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ABSTRACT
We investigate the magnetic field which is generated by turbulent motions of a weakly ionized
gas. Galactic molecular clouds give us an example of such a medium. As in the Kazantsev-
Kraichnan model we assume a medium to be homogeneous and a neutral gas velocity field to
be isotropic and delta-correlated in time. We take into consideration the presence of a mean
magnetic field, which defines a preferred direction in space and eliminates isotropy of mag-
netic field correlators. Evolution equations for the anisotropic correlation function are derived.
Isotropic cases with zero mean magnetic field as well as with small mean magnetic field are
investigated. It is shown that stationary bounded solutions exist only in the presence of the
mean magnetic field for the Kolmogorov neutral gas turbulence. The dependence of the mag-
netic field fluctuations amplitude on the mean field is calculated. The stationary anisotropic
solution for the magnetic turbulence is also obtained for large values of the mean magnetic
field.

Key words: magnetic fields - MHD - turbulence - ISM: magnetic fields - ISM:clouds -
methods: analytical

1 INTRODUCTION

The standard theory of cosmic rays (CR) formation suggests that
primary CR consist mainly of protons and contain no antimatter.
During their propagation in the Galaxy primary CR interact with
protons of galactic gas, resulting in production of secondary CR, in-
cluding antiprotons and positrons. The secondary particles energy
spectrum, calculated in the framework of this theory, fallsdown
with energy by a power law manner. The antiparticles to particles
ratio should behave in the same way (Moscalenko & Strong 1998).
However, recent antimatter observations byPAMELAsatellite de-
tected an excess of positrons with energies10− 100 GeV (Adriani
et al. 2009). In this range, the ratioe+/(e− + e+) is about10%
and increases with energy. These observations attracted much atten-
tion. Several theoretical explanations for this effect were proposed,
among them the positrons generation in pulsars and in the annihi-
lation process of dark matter particles. Another mechanismfor the
positrons generation in the Galaxy is also possible, that isacceler-
ation of charged particles in giant molecular clouds and secondary
CR production there. This mechanism was discussed by Dogielet
al. (1987, 2005), long before the launch of thePAMELAsatellite in
2006.

The particle acceleration in molecular clouds takes place due
to turbulent motion of a partially ionized gas inside them. This mo-
tion switches on the dynamo mechanism of a magnetic field genera-
tion. Besides the magnetic fieldB the electric fieldE also appears,
E = −(u − νm∇) × B/c. Hereu is plasma velocity andνm
is the magnetic viscosity. Moving in this stochastic electric field,
protons and electrons gain energy and can be accelerated up to en-

ergies> 10 GeV (Dogiel et al. 1987). In the presence of magnetic
field one can describe motion of relativistic charged particles as dif-
fusion in coordinate and momentum spaces. To find diffusion co-
efficient and, after that, maximum energy and spectrum of acceler-
ated particles one need to know properties of the magnetic field, for
example, its pair correlators (see Shalchi 2009; Dogiel et al. 1987),
which will be calculated below. Dogiel et al. (2005) predicted the
positron excess in GeV energy range. Appearance of appropriate
observations requires a detailed investigation of particle accelera-
tion in molecular clouds, with taking into account modern data.

Molecular clouds are clusters of molecular hydrogen with a
complex inhomogeneous structure (Larson 2003). Their dimen-
sions may reach100 parsecs, masses are up to106 M⊙. Gas con-
centration in molecular cloudsNn is about(102 − 103) cm−3,
the gas temperature isT = (10 − 50)K. According to observa-
tions, gas is strongly turbulent. The turbulence has a powerlaw
Kolmogorov-like spectrum. In addition, a gas is partially ionized
Ni/Nn = 10−8−10−5. In such a system stochastic magnetic field
arises, as will be shown below. The only way to measure directly
the magnetic field strength is the Zeeman effect. Zeeman observa-
tions were carried out recently for many clouds, their results are
summarized in the paper by Crutcher (2010). Typical values of the
magnetic field projection on the line of sight are10 − 30µG for
the molecular clouds cores. Polarization observations (Tassis et al.
2009), carried out for several molecular clouds, showed that mag-
netic field directions in distant points of a cloud may be similar,
Fig. 1. It appears that a mean homogeneous magnetic field exists
in clouds together with a stochastic field, produced by the turbu-
lence. In papers (Dogiel et al. 1987, 2005) a mean magnetic field
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Figure 1. Observations of molecular cloud W49A. Contours represent the
levels of the radio flux. Small black line-segments shows thedirection of
the magnetic field at the point. Figure is taken from Tassis etal. (2009).

was assumed to be zero. In present paper we treat the problem of
magnetic field generation in weakly ionized turbulent gas with a
nonzero mean magnetic field. No assumptions about the ratio of a
mean to a fluctuating fields are made.

This paper consists of five parts. In Section 2 we write equa-
tions describing a gas and a magnetic field in molecular clouds.
Evolution equations for magnetic field pair correlators arederived
in Section 3. Their stationary solutions are obtained in Section 4.
Three cases are considered in detail: a) zero mean magnetic field,
b) small mean field and c) large mean field. In Section 5 we com-
pare our results with that obtained by other authors. Summary is
compiled in Section 6.

2 MAGNETOHYDRODYNAMICS EQUATIONS FOR
WEAKLY IONIZED GAS

For description of gas motion in molecular clouds one can usetwo-
fluid hydrodynamic equations. We denote velocities of a neutral
and an ionized gas components asv andu respectively. Magnetic
viscosityνm in molecular clouds is much less than the kinematic
viscosityν (see Dogiel et al. 1987).

We consider gas motions on the scalesL corresponding to the
inertial rangeLν < L < L0, whereL0 is determined by the size of
the system, andLν corresponds to the viscous scale. Typical values
for molecular clouds areL0 = 1019 cm, Reynolds number isRe =
108, hence for the Kolmogorov turbulenceLν = L0Re−3/4 =
1013 cm. In this range of scales the viscosity can be neglected.
Turbulent velocity at small scales is less than the sound velocity,
it reaches the value of sound velocity only at large scales. So we
assume gas to be incompressible, because subsonic gas motions can
be considered to be incompressible. Then equations for the ionized

component motion and the magnetic field are

∂u

∂t
+ (u∇)u =

1

ρi

[

−∇Pi +
(∇×B)×B

4π

]

− (1)

−µin(u− v),

∂B

∂t
= ∇× (u×B), (2)

∇u = 0,

∇B = 0,

wherePi andρi are the pressure and the density of ionized com-
ponent,µin is ion-neutral collision rate. In contrast to the usual
magnetohydrodynamics, in this case an external force in theform
of friction between the ionized and the neutral gas components is
present. Indeed, estimations give

µni = 10−13 s−1, µin = 2 · 10−6 s−1, (3)

whereas the turbulent fluctuation frequencies lie in the range

ωmin = 10−12 s−1, ωmax = 10−8 s−1. (4)

This implies an important condition

µni ≪ ω ≪ µin. (5)

This means that the neutral gas does not feel the presence of an
ionized component. Ions motion, by contrast, is completelydeter-
mined by the motion of a neutral gas. Numerical estimates of the
characteristic frequencies of the problem were discussed in detail
by Dogiel et al. (1987).

