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Abstract

We find an explicit renormalizable supersymmetric E6 model with all the ingre-
dients for being realistic. It consists of the Higgs sector 351′ + 351′ + 27 + 27, which
breaks E6 directly to the Standard Model gauge group. Three copies of 27 dimen-
sional representations then describe the matter sector, while an extra 27 + 27 pair is
needed to successfully split the Standard Model Higgs doublet from the heavy Higgs
triplet. We perform the analysis of the vacuum structure and the Yukawa sector of
this model, as well as compute contributions to proton decay. Also, we show why
some other simpler E6 models fail to be realistic at the renormalizable level.
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1 Introduction

In spite of the E6 group being introduced [1] quite soon after the first attempt of grand
unification [2], to our knowledge there exists no complete model in the literature so far.
With complete we mean not only the Yukawa sector, which has been studied occasionally
[3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13], but also the whole Higgs sector and symmetry breaking
(exceptions being the simplest renormalizable [14] or non-renormalizable [15] supersym-
metric case or the renormalizable non-supersymmetric example in [16, 7]), as well as the
determination of the Standard Model (SM) Higgs doublet, i.e. the doublet-triplet splitting.
This state of affairs is probably due to two reasons. The first one is the complexity of the
E6 group, which is a bit less familiar than the SU(N) [2] or SO(N) [17] structures that can
be easily generalized from simpler low dimensional cases. The second one is the lack of a
serious motivation. The fact that the quantum numbers of the fundamental 27-dimensional
representation can accommodate both the matter 16 and the Higgs 10 of SO(10) is nice in
principle, but not easy to make it useful and realistic. Not only that, but at least part of
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what one gains coming from SU(5) to SO(10), for example automatic R-parity conservation
in SO(10) [18, 19, 20] with 126 breaking rank [21, 22, 23], is lost when the same SO(10)
is embedded in E6. Also, the simplest supersymmetric model with the lowest dimensional
Higgs representations 27+27+78 can break at the renormalizable level only to SO(10) [14].
It is the purpose of this paper to fill this gap and present a fully realistic E6 grand unified
theory (GUT). In doing this we simplify our analysis by assuming renormalizability and
supersymmetry. Contrary to the approach in [24, 25], we will not consider the orthogonal
problem of supersymmetry breaking in our model.

The simplest realistic model we were able to find is made out of 351′ + 351′ + 27 + 27,
needed to break E6 →SU(3)×SU(2)×U(1), an extra 27 + 27 to achieve the doublet-triplet
splitting and so determine explicitly where the SM Higgs doublets live, and three copies
of the fundamental 27 for the matter sector. Although we will not present a complete
proof that this is really the minimal or simplest renormalizable version, we will give various
arguments for why some other representations like 78, 351 or extra 27’s in many cases
cannot do the same job.

This paper is an extended and detailed version of [26]. We will start first in section 2
with some general description of the E6 representations, maximal subgroups, and how to
construct invariants. In section 3 we will show why some examples cannot work, while in
section 4 we will present the minimal Higgs sector, and show the explicit solution which
spontaneously breaks the gauge group to the SM one. Section 5 will be devoted to the
doublet-triplet splitting and the need for an extra fundamental-antifundamental pair. Sec-
tion 6 will be devoted to the Yukawa sector, and its peculiarities: the matter fields consist
in SU(5) language of 3 generations of 10 + 5̄, 3 vector-like 5 + 5̄ pairs, which, after being
integrated out, lead to the needed flavor structure, and 3 pairs of SU(5) singlets. Section 7
is an analysis of the contributions to D = 5 proton decay in our model. We will conclude
in section 8 with a list of open problems and possible future projects. Three appendices
will give computational details on the issues of state identification, checks on the vacuum
solution and the doublet-triplet splitting.

Note on convention: for greater clarity, we color code the vacuum expectation values
according to their mass scale: red signifies a GUT mass scale, while blue signifies an
Electroweak scale.

2 All we need to know about E6

E6, similarly to the SU(N) groups, has two type of tensor indices: the fundamental or
upper index, and the anti-fundamental or lower index. They both run from 1 to 27, which
is the dimensionality of the fundamental and anti-fundamental representations. Tensors are
constructed with these indices, and extra constraints like simmetricity or antisymmetricity
can be further imposed to get irreducible representations. Finally, similarly to the case
of the completely antisymmetric SU(N) invariant Levi-Civita tensor ǫα1...αN

or ǫα1...αN ,
we have in E6 the 3-index completely symmetric invariant tensors dµνλ and dµνλ with
µ, ν, λ = 1 . . . 27.

The lowest dimensional (< 1000) nontrivial representations are [27]
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27µ . . . fundamental (1)

27µ . . . anti-fundamental (2)

78µν . . . adjoint (= (tA)µν78
A) (3)

351µν = −351νµ . . . two indices antisymmetric (4)

351µν = −351νµ . . . two indices antisymmetric (5)

351′µν = +351′νµ . . . two indices symmetric (dλµν351
′µν = 0) (6)

351′µν = +351′νµ . . . two indices symmetric (dλµν351′µν = 0) (7)

650µν . . . (650µµ = (tA)νµ650
µ
ν = 0) (8)

with tA the generators of the E6 algebra, with the adjoint indices A = 1 . . . 78 and the
fundamental indices µ, ν = 1 . . . 27. Note that our convention for labeling representations
exchanges 351 and 351, as well as 351′ and 351′ compared to [27]; in our convention,
the representations without bars contain fundamental (upper) indices, while the barred
representations contain antifundamental (lower) indices.

