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(Dated: May 2, 2022)

Abstract

In the simplest scenario for inflation, i. e. in the single-field inflation, it is presented an inflaton field with

properties equivalent to a generalized Chaplygin gas. Their study is performed using the Hamilton-Jacobi

approach to cosmology. The main results are contrasted with the measurements recently released by the

Planck data, combined with the WMAP large-angle polarization. If the measurements released by Planck

for the scalar spectral index together with its running are taken into account it is found a value for the

α-parameter associated to the generalized Chaplygin gas given by α = 0.2578± 0.0009.
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I. INTRODUCTION

The inflationary paradigm has been proposed as a good approach for solving most of the cos-

mological ”puzzles” [1]. Apart of solving these cosmological problems, inflation produces the seeds

that, in the course of the subsequent eras of radiation and matter dominance, developed into the

cosmic structures (galaxies and clusters thereof) that we observe today. In fact, the present pop-

ularity of the inflationary scenario is entirely due to its ability to generate a spectrum of density

perturbations which lead to structure formation in the universe. In essence, the conclusion that

all the observations of microwave background anisotropy performed so far support inflation, rests

on the consistency of the anisotropy with an almost Harrison-Zel’dovich power spectrum predicted

by most of the inflationary universe scenarios [2] and corroborated by the measurements recently

released by the Planck combined with the WMAP large-angle polarization[3].

The essential feature of any inflationary universe model proposed so far is the rapid (accelerated)

but finite period of expansion that the universe underwent at very early times in its evolution. The

implementation of the inflationary universe model rests on the introduction of a scalar inflaton

field, φ. The evolution of this field becomes governed by its scalar potential, V (φ), via the Klein-

Gordon equation. Thus, this equation of motion, together with the Friedmann equation, obtained

from Einstein general relativity theory, form the most simple set of field equations, which could be

applied to obtain inflationary solutions. But, in order to do this it is necessary to give an explicit

expression for the scalar inflaton potential V (φ). However, in simple cases result very complicated

to find solutions, even in the situation in which it is applied the so-called slow-roll approximation,

where the kinetics terms is much smaller than the potential energy, i.e. φ̇2 ≪ V (φ), together with

the approximation | φ̈ |≪ H | φ̇ |. This approach is usually refereed as the single-field inflation,

whose definition encompasses the type of models where the inflationary phase becomes described

by a single inflaton scalar field.

One way of finding inflationary solutions out of the slow-roll approximation is giving the func-

tional form of the Hubble parameter in term of the inflaton field, i.e. H(φ), the so called generating

fuction[4]. This approach presents some advantages when compared with the slow-roll approxi-

mation: first of all, the form of the potential is deduced, and secondly, since an exact solution

is obtained, then, application to the final period of inflation is possible. We should note that in

this period the kinetic term associated to the inflaton field in the Friedmann equation becomes

important. Certainly, this approach becomes necessary when studying the final stage of inflation,

i.e. during the reheating phase. This method, that we will consider here, is usually referred as the
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Hamilton-Jacobi scheme to cosmology[5–7].

In this paper we would like to study the consequences of considering an inflationary universe

model in which the inflaton field presents characteristic of a generalized Chaplygin gas[8–11], with

Equation of state

pφ = −Bρ−α
φ , (1)

where B is a positive constant and α a parameter that we call the generalizes Chaplygin gas

parameter, which will be considered to lie in the range 0 < α < 1, and pφ and ρφ are defined, as

usual, by expressions pφ ≡ 1
2 φ̇

2 − V (φ) and ρφ ≡ 1
2 φ̇

2 + V (φ), respectively. The usual Chaplygin

gas is obtained when the parameter α becomes equal to one. Because the range that we have set

for this parameter does not provide equality we will not include the possibility of considering the

usual Chaplygin gas in our analysis. Moreover, it is possible to extend our analysis to include

values of the parameter α which lie outside the range specified above, even by taking negative

values, but our results do not change much. For simplicity, we shall restrict ourselves to considerer

this parameter to lie in the range that we have specified above.

