2013

arXiv:1309.6110v1 [astro-ph.GA] 24 Sep

Mon. Not. R. Astron. Sod00,[1-?? (2013) Printed October 16, 2018

(MNTEX style file v2.2)

Magnetic field generation in galactic molecular clouds

Ya. N. Istomin2, A. Kiselev!?

1 P.N. Lebedev Physical Institute, Leninsky Prospect 53 cbles119991, Russia

2 E-mail: istomin@Ipi.ru
3 E-mail: kiselevalexs@gmail.com

ABSTRACT

We investigate the magnetic field which is generated by fertiumotions of a weakly ionized
gas. Galactic molecular clouds give us an example of suchdaume As in the Kazantsev-
Kraichnan model we assume a medium to be homogeneous antral ges velocity field to
be isotropic and delta-correlated in time. We take into @eration the presence of a mean
magnetic field, which defines a preferred direction in spakediminates isotropy of mag-
netic field correlators. Evolution equations for the anigpic correlation function are derived.
Isotropic cases with zero mean magnetic field as well as withllsmean magnetic field are
investigated. It is shown that stationary bounded solgtiexist only in the presence of the
mean magnetic field for the Kolmogorov neutral gas turbudeiitie dependence of the mag-
netic field fluctuations amplitude on the mean field is cakadaThe stationary anisotropic
solution for the magnetic turbulence is also obtained fogdavalues of the mean magnetic

field.

Key words: magnetic fields - MHD - turbulence - ISM: magnetic fields - 1$Muds -

methods: analytical

1 INTRODUCTION

The standard theory of cosmic rays (CR) formation suggésts t
primary CR consist mainly of protons and contain no antieratt
During their propagation in the Galaxy primary CR interadthw
protons of galactic gas, resulting in production of secop@R, in-
cluding antiprotons and positrons. The secondary pastiefeergy
spectrum, calculated in the framework of this theory, faitsvn
with energy by a power law manner. The antiparticles to pledi
ratio should behave in the same way (Moscalenko & Strong 1998
However, recent antimatter observationsRAMELA satellite de-
tected an excess of positrons with enerdiés- 100 GeV (Adriani

et al. 2009). In this range, the ratid /(e~ + e™) is about10%
and increases with energy. These observations attracteld atiien-
tion. Several theoretical explanations for this effecteyaroposed,
among them the positrons generation in pulsars and in thidiann
lation process of dark matter particles. Another mecharfiesrthe
positrons generation in the Galaxy is also possible, thatégler-
ation of charged particles in giant molecular clouds andsdary
CR production there. This mechanism was discussed by Degiel
al. (1987, 2005), long before the launch of fPEMELAsatellite in
2006.

The particle acceleration in molecular clouds takes plae d
to turbulent motion of a partially ionized gas inside therhisTmo-
tion switches on the dynamo mechanism of a magnetic fieldrgene
tion. Besides the magnetic fielsl the electric fieldE also appears,
E = —(u — vmV) x B/c. Hereu is plasma velocity and,,
is the magnetic viscosity. Moving in this stochastic eliectield,
protons and electrons gain energy and can be acceleratedeup t

ergies> 10 GeV (Dogiel et al. 1987). In the presence of magnetic
field one can describe motion of relativistic charged plsias dif-
fusion in coordinate and momentum spaces. To find diffusmn ¢
efficient and, after that, maximum energy and spectrum aflacc
ated particles one need to know properties of the magnelik; foe
example, its pair correlators (see Shalchi 2009; Dogiel. d1987),
which will be calculated below. Dogiel et al. (2005) preditthe
positron excess in GeV energy range. Appearance of apptepri
observations requires a detailed investigation of particcelera-
tion in molecular clouds, with taking into account moderteda

Molecular clouds are clusters of molecular hydrogen with a
complex inhomogeneous structure (Larson 2003). Their dime
sions may reach00 parsecs, masses are upltd M. Gas con-
centration in molecular cloud®’, is about(10*> — 10%)cm™3,
the gas temperature i = (10 — 50) K. According to observa-
tions, gas is strongly turbulent. The turbulence has a pdawer
Kolmogorov-like spectrum. In addition, a gas is partialized
N;/N,, = 1078 —107°. In such a system stochastic magnetic field
arises, as will be shown below. The only way to measure dyrect
the magnetic field strength is the Zeeman effect. Zeemamabse
tions were carried out recently for many clouds, their ressate
summarized in the paper by Crutcher (2010). Typical valdeken
magnetic field projection on the line of sight are — 30 uG for
the molecular clouds cores. Polarization observationssi$at al.
2009), carried out for several molecular clouds, showetniey-
netic field directions in distant points of a cloud may be &mi
Fig.[d. It appears that a mean homogeneous magnetic fielts exis
in clouds together with a stochastic field, produced by thbuu
lence. In papers (Dogiel et al. 1987, 2005) a mean magnelit fie
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— component motion and the magnetic field are

Ju 1 -, (VxB)xB
_M’i7l(u_v)7
& aa—]?:Vx(uxB), @)
E Vu=0,
£ VB =0,

where P; andp; are the pressure and the density of ionized com-
ponent, i, is ion-neutral collision rate. In contrast to the usual
magnetohydrodynamics, in this case an external force itficitme

of friction between the ionized and the neutral gas compisnisn
present. Indeed, estimations give

Arc Minutes HUni = 10713 571: Hin = 2. 1076 3717 (3)

Figure 1. Observations of molecular cloud W49A. Contours repredemt t ~ Whereas the turbulent fluctuation frequencies lie in thgean
levels of the radio flux. Small black line-segments showsdinection of _12 1 8 1

o ) ; ) . Wmin = 107°°S Wmaz = 107" S 4)
the magnetic field at the point. Figure is taken from Tass#.€2009). men ) max :

This implies an important condition
tni K W <L hin- (5)

This means that the neutral gas does not feel the presenae of a
ionized component. lons motion, by contrast, is completieiter-
mined by the motion of a neutral gas. Numerical estimatesi®f t
characteristic frequencies of the problem were discussetbtail

was assumed to be zero. In present paper we treat the problem o
magnetic field generation in weakly ionized turbulent gathvai
nonzero mean magnetic field. No assumptions about the ratio o by Dogiel et al. (1987).

