µ
, ΓcaA∗b

µ
and, finally, ΓΩa

µA
∗b
ν

(in the following we prefer to switch back to

the familiar notation of Ω rather than using its antiBRST source name A#). The first two

functions are constrained by the ghost equation (we factor out the trivial color structure δab)

Γcc̄(q) = −iqµΓcA∗
µ
(q),

ΓΩµ c̄(q) = iqµ − iqνΓΩµA∗
ν
(q). (4.15)

On the other hand, differentiating the antighost equation (4.6) with respect to a gluon

anti-field and an antighost, one gets the deformed identities

ΓA∗
µc
(q) = iqµ + iqνΓA∗

µΩν (q)− ξΓA∗
µb

#(q),

Γc̄c(q) = iqµΓc̄Ωµ(q)− ξΓc̄b#(q), (4.16)

and the functions Γb#A∗
µ
and Γb#c̄ related through the identity

Γb#c̄(q) = −iqµΓb#A∗
µ
(q). (4.17)

Contracting the first equation in (4.16) with qµ and next using the first of the identi-

ties (4.15) as well as Eq. (4.17), we find the relation

Γcc̄(q) = q2 − qµqνΓΩµA∗
ν
(q)− ξΓb#c̄(q), (4.18)
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+−Gabµν(q) =

Ωa
µ Ab∗

ν

c̄ c

Ωa
µ Ab∗

ν

FIG. 1: The connected Green’s function Gµν . Grey blobs indicate 1-PI functions, while white ones

indicate connected functions (propagators).

which shows the appearance of the extra function Γb#c̄ with respect to the Landau gauge,

where the ghost sector is entirely determined by ΓΩA∗ alone.

Then, observing that

Γcc̄(q) = q2F−1(q2), (4.19)

where F is the ghost dressing function related to the ghost propagator D through D(q2) =

F (q2)/q2, and introducing the Lorentz decompositions

ΓcA∗
µ
(q) = iqµC(q

2); Γc̄Ωµ(q) = iqµE(q
2);

Γb#c̄(q) = −q2K(q2); ΓΩµA∗
ν
(q) = −gµνG(q

2)−
qµqν
q2

L(q2), (4.20)

we finally find the relations

C(q2) = E(q2) + ξK(q2) = F−1(q2),

F−1(q2) = 1 +G(q2) + L(q2) + ξK(q2). (4.21)

In particular, the last equation above represents the generalization to any ξ of the cor-

responding well-known identity in the Landau gauge [31, 42, 43]; once evaluated at zero

momenta, this relation yields the deformation of the Kugo-Ojima confinement criterion [44]

in Rξ gauges.

The function G can be obtained by considering the correlation function corresponding to

the time-ordered product of two covariant derivatives, one acting on a ghost and one on an

antighost field:

Gabµν(y − x) = 〈T
[
(Dam

ν cm)x
(
Dbn
µ c̄

n
)
y

]
〉 = −

δW

δΩbµ(y)δA
∗a
ν (x)

, (4.22)

where W is the generating functional for the connected graphs, see Eq. (5.1) below.

Now, as shown in Fig. 1, there are only two possible connected contributions to the

Green’s function above; using then Eq. (4.21) and passing to a momentum space represen-
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tation (while factoring out the trivial color structure δab), one finds

Gµν(q) = −ΓΩµA∗
ν
(q)− ΓΩµc̄(q)D(q)ΓcA∗

ν
(q)

= gµνG(q
2) +

qµqν
q2

L(q2)−
qµqν
q2

E(q2)F (q2)C(q2)

= Pµν(q)G(q
2)−

qµqν
q2

, (4.23)

where the transverse projector Pµν(q) = gµν − qµqν/q
2 has been defined.

The important point here is that the relation (4.23) is precisely the same one has in

the Landau gauge; therefore knowledge of the Gµν Green’s function translates into a direct

determination of the G also in a Rξ gauge. As the correlator (4.22) is accessible on the

lattice, it would be extremely interesting to study its dependence on ξ, and in particular

determining its behavior as ξ and q go to zero.