Thus we can treat the motion of the neutral component to be
known, it coincides with the ordinary hydrodynamic turbulence.
For an ionized component only two forces are essential: the force
of friction on a neutral gas and the Lorentz force, caused by amag-
netic field. As we will see below, the pressurePi can be neglected
in comparison with the pressure of the magnetic field. Therefore
the motion equation for an ionized component becomes

(∇×B)×B

4πρi
− µin(u− v) = 0. (6)

Let us denote

a =
1

4πρiµin
. (7)

As far as we consider a gas to be incompressible,a = const. Ex-
pressing the velocity of an ionized component in terms of velocity
of neutrals and substituting it to the induction equation (2), we ob-
tain

∂B

∂t
= ∇× (v ×B)− a∇× (B× (∇×B)×B). (8)

This equation gives the dependence of the magnetic field on the
velocityv of a neutral gas.

3 DERIVATION OF EVOLUTION EQUATION

3.1 Tensor structure of correlators

To describe the turbulent motion of a neutral gas and obtain closed
equations for magnetic field correlators, we use solvable model
proposed by Kazantsev (1968) and Kraichnan (1968). We assume
neutral gas velocityv(t) to be a Gaussian stochastic process with
zero mean value,〈v〉 = 0. All information about it is contained
in the pair correlation function〈vi(x, t)vj(x+ r, t′)〉. The angle
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brackets here and below denote averaging over an ensemble ofre-
alizations. We assume a neutral gas to be a homogeneous isotropic
medium, so the pair correlation function can depend only onr. We
consider the velocity field to be delta-correlated in time,

〈vi(x, t)vj(x+ r, t′)〉 = vij(r)τcδ(t− t′), (9)

and mirror-symmetric. It possesses no helicity, and its correla-
tion tensor is symmetric with respect to the interchange of indices
vij(r) = vji(r). In this case one can construct the tensor structure
of the correlation function from only two second-rank tensors

vij = 2V (r)δij + S(r)(δij − rirj
r2

). (10)

The factor2 in the first term of the right hand side is written for
convenience. From the incompressibility condition∇v = 0, i.e.
∂ivij = ∂jvij = 0, we obtain

S = rV ′, (11)

where prime denotes the derivative with respect tor,V ′ = ∂V/∂r.
This relation leads us to the general form of the correlationtensor

vij(r) = 2V (r)δij + rV ′(r)
(

δij − rirj
r2

)

. (12)

Thus, the neutral gas turbulence is described by one scalar function
V (r). A common method to handle this problem is to pass to the
Fourier space

v(r, t) =

∫

v(k, t) exp(ikr)dk. (13)

Indeed, the correlation tensor structure becomes simplier

〈vi(k, t)vj(k′, t′)〉 = V (k)τcδ(t− t′)

(

δij −
kikj
k2

)

δ(k+ k
′).

(14)
The factor δ(k+ k′) arises from homogeneity, and the tensor
structure is uniquely determined by isotropy and incompressibil-
ity condition kivi(k) = 0. FunctionsV (r) andV (r) are related
by

V (r) = 3V (r) + rV ′(r), (15)

andV (k) is a Fourier transform ofV (r),

V (r) =

∫

V (k) exp(i(kr))dk. (16)

Now let us consider correlators of the magnetic field. We assume
magnetic field to be a Gaussian stochastic process too. But ithas
nonzero mean value. Let us denote its mean and fluctuating com-
ponents byH andb respectively:

B = H+ b, 〈B〉 = H. (17)

We suppose mean magnetic field to be constant in spaceH =
const(r). One can look for the evolution equation forH(t), us-
ing the technique described below, and get∂H/∂t = 0. Hence the
value of the mean fieldH = const(r, t) is an external parameter of
the problem.

Strictly speaking, magnetic fieldB, generated by the Gaus-
sian stochastic fieldv, is not pure Gaussian. Its properties are not
completely described by the second order correlation function. But
significant difference appears in higher than second order moments,
and for investigation of second order moment evolution one can as-
sumeB to be Gaussian, see, for example, the paper by Brandenburg
& Subramanian (2000).

To describe fluctuating component of the magnetic field, we
introduce its pair correlator〈bi(x, t)bj(x+ r, t)〉, which is similar

to the velocity correlator, but the average is taken at the same time
moments. Our aim is to establish the evolution equation for this
correlator. Since

∂

∂t
〈bibj〉 = 〈∂bi

∂t
bj〉+ 〈bi ∂bj

∂t
〉, (18)

one have to calculate∂b/∂t. We suppose that〈bibjbk〉 = 0. Av-
eraging Eq. (8), subtracting the resulting equation from Eq. (8), we
get

∂b

∂t
= ∇× [v ×H] +∇× [v × b]− a∇×

(

H× [j×H] +

+H× [j × b] + b× [j×H] + b× [j × b]
)

−
−∇× 〈v × b〉+ a∇× 〈H× [j × b] + b× [j×H]〉, (19)

where we use the notationj = ∇× b for short.
Last three terms (last line) in Eq. (19) give no contributionto

∂〈bibj〉/∂t, since〈〈. . .〉bi〉 = 〈. . .〉〈bi〉 = 0, so they can be ig-
nored. Similarly we omit terms in Eq. (19), which are proportional
to b2, because their contribution to the derivative∂〈bibj〉/∂t is pro-
portional to〈b3〉 = 0.