The sort of matter related to the usual Chaplygin gas, and its generalizations, have been ex-

tensively studied, and considered as one of the main matter components of the universe at present

time[12]. It has been established that this kind of component could be considered as the unification

of dark matter and dark energy[8]. On the other hand, the relation between a perfect fluid, which

can be related to a Chaplygin gas together with the corresponding scalar field models were con-

sidered in Refs[13–15]. The different parameters that enter into the model have been confronted

with the recent observational data coming out of gravitational lensing, the baryon acoustic oscil-

lation, the Cosmic Microwave Background Radiation from the Wilkinson Microwave Anisotropy

Probe (WMAP7) result[16], Gamma-ray bursts[17], power spectrum observational data[18], the

Constitution data set of type supernovae Ia cosmic probes, together with sample of cosmology-

independent long gamma-ray bursts calibrated using their Type I Fundamental Plane, as well as

the Union 2.1 set and observational Hubble parameter data[19], the combination of Chandra ob-

servations of the x-ray luminosity of galaxy clusters, together with independent measurements of

the baryonic matter density, the latest measurements of the Hubble parameter as given by the

HST Key Project, and data of the Supernova Cosmology Project[20]. Also, it was applied the the

statefinder parameters[21]. Furthermore, combinations of some of these measurements have been

made as well[22]. On the other hand, the generalized Chaplygin gas has been studied by consider-

ing non-adiabatic pressure perturbations, where it was found that there are no instabilities which
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have been found in previous adiabatic Chaplygin-gas models[23]. Also, a successful description was

obtained for generalized Chaplygin gas in thawing models[24].

One of the interesting features of the generalize Chaplygin gas is the connection that it has with

string theory. Effectively, it can be obtained from the Nambu-Goto action for a D-brane moving

in a (D+1,1)-dimensional spacetime in the light cone parametrization[25]. This open a window for

applying this sort of theory at early time in the evolution of the universe. The idea of taking an

early phase of the universe in which the main component corresponds to a Chaplygin gas has been

considered in Ref. [26]. The tachyon-Chaplygin inflationary universe model was studied in Ref.

[27] under the slow-roll approximation.

The out line of this paper is as follows. We first describe exact solutions to inflationary universe

models within the framework of the so-called Hamilton-Jacobi approach to cosmology. This will

be carried out in section II. Then, in section III we apply this approach to the generalized Chap-

lygin gas inflationary universe model. In section IV we study the corresponding scalar and tensor

perturbations. Finally, we conclude our work in section V.

II. THE HAMILTON-JACOBI APPROACH TO INFLATION

The simplest model that describes inflationary universes in general relativity presents two main

ingredients: the flat FRW metric and the single inflaton scalar field, φ.

In the scheme of Hamilton-Jacobi approach the fundamental Equations of the model are de-

scribed by the Klein-Gordon Equation, which satisfies the inflaton scalar field and it given by

φ̈+ 3Hφ̇+ V ′(φ) = 0, (2)

where V ′ represents a derivative with respect to φ, and the Friedmann Equation given by

H2 =
8π

3m2
P l

[

1

2
φ̇2 + V (φ)

]

. (3)

Here, m2
P l = 1/G is the Planck mass.

It is not hard to see from Eqs. (2) and (3) that the following relationship is satisfied

φ̇ = −
(

m2
P l

4π

)

H ′, (4)

where H ′ represents a derivative with respect to φ. Since it is assumed that the generating function

H(φ) it is known, we can add that this latter relation allows us to obtain an explicit expression

for the inflaton field in terms of the cosmological time t in cases where it is possible to reverse the

expression of the scalar field, φ.

4



Also, it is not hard to see that it is found that

aH = −
(

m2
P l

4π

)

a′H ′, (5)

from which we get that

a(φ) = exp

{

− 4π

m2
P l

∫

H

H ′ dφ

}

, (6)

i.e. the scale factor a as a function of the inflaton field φ, and thus, assuming that we have the scalar

field as a function of time, then we can obtain the scale factor as a function of the cosmological

time.

The scalar potential V (φ) becomes given by

V (φ) =

(

3m2
P l

8π

)[

H2 − 3m2
P l

12π

(

H ′)2
]

. (7)

We should note that in the slow-roll approximation this potential becomes V (φ) ≃
(

3m2
P l

8π

)

H2

On the other hand, we see that the acceleration Equation for the scale factor results to be

ä

a
= H2 [1− ǫ

H
] , (8)

where the function ǫ
H

corresponds to

ǫ
H
≡ −d lnH

d ln a
=

(

m2
Pl

4π

)

(

H ′

H

)2

. (9)

From this latter expression we can see that this definition, called the first Hubble hierarchy pa-

rameter, gives information about the acceleration of the universe. During inflation this parameter

satisfies the bound ǫ
H

< 1, and inflation ends when ǫ
H

takes the value equal to one. In the next

section we will use this parameter for describing scalar and tensor perturbations.