To get an explicit form for the invariant d-tensors, we can follow [28]. We organize the
fields in 27 according to their quantum numbers: we introduce three 3 × 3 matrices L,
M , N , which contain all the fields in 27 and which under the SU(3)C × SU(3)L × SU(3)R
maximal subgroup of E6 transform as

L ∼ (3, 3, 1), (9)

M ∼ (1, 3̄, 3), (10)

N ∼ (3̄, 1, 3̄). (11)

Then

1
6
dµνλ27

µ27ν27λ ≡ − detL+ detM − detN − tr(LMN). (12)

Note that the first and third terms on the right have a minus sign compared to [28]
due to the different embedding of the SU(3)L and SU(3)R parts of the maximal subgroup
SU(3)C × SU(3)L × SU(3)R. Our embedding conforms to the one in [27], which is more
useful from the physics point of view. Another difference from [28] is the factor 1

6
= 1

3!
in

front of dµνλ on the left, which is needed to ensure the normalization

dµλρd
λρν = 10δµ

ν (13)

claimed in [28]. The tensor dµνλ with all upper indices is taken to have the same numerical
values as the tensor dµνλ with lower indices.

With the above definition and normalization, the only nonzero values of the d-tensor
are either 1 or −1. Another important property of the d-tensor can be deduced from
equation (12): although d is symmetric in its indices, it gives zero as soon as two of the
three indices take the same value, similar to the completely antisymmetric tensors εα1...αN

.
With all this we can now see some explicit examples of models.
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3 Some simple unsuccessful examples

We assign the SM matter fields to three copies of the 27-dimensional representation. In
order to avoid possible issues with R-parity breaking nonzero vacuum expectation values
in the 16 of SO(10), we will enforce a Z2 parity, under which the matter 27’s are odd, while
all other ”Higgs” representations are even. In this and in the next section, we will consider
various Higgs sectors and assess, whether they enable a direct breaking of E6 to the SM
group SU(3)C × SU(2)L ×U(1)Y .

3.1 n27 × 27 + n27 × 27 + n78 × 78

Trying to build realistic renormalizable models just from the fundamental, antifundamental
and adjoint representations 27, 27 and 78, possibly in multiple copies, proves to be impos-
sible due to group-theoretic reasons alone. We shall describe these reasons below where we
label the number of copies of the representations 27, 27 and 78 in the model by n27, n27

and n78 respectively.
In order to break E6 to the SM gauge group, only SM singlets can acquire a nonzero vac-

uum expectation value (VEV). First note the SO(10) decompositions of the representations
under consideration:

27 = 16 + 10 + 1, (14)

27 = 16 + 10 + 1, (15)

78 = 45 + 16 + 16 + 1. (16)

Only the representations 1, 16, 16 and 45 of SO(10) contain SM singlets. The SM
singlets of 1, 16 and 16 are also SU(5) singlets, while the 45 contains both a 1 and a 24 of
SU(5). In total, the representation 27 contains 2 SM singlets, both of which are also SU(5)
singlets, while the 78 contains 5 singlets, 4 of which are SU(5) singlets and one is in a 24
of SU(5).

Taking n78 = 0, we are left only with SU(5) singlets in the 27’s and 27’s, so SU(5)
remains unbroken, regardless of the number of 27 and 27 copies. To break the SU(5) part
to the SM, we need a model with at least one 78, which acquires a nonzero VEV in the 24
of SU(5). We will show below that no 〈24〉 in a 78 can be nonzero, no matter how many
27, 27 and 78 copies in the renormalizable model, and thus SU(5) remains unbroken.

Consider first all types of invariants, which can be formed from the representations 27i,
27j and 78k. Besides the mass terms, we have the following cubic invariants:

27i × 27j × 27k, (17)

27i × 27j × 27k, (18)

27i × 78k × 27j, (19)

78i × 78j × 78k. (20)

The only relevant invariants are the last two, since they alone contain a 〈24〉 ⊂ 78. We
analyze which combinations of VEVs can form terms of these invariants.

The invariant (19) does not contain a term with the 〈24〉 of 78, since the 27 contains
only SU(5) singlets and 1× 24× 1 does not contain a singlet in the SU(5) language, so this
term cannot be present in the invariant.
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The cubic invariant (20) is antisymmetric in the 78-factors, so we need at least three
different 78 copies in the model in order for this invariant to be nonzero. Assuming n78 ≥ 3,
the 24’s can enter into the invariant in two possible factor combinations in the SU(5)
language: 1 × 24 × 24 and 24 × 24 × 24. But only symmetric products of the 24 form an
SU(5) invariant, while our case is antisymmetric due to the cubic 783 being antisymmetric.
Again, no terms containing any 〈24〉’s are present in the invariant.

Since no cubic invariants contain the 〈24〉’s, these VEVs only have their mass terms,
which force us to 〈24〉 = 0. Only SU(5) singlets can therefore acquire VEVs and SU(5)
remains unbroken. Note that the 〈24〉 as a part of 78 in E6 behaves differently from the 〈24〉
in SU(5). In SU(5), the 〈24〉 can acquire a VEV due to the existence of both the quadratic
and cubic invariants Tr 242 and Tr 243. In E6, it is the cubic term which is missing due to
the antisymmetry of 783: Tr 783 = 0.

This conclusion also applies to the special case n27 = n27 = n78 = 1 in the literature [14].
This renormalizable model breaks E6 to SO(10), which contains the invariant SU(5). Our
result shows that adding extra copies of representations to this model, while still at the
renormalizable level, will never allow breaking to the SM.

3.2 351 + 351 + n1 × 27 + n2 × 27

The representation 351 is a two index antisymmetric representation. It decomposes under
SO(10) as

351 = 10 + 16 + 16 + 45 + 120 + 144. (21)

From this we conclude that the 351 contains 5 SM singlets, 3 of which are SU(5) singlets
(in 16, 16 and 45 of SO(10)) and 2 are part of 24 under SU(5) (in 45 and 144 of SO(10)).