B. Two-point gluon sector

Let us conclude this section by providing a simple proof for the relation [42]

Zg
ZQ

= 1 +G(0), (4.24)

where Zg and ZQ are the charge and (quantum) gauge boson renormalization constants

(with a 0 subscript indicating bare quantities)

g = Zgg0; Q = ZQQ0. (4.25)

This relation, which is valid for any value of the gauge-fixing parameter, was first noticed by

Kugo [42] where however it was proved in a simplified way using classical currents. Below

we offer a fully quantum all-order proof.

From the ST identity (4.10) one obtains the relations

ΓÂa
µÂ

b
ν
(q) = −Γ

A
#a
µ A∗c

ρ
(q)ΓAρ

cÂb
ν
(q),

ΓÂa
µA

b
ν
(q) = −Γ

A
#a
µ A∗c

ρ
(q)ΓAρ

cAb
ν
(q). (4.26)

Using then the identifications (3.11), and reintroducing the background-quantum splitting,

one obtains the familiar background-quantum identities [45, 46]

Γ
Âa

µÂ
b
ν
(q) =

[
gµρ − ΓΩa

µA
∗c
ρ
(q)
]
Γ
Q

ρ
c Âb

ν
(q),

Γ
Âa

µQ
b
ν
(q) =

[
gµρ − ΓΩa

µA
∗c
ρ
(q)
]
ΓQρ

cQb
ν
(q). (4.27)
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Next, we combine the two equations above taking into account the transversality of the

two-point gluon function, as well as the Lorentz decomposition (4.20) of the function ΓΩA∗ ,

to get

Γ
ÂÂ

(q2) = [1 +G(q2)]2ΓQQ(q
2), (4.28)

where the color (δab) and Lorentz (Pµν) structures have been factored out. If we are interested

only in the UV part of this identity one can set q2 = 0, thus obtaining4

Z−2

Â
= [1 +G(0)]2Z−2

Q , (4.29)

where we have introduced the background field renormalization constant Â = ZÂÂ0. We

now take advantage of the residual background gauge invariance which implies the QED-like

relation

Z−1

Â
= Zg, (4.30)

to get finally the desired relation (4.24).

When originally derived in [42] this relation was discussed in the context of the so-called

Kugo-Ojima confinement criterion [44], which predicts that, in the Landau gauge, a sufficient

condition for color confinement is 1 +G(0) = 0 (which would in turn imply an IR divergent

ghost dressing function). It turns out, however, that lattice data (see [47] for the most

recent lattice analysis of the Yang-Mills ghost sector) in conjunction with Schwinger-Dyson

techniques [43], show that 1 + G(0) 6= 0 and thus that there is nothing special about the

ratio (4.24) (apart obviously the fact that it constitutes a universal, albeit gauge dependent,

quantity).

V. BACKGROUND EFFECTIVE ACTION

The requirement of BRST and antiBRST invariance in the presence of scalar and

fermionic matter leads to the generalization of the ST and antiST identities of Eqs. (4.10)

and (4.11) shown in Eqs. (A1) and (A2) of Appendix A. The sources of the antiBRST

variations for the gauge, scalar and fermionic matter fields are to be identified with the

corresponding background fields.

4 Notice that a possible renormalization factor Zc for G has been entirely reabsorbed in the definition of

this quantitiy.
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In order to further elucidate the physical content of the ST and antiST identities, it is

convenient to construct an effective action Γ̃ for the background configurations by integrating

out completely the quantum fields. That is, one is interested in keeping only connected

diagrams with external background legs.

The functional Γ̃ , which is therefore one-particle reducible w.r.t. the quantum fields,

can be formally obtained as follows. The connected generating functional W is obtained by

taking a Legendre transform w.r.t. Φ:

W = Γ +

∫
d4x JΦΦ; JΦ = −(−1)ǫ(Φ) δΓ

δΦ
; Φ =

δW

δJΦ
;

δW

δζ
=
δΓ

δζ
; ζ ∈ {Φ̂,Φ∗,Φ#}, (5.1)

where we use a collective notation, with JΦ denoting the source of the quantum field Φ and

ǫ(Φ) the statistics of the field Φ (1 for anticommuting variables, 0 for commuting ones).