mean tg a fluctuatlng_flelds e}re made. ) ) Thus we can treat the motion of the neutral component to be
. This paper consists of five parts. !n Sectpn 2 we write equa- known, it coincides with the ordinary hydrodynamic turtnde.
tions dpscnbmgl a gas and a magnetlc f!eld in molecular sloud For an ionized component only two forces are essential: dheef
Evolution equations for magnetic field pair correlators deeved of friction on a neutral gas and the Lorentz force, causediag-

|_Ir_1hSect|on 3. Their sta.t(;ona(;y. S%IUUQFS are obtained Imsrm. f netic field. As we will see below, the pressuPecan be neglected
ree cases are considered in detail: a) zero mean magric fi in comparison with the pressure of the magnetic field. Tloeeef

b) small mean flelo_l and c) Iargt_e mean field. In Section 5 W€ COM- e motion equation for an ionized component becomes
pare our results with that obtained by other authors. Sumrsar

compiled in Section 6. (VZM — tin(u—v) = 0. (6)
TPi
Let us denote
1
= - 7
T )

As far as we consider a gas to be incompressible; const. Ex-
pressing the velocity of an ionized component in terms obeigy
of neutrals and substituting it to the induction equat[dn & ob-

2 MAGNETOHYDRODYNAMICS EQUATIONS FOR tain

WEAKLY IONIZED GAS
0B

For description of gas motion in molecular clouds one cartwee o = VX (vxB)—aV x (Bx(VxB)xB). (8
fluid hydrodynamic equations. We denote velocities of a mradut
and an ionized gas componentsvaandu respectively. Magnetic
viscosity v,,, in molecular clouds is much less than the kinematic
viscosityv (see Dogiel et al. 1987).

We consider gas motions on the scalesorresponding to the
inertial rangel, < L < Lo, whereLo is determined by the size of 3 DERIVATION OF EVOLUTION EQUATION
the system, and,, corresponds to the viscous scale. Typical values

for molecular clouds argo = 10'° cm, Reynolds number Be =

This equation gives the dependence of the magnetic field ®n th
velocity v of a neutral gas.

3.1 Tensor structure of correlators

108, hence for the Kolmogorov turbulends, = LoRe™3/* = To describe the turbulent motion of a neutral gas and obtased
10" cm. In this range of scales the viscosity can be neglected. equations for magnetic field correlators, we use solvabldaho
Turbulent velocity at small scales is less than the soundcity] proposed by Kazantsev (1968) and Kraichnan (1968). We assum
it reaches the value of sound velocity only at large scalesv& neutral gas velocity (¢) to be a Gaussian stochastic process with

assume gas to be incompressible, because subsonic gassratio zero mean valug(v) = 0. All information about it is contained
be considered to be incompressible. Then equations foottized in the pair correlation functiorv; (x, t)v; (x 4+ r,¢')). The angle



brackets here and below denote averaging over an ensemige of
alizations. We assume a neutral gas to be a homogeneouspisotr
medium, so the pair correlation function can depend only.dffe
consider the velocity field to be delta-correlated in time,

t'), 9)

and mirror-symmetric. It possesses no helicity, and ityetar

tion tensor is symmetric with respect to the interchangendicies
vi;(r) = v;;:(r). In this case one can construct the tensor structure
of the correlation function from only two second-rank tensso

).

The factor2 in the first term of the right hand side is written for
convenience. From the incompressibility conditi®iv = 0, i.e.
&-vij = ijij =0, we obtain

S =rv,

(i(x, t)vj(x +1,t")) = vy ()76 (t —

rirj

vij = 2V(r)8ij + 5(r)(8ij — 3

(10)

(11)

where prime denotes the derivative with respeet, g’ = 0V/dr.
This relation leads us to the general form of the correlatigmsor

).

Thus, the neutral gas turbulence is described by one scaletidn
V(r). A common method to handle this problem is to pass to the
Fourier space

rir;
7,,2

vi; (r) = 2V (1)8i; + V' (r) (5”- - (12)

v(r,t) = /‘v(k7 t) exp(ikr)dk. (13)

Indeed, the correlation tensor structure becomes simplier

- kzj) Sk + k).
(14)

The factord(k + k') arises from homogeneity, and the tensor

structure is uniquely determined by isotropy and inconmgits

ity condition k;v;(k) = 0. FunctionsV (r) andV(r) are related

by

(vi(k, )v; (K, 1)) =V (k)Ted(t —t) <6ij

V(r)=3V(r)+rV'(r), (15)
andV (k) is a Fourier transform o¥ (r),
Vr)= /V(k) exp(i(kr))dk. (16)

Now let us consider correlators of the magnetic field. We @mgsu
magnetic field to be a Gaussian stochastic process too. Basit
nonzero mean value. Let us denote its mean and fluctuating com
ponents byH andb respectively:

B=H+b, (B)=H. 17)

We suppose mean magnetic field to be constant in sphce
constr). One can look for the evolution equation fBk(t), us-
ing the technique described below, and @&/t = 0. Hence the
value of the mean fiel#I = constr, ) is an external parameter of
the problem.

Strictly speaking, magnetic fielB, generated by the Gaus-
sian stochastic field, is not pure Gaussian. Its properties are not
completely described by the second order correlation fancBut
significant difference appears in higher than second ordenents,
and for investigation of second order moment evolution areas-
sumeB to be Gaussian, see, for example, the paper by Brandenburg
& Subramanian (2000).

To describe fluctuating component of the magnetic field, we
introduce its pair correlatdb; (x, t)b; (x + r, t)), which is similar
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to the velocity correlator, but the average is taken at theeséme
moments. Our aim is to establish the evolution equation H@ t
correlator. Since

3] 0b;

— (bib;) = bi—=2L),

at< i) = ot ot )
one have to calculatéb/dt. We suppose tha;b;bi) = 0. Av-

eraging Eq.[(B), subtracting the resulting equation from(8y we
et

ob;

bj) + (18)

«Q

ob

at
+H><[j><b]+b><[j><H]+b><[j><b])—
—Vx{(vxb)+aV x (HX[j xb]+bx][jxH)]),

:VX[VXH]+VX[V><b]—an(H><[j><H]+

(19)

where we use the notatign= V x b for short.