Although 351 forms a cubic invariant 3513, it is antisymmetric in the 351 factors. In the
simplest models with only one copy of the pair 351+ 351, the cubic invariants are trivially
zero. The renormalizable superpotential of the model 351+351 therefore contains only the
mass term 351× 351. The F -terms then give all VEVs to be zero and no breaking occurs.

Adding pairs of 27 + 27, we have the presence of invariants

27µ 27ν 351µν , (22)

27µ 27ν 351µν . (23)

Note that due to the antisymmetry of 351 and 351, these invariants are trivially zero if
we have just a single copy of 27 and 27.

Assume we have more than a single copy of 27 and 27 so that the invariants (22) and
(23) are nonzero. Since all VEVs in the 27 are SU(5) singlets, it is up to the two 24’s in
351 (and two in the 351) to break SU(5). But similarly to the models in section 3.1, the
24’s of 351 and 351 are again present only in the mass cross-term: the cubic invariants 3513

and 351
3
are trivially zero, while the invariants (22) and (23) do not contain the 24’s, since

the only term with a 24 in the invariant, written in SU(5) parts containing VEVs, could
be 1× 1× 24, which is not invariant under SU(5).

In models with 351 + 351 and an arbitrary number of 27’s and 27’s, the 24’s in the
351 + 351 never acquire VEVs and consequently SU(5) remains unbroken.
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3.3 351′ + 351′

The representation 351′ is a two index symmetric representation, with a cubic invariant
351′3 symmetric in its factors.

In contrast with the previous models, we cannot discount this model by simple group-
theoretic arguments alone. An explicit computation shows this model breaks E6 to the
Pati-Salam (PS) group SU(2)L×SU(2)R×SU(4)C. Since this result is a special case of our
proposed model, we postpone the discussion of this model until section 4.5.

4 A realistic Higgs sector

4.1 The model: 351′ + 351′ + 27 + 27

We find that the combination 351′ + 351′ + 27 + 27 forms a realistic Higgs sector, which
breaks E6 to the SM.

First, note the decomposition of the representation 351′ under SO(10):

351′ = 1 + 10 + 16 + 54 + 126 + 144. (24)

This representation contains 5 SM singlets, 3 of which are SU(5) singlets (in 1, 16 and 126
of SO(10)), and 2 are part of a 24 under SU(5) (in 54 and 144 of SO(10)). The Higgs sector
351′ + 351′ + 27 + 27 therefore contains 5 + 5 + 2 + 2 = 14 singlets in total. We list them
in Table 1.

Table 1: SM singlet VEVs in our Higgs sector.

label ⊆ PS ⊆ SU(5) ⊆ SO(10) ⊆ E6 label ⊆ PS ⊆ SU(5) ⊆ SO(10) ⊆ E6

c1 (1, 1, 1) 1 1 27 d1 (1, 1, 1) 1 1 27

c2 (1, 2, 4) 1 16 27 d2 (1, 2, 4) 1 16 27

e1 (1, 3, 10) 1 126 351′ f1 (1, 3, 10) 1 126 351′

e2 (1, 2, 4) 1 16 351′ f2 (1, 2, 4) 1 16 351′

e3 (1, 1, 1) 1 1 351′ f3 (1, 1, 1) 1 1 351′

e4 (1, 1, 1) 24 54 351′ f4 (1, 1, 1) 24 54 351′

e5 (1, 2, 4) 24 144 351′ f5 (1, 2, 4) 24 144 351′

Note that the c’s and d’s denote the VEVs in 27 and 27, as in [14], while the e’s and
f ’s denote the VEVs in 351′ and 351′, respectively. The VEVs 〈24〉 under SU(5) are e4, e5,
f4 and f5. All singlets have the standard Kähler normalization

〈27µ 27∗µ〉 = |c1|2 + |c2|2, (25)

〈27µ 27
∗µ〉 = |d1|2 + |d2|2, (26)

〈351′µν 351′∗µν〉 = |e1|2 + |e2|2 + |e3|2 + |e4|2 + |e5|2, (27)

〈351′µν 351′
∗µν〉 = |f1|2 + |f2|2 + |f3|2 + |f4|2 + |f5|2. (28)
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The most general renormalizable superpotential of the model can be written as

W = m351′ I351′×351′ +m27 I27×27

+ λ1 I351′3 + λ2 I351′3 + λ3 I272×351′ + λ4 I272×351′ + λ5 I273 + λ6 I273. (29)

Explicit computation yields the following expressions for the superpotential invariants:

I351′×351′ = 351′µν 351µν = e1f1 + e2f2 + e3f3 + e4f4 + e5f5, (30)

I27×27 = 27µ 27µ = c1d1 + c2d2, (31)

I351′3 = 351′µα 351′νβ 351′λγ dαβγdµνλ = 3
(
e3e4

2 + e1e5
2 −

√
2e2e4e5

)
, (32)

I
351′

3 = 351′µα 351′νβ 351′λγ dαβγ dµνλ = 3
(
f3f4

2 + f1f5
2 −

√
2f2f4f5

)
, (33)

I272×351′ = 351′µν 27µ 27ν = c2
2f1 +

√
2c1c2f2 + c1

2f3, (34)

I
27

2×351′ = 351′µν 27µ 27ν = d2
2e1 +

√
2d1d2e2 + d1

2e3, (35)

I273 = 27µ 27ν 27λ dµνλ = 0, (36)

I
27

3 = 27µ 27ν 27λ dµνλ = 0. (37)

Note that the invariants 273 and 27
3
are not trivially zero, they just do not contain any

terms with only SM singlets, which are relevant for the equations of motion. The zero result
can be easily understood under the decomposition SO(10) × U(1)′′ ⊂ E6: by noting that
the U(1)′′ quantum numbers of both singlets in 27 have the same sign, no triple product
of the two VEV singlets will yield a net U(1)′′ charge to be zero, which is a requirement
for the term to be present in the invariant. Alternatively, from the point of view of the
invariant d-tensor, since there are only 2 SM singlets in the 27, only components with two
same-value indices of the d-tensor contribute, but these are zero, as already mentioned in
section 2. Analogous considerations apply to the invariant 27

3
.