Then one sets

Γ̃[Φ̂,Φ∗,Φ#] ≡ W [JΦ, Φ̂,Φ
∗,Φ#]

∣∣∣
JΦ=0

. (5.2)

Eq. (A1) yields the following identity for the connected functional W :

∫
d4x

[
−
δW

δA∗a
µ

JAµ
a
+
δW

δc∗a
Jca +

δW

δJba
Jc̄a −

δW

δφ∗†
Jφ +

δW

δφ∗
Jφ† +

δW

δψ̄∗
Jψ −

δW

δψ∗
Jψ̄

+A#a
µ

δW

δÂaµ
+ c#a

δW

δĉa
+ c̄#a

δW

δb̂a
− φ# δW

δφ̂
+ φ#† δW

δφ̂†
− ψ# δW

δψ̂
+ ψ̄# δW

δ ̂̄ψ

]
= 0. (5.3)

By taking a derivative of the above equation w.r.t. any of the antiBRST sources Φ# and

then setting all the sources JΦ and Φ# to zero, one finds that

δΓ̃

δΦ̂
=
δW

δΦ̂

∣∣∣∣
JΦ=Φ#=0

= 0 . (5.4)

This means that the background field configurations Φ̂ constitute a stationary point for the

background effective action Γ̃.

Notice that the same result is obtained if one starts from the antiST identity for the

connected generating functional W , takes one derivative w.r.t. the BRST source Φ∗ and

then sets all the sources JΦ and Φ∗ to zero.

As a physical example, one can consider the effective field theory of the Color Glass

Condensate (CGC) [33, 34], which describes the physics of high gluon densities and gluon
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saturation in the small x-regime (x denoting the longitudinal momentum fraction of the

parton in the collision). In this framework, the fulfillment of the ST identity for Γ̃ is crucial

for guaranteeing the consistency of the approximations used, as it shows that the background

field configuration Â is still a stationary point of the background effective action, even in

the presence of radiative corrections induced by the integration of certain quantum modes

of the gluon field.

A. Two- and three-point background gauge functions

In order to illustrate the combinatorics behind the stationary condition (5.4), let us

consider the case of the two- and three-point background gauge functions.

The graphs contributing to the two-point function Γ̃
ÂÂ

are depicted in Fig. 2. From

Eq. (5.1) one sees that

∫
d4z ΓAa

µA
c
ρ
(x, z)WJAc

ρ
J
Ab
ν

(z, y) = −δabg
µνδ4(x− y) . (5.5)

If one replaces the 1-PI functions ΓÂA in the second of the diagrams in Fig. 2(a) by exploiting

the background-quantum identity

Γ
Âa

µA
b
ν
= −ΓΩa

µA
∗c
ρ
ΓAb

νA
c
ρ
, (5.6)

the gauge propagator cancels against one of the 1-PI 2-point gauge functions by Eq. (5.5).

The identity

Γ̃Âa1
µ1
Â

a2
µ2

= 0 (5.7)

then boils down to the usual background-quantum relation

ΓÂa1
µ1
Â

a2
µ2
(x1, x2) =

∫
d4z1

∫
d4z2 ΓΩ

a1
µ1
A∗

c1ρ1
(x1, z1)ΓΩ

a2
µ2
A∗

c2ρ2
(x2, z2)ΓAc1ρ1Ac2ρ2

(z1, z2). (5.8)

The identity for the 3-point function

Γ̃Âa1
µ1
Â

a2
µ2
Â

a3
µ3
(x1, x2, x3) = 0 (5.9)

is more involved. The diagrams contributing to Eq. (5.9) are depicted in Fig. 2(b). They are

arranged according to the number of Â-insertions in the 1-PI vertex bubbles. In order to

establish the connection with the 1-PI background-quantum identities, we notice that the
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+

(a)

+

+ + +

+ + +

(b)

= 0

= 0

FIG. 2: The cancellations encoded in the stationary condition (5.4) in the case of the two- and

three-point functions of the background gauge field. Small circles attached at the end of lines

indicate the background gluons.

legs involving a gauge propagator and a mixed background-quantum amplitude Γ
ÂA

can be

reduced with the help of Eq. (5.6) as follows:

ΓÂa
µA

b
ν
WJ

Ab
ν
JAc

ρ
= −ΓΩa

µA
∗d
σ
ΓAd

σA
b
ν
WJ

Ab
ν
JAc

ρ
= ΓΩa

µA
∗c
ρ
, (5.10)

where Eq. (5.5) has been used.