3.2 The case with zero mean field

To begin with we consider the case when the mean field is absent,
H = 0. Then all correlators are isotropic. Maxwell equation∇b =
0 is similar to the incompressibility equation∇v = 0, so tensor
structure of the magnetic field correlator for the non-helical case is
similar to the velocity correlator (12)

〈bi(x, t)bj(x+ r, t)〉 = 2Q(r)δij+rQ′(r)
(

δij − rirj
r2

)

. (20)

In the Fourier space the correlator is

〈bi(k, t)bj(k′, t)〉 = Q(k)

(

δij − kikj
k2

)

δ(k+ k
′), (21)

where the relation betweenQ(r) andQ(k) is similar to (15). Due
to the isotropyQ(k) = Q(k). To get∂Q(k)/∂t we apply Fourier
transform to Eq. (19), drop terms which do not contribute to the
value of∂〈bibj〉/∂t, putH = 0 and obtain

∂b(k)

∂t
= i

∫

dqk× [v(q)× b(p)]+

+ a

∫

dk1dk2 k× {b(k1)× ([k2 × b(k2)]× b(k3))}.
(22)

In the first term of the right hand sidep + q = k, in the second
termk1 + k2 + k3 = k. One can see the following structure of
correlator’s derivative

∂

∂t
〈bb〉 ≃ 〈vb2〉+ 〈b4〉, (23)

where only the magnetic fieldb and the velocityv are shown, and
all tensor indices are dropped. We assume random processesv and
b to be Gaussian. So, to split the correlators in the first term of
Eq. (23) one should use the Furutsu-Novikov formula (see Furutsu
1963; Novikov 1965; Klyatskin 2005). It states that if some func-
tionalR[v] depends on the random processv(k, t) as a solution of
some differential equation, one can split correlator

〈vi(k, t)R[v]〉 =
∫

dk′dt′ 〈vi(k, t)vj(k′, t′)〉
〈

δR[v]

δvj(k′, t′)

〉

,

(24)
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where〈δR[v]/δvj(k
′, t′)〉 is a functional derivative. To compute it

one should use the equation which specifies the dependence ofR
onv. In our case it is the evolution equation (22). Since the random
processv is assumed to be delta-correlated in time, and att′ > t
causality principle states thatδbi(k, t)/δvj(k′, t′) = 0, we need to
know only the value of

lim
t′→t−0

δbi(k, t)

δvj(k′, t′)
= ikm(δijb

k−k′

m − δjmbk−k′

i ). (25)

In the right hand side the argument is written as a superscript for
clarity. In the second term of Eq. (23) one can presents forthorder
correlator as a product of pair correlators

〈b1b2b3b4〉 = 〈b1b2〉〈b3b4〉+ 〈b1b3〉〈b2b4〉+ 〈b1b4〉〈b2b3〉. (26)

Let us write out the intermediate result obtained after splitting of
correlators. To do this, we use the notations

Ωk
ij = δij − kikj

k2
, (27)

andp = k− q. We obtain

∂Q(k)

∂t
Ωk

ij = 2a

∫

dqQ(k)Q(q)
(

−k2Ωq
isΩ

k
sj − (28)

−kmksΩ
q
msΩ

k
ij + kmkiΩ

q
msΩ

k
sj

)

− τckm

∫

dqV (q)Q(k)×

×
(

Ωq
ispn(δmsΩ

k
nj − δnsΩ

k
mj)− (i ↔ m)

)

+ τckm ×

×
∫

dqV (q)Q(p)
(

Ωq
iskn(δjsΩ

p
nm − δnsΩ

p
mj)− (i ↔ m)

)

.

Tensors in right hand side of last equation contain vectorsqi and
pi, which are absent in the left hand side. To extract the factorΩk

ij

in the right hand side one can use isotropy ofV (q) andQ(k), then
average first two integrals over the sphere|q| = const and the third
integral over a circle, determined by conditions|q| = const and
|p| = const. After that tensor factors are cancelled and we get
scalar evolution equation

1

τc

∂Q(k)

∂t
=− 2

3
k2Q(k)

∫

V (q)dq+

+ k2

∫

V (q)Q(p)

[

1− (kp)(kq)(pq)

k2p2q2

]

dq−

− 2

3πρiµinτc
k2Q(k)

∫

Q(q)dq,

(29)

wherek = p + q. This equation was derived firstly by Dogiel et
al. (2005). Let’s introduce the notation

λ =
1

3πρiµinτc

∫

Q(q)dq. (30)

The value ofλ is proportional tob20 = 〈bi(x)bi(x)〉 which is the
energy of the fluctuating magnetic field.

Since solving the integral equation onQ(k) in thek-space is
rather complicated problem, let us turn back to ther-space and ob-
tain the differential equation forQ(r). To do this, we apply inverse
Fourier transform to the Eq. (29). One can express the value of pa-
rameterλ in terms ofQ(r)

λ =
4

3

a

τc
Q(r = 0) =

2a

τc
(2Q(r) +

2

3
rQ′(r))|r→0. (31)

Also note that

V (0) =
1

3

∫

V (q)dq. (32)

We proceed from functionsQ(r), V (r) to Q(r), V (r) according
to Eq. (15), use the spherical symmetry of the correlation functions
and get after some algebra

1

2τc

∂Q(r)

∂t
=(V (0)− V (r) + λ) (Q′′ +

4Q′

r
)−

− V ′Q′ − 1

r
(4V ′ + rV ′′)Q.

(33)

One of the key points of this derivation is averaging over a sphere
(or circle), when we use the isotropy of the functionsV (q) and
Q(k). In the anisotropic case, in the presence of the mean field,
for example, this averaging fails. Thus, we conclude that ingeneral
case it is necessary to derive and solve the evolution equation in
r-space. It is no need to apply a Fourier transform. Tensor structure
of correlators (12) in this method is more complicated, but there
arise no integral equations and additional vectors (aspi, qi) in the
tensor structure.

Indeed, the equation (33) can be obtained directly in ther-
space, by analogy with the above derivation. We will discussits
solution in the section 4.2.

3.3 The general case of a non-zero mean fieldH 6= 0

In this part we consider general case when the mean magnetic field
is present. The correlation function of magnetic fluctuations be-
comes anisotropic. We assume magnetic field to have no helicity,
so its correlation tensor〈bibj〉 is symmetric with respect to the in-
terchange of indices. We suppose that it has the form

〈bi(x, t)bj(x+ r, t)〉 = A(r)δij +B(r)ninj+

+ C(r)(nihj + njhi) +D(r)hihj ,
(34)

wheren = r/r, h = H/H are unit vectors in the directions ofr
andH respectively.

The most general form of the correlation tensor of the second
order in the presence of a preferred direction of the mean magnetic
field is given in the paper by Matthaeus & Smith (1981). However,
we restrict our attention to terms, specified in Eq. (34). As we will
see below this assumption is consistent, in the right hand side of
evolution equations only the same tensor terms arise.

All scalar functions are no longer spherically symmetric, but
they are axially symmetric with respect to the direction ofH.
We choose this direction asz-axis. Below spherical coordinates
(r, µ = cos θ) are used, whereθ is the polar angle betweenn
andh.

From the symmetry of the correlator and homogeneity of
space, functionsA,B,D should be symmetric with respect toµ,
A(r, µ) = A(r, −µ), whereas functionC should be anti-
symmetricC(r, µ) = −C(r, −µ).