4.2 Equations of motion

Our model is supersymmetric, so the equation of motion consist of both F -terms and
D-terms. The F -terms are determined by the equations

0 =
∂W

∂ci
=

∂W

∂di
=

∂W

∂ej
=

∂W

∂fj
, (38)

with i = 1, 2 and j = 1, . . . , 5. The F terms give in total 14 holomorphic equations
containing 14 holomorphic variables. Since we have already written the superpotential W
explicitly in equations (29)-(37), the equations of motion can be trivially derived by the
reader.

The D-terms on the other hand, take the form

DA = (27†)µ (t̂A 27)µ + (27
†
)µ (t̂A 27)µ

+ (351′†)µν (t̂A 351′)µν + (351′
†
)µν (t̂A 351′)µν , (39)

with the representations 27, 27, 351′ and 351′ containing the 14 SM singlet VEVs. The
index A = 1, . . . , 78 is the E6 adjoint index and the t̂A is the action of the A-th algebra

8



generator on the states in a given representation. As per the usual tensor methods in group
theory, the actions of the A-th generator on different representations is

(t̂A 27)µ = (tA)µλ 27λ, (40)

(t̂A 27)µ = −(tA∗)µ
λ 27λ, (41)

(t̂A 351′)µν = (tA)µλ 351′λν + (tA)νλ 351′µλ, (42)

(t̂A 351′)µν = −(tA∗)µ
λ 351′λν − (tA∗)ν

λ 351′µλ, (43)

where the symbol (tA)µν denotes the components of the A-th generator as a 27×27 matrix,
and ∗ denotes complex conjugation.

Out of possible 78 D-terms, only 5 are non-trivial and they correspond exactly to the 5
SM singlets in the 78. The singlet generators are the following generators of the maximal
subgroup SU(3)C × SU(3)L × SU(3)R of E6: t8L, t

3
R, t

6
R, t

7
R and t8R. We therefore label the

nonzero D-terms accordingly: D8
L, D

3
R, D

6
R, D

7
R and D8

R. Furthermore, the combination
D8

L +
√
3D3

R + D8
R of the non-trivial D-terms is trivially zero, since this combinations of

generators corresponds to the SM hypercharge generator tY :

tY = t8L +
√
3t3R + t8R. (44)

The independent equations for the D-terms can be further simplified by taking their linear
combinations. The 4 independent D-term real constraints can be written as

DI ≡
√
3D8

L + 2D3
R = |c1|2 − |d1|2 + |e2|2 − |f2|2 + 2|e3|2 − 2|f3|2 − |e4|2 + |f4|2, (45)

DII ≡ − 2D3
R = |c2|2 − |d2|2 + |e2|2 − |f2|2 + 2|e1|2 − 2|f1|2 − |e5|2 + |f5|2, (46)

DIII ≡ D6
R + iD7

R = c1c2
∗ − d1

∗d2 +
√
2e1

∗e2 −
√
2f1f2

∗

+
√
2e2

∗e3 −
√
2f2f3

∗ + e4
∗e5 − f4f5

∗. (47)

The term DIII is complex, so it represents 2 real equations.

4.3 Symmetries and the general solving strategy

Before proceeding to solve the equations of motion, it is instructive to note two types of
symmetry they possess. These symmetries will have implications on the general strategy,
how to solve these equations.

1. Conjugation symmetry : the Higgs sector contains representations in complex conju-
gate pairs. This symmetry exchanges between the representation and its conjugate,
e.g. 27 ↔ 27 and 351′ ↔ 351′. But since the superpotential contains asymmetric in-
variants with respect to this symmetry (the cubic invariants for example), we also
have to exchange the parameters in front of the invariants. Explicitly, conjugation
symmetry can be written as

ci ↔ di, (48)

ei ↔ fi, (49)

λ1 ↔ λ2, (50)

λ3 ↔ λ4, (51)

λ5 ↔ λ6. (52)
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Under this symmetry operations, the superpotential W is invariant, so the F -terms
do not change, while the D-terms change according to DI 7→ −DI , DII 7→ −DII ,
DIII 7→ −DIII∗, so we get an equivalent set of equations of motion.

The exchange of parameters λ in front of invariants under conjugation of represen-
tations will have major consequences on our strategy of solving the equations of
motion. In the absence of this feature, we could start with an ansatz 〈351′〉 = 〈351′〉
and 〈27〉 = 〈27〉 (more specifically ci = di and ei = fi), which automatically solves
the D-terms, and then only the F -terms would remain. But due to the exchange
in λ’s, this ansatz leads to a consistent set of F -terms only if the VEVs vanish or
we make an exact fine-tuning λ1 = λ2 and λ3 = λ4. Since we would like to avoid
relations among parameters altogether, at least for symmetry breaking, we abandon
this route. The D-terms will have to be solved in a non-trivial way, which is not a

priori obvious, so we find the best strategy to first solve the F -terms, and only then
proceed to the D-terms.