One interesting quantity in characterizing inflationary universe models is the amount of inflation.

Usually, this quantity is defined by

N(t) ≡ ln
a (tend)

a(t)
, (10)

where a (tend) corresponds to the scale factor evaluated at the end of inflation. By considering

expressions (4) and (9) we write

N(φ) ≡
∫ tend

t

H dt =

(

4π

m2
Pl

)
∫ φ

φend

H

H ′ dφ =

∫ φ

φend

1

ǫ
H

H ′

H
dφ. (11)

Here, φend represent the value of the scalar field at the end of inflation. Its value is determined

by imposing that ǫ
H
(φend) = 1. We interpret the parameter N as the number of e-folding before

inflation ends.
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It seems to be more appropriated to describe the amount of inflation in terms of the comoving

Hubble length, 1/(aH) than in terms of the scale factor only. In this case the amount of inflation

becomes[28]

N = ln
a (tend) H (tend)

a(t)H(t)
, (12)

which results into

N(φ) =

∫ φ

φend

(

1

ǫ
H

− 1

)

H ′

H
dφ. (13)

Note that, in general, N(φ) is smaller that N(φ) and only in the slow-roll limit they coincide. In

the following, and for simplicity, we will restrict ourselves to consider the amount of inflation given

by N(φ).

In the description of inflation it is convenient to show that their solutions are independent

from their initial conditions. This ensure the true predictive power that presents any inflationary

universe model, otherwise the corresponding physical quantities associated with the inflationary

phase, such that the scalar or tensor spectra, would depend on these initial conditions. Thus,

with the purpose of being predictive, any inflationary model needs that their solutions present an

attractor behavior, in the sense that solutions with different initial conditions should tend to a

unique solution[29].

Let us start by considering a linear perturbation, δH(φ), around a given inflationary solution,

expressed by H0(φ). In the following we will refer to this quantity as the background solution, and

any quantity with the subscript zero is assumed to be evaluated taking into account the background

solution. Therefore, at first order on δH(φ), we get from the field Equations (2) and (3) that

δH ≃ 1

3

(

m2
Pl

4π

)

H ′

H

∣

∣

∣

∣

∣

0

δH ′, (14)

This latter expression can be solved for getting

δH(φ) = δH(φ
i
) exp

∫ φ

φ
i

(

3

ǫ
H

)

H ′

H

∣

∣

∣

∣

0

dφ, (15)

where φ
i
corresponds to some arbitrary initial value of φ. Since dφ and H ′ have opposite signs

(assuming that φ̇ does not change sign due to the perturbation δH) the linear perturbations tend

to vanish quickly[28].

In the following we want to apply this scheme to the case in which the inflaton field corresponds

to a generalized Chaplygin gas fluid whose equation of state is governed by expression (1).
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III. INFLATION à la CHAPLYGIN

In this section we describe the inflationary model by using a fluid which presents the properties

of a generalized Chaplygin gas, where the equation of state of this fluid corresponds to that specified

by equation (1). In order to do this we start by taking that the generating function, H(φ) is given

by

H(φ) = H0 cosh
1

1+α

[√

6π

m2
P l

(1 + α)(φ − φ0)

]

, (16)

where H0, the value of H when φ = φ0, is a constant given by H0 =

√

8π

3m2
P l

B
1

2(1+α) , with B

and α introduced previously in Eq. (1). For simplicity from now on we will use the following

dimensionless variable as the inflaton scalar field: Φ(φ) ≡
√

6π
m2

Pl

(φ− φ0).

In order to see that the expression above corresponds to a fluid which has an equation of state

related to a Chaplygin gas, we take into account that the pressure and the energy density are given

by

pφ =
3m2

P l

8π
H2

[

m2
P l

6π

(

H ′

H

)2

− 1

]

(17)

and

ρφ =
3m2

P l

8π
H2, (18)

respectively. Now, by using Eq. (16) into these two latter Equations we obtain that

pφ = −3m2
P l

8π
H2

0 cosh−
2α
1+α [(1 + α)Φ] (19)

and

ρφ = H2
0 cosh

2
1+α [(1 + α)Φ] , (20)

respectively. From Eq. (20) we get cosh [(1 + α)Φ] as a function of ρφ and then substituting into

Eq. (19) we obtain the Equation of state related to the generalized Chaplygin gas, as expressed

by Eq. (1). In this way, the generating function expressed by Eq. (16) corresponds effectively to

a generalized Chaplygin gas generating function.