Last three terms (last line) in E._{|19) give no contribution
O(b;b;)/0t, since((...)b;) = (...)(bs;) = 0, so they can be ig-
nored. Similarly we omit terms in Ed_(IL9), which are profmnal
to b%, because their contribution to the derivatbu;b, ) /dt is pro-
portional to(b*) = 0.

3.2 The case with zero mean field

To begin with we consider the case when the mean field is absent
H = 0. Then all correlators are isotropic. Maxwell equatiéb =
0 is similar to the incompressibility equatioviv = 0, so tensor
structure of the magnetic field correlator for the non-talzase is
similar to the velocity correlatof{12)

rirj

(bi (%, )b (x + 7,8)) = 2Q(r)3;+7Q () (8 = 5

In the Fourier space the correlator is

) . (20)

keik;
k2

0l 0, 1) = Q09 (0, = B2 ) st 1), (2)
where the relation betweef(r) andQ(k) is similar to [15). Due
to the isotropyQ (k) = Q(k). To getdQ(k)/ot we apply Fourier
transform to Eq.[{19), drop terms which do not contributehe t
value ofd(b;b;)/0t, put H = 0 and obtain

ab(k)
ot

= i/qu x [v(q) x b(p)]+

+ a/dkldkg k x {b(ks) x ([kz x b(kz)] x b(ks))}.
(22)

In the first term of the right hand side + q = k, in the second
termki + k2 + ks = k. One can see the following structure of
correlator’s derivative

0

ot

where only the magnetic fieldand the velocityy are shown, and
all tensor indices are dropped. We assume random processes

b to be Gaussian. So, to split the correlators in the first tefm o
Eq. [23) one should use the Furutsu-Novikov formula (seetSur
1963; Novikov 1965; Klyatskin 2005). It states that if sonuad-
tional R[v] depends on the random procesgk, t) as a solution of
some differential equation, one can split correlator

SR[V]
(24)

(bb) ~ (vb®) + (b*), (23)

<vi(k7 t)R[V]> = /dk/dt, <vi(k7 t)vj (k,7t,)> <W
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where(§ R[v]/dv;(k’, ")) is a functional derivative. To compute it
one should use the equation which specifies the dependenge of
onv. In our case it is the evolution equatién]22). Since the ocamd
processv is assumed to be delta-correlated in time, antl at ¢
causality principle states théb; (k, t)/év;(k’,t") = 0, we need to
know only the value of

obi(k,t)
6v; (k/, 1)
In the right hand side the argument is written as a supetsiip

clarity. In the second term of Eq._(23) one can presents fandler
correlator as a product of pair correlators

<b1b2b3b4> = <b1b2><b3b4> + <b1b3><b2b4> —+ <b1b4><b2b3>. (26)

Let us write out the intermediate result obtained afterttipyj of

correlators. To do this, we use the notations
kik;

-

= ik (0,7 — 5mb ). (25)

1m
t/—t—0

S (27)

andp = k — q. We obtain

9Q(k)
ot

— ko ks QU Q5 + kmki%sﬂ‘s‘j) — Tckm / dqV(q)Q(k) x
( zapn((s'm
« [ da V(@ Qw) (k6.8

Tensors in right hand side of last equation contain vecjp@nd

pi, which are absent in the left hand side. To extract the fa(afpr

in the right hand side one can use isotropydi) andQ(k), then
average first two integrals over the sphgge= const and the third
integral over a circle, determined by conditiojeg = const and

|p| = const. After that tensor factors are cancelled and we get
scalar evolution equation

/ V(g)dq+

1.9Q(k)
{ B (kp)(kq)(pq)] do

05 =2 [daQQ@ (420205 - @)

K = 5,.08,) — (i o m)) T 7ok X

— s ) — (i ¢ m)).

:__ﬁ

T. Ot
+k2/V(q)Q(p) 1 e

- 52— Q) [ Qa)da,
szﬂznTc
(29)

wherek = p + q. This equation was derived firstly by Dogiel et
al. (2005). Let's introduce the notation

1 _
= dq.
e / Q()dq

The value of) is proportional tohd = (b;(x)b;(x)) which is the
energy of the fluctuating magnetic field.

Since solving the integral equation @) in the k-space is
rather complicated problem, let us turn back toith&pace and ob-
tain the differential equation fap(r). To do this, we apply inverse
Fourier transform to the EJ._{R9). One can express the vdlpa-o
rameter\ in terms ofQ(r)

(30)

4 a— 2a 2
= gT—CQ( 0) = T—c(2Q(r) +37Q(r)lr—0. (1)
Also note that
~ 3 [ Vtaa (32

We proceed from function&(r), V(r) to Q(r), V (r) according
to Eq. [I5), use the spherical symmetry of the correlatioctions
and get after some algebra

1 9Q(r)

@,
27 Ot

r

- %(4&/’ +rV")Q.

=(V(0) = V(r) + 1) (Q" +
(33)

_ V/Ql

One of the key points of this derivation is averaging over lzesp
(or circle), when we use the isotropy of the functidrigq) and
Q(k). In the anisotropic case, in the presence of the mean field,
for example, this averaging fails. Thus, we conclude thgeineral
case it is necessary to derive and solve the evolution emudati
r-space. Itis no need to apply a Fourier transform. Tensoctire
of correlators[(IR) in this method is more complicated, Ihatré
arise no integral equations and additional vectorg(as;) in the
tensor structure.

Indeed, the equatiofi (B3) can be obtained directly insthe
space, by analogy with the above derivation. We will disdtss
solution in the section 412.

3.3 The general case of a non-zero mean fiel # 0

In this part we consider general case when the mean magredtic fi
is present. The correlation function of magnetic fluctuzide-
comes anisotropic. We assume magnetic field to have no tyelici
so its correlation tensqjp;b;) is symmetric with respect to the in-
terchange of indices. We suppose that it has the form

(bi(x,8)bj(x +1,t)) = A(r)ds; + B(r)nin;+ (39)
+ C(r)(nih;j +njhi) + D(r)hih;,

wheren = r/r, h = H/H are unit vectors in the directions of
andH respectively.