After the replacement in Eq. (5.10) has been carried out, one obtains from Eq. (5.9) a

representation for Γ
ÂÂÂ

which only involves 1-PI amplitudes. It is uniquely determined by
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the requirement that the ST identity holds. It can therefore be obtained by applying the

method of canonical transformations presented in [27]. Specifically, by taking the derivative

of the ST identity w.r.t. Ω and setting Ω to zero afterwards, one obtains quite generally an

identity of the form

δΓ

δÂaµ

∣∣∣∣∣
Ω=0

= − {
δΓ

δΩaµ
,Γ}

∣∣∣∣
Ω=0

, (5.11)

where {·, ·} denotes the BV bracket associated with the ST identity. Eq. (5.11) states that

the dependence on the background is generated via a canonical transformation with respect

to the BV bracket, induced by the generating functional δΓ
δΩ
. The latter in general is Â-

dependent. As a consequence, the solution cannot be written by simple exponentiation of

the BV bracket w.r.t. δΓ
δΩ
, but requires the introduction of a Lie series of a suitable functional

differential operator [27].

For our purposes it is sufficient to consider the reduced bracket

{
δΓ

δΩaµ(x)
, · } ≡

∫
d4z

[
−ΓΩa

µ(x)A
∗b
ν
(x, z)

δ

δAbν(z)
+ ΓΩa

µA
b
ν
(x, z)

δ

δA∗
bν(z)

]
. (5.12)

Then the Lie series generating the background field dependence is obtained by exponentiat-

ing the operator

∆ΓΩa
µ
(x) ≡ {

δΓ

δΩaµ
, ·}+

δ

δÂaµ
, (5.13)

that is, one has

Γ = EΓΩ
(Γ0) + · · · , (5.14)

where the dots denote amplitudes involving at least one external leg different than A, Â and

the mapping EΓΩ
is defined according to

EΓΩ
(Γ0) ≡

∑

n≥0

1

n!

∫

1

. . .

∫

n

Â1 . . . Ân[∆ΓΩ1
. . .∆ΓΩn

Γ0]Â=0 . (5.15)

In the above equation Γ0 denotes the 1-PI vertex functional where fields and sources have

been set to zero, with the only exception of A,A∗; finally, the shorthand notations
∫
i
=
∫
d4zi,

Âi = Âaiµi(zi) and ΓΩi
= ΓΩ

ai
µi
(zi) have been used.

We stress that Eq. (5.14) reproduces the correct dependence of the 1-PI vertex functional

on Â in the gauge sector only. The background dependence of amplitudes involving scalar
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and fermionic matter fields as well as other external sources can be recovered by making use

of the full canonical transformation generated by the functional δΓ
δΩ
.

The first two terms of Eq. (5.14) yield (notice that in the following equations Â is set

equal to zero, while further differentiations w.r.t. A are possible):

ΓÂa1
µ1
(x1) = −

∫
d4z1 ΓΩ

a1
µ1
A

∗b1
β1

(x1, z1)ΓAb1
β1

(z1), (5.16)

and

Γ
Â

a1
µ1
Â

a2
µ2
(x1, x2) =

1

2

∫
d4z1

∫
d4z2

[
Γ
Ω

a2
µ2
A

∗b2
β2

(x2, z2)ΓΩ
a1
µ1
A

∗b1
β1

A
b2
β2

(x1, z1, z2)ΓAb1
β1

(z1)

+ Γ
Ω

a2
µ2
A

∗b2
β2

(x2, z2)ΓΩ
a1
µ1
A

∗b1
β1

(x1, z1)ΓAb2
β2
A

b1
β1

(z2, z1)

−Γ
Ω

a1
µ1
A

∗b1
β1

Â
a2
µ2

(x1, z1, x2)ΓAb1
β1

(z1)

]
+ (a1µ1 ↔ a2µ2) ,

(5.17)

while the third term gives for the three point function Γ
ÂÂÂ

(we suppress the space-time

arguments):

Γ
Â

a1
µ1
Â

a2
µ2
Â

a3
µ3

=
1

3!