From Eq. (4) together with Eq. (16) we get that

csc
1

1+α [(1 + α)Φ] 2F1

[

1

2(1 + α)
,

1

2(1 + α)
;
3 + 2α

2(1 + α)
;− csc2 [(1 + α)Φ]

]

= −

√

3m2
P l

8π
H0t, (21)
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where 2F1 [a, b; c; z] represents the hypergeometric function. This latter expression gives informa-

tion on how the inflaton field evolves with the cosmological time. In the same way we get that the

scale factor, a(t), results to be given by

a(φ) = ai

(

sinh [(1 + α)Φ]

sinh [(1 + α)Φi]

)
2
3

, (22)

where ai is the value of the scale factor when the inflaton field has the value φi, and Φi = Φ(φi).

In order to see that we have an inflationary period, we introduce the deceleration parameter q,

defined as q = − ä a

ȧ2
, which in terms of the Hubble parameter it becomes q =

(

m2
P l

4π

) (

H ′

H

)2

− 1,

which gives

q = −1 +
3

2
tanh2 [(1 + α)Φ] . (23)

We note that this quantity becomes negative for the values φ ≤ φ0 ±
1

1 + α

√

1

6π
arctanh

(

√

2

3

)

mP l. The equal sign corresponds to when the q parameter van-

ishes, i.e. when inflation ends. Figure 1 shows how the parameter q changes as a function of

the dimensionless field Φ. There, we have taken two different values of the parameter α. The

dot-dashed line corresponds to the value α = 0.2 and the continuous line to α = 0.8. These curves

show that the universe is accelerating, since the parameter q turns out to be negative, at least for

the values that we have considered here.

From expressions (7) together with Eq. (16) we obtain for the scalar potential

V (φ) = V0 cosh
− 2α

1+α [(1 + α)Φ]
(

1 + cosh2 [(1 + α)Φ]
)

, (24)

where V0 = 1
2B

1
1+α . In the slow-roll approximation, i.e. when φ̇2 ≪ V (φ) together with | φ̈ |≪|

dV (φ)/dφ |, the scalar potential reduces to

V
s−r

(φ) ≃ V0 cosh
2

1+α [(1 + α)Φ] . (25)

Figure 2 depicts the shape of the potential for the exact case, expressed by Eq. (24) as a function

of the dimensionless scalar field Φ. Here, we have plotted the potential for two values of the

parameter α. The dot-dashed and the solid lines correspond to α = 0.8 and α = 0.2, respectively.

One interesting quantity in characterizing inflationary universe models is the amount of inflation.

This quantity was introduced above (see Eq. (10)) and together with expression (22) we obtain

that

N(φ) =
2

3
ln

{

sinh [(1 + α)Φe]

sinh [(1 + α)Φ]

}

, (26)
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FIG. 1: The deceleration parameter q as a function of the dimensionless scalar field Φ ≡
√

6π

m
2
Pl

(φ − φ0).

Here we have taken the values for the generalized Chaplygin gas parameter α = 0.2 (dot-dashed line) and

α = 0.8 (solid line).

where Φe = Φ(φe), with φe representing the value of the inflaton field at the end of inflation. This

value is obtained by demanding that the first Hubble hierarchy parameter ǫ
H
becomes equal to one

at the end of inflation. This parameter becomes determined by considering its definition, Eq. (9),

together with expression (16)

ǫ
H
(φ) =

3

2
tanh2 [(1 + α)Φ] . (27)

Now, requiring that ǫ
H
(φe) = 1 we get that for the dimensionless scalar field

Φe =
1

1 + α
arctanh

(

√

2

3

)

, or equivalently, for the inflaton field, φe = φ0 ±

1
1+α

√

1
6π arctanh

(
√

2
3

)

mP l. Note that, as specified above, this value coincides with that ob-

tained when the parameter q gets vanished, i.e. when inflation ends.