The most general form of the correlation tensor of the second
order in the presence of a preferred direction of the meametag
field is given in the paper by Matthaeus & Smith (1981). Howeve
we restrict our attention to terms, specified in EqJ (34). Aswill
see below this assumption is consistent, in the right hathel af
evolution equations only the same tensor terms arise.

All scalar functions are no longer spherically symmetriat b
they are axially symmetric with respect to the direction Hf
We choose this direction asaxis. Below spherical coordinates
(r, u = cos@) are used, wheré is the polar angle between
andh.

From the symmetry of the correlator and homogeneity of
space, functionsi, B, D should be symmetric with respect to

A(r, p) = A(r, —p), whereas functionC' should be anti-
symmetricC(r, u) = —C(r, —p).
ConditionVb = 0 gives us two relations
A—EA+B+C+1 C+QB %:0
—A + C). + puD;. +1 D+£—O (35)

The derivation of the evolution equations is similar to tpat-
formed in the previous section, but now we work in thepace.
We use Eq[(19) instead of E@.{22) and the functional dévivat

Shi(r,t) 0
51]]' (I‘/ﬂf — 0) N Orm

(5(1‘ — r')(Bm(r)dL-j — BZ(I‘)(SJm)) )

(36)



whereB = H + b is total magnetic field, instead of the formula
(29). As before, we use the relation

@7

which is due to the symmetry of the correlator and homoggneit
of space. Finally one principally can write out the bulky teys

of evolution equations (for the function$, B, C, D), which con-
tains the second order derivatives in the right hand sideust
be solved taking into account relatiofis](35). To solve susisa
tem would be very difficult. To simplify this system, one caseu
the structure of the Eq[(8), and split the system of equatieith
second-order spatial derivatives into two systems with-firder
derivatives. Namely, we replace one of the unknown funstion

D=D+H?, (38)
introduce the notations
X = a(D(0)+ H?) = aD(0) (39)
V() = ~2aA0) 4 7e(V(r) ~ V(0) + 3rV)
and get
10}
a <bk (x)bj (X + I‘)> = ersi0s (flhmeijm + fz [l’lh]ih]‘—‘r
(40)

fanh];n; + f4nm€ijm) + (j > k,r < (—r)) =0,

whereey,s; is the completely anti-symmetric pseudo-tensor, and

1—u?>,, wpwB+C 1., C
= XA 4+ —A, - T 4y (-4 + 2 —
fl (:u rt r n r )+ ( r M+7‘)
-3V +rV")(C + puD) (41)
- XA _ Py B 1o
o= —X(A - TA - )+ (X - )r
(XY +rV)D+ (X -Y)ED, +V'D
T
s = (X—Y)%B;—(X—Y+rV’)CL+(X—Y)%C;+
FLX =Y VI = (V= VD)
/ ’ 17V B /
fo = (VI =Y)A+Y(CA+ )=V A=

—(BV' +rV") (A4 B + uC).

Let us note that the correlator of the forin](34) with functibrin-
stead ofD in the right hand side describes the correlator of the to-
tal magnetic field B; B;). The system of evolution equations with
nonzero mean field is not homogeneous, it contains a "soteo®’,
which is proportional tdZ2. However, the system with functiab

is homogeneous, but the term wii? arises in boundary condi-
tions.
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From Eq. [[40) one can obtain evolution equations:
194 f4

50 = (42)
10B 1—
VB opr o — ol ok Lo+ L
10C 1 f
s 5(‘af'fl+ 7 Oufit 1 fo W~

1

~0:fs — ~0uf1)

10D J2
350 ( Oufr+0rfa+ )

We restrict ourselves to search for stationary solutiamhik case,
the time derivatives are equal to zero, and the sysiem (42) ca
be solved exactly. Its solution depends on one arbitrargtfan

g(r, p)

o = —g; (43)
f2 = %gL

fo gty

fa = pgr+ #QL - %

From Eq. [41) and[{43), taking into account two relatidns){(35
we get six first-order equations for five unknown functions
A, B,C, D, g. The single boundary condition i$, B,C,D — 0
whenr — oo because the pair correlation function of magnetic
field fluctuations should vanish at large scales.

The system of six equations for five unknown functions seems
overdetermined and has no solutions at first glance. Howéver
H > 1 this system can be simplified considerably and allows the
analytical solution, which is given in sectibn #.4. In thimit case
the system is degenerate and is not overdetermined. Thigstgy
that the same would takes place in the general case.

3.4 Small mean fieldif

Because of the large complexity of equations in the anipatro
case, we consider firstly a simpler problem, we assume tleat th
correlator(b;b,) is isotropic, i.e. it has the forni._(20) even in the
caseH # 0. This can be done in the case of small mean fild
because, as we will see below,i* < 7.p;uinvg, the amplitude
of the fluctuationsy ~ H'/? is greater thar .

To get isotropic equations we have to replace

hih]‘ - %5”

Evolution equation becomes

L 9Q(r) _ <V(0) V(r)+ A+ 2—“H—2> Q"+ —= 4Q )—
27. Ot
—V'Q - ;(4\/’ +rV")(Q + 6H2),
(44)
where as before
2a 2
= —(2Q(0) + 37Q (r)|r-0). (45)

WhenH = 0 Eq. [43) turns into Eq[(33).
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4 THE SOLUTION OF EQUATIONS
4.1 Preliminaries

Let us reduce our equation to dimensionless one. Before
that we denote the rms velocity of the neutral gas 4y

v = (vi(x)vi(x)) = 6V(0), and the rms amplitude of the mag-
netic field fluctuations byo, b = (b;(x)b;(x)). The correlation
time of the velocity field assumed to be equalito= 7o =
Lo/vo. That is the eddy turnover time at scdlg. For length unit

we take the size of the molecular cloiig, for unit of time we take
Tmaz,» @nd for unit of magnetic field we take the value of

1/2 T
2aV(O)) = (gLOUOPiMz‘n)
In other words, we introduce new functions and variables
rO = r/Lo; @ = t/Tmax;
Te
VO =vm/vor QUE) =)/ (V).