∫
d4z1

∫
d4z2

∫
d4z3

[
−Γ

Ω
a3
µ3
A

∗b3
β3

Γ
Ω

a2
µ2
A

∗b2
β2

Γ
Ω

a1
µ1
A

∗b1
β1

A
b2
β2

Γ
A

b3
β3
A

b1
β1

− Γ
Ω

a3
µ3
A

∗b3
β3

Γ
Ω

a2
µ2
A

∗b2
β2

A
b3
β3

Γ
Ω

a1
µ1
A

∗b1
β1

Γ
A

b2
β2
A

b1
β1

− Γ
Ω

a3
µ3
A

∗b3
β3

Γ
Ω

a2
µ2
A

∗b2
β2

Γ
Ω

a1
µ1
A

∗b1
β1

A
b3
β3

Γ
A

b2
β2
A

b1
β1

− Γ
Ω

a3
µ3
A

∗b3
β3

Γ
Ω

a2
µ2
A

∗b2
β2

Γ
Ω

a1
µ1
A

∗b1
β1

Γ
A

b3
β3
A

b2
β2
A

b1
β1

+ Γ
Ω

a3
µ3
A

∗b3
β3

Γ
Ω

a1
µ1
A

∗b1
β1

Â
a2
µ2

Γ
A

a3
µ3
A

b1
β1

+ Γ
Ω

a2
µ2
A

∗b2
β2

Â
a3
µ3

Γ
Ω

a1
µ1
A

∗b1
β1

Γ
A

b2
β2
A

b1
β1

+Γ
Ω

a2
µ2
A

∗b2
β2

Γ
Ω

a1
µ1
A

∗b1
β1

Â
a3
µ3

Γ
A

b2
β2
A

b1
β1

]
+ symm. (5.18)

where complete symmetrization of the r.h.s. of the above equation w.r.t. the ai, µi indices is

understood. Compatibility of the diagrammatic identity in Fig. 2(b) with Eq. (5.18) follows

by taking the appropriate derivatives w.r.t. the quantum fields A of Eqs. (5.16) and (5.17)

in order to eliminate recursively the background insertions in the amplitudes of the second

and third lines of Fig. 2(b).

Notice in particular the presence of the amplitudes ΓΩA∗Â. The latter arise due to the

dependence of the generating functional ΓΩ on the background Â. The amplitudes ΓΩA∗Â
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can be fully fixed neither by the ST nor the antiST identities. Their Â-dependence is the

cause of the failure of the simple exponentiation in order to derive the solution to Eq. (5.11),

which in turn can be overcome by using the appropriate Lie series in Eq. (5.15).

VI. CONCLUSIONS

In this paper we have shown that the (Rξ) BFM naturally emerges once the require-

ment of BRST and antiBRST invariance of the action is fulfilled: indeed, background fields

are unequivocally identified as the sources associated to the operator s s̄. Correspondingly

the existence of the antiBRST symmetry implies background gauge invariance (and, con-

sequently, a background Ward identity) as well as a (new) local antighost equation, which,

when used in conjunction with the local ghost equation enforced by the BRST symmetry,

completely determines the algebraic structure of the ghost sector of the theory for any gauge-

fixing parameter. In addition, the background fields have been shown to be an extremum

of the background effective action obtained by integrating out the quantum fields.

In hindsight, the correspondence

BRST + antiBRST ≡ BFM, (6.1)

might not appear all that unexpected, as in the BFM background sector the ghost trilinear

vertex is proportional to the sum of the ghost and antighost momentum while a quartic

vertex involving two background fields and a ghost and an antighost (proportional to the

metric tensor) is also generated. Thus the ghost and antighost are treated in a symmetric

fashion, exactly as required by the BRST and antiBRST invariance. It should be stressed

however that Eq. (6.1) works only in the Rξ gauges (which is anyway the only practically

relevant case); choosing, e.g., a non-covariant background gauge breaks irremediably the

antiBRST symmetry of the theory.

In Chapter 15 of the second volume of his “Quantum theory of fields” [48] S. Weinberg

noticed: “The discovery of invariance under an ‘antiBRST’ symmetry showed that, despite

appearances, there is a similarity between the roles of [the ghost field] ωA and [the antighost

field] ω∗A which remains somewhat mysterious.”