To study the attractor behavior of the model we consider a linear perturbation, δH(φ), around

a given solution, just as was specified above. Thus, from Equations (15), (16) and (27) we get that

δH(φ) =

(

sinh [(1 + α)Φi]

sinh [(1 + α)Φ]

)
2

1+α

δH(φ
i
). (28)

Here, it is assumed that Φ ≥ Φi is satisfied, and thus, the ratio
sinh [(1 + α)Φi]

sinh [(1 + α)Φ]
decreases rapidly,

as the scalar field Φ increases. In this way, the linear perturbation tends to vanish rapidly. This
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FIG. 2: Plots of the scalar potentials, V (Φ), as a function of the dimensionless scalar field, Φ ≡
√

6π

m
2
Pl

(φ−
φ0). The solid line represents the scalar potential, expressed by Eq. (24) for the value α = 0.2. The dot-

dashed line represents the same potential, but for the value α = 0.8. The scalar potential V (Φ) is expressed

as a multiple of the constant V0 ≡ 1

2
B

1
1+α .

can be seen more clearly, since the factor accompanying to δH(φ
i
) is nothing but (a/ai)

− 3
1+α (see

expression (22)), which during inflation the quantity in this bracket increases at least 70 e-fold,

leaving δH(φ) very small.

IV. SCALAR AND TENSOR PERTURBATIONS

Quantum fluctuations are amplified during inflation. They are stretched to astrophysical scales

by the rapid expansion that universe presents at early time. In general terms any model of inflation

generate two types of perturbations, density perturbations (which come from quantum fluctuations

in the scalar field, together with the corresponding scalar metric perturbation[30, 31]), and relic

gravitational waves which are tensor metric fluctuations[32]. The former experience gravitational

instability and lead to structure formation[33], while the latter predicts a stochastic background

of relic gravitational waves which could influence the cosmic microwave background anisotropy via

the presence of polarization in it[34].

In order to describe these perturbations we need to introduce a series of parameters which are

known as the Hubble hierarchy parameters. We have already defined one of them, the so-called first
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Hubble hierarchy parameter, which is expressed by expression (27). The second Hubble hierarchy

parameter, η
H
, is defined by

η
H
≡ −d lnH ′

d ln a
=

m2
P l

4π

(

H ′′

H

)

, (29)

from which we get that for the generalized Chaplygin gas it becomes

η
H
=

3

4
(1 + 2α + cosh [2 (1 + α)Φ]) sech2 [(1 + α)Φ] . (30)

The third Hubble hierarchy parameter, ξ2
H

is defined by

ξ2
H
≡
(

m2
Pl

4π

)2
(

H ′′′ H ′

H2

)

, (31)

which results to be

ξ2
H
=

9

8

(

1− 2α− 4α2 +cosh [2 (1 + α)Φ])

× sech2 [(1 + α)Φ] tanh2 [(1 + α)Φ] (32)

The evolution equation for the Fourier modes of the scalar perturbations at some scale k,

corresponding to a comovil wave number, is governed by the following Equation[35]

d2uk
dη2

+

(

k2 − 1

z

d2z

dη2

)

uk = 0, (33)

where η represents the conformal time defined by η =
∫

1
a
dt and uk corresponds to the Fourier

transformed of the Mukanov variable, which is defined by u = zR, with z = a φ̇
H

and R represents

the gauge-invariant comovil curvature perturbation. This latter amount remains constant outside

the horizon, i.e. metric perturbations with wavelengths larger than the Hubble radius[36]. The

term 1
z
d2z
dη2

is usually refereed as the ”mass term”.

During inflation we have that k2 ≫ 1
z
d2z
dη2

, i.e. it is assumed that the physical mode has a

wavelength much smaller than the curvature scale. Eq. (33) presents a solution of the type

uk(η) ∼ e−ikη

(

1 +
Ak

η
+ ....

)

. (34)

Contrary, when k2 ≪ 1
z
d2z
dη2

, the physical modes present wavelengths much bigger than the curvature

scale. The term 1
z
d2z
dη2

it is found to be[37].

1

z

d2z

dη2
= 2a2H2

{

1 + ǫ
H
− 3

2
η
H
− 1

2
ǫ
H
η
H
+

1

2
η2
H
+

1

2H
ǫ̇
H
− 1

2H
η̇
H

}

, (35)

It is well known that Eq. (33) solves exactly when 1
z
d2z
dη2

is proportional to η−2, in which case

Eq. (33) reduces to a Bessel equation, where the solution becomes uk ∼
√
−kτHν(−kτ), with

11



Hν the Hankel function of first kind, and the parameter ν depends on the slow-roll parameter

ǫ via ν = 3/2 + ǫ/(1 − ǫ). This happens when the scale factor expands as a power law, i.e.

a(t) ∼ tp (p > 1). Here, it is obtained that ǫ
H

= η
H

= Constant[38]. Others solutions, far from

the slow-roll approximation, are described in Ref. [39]. In the generalized Chaplygin gas case this

issue becomes more subtle and needs to be worked numerically.