Thus, we reduce Eq[{#4) to the form (below we omit super-
script (1))

Te 1/2

Bunit = (

(46)

3 8%—(” = (V(o) —V(r)+ 2+ 1H2) Q"+ 4;Ql)—
t 3 r (47)
-V'Q - %(4{/’ +rV")(Q+ %HQ).

whereX = 2Q(0) + 2rQ’(r)|r—o, andV'(0) = 1. For typical
parameters of molecular clouds

N, ~103em™3;

Lo~3-10"%cm;

N; ~ 102 cm™3;

(48)
vo ~ 1km/s T ~ 50K,

the unit of magnetic field is equal B,,;: ~ 200 uG. But the
cloud parameters change in a wide range, so valugs,qf: for
them can vary significantly.

Let us estimate the characteristic scales of our problera. Th
inertial range of the turbulence is (in the dimensionlestabes)

lV <r< 1, (49)

wherel, = Re %% = 107° is the viscous scale. Since in the
stationary case the magnetic field energy on one hand isHass t
the kinetic energy of a neutral gas, but on the other hand-dgeta
than the kinetic energy of an ionized gas, then

1076 ~ Ymin
Min

Wmin

Mni

= (%um)fl LA (7'cum-)71 ~ 10.

Therefore, we can considgr < A/,

Let us examine the dimensionless equation (47). The parame-

ter \ contains the value @ (0), so this equation is nonlinear. Let us
suppose that the initially magnetic field fluctuations arekvéand
the parameteh is small). Then the term, which is proportional to
H?, makes the positive contribution to the valued/ot, and
lead to the initial growth of the magnetic field. Furthersthrowth
will be stopped by nonlinear terms. So we restrict ourselvek-
ing for stationary solutions only. Investigation of a stipof these
solutions, especially for anisotropic equatidns (41)) (#2beyond
the scope of our paper.

Since for the stationary solution the parametetoes not de-
pend on time, we will initially consider it to be a constantiieh
is not connected with the functiof(r). The single restriction is
XA > 0, because 0B\ = b2 (in dimensionless variables). Under
such approach the equati¢nl47) becomes linear.

The similar linear equation arises in the problem of magneti

0.1p

0.01¢

Q)

0.001¢

1074+

0.1

107 )
0.01
r

51 L I
10° 0%  0.001
Figure 2. The preferential solutioid)(r) for different values of the mean
magnetic fieldH

dynamo in a turbulent conducting media. In this problem the p
rameter) corresponds to the magnetic viscosity and is considered
to be known. The equation, coinciding with EQ.}47), was #ve
tigated in large number of papers beginning from the paper by
Kazantsev (1968), where the integral equation, similargo(Z9),
was derived. The brief literature review and necessaryreafes
are given in the Discussion. In most of the papers the mean mag
netic field was considered to be zero. In order to reveal tieeab
the mean magnetic field we discuss separately cBses 0 and
H #0.

To resolve our equations we need to determine the function
V (r) which characterizes the motion of a neutral gas. The value of
Lo corresponds to the maximum scale of the turbulence. It means
that the correlation of gas velocities vanishes at the soalesWe
consider the velocity spectrum of a neutral gas to be the ptame
So, the correlation function of gas velocities is

{

Hereinafter we consider the Kolmogorov turbulence. In ttase
velocity fluctuation on the scaleis v(r) ~ /3 in the inertial
range, hencex = 2/3. On the viscous scales < [, velocity
fluctuations arev(r) ~ r. Therefore the correlation function is
V(r) = 1-Cr?. Becausé, = 10~° and we considefl, )* < ),
then in this range the correlation function is approximatn-
stant,V(r) ~ 1, and the sought correlation function of the mag-
netic field is,Q(r) =~ Q(0), too. The exclusion is solutio@(r)
which have singularity at = 0. But we do not consider such solu-
tions (see below). Thus, the viscous range of scales doexffeot
the further analysis.

Let us note that in the Kazantsev-Kraichnan model the turbu-
lent velocity is assumed to hecorrelated in time[{9) with some
value of the correlation time.. Becauser. characterizes the total
realization of the turbulent motion, it formally can not biiaction
of the scaler. However, many authors who apply the Kazantsev-
Kraichnan model to the problem of magnetic dynamo, in order t
approach the physical reality, considerto be a function of the
scale. They assume. to be equial to the turnover time at given
scale,7.(r) ~ r/(v?),/%. In this caseV (r) ~ r(v?)}/* and
the Kolmogorov turbulence corresponds to the vatue= 4/3.
This assumption is justified by the comparison of theorktiea
sults in the modeb = 4/3 with numerical simulations of forced
Navier—Stokes equation (Mason et al. 2011; Tobias,Catta#he
Boldyrev 2013).

«
1—r%

0,

r<l1
r> 1.

V(r) (50)
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From the theoretical point of view, Vainshtein & Kichatinov

(1986) and Boldyrev & Cattaneo (2004) state that we needdarkn

only the integral of the velocity correlation function odene, that

is, the turbulent diffusivity, which in Kolmogorov turbuiee scales
4/3

asr*/”.

In current paper we use the Kazantsev-Kraichnan madel (9)

consideringr. = cons{r).

4.2 The case with zero mean field
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Figure 4. The dependence of the correlation length-» on H

analytic expression for the potentiél(r). Fora < 0.915 (that
includes the Kolmogorov turbulence) the potenfi&r) is posi-
tive everywhere. Hence there is no solutions exponentigihying
with time. Eq. [51) also has no finite at= 0 and vanishing at
r — oo solution. Consequently any soluti@(r) has the same
power asymptotic§ (52) at— 0 and atr — oo. The solutionQ;
of the stationary equation, which is finite at= 0, falls down at
r — oo not to zero, but to some positive value. We deménég> 0
atr — oo. Only the solutionQ2, which has singularity at = 0,
satisfies this condition. This solution has the power lawealvedr

To begin with we consider the case of zero mean magnetic field. =3 even at scales < [, up to very small scales where the mag-

We putdQ /ot = 0 andH = 0 in Eq. [47) and we obtain second
order equation for the functio(r)

!
VO -V + Q"+ v - Lav g =,

r r (51)
where X = 2Q(0) + 2rQ’(r)|—o. In this expression the term
r@Q’(r) is essential only for solutions which have singularity at
0. The boundary condition i — 0 atr — oco.