Condition∇b = 0 gives us two relations

A′

r −
µ

r
A′

µ +B′

r + µC′

r +
1− µ2

r
C′

µ +
2B

r
− µC

r
= 0

1

r
A′

µ + C′

r + µD′

r +
1− µ2

r
D′

µ +
3C

r
= 0. (35)

The derivation of the evolution equations is similar to thatper-
formed in the previous section, but now we work in ther-space.
We use Eq. (19) instead of Eq. (22) and the functional derivative

δbi(r, t)

δvj(r′, t− 0)
=

∂

∂rm

(

δ(r− r
′)(Bm(r)δij −Bi(r)δjm)

)

,

(36)
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whereB = H + b is total magnetic field, instead of the formula
(25). As before, we use the relation

〈bi(r)
d

dr
bj(r)〉 = 0. (37)

which is due to the symmetry of the correlator and homogeneity
of space. Finally one principally can write out the bulky system
of evolution equations (for the functionsA,B,C,D), which con-
tains the second order derivatives in the right hand side. Itmust
be solved taking into account relations (35). To solve such asys-
tem would be very difficult. To simplify this system, one can use
the structure of the Eq. (8), and split the system of equations with
second-order spatial derivatives into two systems with first-order
derivatives. Namely, we replace one of the unknown functions by

D̃ = D +H2, (38)

introduce the notations

X = a(D(0) +H2) = aD̃(0) (39)

Y (r) = −2aA(0) + τc(V (r)− V (0) +
1

2
rV ′)

and get

∂

∂t
〈bk(x)bj(x+ r)〉 = eksi∂s

(

f1hmeijm + f2[nh]ihj+

f3[nh]inj + f4nmeijm
)

+
(

j ↔ k, r ↔ (−r)
)

= 0,
(40)

whereeksi is the completely anti-symmetric pseudo-tensor, and

f1 = X(µA′

r +
1− µ2

r
A′

µ − µB + C

r
) + Y (−1

r
A′

µ +
C

r
)−

−(3V ′ + rV ′′)(C + µD̃) (41)

f2 = −X(A′

r −
µ

r
A′

µ − B

r
) + (X − Y )

1

r
C′

µ −

−(X − Y + rV ′)D̃′

r + (X − Y )
µ

r
D̃′

µ + V ′D̃

f3 = (X − Y )
1

r
B′

µ − (X − Y + rV ′)C′

r + (X − Y )
µ

r
C′

µ +

+
1

r
(X − Y + r2V ′′)C − (V ′ − rV ′′)µD̃

f4 = (rV ′ − Y )A′

r + Y (
µ

r
A′

µ +
B

r
)− V ′A−

−(3V ′ + rV ′′)(A+B + µC).

Let us note that the correlator of the form (34) with functionD̃ in-
stead ofD in the right hand side describes the correlator of the to-
tal magnetic field〈BiBj〉. The system of evolution equations with
nonzero mean field is not homogeneous, it contains a "source"term,
which is proportional toH2. However, the system with functioñD
is homogeneous, but the term withH2 arises in boundary condi-
tions.

From Eq. (40) one can obtain evolution equations:

1

2

∂A

∂t
= µ∂rf1 +

1− µ2

r
∂µf1 + ∂rf4 +

f4
r

(42)

1

2

∂B

∂t
= µ∂rf3 +

1− µ2

r
∂tf3 − 2µ

f3
r

− ∂rf4 +
µ

r
∂µf4 +

f4
r

1

2

∂C

∂t
=

1

2

(

−∂rf1 +
µ

r
∂µf1 + µ∂rf2 +

1− µ2

r
∂µf2 − µ

f2
r

−

−∂rf3 −
1

r
∂µf4

)

1

2

∂D

∂t
= −

(1

r
∂µf1 + ∂rf2 +

f2
r

)

.

We restrict ourselves to search for stationary solutions. In this case,
the time derivatives are equal to zero, and the system (42) can
be solved exactly. Its solution depends on one arbitrary function
g(r, µ)

f1 = −g′r (43)

f2 =
1

r
g′µ

f3 = g′r −
µ

r
g′µ − g

r

f4 = µg′r +
1− µ2

r
g′µ − µg

r
.

From Eq. (41) and (43), taking into account two relations (35),
we get six first-order equations for five unknown functions
A,B,C, D̃, g. The single boundary condition isA,B,C,D → 0
whenr → ∞ because the pair correlation function of magnetic
field fluctuations should vanish at large scales.

The system of six equations for five unknown functions seems
overdetermined and has no solutions at first glance. However, if
H ≫ 1 this system can be simplified considerably and allows the
analytical solution, which is given in section 4.4. In this limit case
the system is degenerate and is not overdetermined. This suggests
that the same would takes place in the general case.

3.4 Small mean fieldH

Because of the large complexity of equations in the anisotropic
case, we consider firstly a simpler problem, we assume that the
correlator〈bibj〉 is isotropic, i.e. it has the form (20) even in the
caseH 6= 0. This can be done in the case of small mean fieldH ,
because, as we will see below, ifH2 ≪ τcρiµinv

2
0 , the amplitude

of the fluctuationsb0 ∼ H1/2 is greater thanH .
To get isotropic equations we have to replace

hihj =⇒ 1

3
δij .

Evolution equation becomes

1

2τc

∂Q(r)

∂t
=

(

V (0)− V (r) + λ+
2a

τc

H2

3

)

(Q′′ +
4Q′

r
)−

− V ′Q′ − 1

r
(4V ′ + rV ′′)(Q+

1

6
H2),

(44)

where as before

λ =
2a

τc
(2Q(0) +

2

3
rQ′(r)|r→0). (45)

WhenH = 0 Eq. (44) turns into Eq. (33).
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4 THE SOLUTION OF EQUATIONS

4.1 Preliminaries

Let us reduce our equation to dimensionless one. Before
that we denote the rms velocity of the neutral gas byv0,
v20 = 〈vi(x)vi(x)〉 = 6V (0), and the rms amplitude of the mag-
netic field fluctuations byb0, b20 = 〈bi(x)bi(x)〉. The correlation
time of the velocity field assumed to be equal toτc = τmax =
L0/v0. That is the eddy turnover time at scaleL0. For length unit
we take the size of the molecular cloudL0, for unit of time we take
τmax, and for unit of magnetic field we take the value of

Bunit =
( τc
2a

V (0)
)1/2

=
(π

3
L0v0ρiµin

)1/2

.