The power spectrum becomes defined in terms of the two point correlation function as

PR(k) =
k3

2π2
< R−→

k ′
R−→

k
> δ(

−→
k ′ +

−→
k ), (36)

which in terms of the uk and z it becomes

PR(k) =
k3

2π2

∣

∣

∣

uk
z

∣

∣

∣

2

. (37)

By solving equation (33) it is needed to impose boundary conditions to the solutions. Asymp-

totic conditions are usually consider to be the so-called Bunch-Davies vacuum state[40]

uk →







1√
2k
e−ikη as −kη −→ ∞,

Akz as −kη −→ 0.
(38)

This ensures that perturbations that are generated well inside the horizon, i.e. in the region where

k ≪ aH, the modes approach plane waves and those that are generated well outside the horizon,

i.e. in the region where k ≫ aH, are fixed.

The primordial curvature perturbation are given by[41, 42]

PR(k) =

(

H

|φ̇|

)2 ( H

2π

)2
∣

∣

∣

∣

∣

aH=k

. (39)

This perturbation is evaluated for aH = k, i.e. when a given mode crosses outside the horizon

during inflation. We should notice that the modes do not evolve outside the horizon, therefore,

they kept a fixed value after crossing the horizon during inflation. Certainly, this value coincides

with that amplitude when they cross back inside the horizon during a later epoch.

We can introduce the scalar spectral index ns defined by

ns − 1 ≡ d lnPR
d ln k

. (40)

It is not hard to see that this quantity becomes

ns − 1 = 2η
H
− 4 ǫ

H
. (41)

By using expression (16) we obtain that

ns − 1 =
3

2
(3 + 2α− cosh [2 (1 + α)Φ]) sech2 [(1 + α)Φ] . (42)
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It is not hard to see that ns gets the value equal to one when the dimensionless scalar field

becomes either too big, in which case the sech-factor becomes vanishes, or when it gets the value

Φns=1 =
1

2(1 + α)
arccosh(3+2α). The former case is unfeasible, since the inflaton field is bounded

from above, i.e. Φ ≤ Φe. We notice that the ratio between Φe and Φns=1 depends on the parameter

α, and since we have considered that this parameter is located in the range 0 < α < 1, we get that

this ratio gets an upper bound
(

Φe

Φns=1

)

< 1.0 (forα = 1) or
(

Φe

Φns=1

)

< 1.3 (forα = 0). Thus, we

see that they becomes closer each other when the parameter α gets closer to one. From this we see

that this model favors a model of inflation which does not present a Harrison-Zelddovic spectrum,

unless the parameter α gets the value equal to one. This result is in agreement with the conclusion

reached by Planck, which rules out exact scale invariance at over 5σ. As we shall see, by using the

data realized by Planck for the scalar spectral index, together with its running, will give a value

for the generalized Chaplygin parameter α of the order of 0.2.

Let us introduce the running scalar spectral index, nrun ≡ dns

d ln k
which results to be

nrun = 10 ǫ
H
η
H
− 8 ǫ2

H
− 2 ξ2

H
, (43)

that in our case it becomes

nrun =
9

4

(

5 + 18α+ 16α2 − 3 cosh2 [2 (1 + α)Φ]
)

×sech2 [(1 + α)Φ] tanh2 [(1 + α)Φ] . (44)

This quantity expressed in terms of the parameter ns becomes

nrun =
1

2

(4 + 3α − ns)

(2 + α)2
[

−10 + 4ns + 9α (1 + ns) + 8α2 (2 + ns)
]

. (45)

Therefore, we see that it is possible to obtain the value of the generalized Chaplygin gas parameter

α if we give the corresponding values of the parameters ns and nrun simultaneously. Given these

values, what results is a cubic equation for the parameter α. To do this, we shall take the data

realized by the Planck collaboration[3], which gives the following values for the scalar spectral index,

ns = 0.9603± 0.0073, and the running of the scalar spectral index, nrun = −0.0134± 0.0090. With

these data, together with Eq. (45), we find that the possible values for the generalized Chaplygin

gas parameter are α1 = −1.0249 ± 0.0074, α2 = −0.9916 ± 0.0048 and α3 = 0.2578 ± 0.0009.

Under the condition that this parameter should be positive we choose the parameter α3[22] as the

appropriate value to consider.

Besides the scalar curvature perturbations, transverse-traceless tensor perturbations can also be

generated from quantum fluctuations during inflation[33]. The tensor perturbations do not couple
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to matter and consequently they are only determined by the dynamics of the background metric.