We hope that this paper helps to shed some light on the mystery.
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Appendix A: Functional identities in the presence of scalar and fermionic matter

fields

We give here the relevant functional identities in the presence of scalar and fermionic

matter fields. The ST identity takes the form

∫
d4x

[
δΓ

δA∗a
µ

δΓ

δAµa
+
δΓ

δc∗a

δΓ

δca
+ A#a

µ

δΓ

δÂaµ
+ c#a

δΓ

δĉa
+ c̄#a

δΓ

δb#a
+ ba

δΓ

δc̄a

+
δΓ

δφ∗†

δΓ

δφ
−

δΓ

δφ∗

δΓ

δφ†
+

δΓ

δψ̄∗

δΓ

δψ
−

δΓ

δψ∗

δΓ

δψ̄

− φ# δΓ

δφ̂
+ φ#† δΓ

δφ̃#†
− ψ# δΓ

δψ̂
+ ψ̄# δΓ

δ ̂̄ψ

]
= 0. (A1)

The antiST identity is

∫
d4x

[
δΓ

δA#a
µ

δΓ

δAµa
+

δΓ

δc#a

δΓ

δca
+

δΓ

δc̄#a

δΓ

δc̄a
+

δΓ

δb#a

δΓ

δba
− A∗a

µ

δΓ

δÂaµ
− c∗a

δΓ

δĉa

+
δΓ

δφ#†

δΓ

δφ
−

δΓ

δφ#

δΓ

δφ†
+

δΓ

δψ̄#

δΓ

δψ
−

δΓ

δψ#

δΓ

δψ̄

+ φ∗ δΓ

δφ̂
− φ∗† δΓ

δφ̃#†
+ ψ∗ δΓ

δψ̂
− ψ̄∗ δΓ

δ ̂̄ψ

]
= 0. (A2)

Proceeding in the same way as for the derivation of Eqs. (4.6) and (4.8), we obtain the local

antighost equation

δΓ

δca
= −fabc

δΓ

δbb
c̄c − ξ

δΓ

δb#a
+ D̂ab

µ

δΓ

δA#b
µ

+Dab
µ A

∗µ
b + fabcc∗bc

c + fabcĉb
δΓ

δc#c
+ fabcb#b

δΓ

δc̄#c

+ i
δΓ

δφ#
taφ̂+ iφ̃#†ta

δΓ

δφ#†
+ i

δΓ

δψ#
taψ̂ + î̄ψta δΓ

δψ̄#

− iφ†taφ∗ − iφ∗†taφ+ iψ̄taψ∗ + iψ̄∗taψ, (A3)
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and the ghost equation

δΓ

δc̄a
= Dab

µ A
#µ
b − D̂ab

µ

δΓ

δA∗b
µ

− fabcĉb
δΓ

δc∗c
+ fabcc#b c

c + fabcc̄#b c̄
c − fabcb#b b

c

− i
δΓ

δφ∗
taφ̂− iφ̃#†ta

δΓ

δφ∗†
− i

δΓ

δψ∗
taψ̂ − î̄ψta δΓ

δψ̄∗

− iφ†taφ# − iφ#†
taφ+ iψ̄taψ# + iψ̄#taψ. (A4)

Finally the b equation becomes

δΓ

δba
= D̂ab

µ (Aµb − Âµb )− ξba − fabcb#b c̄
c − c#a − fabcĉbc

c,

+ iφ̂†taφ− iφ̂taφ† + î̄ψtaψ − iψ̂taψ̄, (A5)

while the background Ward identity yields

WaΓ =−Dab
µ

δΓ

δAbµ
− D̂ab

µ

δΓ

δÂbµ
+ fabccc

δΓ

δcb
+ fabcc̄c

δΓ

δc̄b
+ fabcbc

δΓ

δbb

+ fabcc∗c
δΓ

δc∗b
+ fabcc#c

δΓ

δc#b
+ fabcc̄#c

δΓ

δc̄#b
+ fabcA∗

µc

δΓ

δA∗
µb

+ fabcA#
µc

δΓ

δA#
µb

+ fabcĉc
δΓ

δĉb
+ fabcb#c

δΓ

δb#b
+ itaφ

δΓ

δφ
− iφ†ta

δΓ

δφ†
+ itaψ

δΓ

δψ
− iψ̄ta

δΓ

δψ̄
= 0 . (A6)
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