In other words, we introduce new functions and variables

r(1) = r/L0; t(1) = t/τmax;

V (1)(r) = V (r)/V (0); Q(1)(r) = Q(r)/
( τc
2a

V (0)
)

.
(46)

Thus, we reduce Eq. (44) to the form (below we omit super-
script (1))

3
∂Q(r)

∂t
=

(

V (0) − V (r) + λ+
1

3
H2

)

(Q′′ +
4Q′

r
)−

− V ′Q′ − 1

r
(4V ′ + rV ′′)(Q+

1

6
H2).

(47)

whereλ = 2Q(0) + 2
3
rQ′(r)|r→0, andV (0) = 1. For typical

parameters of molecular clouds

Nn ≃ 103 cm−3; Ni ≃ 10−2 cm−3;

L0 ≃ 3 · 1018 cm; v0 ≃ 1 km/s; T ≃ 50K,
(48)

the unit of magnetic field is equal toBunit ≃ 200µG. But the
cloud parameters change in a wide range, so values ofBunit for
them can vary significantly.

Let us estimate the characteristic scales of our problem. The
inertial range of the turbulence is (in the dimensionless variables)

lν < r < 1, (49)

where lν = Re−3/4 = 10−6 is the viscous scale. Since in the
stationary case the magnetic field energy on one hand is less than
the kinetic energy of a neutral gas, but on the other hand is larger
than the kinetic energy of an ionized gas, then

10−6 ≃ ωmin

µin
= (τcµin)

−1 ≪ λ < (τcµni)
−1 =

ωmin

µni
≃ 10.

Therefore, we can considerlν ≪ λ1/α.
Let us examine the dimensionless equation (47). The parame-

terλ contains the value ofQ(0), so this equation is nonlinear. Let us
suppose that the initially magnetic field fluctuations are weak (and
the parameterλ is small). Then the term, which is proportional to
H2, makes the positive contribution to the value of∂Q/∂t, and
lead to the initial growth of the magnetic field. Further, this growth
will be stopped by nonlinear terms. So we restrict ourselveslook-
ing for stationary solutions only. Investigation of a stability of these
solutions, especially for anisotropic equations (41), (42), is beyond
the scope of our paper.

Since for the stationary solution the parameterλ does not de-
pend on time, we will initially consider it to be a constant, which
is not connected with the functionQ(r). The single restriction is
λ > 0, because of3λ = b20 (in dimensionless variables). Under
such approach the equation (47) becomes linear.

The similar linear equation arises in the problem of magnetic

H=1

H=0.1

H=0.01

10-5 10-4 0.001 0.01 0.1 1 10
10-5

10-4

0.001

0.01

0.1

1

r

Q
Hr
L

Figure 2. The preferential solutionQ(r) for different values of the mean
magnetic fieldH

dynamo in a turbulent conducting media. In this problem the pa-
rameterλ corresponds to the magnetic viscosity and is considered
to be known. The equation, coinciding with Eq. (47), was inves-
tigated in large number of papers beginning from the paper by
Kazantsev (1968), where the integral equation, similar to Eq. (29),
was derived. The brief literature review and necessary references
are given in the Discussion. In most of the papers the mean mag-
netic field was considered to be zero. In order to reveal the role of
the mean magnetic field we discuss separately casesH = 0 and
H 6= 0.

To resolve our equations we need to determine the function
V (r) which characterizes the motion of a neutral gas. The value of
L0 corresponds to the maximum scale of the turbulence. It means
that the correlation of gas velocities vanishes at the such scale. We
consider the velocity spectrum of a neutral gas to be the power law.
So, the correlation function of gas velocities is

V (r) =

{

1− rα, r < 1

0, r > 1.
(50)

Hereinafter we consider the Kolmogorov turbulence. In thiscase
velocity fluctuation on the scaler is v(r) ∼ r1/3 in the inertial
range, henceα = 2/3. On the viscous scalesr < lν velocity
fluctuations arev(r) ∼ r. Therefore the correlation function is
V (r) = 1−Cr2. Becauselν = 10−6 and we consider(lν)α ≪ λ,
then in this range the correlation function is approximately con-
stant,V (r) ≈ 1, and the sought correlation function of the mag-
netic field is,Q(r) ≈ Q(0), too. The exclusion is solutionQ(r)
which have singularity atr = 0. But we do not consider such solu-
tions (see below). Thus, the viscous range of scales does notaffect
the further analysis.

Let us note that in the Kazantsev-Kraichnan model the turbu-
lent velocity is assumed to beδ-correlated in time (9) with some
value of the correlation timeτc. Becauseτc characterizes the total
realization of the turbulent motion, it formally can not be afunction
of the scaler. However, many authors who apply the Kazantsev-
Kraichnan model to the problem of magnetic dynamo, in order to
approach the physical reality, considerτc to be a function of the
scale. They assumeτc to be equial to the turnover time at given
scale,τc(r) ∼ r/〈v2〉1/2r . In this caseV (r) ∼ r〈v2〉1/2r and
the Kolmogorov turbulence corresponds to the valueα = 4/3.
This assumption is justified by the comparison of theoretical re-
sults in the modelα = 4/3 with numerical simulations of forced
Navier–Stokes equation (Mason et al. 2011; Tobias,Cattaneo &
Boldyrev 2013).
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Figure 3. The dependence ofb0 onH. The dashed lineb0 = H is given
for orientation

From the theoretical point of view, Vainshtein & Kichatinov
(1986) and Boldyrev & Cattaneo (2004) state that we need to know
only the integral of the velocity correlation function overtime, that
is, the turbulent diffusivity, which in Kolmogorov turbulence scales
asr4/3.

In current paper we use the Kazantsev-Kraichnan model (9)
consideringτc = const(r).

4.2 The case with zero mean field

To begin with we consider the case of zero mean magnetic field.
We put∂Q/∂t = 0 andH = 0 in Eq. (47) and we obtain second
order equation for the functionQ(r)

(V (0) − V (r) + λ) (Q′′+
4Q′

r
)−V ′Q′− 1

r
(4V ′+rV ′′)Q = 0,

(51)
whereλ = 2Q(0) + 2

3
rQ′(r)|r→0. In this expression the term

rQ′(r) is essential only for solutions which have singularity atr =
0. The boundary condition isQ → 0 at r → ∞.

Eq. (51) has two independent solutions. Atr → 0 (lν ≪ r ≪
λ1/α) one can find the asymptotics of the solutions, and atr > 1
Eq. (51) can be solved exactly

r → 0 : Q1 ∼ 1; Q2 ∼ r−3 (52)

r > 1 : Q1 = 1; Q2 = r−3.