The two independent polarizations evolve like minimally coupled massless fields with spectrum

PT =
16π

m2
Pl

(

H

2π

)2
∣

∣

∣

∣

∣

aH=k

. (46)

Equivalently to the scalar perturbations, it is possible to introduce the gravitational wave spectral

index n
T
defined by n

T
≡ d lnPT

d ln k
, which in our case it becomes n

T
= −2 ǫ

H
. At this point we can

introduce the tensor-to-scalar amplitude ratio r ≡ PT
PR

which becomes

r = 4 ǫ
H
. (47)

Thus, we obtain that

r = 6 tanh2 [(1 + α)Φ] . (48)

Note that, since Planck has established an upper bound on the tensor-to-scalar ratio at r < 0.11

(95% CL), expression (48) tells us that the value of the dimensionless scalar field is bounded from

above, i.e. Φ < 0.1326
(1+α) .

We may write a relationship between parameter r and the parameter ns, which results to be

r = 6

[

1 + α− (ns − 1)

2 + α

]

(49)

Figure 3 shows how changes r as a function of ns for two different values of the parameter α.

These values are α = 0.2 (solid line) and α = 0.8 (dashed line). Here, we have normalized the value

of the parameter r in such a way that it acquires a vanishing value when the parameter ns gets the

value one. This situation is confronted with recent data released by Planck, where marginalized

joint 68% and 95% Confident Level regions for Planck plus WMAP data for the model ΛCDM

plus r for instantaneous and general reionization were considered. From this and from what we got

above, we may say that a description of inflationary universe models in terms of a scalar inflaton

field with characteristic of a generalized Chaplygin gas could quite well accommodate the recently

data released by the Planck mission.

Finally, combining the expression for nT together with the expression for the r parameter we

get that r = −1
2 nT . This expression corresponds to the inflationary consistency condition[43].

However, this relation could be violated in some cases[44]. Furthermore, this consistency condition

is useful to understand how r is connected to the evolution of the scalar inflaton field. It is not

hard to show that the following relation holds

△φ

mP l

=
1

4
√
π

∫ N

0

√
r dN, (50)
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FIG. 3: This plot shows the parameter r as a function of the scalar spectral index ns for two values of the

constant α, i. e. α = 0.2 (solid line) and α = 0.8 (dashed line). The values of r have been normalized in

such a way that we have r = 0 when ns = 1.

relation known as the Lyth bound[45]. As a consequence this relation implies that an inflaton

variation of the order of the Planck mass is needed to produce r ≥ 0.01[3]. By using the expression

that we found for the r parameter, expressed by Eq. (48), and using the result for the number of

e-folds, N , expressed by Eq. (26), we get that

△φ

mP l

=
1

4

√

6

π
ln

[

e
3
2
N +

√
e3N + 1

1 +
√
2

]

. (51)

For instance, by taking some values of the number of e-folding we get that
△φ

mP l

≈ 31 and
△φ

mP l

≈ 36,

for N = 60 and N = 70, respectively.

V. CONCLUSIONS

We have considered an inflationary universe model in which the inflaton field is characterized

by an Equation of state corresponding to a generalized Chaplygin gas, i.e. pφ = − B

ραφ
, where α is

the generalized Chaplygin gas parameter, and was considered to lie in the range 0 ≤ α ≤ 1. In this

study it was described the kinematical evolution where the Hubble parameter was taken to be given
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by H(φ) = H0 cosh
1

1+α

[√

6π

m2
P l

(1 + α)(φ − φ0)

]

. Here, the scalar potential, the corresponding

number of e-folding and the attractor feature of the model were described. We should mention

here that the scalar potential related to the inflaton field results in such a way that it is possible

to reproduce a generalized Chaplygin gas, requiring that some specific initial conditions on the

inflaton field and its time derivative are chosen. Here, it was shown that this sort of potential

works quite well when this is contrasted with the measurement recently released by the Planck

data. This situation is the main motivation to study inflationary universe models with this kind

of scalar potential.

Then, we determined the scalar and tensor spectrum indices in term of ǫ
H

and η
H

parameters.

From these quantities we were able to write down explicit expressions for the running scalar spectral

index, nrun, and the tensor-to-scalar ratio, r, parameters.