2. Alignment symmetry : by examining the equations of motion, it is also possible to see
a symmetry under the exchanges

c1 ↔ c2, d1 ↔ d2, (53)

e1 ↔ e3, f1 ↔ f3, (54)

e4 ↔ e5, f4 ↔ f5. (55)

The superpotential W remains unchanged under these exchanges, since every single
invariant remains unchanged. Furthermore, the D-terms are exchanged according to
DI ↔ DII and DIII ↔ DIII∗. All equations of motion thus remain unchanged.

When performing the alignment symmetry operation, we are in fact exchanging the
two 5̄’s of SU(5) in the representation 27. By doing this, we are also changing the
way SO(10) and its subgroups (such as Pati-Salam) are embedded in E6, while still
containing the same SM group. To elucidate this argument further, consider the
E6 subgroup SU(2)′R defined by the generators t6R, t

7
R and t3R −

√
3t8R (these are all

SM singlets). This SU(2)′R is a subgroup of SU(3)R in E6, which rotates the second
and third component in the 3 of SU(3)R. The Standard Model generators, and even
SU(5) generators, commute with SU(2)′R rotations, therefore ensuring that the SU(2)′R
rotations do not change the embedding of either SU(5) or the SM into E6. But SU(2)

′
R

rotations do not commute with the standard SU(2)R in SU(3)R, so the embedding
of SU(2)R is changed. Since both Pati-Salam and SO(10) contain the SU(2)R, the
embedding of these two groups also changes.

4.4 The main branch of solutions

In accordance with the discussion on conjugation symmetry, we first start by solving the
F -terms obtained from the superpotential in equation (29). Since the superpotential is
renormalizable and its highest order terms are cubic, we get a holomorphic system of 14
quadratic polynomial equations containing 14 variables. The general strategy of solving
consists of finding equations with a variable only in a linear term, so that we can express
this variable from the equation in a unique way.

There are two main branches of solutions, which partly overlap. The first branch con-
forms to the assumptions c1, d1, e5, f5 6= 0, while the second branch assumes c2, d2, e4, f4 6= 0.
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The two branches are main branches in the sense that the assumptions of nonzero VEVs are
general, while zero VEVs would be considered a special kind of ansatz. The assumptions
of the two main branches are exchanged under alignment symmetry; this symmetry also
brings one main branch into the other, so we will limit our discussion to the first branch.

First, it is possible to express e1, f1, e3, f3 from the terms Ff1 , Fe1 , Ff3 and Fe3 ,
respectively. To proceed along the first branch, we then express e2 and f2 from Fd2 and
Fc2 respectively, where the assumptions c1, d1 6= 0 are needed, since c1 and d1 come into
the denominators of expressions. Next, we determine e4 and f4 from equations Fe2, Ff2 ,
respectively, where the assumption e5, f5 6= 0 is needed for the same reason. With this
procedure, solving the remaining F -terms also for d1 and f5, we get the analytic ansatz of
the first branch, which solves all the F -terms:

d1 =
m351′m27 − 2λ3λ4c2d2

2λ3λ4c1
, (56)

e1 = −
λ3c2

2 +
m2

351′ (m351′m27−2λ3λ4c2d2)2

108m2

27
λ2

1
λ2e52

m351′
, (57)

f1 = −λ4d2
2 + 3λ1e5

2

m351′
, (58)

e2 =
λ3c1 (m27λ4d2m

3
351′ − 2λ3λ

2
4c2d2

2m2
351′ − 54m2

27λ
2
1λ2c2e5

2)

27
√
2m351′m2

27λ
2
1λ2e52

, (59)

f2 =
2λ3c2 (λ4d2

2 + 3λ1e5
2)−m351′m27d2√

2m351′λ3c1
, (60)

e3 =
λ3c1

2
(
−m2

351′λ3λ2

4
d22

m2

27
λ2

1
λ2e52

− 27
)

27m351′
, (61)

f3 = −m2
351′m

2
27 − 4m351′λ3λ4c2d2m27 + 4λ2

3λ4c2
2 (λ4d2

2 + 3λ1e5
2)

4m351′λ2
3λ4c12

, (62)

e4 =
c2e5
c1

, (63)

f4 =
m351′λ3λ4c1d2
9m27λ1λ2e5

, (64)

f5 =
m351′(m351′m27 − 2λ3λ4c2d2)

18m27λ1λ2e5
. (65)

The VEVs c1, c2, d2 and e5 remain undetermined in the expressions of the ansatz and
we use them as variables for the remaining VEVs. They can be determined by solving the
D-term equations (45)-(47) with the above ansatz plugged-in. Obtaining all the possible
solutions in the branch would involve solving a very complicated system of non-holomorphic
polynomials; but a simple solution does exist, if we assume the ansatz c2 = d2 = 0: equation
DIII is then solved trivially, while equation DII determines e5. We get a specific solution
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c2 = 0, d2 = 0, (66)

e2 = 0, f2 = 0, (67)

e4 = 0, f4 = 0, (68)

d1 =
m351′m27

2λ3λ4c1
, (69)

e1 = − m351′

6λ
2/3
1 λ

1/3
2

, f1 = − m351′

6λ
1/3
1 λ

2/3
2

, (70)

e3 = −λ3c1
2/m351′ , f3 = −m351′m

2
27

4λ2
3λ4c12

, (71)

e5 =
m351′

3
√
2λ

2/3
1 λ

1/3
2

, f5 =
m351′

3
√
2λ

1/3
1 λ

2/3
2

. (72)

The term DI becomes a polynomial condition for |c1|2:

0 = |m351′ |4|m27|4 + 2|m351′ |4|m27|2|λ3|2|c1|2
− 8|m351′ |2|λ3|4|λ4|2|c1|6 − 16|λ3|6|λ4|2|c1|8. (73)

Note that the positive constant and negative coefficient in front of the highest power of |c1|
ensure, that this polynomial always has a positive solution for |c1|. The explicit form of c1
will not be needed.