Now let us discuss the existence of the solution which is bounded
atr = 0 and is decreasing atr → ∞. At the same time we can con-
sider more general nonstationary equation, where we assumeλ to
be independent of time constant as before. Making the substitution

Q(r, t) =
Ψ(r)

r2
(m(r))1/2 e−Et, (53)

wherem(r)−1 = V (0) − V (r) + λ > 0, we get for the function
Ψ(r) the Shrödinger equation with the variable massm(r)

1

m(r)

d2Ψ

dr2
+ (E − U(r))Ψ = 0. (54)

The such substitution was firstly done by Kazantsev (1968). The
reduction to the Shrödinger equation was discussed in detail in
the paper by Schekochihin, Boldyrev & Kulsrud (2002). The sta-
tionary solution corresponds toE = 0, the negative values of
the energyE mean the exponential growth of the magnetic field.
For the chosen velocity correlatorV (r) (50) one can obtain the

0.001 0.01 0.1 1 10
0.001

0.005

0.010

0.050

0.100

H

l c
o

rr

Figure 4. The dependence of the correlation lengthlcorr onH

analytic expression for the potentialU(r). For α < 0.915 (that
includes the Kolmogorov turbulence) the potentialU(r) is posi-
tive everywhere. Hence there is no solutions exponentiallygrowing
with time. Eq. (51) also has no finite atr = 0 and vanishing at
r → ∞ solution. Consequently any solutionQ(r) has the same
power asymptotics (52) atr → 0 and atr → ∞. The solutionQ1

of the stationary equation, which is finite atr = 0, falls down at
r → ∞ not to zero, but to some positive value. We demandQ → 0
at r → ∞. Only the solutionQ2, which has singularity atr = 0,
satisfies this condition. This solution has the power law behavior
r−3 even at scalesr < lν , up to very small scales where the mag-
netic viscosity becomes important. Thus, there is no finite solutions
with the zero mean magnetic field for the Kolmogorov turbulence
(α = 2/3).

For α > 0.915 andλ < λmax(α) there exists the region
whereU(r) < 0. There appears the bound states, i.e. finite solu-
tions of the Shrödinger equation withE < 0. That means that the
magnetic field will grow up to the level whenλ = λmax.

4.3 Small mean fieldH

Now we look for stationary solutions of Eq. (47) with small but
nonzero mean magnetic field. This equation is inhomogeneousone,
and its partial solution is a constant,Q(r) = −H2/6. We introduce
the quantity

Q̃ = Q+
1

6
H2, (55)

denoteλ′ = λ + 1
3
H2, and obtain for theQ̃ exactly the homo-

geneous equation (51) with the replacementλ → λ′. In fact, the
quantity Q̃ is the correlation function of the total magnetic field
B = H+ b

〈Bi(x)Bj(x+ r)〉 = 〈bi(x)bj(x+ r)〉+ 1

3
H2δij . (56)

The last term is written in the form〈HiHj〉 = H2δij/3, because
in this subsection we assume correlators to be isotropic. Therefore,
the tensor structure of the correlator〈BiBj〉 coincides with (20). It
is possible to derive evolution equation directly for this correlator,
including the mean magnetic field, as was done by Boldyrev, Catta-
neo & Rosner (2005). However, the boundary conditions forQ̃ are
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dotted lines

different

2Q̃(0) +
2

3
rQ̃′|r→0 = λ′ (57)

Q̃ → 1

6
H2, r → ∞, (58)

because of the fluctuations correlator tends to zero at largedis-
tances, but the correlator〈HiHj〉 is independent on the distance
due to its homogeneity.

As was mentioned in the previous subsection, the solution of
the stationary equation (51), which is finite atr = 0, tends to
a positive constant atr → ∞. It is in accordance with the new
boundary condition (58). Now even forα = 2/3 there exists the
unique bounded solution, we will call it as the preferentialsolu-
tion. The value ofλ for them is defined by unique manner. Graphs
of this solution for three values of the mean magnetic fieldH = 1,
H = 0.1 andH = 0.01 are presented on the Fig. 2. These graphs
and all other numerical results are obtained for the Kolmogorov
turbulence,α = 2/3. Since

〈bi(x)bi(x)〉 = b20 = 3λ, (59)

we get the dependence ofb0 onH , which is presented on the Fig. 3.
For H < 1 the amplitude of the fluctuating magnetic fieldb0 ∼√
H. Thus, forH ≪ 1 we haveb0 ≫ H , i.e. the fluctuating field

dominates over the mean field.
Let us note that forH → 0 the amplitude of the magnetic

fluctuationsb0 for the preferential solution tends to zero also. For
H = 0 the preferential solution turns to the zero solution of equa-
tion without the mean field. It corresponds to the fact that for
H = 0 there are no bounded solutions vanishing at large scales.

For small values ofr, r ≪ 1, the asymptotic behavior of the
preferential solution isQ(r) ≃ Q(0)(1− rα/λ). In the k-space it
givesk2Q(k) ∼ k−5/3 for α = 2/3, i.e. the magnetic fluctua-
tions spectrum coincides with the spectrum of the hydrodynamic
turbulence of a neutral gas.

For the preferential solution one can also calculate the corre-
lation length of the fluctuating magnetic field, which we define by
the formula

lcorr =
1

b20

∫

∞

0

〈bi(0)bi(r)〉dr. (60)

The numerical results are shown on the Fig. 4. One may note that
lcorr ∼ H for small values ofH .

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
-0.2

-0.1

0.0

0.1

0.2

r

Figure 6. FunctionsC0(r)-thick line,A1(r)-thin,B1(r)-dashed lines

4.4 Large mean fieldH

For large mean field,H ≫ 1 (in dimensionless units), the corre-
lators of the fluctuating magnetic field can not be consideredas
isotropic. We need to solve the system of anisotropic equations
(35),(41) and (43). To reduce this system to dimensionless vari-
ables (46) one must change only the relations (39) for valuesX,Y :

X = D(0) +H2 = D̃(0)

Y (r) = −2A(0) + 2V (r)− 2V (0) + rV ′.

We assume the correlatorsA,B,C,D to be the order of unity, and
keep only terms ofH2 ≫ 1 order. The system of equations is sim-
plified significantly. The solution is described in detail inthe Ap-
pendix A. It turns out that this system of equations is not overdeter-
mined. The dependence of the correlation functions over theangle
θ is simple

A(r, µ) = A0(r) + A1(r)µ
2 (61)

B(r, µ) = B0(r) +B1(r)µ
2

C(r, µ) = C0(r)µ

D(r, µ) = D0(r) +D1(r)µ
2.

whereµ = cos θ. If we take the correlatorV (r) in the form (50),
as before, then we obtain a solution which is presented on Fig. 5, 6.
We see that the functionD1(r) is discontinuous atr = 1. It is
due to the break of the functionV (r) at r = 1, (50). If we choose
the correlatorV (r), which has the continuous derivative atr = 1,
then values ofA,B,C,D will be also continuous, and the function
D1(r) = 0 (see the Appendix A). The obtained solution in this case
is shown on the Fig. 7, 8. For small values ofr ≪ 1 the solution
include termsrα andr2. In thek-space they correspond to terms
k−11/3 andk−5 in Q(k).