The resulting contours in the r−ns plane were presented for two different values of the general-

ized Chaplygin gas parameter α = 0.2 and α = 0.8. In this plot we have confronted our results with

recent data released by Planck, where marginalized joint 68% and 95% Confident Level regions

for Planck plus WMAP data for the model ΛCDM plus r were used. Also, by using the values

released by Planck for the ns parameter and its running, nrun, was able to obtain a value for the

α parameter given by the value α = 0.2578 ± 0.0009.

In general terms, we have found that the tensor-to-scalar ratio can adequately accommodate

the currently available observational data for some values of the parameter α. In this context, it

seems that the model described here is appropriated for describing inflationary universe models.
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Phys. Rev. D 79, 124035 (2009); M. Bouhmadi-López, P. Frazão and A. B. Henriques, Phys. Rev. D

81, 063504 (2010).

[27] S. del Campo and R. Herrera, Phys. Lett. B, 660 282 (2008).

[28] A. R. Liddle, P. Parson and J. D. Barrow, Phys. Rev. D 50, 7222 (1994).

17

http://arxiv.org/abs/1303.5082


[29] D.S. Salopek and J.R. Bond, Phys. Rev. D 42, 3936 (1990).

[30] V.F. Mukhanov and G.V. Chibisov, JETP Lett. 33, 532 (1981).

[31] V.N. Lukash, Zh. Eksp. Teor. Fiz. (JETP) 79, 1601 (1980); S.W. Hawking, Phys. Lett. B 115, 295

(1982); A.A. Starobinsky, Phys. lett. B 117, 175 (1982).

[32] L.P. Grishchuk, Sov. Phys. JETP 40, 409 (1975); A.A. Starobinsky, JETP Lett. 30, 682 (1979); V.

Rubakov, M. Sazhin, and A. Veryaskin, Phys. Lett. B 115, 189 (1982); R. Fabbri and M.D. Pollock,

Phys. Lett. B 125, 445 (1983); L. Abbott and M. Wise, Nucl. Phys. B 244, 541 (1984).

[33] For a review see V. F. Mukhanov, H. Feldman, and R. H. Brandenberger, Phys. Rept. 215, 203 (1992).

See also V.N. Lukash, VIII Brazilian School of Cosmology and Gravitation II, edited by M. Novello.

(Editions Frontiers, Rio de Janeiro, Brazil, 1995).

[34] M. Kamionkowski, A. Kosowski and A. Stebbins, Phys. Rev. Lett. 78, 2058 (1997); L. Knox and Y.

Song, Phys. Rev. Lett. 89, 011303 (2002).

[35] G. B. Field and L. C. Shepley, Astrophys. Space. Sci. 1 , 309 (1968); V. N. Lukash, Sov. Phys. JETP 52,

807 (1980); Sov. Phys. JETP Lett. 31, 596 (1980); G. V. Chibisov and V. F. Mukanov, Mon. Not. R.

Astron. Soc. 200, 535 (1982); V.F. Mukanov, Sov. Phys. JEPT Lett. 41, 493 (1985); M. Sasaki, Prog.

Theor. Phys. 76, 1036 (1986); Sov. Phys. JETP 68, 1297 (1988); V.F. Mukanov, Fisical Foundations

of Cosmology (Cambridge University Press, Cambridge, 2005).

[36] J.M. Barneer, P.J. Steinhardt and M.S. Turner, Phys. Rev. D 28, 679 (1983).

[37] E. D. Stewart and D. H. Lyth, Phys. Lett. B 302, 171 (1993).

[38] D. H. Lyth and E. D. Stewart, Phys. Lett. B 274, 168 (1992).

[39] W.H. Kinney, Phys. Rev. D 56, 2002 (1997).

[40] Other initial conditions have been impossed, for instance coherent states. See S. Kundu, J. Cosmol.

Astropart. Phys. 1202 (2012) 005 for more details.

[41] A. Guth and S.-Y. Pi, Phys. Rev. Lett. 49, 1110 (1982); J.M. Bardeen, P.J. Steinhardt and M.S.

Turner, Phys. Rev. D 28 679 (1983).

[42] S. Hawking, Phys. Lett. B 115 295 (1982).

[43] E.W. Kolb and S.L. Vadas, Phys. Rev. D 50, 2479 (1994).

[44] L. Hui and W.H. Kinney, Phys. Rev. D 65, 103507 (2002).

[45] D. H. Lyth, Phys. Rev. Lett., 78, 1861 (1997).

18


	I Introduction
	II The Hamilton-Jacobi approach to inflation
	III Inflation  à la Chaplygin
	IV Scalar and tensor perturbations
	V conclusions
	 Acknowledgments
	 References