We get the other main branch of solutions, if we perform the alignment symmetry
operation on the ansatz for the first main branch. We also get a specific solution to
the D-terms from the specific solution of the first branch by alignment symmetry; this
is equivalent to a 90◦ real rotation by SU(2)′R, which brings the second entry of the 3 of
SU(3)R to the third entry. There also exists a specific solution, which corresponds to a 45◦

SU(2)′R rotation: we get it by the alignment symmetric ansatz c1 = d1, c2 = d2, e1 = e3,
f1 = f3, e4 = e5, f4 = f5. This alignment symmetric solution has all VEVs nonzero and is
in the overlap of the two main branches.

The solutions in the main branches are in a sense equivalent, since choosing one or the
other essentially means choosing, which combination of the 5’s in the 27 is the Standard
Model 5.

To show that the specific solution really breaks to the SM, with no flat directions, we
explicitly compute the masses of the gauge bosons and of the SM singlets. Everything
checks out OK, with further details provided in Appendix B.

4.5 Discussion of alternative solutions

Beside the main branches, there are numerous other possible solutions to the equations of
motion, which we get by carefully avoiding the assumptions of the two main branches. But
it turns out all other solutions of the equations of motion do not break to the SM group,
so the above branches are the only solutions for a direct E6 breaking.

In fact, all but one of the alternative solutions leave SU(5) unbroken. The exception
is the solution with the ansazt 〈27〉 = 〈27〉 = 0: this case corresponds to the model with
breaking sector 351′+351′ in section 3.3. Due to the presence of the cubic invariants, this is
again an example of a model where the ansatz 〈351′〉 = 〈351′〉 is not valid and the D-terms
need to be solved nontrivially.
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Solving the F -terms in the case 〈27〉 = 〈27〉 = 0 is a simple matter:

c1 = 0, d1 = 0, (74)

c2 = 0, d2 = 0, (75)

e1 = −3λ2f5
2

m351′
, f1 = −3λ1e5

2

m351′
, (76)

e2 =
3
√
2λ2f4f5
m351′

, f2 =
3
√
2λ1e4e5
m351′

, (77)

e3 = −3λ2f4
2

m351′
, f3 = −3λ1e4

2

m351′
, (78)

m2
351′ = 18λ1λ2(e4f4 + e5f5). (79)

By explicit computation we discover 21 massless gauge bosons before even solving for the
D-terms. This scenario thus breaks to a Pati-Salam group, which is in general embedded
into E6 in a (possibly) non-canonical way. The canonical embedding is recovered by the
ansatz e5 = f5 = 0, which properly aligns the invariant Pati-Salam. In fact the only nonzero
VEVs are then e3, f3, e4 and f4, exactly the ones which are singlets under the canonical
Pati-Salam (see Table 1).

It was therefore the addition of the VEVs from 27+ 27, which enabled E6 to be broken
all the way to the SM.

5 Where are the MSSM Higgses?

The MSSM Higgses would be expected to reside in the breaking sector 27 + 27 + 351′ + 351′.
More specifically, they would need to reside at least partly in representations, which couple
to the fermionic pair 27iF 27jF , so they should be present in 27 and 351′. They cannot reside
in 27F , since there is no cubic term 273F due to matter parity.

The usual procedure would be to compute the mass matrices of the doublets (1, 2,+1
2
)

and antidoublets (1, 2,−1
2
) and perform a fine-tuning of Lagrangian parameters to get one

doublet mode massless; the soft supersymmetry-breaking terms would then enable this
mode to get an electroweak (EW) scale VEV. At the same time, we need to make sure the
fine-tuning still keeps the triplets (3, 1,−1

3
) and antitriplets (3, 1,+1

3
) heavy (of the order

of the GUT scale), since they mediate proton decay. This separation of scales is called
the doublet-triplet (DT) splitting problem. Although fine-tuning is not considered to be
aesthetically pleasing, it usually does the job.

But curiously, in our case, DT splitting cannot be performed: all vacua, which break
to the SM, have this inability, since making the doublet massless automatically does the
same to the triplet. Further computational details on the this DT splitting attempt in the
breaking sector are provided in Appendix C, as well as a list of possible reasons for failure.
The inability to perform DT splitting is disappointing, since it is only this usually trivial
hurdle which prevents the 27 + 27 + 351′ + 351′ model to be realistic.

The above DT problem can be cured by a reasonably simple action: we add an extra

pair 2̃7+ 2̃7 to the model. To simplify the analysis we will assume that these extra 2̃7+ 2̃7
couple only quadratically with the Higgs fields with large VEVs. In this way we are making
automatic the solution of the old equations of motion for vanishing VEVs of these new tilde
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fields. In addition, the mass matrices of the doublets and triplets in the tilde fields decouple
from the DT matrices of the breaking sector.

We thus get the following tilde-field superpotential needed for the doublet-triplet split-
ting:

WDT = m2̃7 2̃7 2̃7 + κ1 2̃7 2̃7 351′ + κ2 2̃7 2̃7 351′ + κ3 2̃7 2̃7 27 + κ4 2̃7 2̃7 27. (80)

The tilde sector contains 3 doublet/antidoublet and triplet/antitriplet pairs, so the mass
matrices will be 3× 3. For our labeling convention and list of the doublets and triplets in
the tilde representations, see Table 2. The mass matrices can be written as

M̃doublets =




m2̃7 −2κ3c1 − 3κ1
f4√
15

2κ3c2 − 3κ1
f5√
15

−2κ4d1 − 3κ2
e4√
15

m2̃7 0

2κ4d2 − 3κ2
e5√
15

0 m2̃7


 , (81)