5 DISCUSSION

The problem of the kinematic dynamo in a conducting medium
(hereinafter - DCM) is discussed widely. See, for example, pa-
pers: Schekochihin et al. (2002); Boldyrev & Cattaneo (2004); Ro-
gachevskii & Kleeorin (1997); Kleeorin & Rogachevskii (2012),
Schleicher et al. (2013) and references therein. Also the problem
of magnetic field generation in weakly ionized incompressible gas
was studied by Subramanian (1997). For analytical treatment the
model of Kazantsev-Kraichnan (Kazantsev 1968; Kraichnan 1968)
is usually used. At the initial stage of the magnetic field growth its
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influence on the medium motion is negligible. Therefore, ourprob-
lem and the problem of DCM are similar in many aspects. In the
problem of DCM the evolution equation for the magnetic field is

∂B

∂t
= ∇× (v ×B) + νm∆B, (62)

whereνm is the magnetic viscosity. Our Eq. (8) contains the ad-
ditional term, which is proportional toB3, due to the friction be-
tween neutral and ionized gases. The termνm∆B in our case is
much smaller than the termB3 because of high conductivity, and
we omit it. Thus, Eq. (62) and Eq. (8) differ by the last terms only.
So, evolution equations for the magnetic field correlators used in
papers cited above almost identical with our Eq. (33). Instead of
unknown parameterλ (45) (it is the averaged square of the ampli-
tude of magnetic field fluctuations) equations of DCM containthe
magnetic viscosityνm which is considered to be known. Equations
of DCM theory are linear, and the problem is to find solutions ex-
ponentially growing in time. The dependence of the largest growth
rate onνm is discussed in Kleeorin & Rogachevskii (2012), Schle-
icher et al. (2013). Our equation (8) and evolution equationfor cor-
relators (33) are nonlinear because the value ofλ is defined by the
solution. This nonlinearity stops the initial growth of magnetic fluc-
tuations. Therefore we are looking for stationary solutions only.

The main result of our paper is taking into account the
mean magnetic field, and derivation of evolution equations for
anisotropic correlators〈bb〉. In all mentioned papers magnetic field
correlators were suggested to be isotropic, as in section 3.4 of
current work. Rogachevskii & Kleeorin (1997) tried to take into
account a mean magnetic field. But when they derive the evo-
lution equation for pair correlators, they put mean field to zero.
Boldyrev et al. (2005) made no assumption of zero mean mag-
netic field. They considered the pair correlator of the totalmagnetic
field Q̃ ≃ 〈BB〉. Obtained evolution equation for̃Q coincides
with Eq. (33) of our paper forQ (see section 4.3). However, the
boundary conditions for̃Q are different. We consider the media is
uniform and the mean magnetic field is constant, so the correlator
〈H(0)H(r)〉 is independent ofr. At the same time, the correla-
tor of magnetic field fluctuations must vanish at large scales. So,
Q(r) → 0, but Q̃(r) → H2/6 at r → ∞. As we show in the
section 4.3, this difference is essential for existence of bounded so-
lutions.

In all mentioned papers the velocity correlation function was
assumed to beV (r) = 1−rα. In the model with scale-independent
correlation timeτc for the Kolmogorov turbulenceα = 2/3, and,
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Figure 8. FunctionsC0(r)-thick line,A1(r)-thin, B1(r)-dashed lines for
the smooth correlatorV (r)

as we show, there are no solutions exponentially growing in time,
see also Rogachevskii & Kleeorin (1997). Ifτc is supposed to be
a function of the scale, the Kolmogorov turbulence corresponds to
α = 4/3 and growing solutions of (33) appear. This is equivalent
to the appearance of solutions of stationary equation (51) bounded
at r = 0 and vanishing at large scales. In current work we demon-
strate that when mean field is taken into account, bounded solutions
do exist even in the model withα = 2/3.

6 CONCLUSION

We find the correlation function of fluctuating magnetic fieldwhen
the mean magnetic field equals zero,H = 0. For the Kolmogorov
turbulence the correlation function diverges asr−3 whenr → 0 up
to small resistive scales.

For the caseH 6= 0 the problem is solved in the approxima-
tion of isotropic correlators. It is shown that for each value of H
there exists the unique solution bounded atr = 0. WhenH < 1
the amplitude of the fluctuating fieldb0 turns out to be proportional
to the square root of the mean field,b0 ≃ H1/2. Therefore, for
H ≪ 1 correlators can be considered to be isotropic. However,
this solution exists only at the presence of the finite, even weak,
mean magnetic fieldH . At L ≪ L0 the magnetic field correla-
tor has the same form as that of the turbulent neutral gas velocity,
Q(r) = Q(0)(1 − rα/λ). In the k-space it corresponds to the
spectrumQ(k) ∼ k−11/3.

Also we derive exact anisotropic equations for the magnetic
field correlators at the presence of the mean magnetic field. We find
the analytic solution at the limit of large mean fieldH ≫ 1. The
anisotropic correlation function of the magnetic field contains the
dependence on the angleθ between the mean magnetic field and the
vectorr in the form ofcos θ, andcos2 θ only. The dependence of
the correlators onr atr < 1 is the sum of two power law functions,
rα andr2.
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APPENDIX A: LARGE MEAN FIELD

Here we describe in detail the solution of the system of anisotropic
equations (35),(41) and (43) in the case ofH ≫ 1.

Let us denotẽg = g/H2. We suppose that the correla-
torsA,B,C,D are of the order of unity and keep only terms of
H2 ≫ 1 order, and we get the system of equations

rA′

r − µA′

µ + rB′

r + rµC′

r + (1− µ2)C′

µ + 2B − µC = 0

A′

µ + rC′

r + rµD′

r + (1− µ2)D′

µ + 3C = 0

rµA′

r + (1− µ2)A′

µ − µB − C − rµ(3V ′ + rV ′′) = −rg̃′r

−rA′

r + µA′

µ +B +C′

µ − rD′

r + µD′

µ + rV ′ = g̃′t

B′

µ − rC′

r + µC′

µ + C − rµ(V ′ − rV ′′) = rg̃′r − tg̃′µ − g̃

rµg̃′r + (1− µ2)g̃′µ − µg̃ = 0. (A1)

From the last equation and the fact that the functiong̃ must be odd
with respect toµ it follows g̃ = 0. So we have five equations on
four functions. Let us note that only the derivatives of the function
D enters into the system (A1), and only in the second and in the
fourth equations. One can express the values ofD′

r, D′
µ

D′

µ = µrA′

r − (1 + µ2)A′

µ − µB − rC′

r − µC′

µ − 3C − µrV ′

rD′

r = −(1− µ2)rA′

r − µ3A′

µ + (1− µ2)B − µrC′

r +

+(1− µ2)C′

µ − 3µC + (1− µ2)rV ′. (A2)

Using the first and the third equations of the system (A1), expres-

sions (A2) can be simplified

D′

µ = −2A′

µ − rC′

r − µC′

µ − 2C + µr(2V ′ + rV ′′)

rD′

r = −2rA′

r − rB′

r −B − 2µrC′

r − µC + rV ′

+µ2r(2V ′ + rV ′′). (A3)

Using equations (A1), one can show that mixed derivatives ofD
calculated from (A3), are the same∂/∂µD′

r = ∂/∂rD′
µ. So the

functionD is correctly defined by Eq. (A3). Thus, we have three
equations for three functionsA,B,C,

rA′

r − µA′

µ + rB′

r + rµC′

r + (1− µ2)C′

µ + 2B − µC = 0

rµA′

r + (1− µ2)A′

µ − µB − C = rµ(3V ′ + rV ′′)

B′

µ − rC′

r + µC′

µ + C = rµ(V ′ − rV ′′). (A4)

One can solve this system and after that calculate the function D
using (A3). So the system (A1) is not overdetermined.