Eq. [51) has two independent solutions At 0 (I, < r <
A/} one can find the asymptotics of the solutions, and at 1

Eqg. (51) can be solved exactly

Q1 ~1 Qr~r?
Ql = 1; QQ = 7“73.
Now let us discuss the existence of the solution which is Hedn

atr = 0 and is decreasing at— oo. At the same time we can con-

sider more general nonstationary equation, where we assume
be independent of time constant as before. Making the sutisti

20 () /2e,

r2
wherem(r)™' = V(0) — V(r) + X > 0, we get for the function
¥(r) the Shrodinger equation with the variable masg-)

r—0
r>1

(52)

Q(Tv t) = (53)

1 d*v

— 4+ (F— v =0.
m(r) dr? +( u(r)) 0
The such substitution was firstly done by Kazantsev (1968 T
reduction to the Shrddinger equation was discussed inldatai
the paper by Schekochihin, Boldyrev & Kulsrud (2002). The- st
tionary solution corresponds t& = 0, the negative values of

(54)

netic viscosity becomes important. Thus, there is no fimitetons
with the zero mean magnetic field for the Kolmogorov turbaken
(. =2/3).

Fora > 0.915 and A < Apae(a) there exists the region
whereU(r) < 0. There appears the bound states, i.e. finite solu-
tions of the Shrédinger equation wifii < 0. That means that the
magnetic field will grow up to the level whexi= \qz.

4.3 Small mean fieldH

Now we look for stationary solutions of Eq._{47) with smalltbu
nonzero mean magnetic field. This equation is inhomogenaoes
and its partial solution is a constagi(r) = —H?/6. We introduce
the quantity

~ 1
Q=Q+H, (55)
denote) = )\ + §H2, and obtain for thef) exactly the homo-
geneous equatiofi (b1) with the replacemént> )", In fact, the
quantity @ is the correlation function of the total magnetic field
B=H+b
1

(Bi(x)Bj(x +1)) = (bi(x)bj(x + 1)) + §H26ij~ (56)
The last term is written in the forri; H;) = H?5;;/3, because
in this subsection we assume correlators to be isotropietefbre,

the tensor structure of the correla{ds; B;) coincides with[(2D). It
is possible to derive evolution equation directly for thisrelator,

the energyE’ mean the exponential growth of the magnetic field. including the mean magnetic field, as was done by Boldyrettaca

For the chosen velocity correlatdf(r) (50) one can obtain the

neo & Rosner (2005). However, the boundary conditiongfare
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different

2G(0) + 570 = N (57)
Q — %HQ, r — 00, (58)

because of the fluctuations correlator tends to zero at ldige
tances, but the correlatd#/; H;) is independent on the distance
due to its homogeneity.

0.2—

0.1 1

Figure 6. FunctionsCy (r)-thick line, A (r)-thin, B1 (r)-dashed lines

4.4 Large mean fieldH

For large mean fieldd > 1 (in dimensionless units), the corre-
lators of the fluctuating magnetic field can not be considered

isotropic. We need to solve the system of anisotropic eqoati

(35),[41) and[{4B). To reduce this system to dimensionl@ss v
ables[(46) one must change only the relatign$ (39) for valies:

X
Y(r)

D(0) + H?> = D(0)
—2A(0) + 2V (r) — 2V (0) +rV".

As was mentioned in the previous subsection, the solution of We assume the correlatars B, C, D to be the order of unity, and

the stationary equatioh (b1), which is finite at= 0, tends to

a positive constant at — oo. It is in accordance with the new
boundary condition[(38). Now even far = 2/3 there exists the
unique bounded solution, we will call it as the preferensialu-
tion. The value of\ for them is defined by unique manner. Graphs
of this solution for three values of the mean magnetic figle- 1,

H = 0.1 andH = 0.01 are presented on the Fig. 2. These graphs
and all other numerical results are obtained for the Kolmogo
turbulenceq = 2/3. Since

(59)

we get the dependencei@fon H, which is presented on the Fig. 3.
For H < 1 the amplitude of the fluctuating magnetic fiélgl ~
VH. Thus, forH < 1 we haveb, > H, i.e. the fluctuating field
dominates over the mean field.

Let us note that fotH — 0 the amplitude of the magnetic
fluctuationsb, for the preferential solution tends to zero also. For
H = 0 the preferential solution turns to the zero solution of equa
tion without the mean field. It corresponds to the fact that fo
H = 0 there are no bounded solutions vanishing at large scales.

For small values of, r <« 1, the asymptotic behavior of the
preferential solution i€)(r) ~ Q(0)(1 — r*/X). In the k-space it
givesk?Q(k) ~ k=°/3 for a = 2/3, i.e. the magnetic fluctua-
tions spectrum coincides with the spectrum of the hydrohyoa
turbulence of a neutral gas.

For the preferential solution one can also calculate theeeor
lation length of the fluctuating magnetic field, which we defby
the formula

1
7 (60)

leorr =

/Ooo (b:(0)bi(r))dr.

The numerical results are shown on the Eig. 4. One may note tha

lecorr ~ H for small values offi.

keep only terms off% >> 1 order. The system of equations is sim-
plified significantly. The solution is described in detailtire Ap-
pendixXA. It turns out that this system of equations is notdeter-
mined. The dependence of the correlation functions oveatigte

0 is simple

A(r,p) = Ao(r) + Ar(r)p? (61)
B(r,p) = Bo(r)+ Bi(r)p®

C(ryp) = Co(r)p

D(r,p) = Do(r)+ Di(r)u’.

wherep = cos 6. If we take the correlatoV (r) in the form [50),

as before, then we obtain a solution which is presented afbHg)

We see that the functio®, (r) is discontinuous at = 1. It is
due to the break of the functidvi(r) atr = 1, (50). If we choose
the correlato/ (r), which has the continuous derivativerat 1,
then values ofd, B, C, D will be also continuous, and the function
D1 (r) = 0(see the Append{x]A). The obtained solution in this case
is shown on the Fid.]T]8. For small valuesrof 1 the solution
include terms- andr2. In the k-space they correspond to terms
k=% andk ™% in Q(k).