M̃triplets =




m2̃7 −2κ3c1 + 2κ1
f4√
15

2κ3c2 + 2κ1
f5√
15

−2κ4d1 + 2κ2
e4√
15

m2̃7 0

2κ4d2 + 2κ2
e5√
15

0 m2̃7


 , (82)

where the mass terms are written as

(
D̃1 D̃2 D̃3

)
M̃doublets




D̃1

D̃2

D̃3


+

(
T̃1 T̃2 T̃3

)
M̃triplets




T̃ 1

T̃ 2

T̃ 3


 . (83)

Table 2: Labels of the doublets and triplets along with their locations in 2̃7 and 2̃7. The
corresponding EW-VEVs are also labeled.

doublet,triplet ⊂ SU(5) ⊂ SO(10) ⊂ E6 doublet VEV

D̃1, T̃1 5 10 2̃7 v1

D̃2, T̃2 5 10 2̃7 v2

D̃3, T̃3 5 16 2̃7 v3

D̃1, T̃ 1 5 10 2̃7 v̄1

D̃2, T̃ 2 5 10 2̃7 v̄2

D̃3, T̃ 3 5 16 2̃7 v̄3

A fine tuning among the new κ parameters will ensure DT splitting. If we plug the
vacuum solution into the mass matrices M̃doublets and M̃triplets, we get the following DT
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splitting conditions:

0 = m3
2̃7
− 1

30
m2̃7m

2
351′

κ1κ2

λ1λ2

− 2m2̃7m351′m27
κ3κ4

λ3λ4

, (84)

0 6= m3
2̃7
− 2

135
m2̃7m

2
351′

κ1κ2

λ1λ2

− 2m2̃7m351′m27
κ3κ4

λ3λ4

. (85)

These two conditions insure a massless doublet mode, but keep all triplet modes heavy.
Both can be simultaneously satisfied by a fine-tuning

κ1 ≈ 30 (m2
2̃7
λ3λ4 − 2m351′m27κ3κ4)

λ1λ2

m2
351′λ3λ4κ2

. (86)

The above fine-tuning of κ1 gives the following modes of doublets and antidoublets to
be massless:

D̃m=0 ∝
√
1/30 m2̃7m351′λ

−2/3
1 λ

−1/3
2 λ3λ4κ2

m2
2̃7
λ3λ4 − 2m351′m27κ3κ4

D̃1

+

√
2/15 m351′c1λ

−2/3
1 λ

−1/3
2 λ3λ4κ2κ3

m2
2̃7
λ3λ4 − 2m351′m27κ3κ4

D̃2 + D̃3, (87)

D̃m=0 ∝
√
30 m2̃7λ

2/3
1 λ

1/3
2

m351′κ2

D̃1 +

√
30 m27λ

2/3
1 λ

1/3
2 κ4

c1λ3λ4κ2

D̃2 + D̃3. (88)

Notice that the massless modes have components of all doublets and antidoublets

present: in particular, the Higgs is present in the components D̃1, D̃2 and D̃3 of 2̃7, so the
corresponding EW VEVs v1, v̄2 and v̄3 all become nonzero. The presence of these VEVs
will be important in the analysis of the Yukawa sector.

6 The Yukawa sector

Assuming a Z2 “matter parity”, which avoids potentially dangerous R-parity violating
terms, with

27F → −27F (89)

and with all other fields even, we can write down the most general Yukawa sector:

LYukawa –E6
= 1

2
27iF 27jF

(
Y ij
27 27 + Y ij

351
′ 351′ + Y ij

2̃7
2̃7
)
. (90)

Excluding the tilde part, our E6 Yukawa sector is completely analogous to the Yukawa
sector in the minimal renormalizable SO(10) model [29, 30]:

LYukawa –SO(10) =
1
2
16iF 16jF

(
Y ij
10 10 + Y ij

126
126
)
. (91)

Our 27 plays the role of the 16, and our 351′ plays the role of 126. Since 10 ⊂ 27 and
126 ⊂ 351′, our terms include the terms from the renormalizable SO(10) case, as well as

some additional terms like 16Fi 10
F
i (Y

27 16 + Y 351′ 144).

15



Notice, however, that the flavor-mixing mechanism in the two cases is completely dif-
ferent. In the renormalizable SO(10) we have the usual case of GUTs where the EW Higgs
is present in two representations: 10 and 126. Since the two generic matrices Y10 and Y126

cannot be diagonalized simultaneously, we get flavor mixing.
Flavor mixing in our model is more subtle. The MSSM Higgs doublets are present only

in 2̃7 (and 2̃7, which is not present in the Yukawa sector), but the representations 27 and
351′ of the breaking sector acquire GUT scale VEVs. Through these large SU(5) breaking
VEVs, they contribute to mix the 5̄ in 16 with the 5̄ in 10 of 27. Flavor mixing is therefore
not due to the presence of Higgs in two different representations at the EW scale, but
due to the different mixing of vector-like heavy pairs at the GUT scale. This situation is
analogous to [8], which we further elaborate on below.

The mass matrices are explicitly computed to be (we skip their hermitian conjugate
part)

uT (−v1)Y2̃7u
c +
(
dcT d′cT

)( v̄2Y2̃7 c2Y27 +
f5√
15
Y351

′

−v̄3Y2̃7 −c1Y27 +
f4√
15
Y351

′

)(
d

d′

)

+
(
eT e′T

)(−v̄2Y2̃7 c2Y27 − 3
2

f5√
15
Y351

′

v̄3Y2̃7 −c1Y27 − 3
2

f4√
15
Y351

′

)(
ec

e′c

)

+
(
νT ν ′T

)(v1Y2̃7 0 c2Y27 − 3
2

f5√
15
Y351

′

0 −v1Y2̃7 −c1Y27 − 3
2

f4√
15
Y351

′

)

νc

s

ν ′c




+
1

2

(
νcT sT ν ′cT

)



f1Y351
′

f2√
2
Y351

′ −v̄3Y2̃7
f2√
2
Y351

′ f3Y351
′ v̄2Y2̃7

−v̄3Y2̃7 v̄2Y2̃7 0






νc

s

ν ′c




+
1

2

(
νT ν ′T

)( ∆1Y351
′ 1√

2
∆2Y351

′

1√
2
∆2Y351

′ ∆3Y351
′

)(
ν

ν ′

)
. (92)

where the barred ∆̄ ∼ (1, 3,+1) and unbarred ∆ ∼ (1, 3,−1) weak triplets shown in Table 3
contribute to the type II seesaw.