Since functionsA,B are even with respect toµ, butC is odd,
we are looking for the solution in the form

A(r, µ) = A0(r) + A1(r)µ
2 (A5)

B(r, µ) = B0(r) +B1(r)µ
2

C(r, µ) = C0(r)µ.

Substituting these relations into Eq. (A4) we get the sys-
tem of five ordinary differential equations for five functions
A0, B0, C0, A1, B1















β̂ β̂ + 2 1 0 0

0 0 β̂ − 2 β̂ − 2 β̂ + 2

β̂ −1 −1 2 0

0 0 0 β̂ − 2 −1

0 0 2− β̂ 0 2



























A0

B0

C0

A1

B1













=













0
0

r(3V ′ + rV ′′)
0

r(V ′ − rV ′′)













(A6)
Here we introduce the notation̂β = r∂r. The solution of such sys-
tem is the sum of the general solution of the homogeneous system
(with zero right hand side) and the partial solution of inhomoge-
neous system. We search for solution of the homogeneous system
as a power law function, since it is the eigen function of the opera-
tor β̂,

β̂rβ = βrβ.

Replacing the operator̂β by a number,̂β → β, we obtain the ho-
mogeneous system of linear algebraic equations. To have nonzero
solutions this system must be degenerate. Equating the determinant
of the matrix in the left hand side of Eq. (A6) to zero, we find the
eigen values ofβ,

β1 = 0; β2 = −3; β3,4 = 2; β5 = −5.

We find the solution of the system of linear algebraic equations with
these values ofβ and get the general solution of the homogeneous
system from Eq. (A6). If we take the neutral gas velocity correlator
V (r) in the form of a power law function, we can also find the
partial solution of the inhomogeneous system, and thereby solve
the system (A6) analytically. We assume, as before, the function
V (r) to be in the form (50) and we obtain the partial solution: zero
atr > 1 and the following vector atr < 1













A0

B0

C0

A1

B1













=
α

α+ 5













−α2+7α+9
α

α+ 6
−(α+ 3)

1
α− 2













rα
def
= ~F (α)rα. (A7)
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We denote the vector in the right hand side of (A7) as~F (α).
We are looking for the solution bounded atr = 0 and vanish-

ing atr = ∞. Therefore, atr < 1 we keep only two powersr0 and
r2; at r > 1 we keep powersr−3 andr−5. The solution, which is
continuous atr = 1, is

r < 1 :






























A0 = F1(α)r
α − (3c3 − 4c4)r

2 − c1

B0 = F2(α)r
α + (4c3 − 2c4)r

2

C0 = F3(α)r
α − 10c3r

2

A1 = F4(α)r
α − 5c4r

2

B1 = F5(α)r
α

r > 1 :






























A0 = 1/5c5r
−5 + c2r

−3

B0 = −c5r
−5 − 3c2r

−3

C0 = −2c5r
−5

A1 = −c5r
−5

B1 = 7c5r
−5

where

c1 = −13α+ 54

30
; c2 = − 4

15
α; c3 = − α

14
;

c4 =
α

35
; c5 =

α(α− 2)

7(α+ 5)
,

(A8)

and the vector~F (α) is defined in (A7).
Let us find the functionD(r, µ). Substituting Eq. (A5) into

Eq. (A3), we get

D(r, µ) = D0(r) +D1(r)µ
2,

where

2D1 = −4A1 − (β̂ + 3)C0 + r(2V ′ + rV ′′) (A9)

β̂D0 = −2β̂A0 − (β̂ + 1)B0 + rV ′.

The functionD0(r) is defined with accuracy up to a constant. We
choose this constant so thatD0(∞) = 0. The answer is

r < 1 :
{

D0 = α2+6α+7
α+5

rα − 5c4r
2 − 1

5
(4α+ 7)

D1 = − 3
2
αr2

r > 1 :
{

D0 = 2/5c5r
−5

D1 = 0

The graphs of the obtained solution forα = 2/3 are shown on
Fig. 5, 6. We see that the functionD1 is discontinuous atr = 1. It
is caused by the break of the functionV (r) at r = 1. To obtain a
continuous solution we take the velocity correlator in the form

V (r) =

{

1− V0r
α, r < 1

−V1r
γ , r > 1,

(A10)

where the powerγ < 0 is arbitrary, and constants are

V0 = − γ

α− γ
, V1 = − α

α− γ
(A11)

These constants are chosen for the functionsV (r) andV ′(r) to be

continuous atr = 1. We repeat the procedure described above, and
get the solution

r < 1 :


















































A0 = V0F1(α)r
α − c1

B0 = V0F2(α)r
α

C0 = V0F3(α)r
α

A1 = V0F4(α)r
α

B1 = V0F5(α)r
α

D0 = V0F6(α)r
α − 7

5

D1 = 0

r > 1 :


















































A0 = V1F1(γ)r
γ + 1/5c5r

−5

B0 = V1F2(γ)r
γ − c5r

−5

C0 = V1F3(γ)r
γ − 2c5r

−5

A1 = V1F4(γ)r
γ − c5r

−5

B1 = V1F5(γ)r
γ + 7c5r

−5

D0 = V1F6(γ)r
γ + 2/5c5r

−5

D1 = 0

where we added the functionF6(α) to functionsF1(α), ..F5(α)
defined in (A7),

F6(α) =
α2 + 6α+ 7

α+ 5
,

Now the constants are

c1 = −9

5
, c5 = − αγ

(α+ 5)(γ + 5)
. (A12)

For any value ofγ all correlators are continuous, and the function
D1 = 0. So, we can take any reasonable value ofγ, for example,
γ = −2. Graphs of such solution forα = 2/3 andγ = −2 are
shown on Fig. 7, 8.

c© 2013 RAS, MNRAS000, 1–??
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