5 DISCUSSION

The problem of the kinematic dynamo in a conducting medium
(hereinafter - DCM) is discussed widely. See, for exampke, p
pers: Schekochihin et al. (2002); Boldyrev & Cattaneo (30B4b-
gachevskii & Kleeorin (1997); Kleeorin & Rogachevskii (Z)1
Schleicher et al. (2013) and references therein. Also tbblem

of magnetic field generation in weakly ionized incompressdgas
was studied by Subramanian (1997). For analytical treatrien
model of Kazantsev-Kraichnan (Kazantsev 1968; Kraichrgg8)

is usually used. At the initial stage of the magnetic fieldngtoits



Figure 7. FunctionsAg (r)-thick line, By (r)-thin, Do (r)-dashed lines for
the smooth correlatov (r)

influence on the medium motion is negligible. Therefore, pmob-
lem and the problem of DCM are similar in many aspects. In the
problem of DCM the evolution equation for the magnetic fiald i

0B

ot

wherev,, is the magnetic viscosity. Our Eq.](8) contains the ad-
ditional term, which is proportional t&3, due to the friction be-
tween neutral and ionized gases. The terpAB in our case is
much smaller than the ter®® because of high conductivity, and
we omit it. Thus, Eq[{62) and Ed.](8) differ by the last terméyo
So, evolution equations for the magnetic field correlatamsduin
papers cited above almost identical with our EqJ] (33). bxtef
unknown parametex (45) (it is the averaged square of the ampli-
tude of magnetic field fluctuations) equations of DCM contaim
magnetic viscosity,, which is considered to be known. Equations
of DCM theory are linear, and the problem is to find solutiors e
ponentially growing in time. The dependence of the largesivth
rate onv,, is discussed in Kleeorin & Rogachevskii (2012), Schle-
icher et al. (2013). Our equatidnl (8) and evolution equéfidoror-
relators[(3B) are nonlinear because the valug isfdefined by the
solution. This nonlinearity stops the initial growth of nmegic fluc-
tuations. Therefore we are looking for stationary soluionly.

The main result of our paper is taking into account the
mean magnetic field, and derivation of evolution equatioms f
anisotropic correlator&b). In all mentioned papers magnetic field
correlators were suggested to be isotropic, as in seffidnoB.
current work. Rogachevskii & Kleeorin (1997) tried to takeoi
account a mean magnetic field. But when they derive the evo-
lution equation for pair correlators, they put mean field ¢voz
Boldyrev et al. (2005) made no assumption of zero mean mag-
netic field. They considered the pair correlator of the totagnetic
field Q ~ (BB). Obtained evolution equation fap coincides
with Eq. [33) of our paper fof) (see sectiofi 413). However, the
boundary conditions fof) are different. We consider the media is
uniform and the mean magnetic field is constant, so the eadarel
(H(0)H (r)) is independent of. At the same time, the correla-
tor of magnetic field fluctuations must vanish at large scees
Q(r) — 0, butQ(r) — H?/6 atr — co. As we show in the
sectior 4B, this difference is essential for existenceoohioled so-
lutions.

In all mentioned papers the velocity correlation functioasw
assumed to b¥ (r) = 1—r. In the model with scale-independent
correlation timer. for the Kolmogorov turbulencer = 2/3, and,

=V x (v xB) + v, AB, (62)

Magnetic field in molecular clouds 9

Figure 8. FunctionsCy (r)-thick line, A1 (r)-thin, By (r)-dashed lines for
the smooth correlatov (r)

as we show, there are no solutions exponentially growingnie,t
see also Rogachevskii & Kleeorin (1997).7f is supposed to be

a function of the scale, the Kolmogorov turbulence corressdo

a = 4/3 and growing solutions of (33) appear. This is equivalent
to the appearance of solutions of stationary equalich (6@htled
atr = 0 and vanishing at large scales. In current work we demon-
strate that when mean field is taken into account, boundedicos

do exist even in the model wiilh = 2/3.

6 CONCLUSION

We find the correlation function of fluctuating magnetic fielden

the mean magnetic field equals zef,= 0. For the Kolmogorov
turbulence the correlation function diverges-as whenr — 0 up

to small resistive scales.

For the cased # 0 the problem is solved in the approxima-
tion of isotropic correlators. It is shown that for each \eahf H
there exists the unique solution bounded-at 0. WhenH < 1
the amplitude of the fluctuating field turns out to be proportional
to the square root of the mean field, ~ H'/2. Therefore, for
H < 1 correlators can be considered to be isotropic. However,
this solution exists only at the presence of the finite, eveaky
mean magnetic field?. At L <« L, the magnetic field correla-
tor has the same form as that of the turbulent neutral gagitglo
Q(r) Q(0)(1 — r*/X). In the k-space it corresponds to the
spectrum (k) ~ k=11/3,

Also we derive exact anisotropic equations for the magnetic
field correlators at the presence of the mean magnetic fieddingl
the analytic solution at the limit of large mean figtfl > 1. The
anisotropic correlation function of the magnetic field @ns the
dependence on the angl®etween the mean magnetic field and the
vectorr in the form ofcos 6, andcos? 6 only. The dependence of
the correlators on atr < 1 is the sum of two power law functions,
r® andr?.
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APPENDIX A: LARGE MEAN FIELD

Here we describe in detail the solution of the system of arapic
equations[(35).(41) and(¥3) in the caserbfs> 1.

Let us denotej = g/H>. We suppose that the correla-
tors A, B,C, D are of the order of unity and keep only terms of
H? > 1 order, and we get the system of equations

rA,. — pA, + 1B +ruCp + (1 — p*)Cl + 2B — uC =0

A, +rCr+ruD; + (1 - p*)D;, +3C =0

rpAl + (1 — p*)A), — uB — C — rp(3V' + V") = —rg,.

—r AL+ pAl, + B+ C,), —rDh+ D), +rV' =g,

B; —rCl + uCL +C —rp(V =V =rg. — tg; -3

rigy + (1= p*)gj — pg = 0. (A1)
From the last equation and the fact that the funcgionust be odd
with respect tqu it follows § = 0. So we have five equations on
four functions. Let us note that only the derivatives of thedtion

D enters into the systeri (A1), and only in the second and in the
fourth equations. One can express the value®/afD;,

= urA. —(1+ uz)A; —uB —rCy. — pC;, —3C — prV’
—(1 = p*)r AL — p* A, + (1 — p*)B — prCy +

+(1 = )}, — 3uC + (1 — p®)rv'.

rD..
(A2)

Using the first and the third equations of the systeml (Al)rexp

sions [A2) can be simplified

—2A, —rC,. — puC,, —2C + pr2V' +rV")
—2r A, —rB, — B —2urC, — uC +rV’
+u2r(2V' +rV").

’
rD,

(A3)

Using equations (A1), one can show that mixed derivative® of
calculated from[{AB), are the sandgduD; = 8/0rD,,. So the
function D is correctly defined by Eg[(A3). Thus, we have three
equations for three functions, B, C,
rA,. — pA, + 1B +ruCp + (1 — p*)Cl + 2B — uC =0
rpAlL + (1 — p?)A), — uB — C = rp(3V' +rV")
B, —rCp+uCp, + C =ru(V' —rv"). (A4)

One can solve this system and after that calculate the timé3i
using [A3). So the systeri (A1) is not overdetermined.

Since functions4, B are even with respect {o, butC'is odd,
we are looking for the solution in the form

A(ryp) = Ao(r) + Av(r)i® (A5)
B(r,u) = Bo(r)+ Bi(r)y®
Clr,p) = Co(r)p.

Substituting these relations into Ed._(A4) we get the sys-
tem of five ordinary differential equations for five funct®n
Ao, Bo, Co, A1, B:

B B+2 1 0 0 Ao 0

0 0 pB-2 B-2 B+2]||(B 0

g -1 -1 2 0 Co | = |r@BV' +rv")

0 0 0 pB-2 -1 Ay 0

0 0 2-5 0 2 By r(V' =rV")
(A6)

Here we introduce the notatigh= rd,.. The solution of such Sys-
tem is the sum of the general solution of the homogeneousrayst
(with zero right hand side) and the partial solution of intoy®-
neous system. We search for solution of the homogeneousnsyst
as a power law function, since it is the eigen function of thera-
tor 3,

BTB = BTB.

Replacing the operatg# by a number3 — 3, we obtain the ho-
mogeneous system of linear algebraic equations. To haveenon
solutions this system must be degenerate. Equating thendasnt
of the matrix in the left hand side of Eq._{A6) to zero, we find th
eigen values of,

B1=0; P2a=-3; B34=2; [B5=-5

We find the solution of the system of linear algebraic equatigith
these values of and get the general solution of the homogeneous
system from Eq[(A6). If we take the neutral gas velocity etator
V(r) in the form of a power law function, we can also find the
partial solution of the inhomogeneous system, and therelye s
the system[{Ab) analytically. We assume, as before, thetifumc

V (r) to be in the form[(B0) and we obtain the partial solution: zero
atr > 1 and the following vector at < 1

Ao _a+7a49

By a—+6 ot =

Co | = —(a+3) | = F(a)r®. (A7)
a+5

Ay 1

Bl oa—2


http://arxiv.org/abs/astpo-ph/9708216

Magnetic field in molecular clouds 11

We denote the vector in the right hand side@(Anﬁé(a). continuous at = 1. We repeat the procedure described above, and
We are looking for the solution boundedrat= 0 and vanish- get the solution
ing atr = co. Therefore, at < 1 we keep only two powers’ and

r?; atr > 1 we keep powers 3 andr~°. The solution, which is r<l:
continuous at = 1, is Ao =VoFi(a)r® — a1
r<l: Bo = VOF2(O()TQ
2 Co = %Fg (Oé)?“a
Ao = Fi(a)r® — (3cs —4dea)r* — 1 o
Lo’ 2 Al = ()F4(Oé)7‘
By = Fa(a)r® + (4es — 2ca)r o
a 2 B =VWF5(a)r
Co = F3(a)r® — 10csr «a 7
o 9 Do = VoFs(a)r® — £
A1 = Fy(a)r® — bear
D =0
B1 = F5(Oé)7‘a
) r>1:
r>1: 5
. _3 Ao :V1F1(’y) +1/5C5T °
Ao =1/5c517° + cor
B - P By =ViF(y)r? —esr™
C'0 = ;57" . C2T CO — VlFB(V)T’Y _ 2Cf7” 5
AO - 657:5 A1 = ViFa(y)r" —esr™®
Bl o 7—657;5 Bi =ViFs(y)r? + Tesr™ 5
o= e Dy = %Fﬁ(’)’) +2/5C5T 5
where D: =0
c1 = _M; co = _ia; c3 = _ﬁ; where we added the functiofs(«) to functions Fi (), .. F5(«)
30 15 14 (A8) defined in[(AT),
. a . ala—2) ,
4= o= 5 = 5
35 7(a+5) Fy(a) = &0t 7
. a+5
and the vectof'(«) is defined in[(AT).
) . " . Now the constants are
Let us find the functionD(r, u). Substituting Eq.[{AB) into 9
Eg. [(A3), we get =, RSN .. — Al2
: TR T Taraney AP
D(r, ) = Do(r) + Da(r)n”, For any value ofy all correlators are continuous, and the function
where D; = 0. So, we can take any reasonable value ofor example,
R ~v = —2. Graphs of such solution fax = 2/3 andy = —2 are
2D1 = —4A1 = (B+3)Co+rV +1rV") (A9) shown on Fig[T118.
ﬁDo = —2BAO — (ﬁ + 1)Bo —+ rv’.

The functionDy () is defined with accuracy up to a constant. We
choose this constant so thay (co) = 0. The answer is

r<l:

{Do :%ﬁ” @ _ Begr? —%(404—1—7)
Dy :—gaTQ

r>1:

Do :2/5057“75

o

The graphs of the obtained solution fer = 2/3 are shown on
Fig.[3,[8. We see that the functidn, is discontinuous at = 1. It
is caused by the break of the functidf(r) at» = 1. To obtain a
continuous solution we take the velocity correlator in thierf

1 Vore 1
V(r) = G (A10)
—Wr?, r>1,

where the powety < 0 is arbitrary, and constants are

Vo=——, w=-—-2 (AL1)
Q=7 Q=7

These constants are chosen for the functiits) andV’(r) to be
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