Table 3: Labels for weak triplets (1, 3,±1) relevant for seesaw type II.

label E6 ⊇ SO(10) ⊇ SU(5) p.n. label E6 ⊇ SO(10) ⊇ SU(5) p.n.

∆1 351′ ⊇ 126 ⊇ 15 L L ∆1 351′ ⊇ 126 ⊇ 15 L̄ L̄

∆2 351′ ⊇ 144 ⊇ 15 L L′ ∆2 351′ ⊇ 144 ⊇ 15 L̄ L̄′

∆3 351′ ⊇ 54 ⊇ 15 L′L′ ∆3 351′ ⊇ 54 ⊇ 15 L̄′L̄′

∆4 351′ ⊇ 54 ⊇ 15 L′cL′c ∆4 351′ ⊇ 54 ⊇ 15 L̄′cL̄′c

The triplets get nonzero VEVs as usual: the superpotential terms are
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W
∣∣
triplets

=
(
∆1 ∆2 ∆3 ∆4

)



m351′ 0 0 6λ1e1

0 m351′ 0 −6λ1e2

0 0 m351′ 6λ1e3

6λ2f1 −6λ2f2 6λ2f3 m351′







∆1

∆2

∆3

∆4




+
(
∆1 ∆2 ∆3 ∆4

)



κ2v3
2

κ2

√
2v2v3

κ2v2
2

κ1v1
2




+
(
κ1v3

2 κ1

√
2v3v2 κ1v2

2 κ2v1
2
)



∆1

∆2

∆3

∆4


 . (93)

Integrating out the heavy triplets yields




∆1

∆2

∆3

∆4


 =




m351′ 0 0 6λ1e1

0 m351′ 0 −6λ1e2

0 0 m351′ 6λ1e3

6λ2f1 −6λ2f2 6λ2f3 m351′




−1


κ2v3
2

κ2

√
2v2v3

κ2v2
2

κ1v1
2


 . (94)

To get the light fermion mass matrices explicitly, we will integrate out the heavy vector-
like pairs following for example [31, 32]. Our matrices are of block form

M =

(
M1 A

M2 B

)
, (95)

where M1,2 are 3 × 3 matrices of order O(mW ) while A,B are 3 × 3 matrices of order
O(MGUT ). If we multiply from the left with

U =

(
Λ −ΛX

X†Λ Λ̄

)
, (96)

where

X = AB−1, (97)

Λ =
(
1 +XX†)−1/2

, (98)

Λ̄ =
(
1 +X†X

)−1/2
, (99)

with relations
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X†Λ = Λ̄X†, (100)

XΛ̄ = ΛX, (101)

we get

U M =

(
Λ(M1 −XM2) 0

X† ΛM1 + Λ̄M2 X† ΛA+ Λ̄B

)
=

(
O(mW ) 0

O(mW ) O(MGUT )

)
. (102)

Integrating out the heavy states in the lower right part, we are left in leading order of
mW/MGUT with the matrix for light states

M = Λ (M1 −XM2). (103)

For our solution with the ansatz

c2 = f2 = f4 = 0, (104)

and defining

X0 ≡
√

3

20

f5
c1

Y351
′Y −1

27 , (105)

the light fermion masses become

MT
D =

(
1 + (4/9)X0X

†
0

)−1/2

(v̄2 − (2/3)v̄3X0)Y2̃7, (106)

ME = −
(
1 +X0X

†
0

)−1/2

(v̄2 + v̄3X0)Y2̃7, (107)

MU = −v1Y2̃7, (108)

MN =
1

2

(
1 +X0X

†
0

)−1/2

×
(
∆1Y351

′ − ∆2√
2

(
X0Y351

′ + Y351
′XT

0

)
+∆3X0Y351

′XT
0

−v1
2

f1
Y2̃7Y

−1

351
′Y2̃7 −

v1
2

f3
X0Y2̃7Y

−1

351
′Y2̃7X

T
0

)
×
(
1 +X∗

0X
T
0

)−1/2
. (109)

Notice the combined contributions of both type I [33, 34, 35, 36, 37] (proportional to
v21) and type II [38, 39, 40, 41] (proportional to ∆1,2,3) seesaw in (109). As always, the
seesaw mechanism gives neutrino masses of the scale O(m2

W/MGUT ), which can be seen

from the factors
v2
1

f1
and

v2
1

f3
for type I contributions, while for type II contributions we have

∆i ∼ O(m2
W/MGUT ) from equation (94).

There is no type III [42] seesaw contribution: although there are (fermionic) weak
triplets (1, 3, 0) in the 351′, there is no 27F 2̃7 351′ term in the superpotential due to the
imposed R-parity; in the presence of R-parity for 27F , a type III seesaw contribution is
never possible, since there are no triplets (1, 3, 0) in the 27F .

The general observation on the fermion masses is the following: although the 27F intro-
duces an extra SM singlet (which is another right handed neutrino) and vector-like pairs
of quarks and leptons, the extra degrees of freedom are all massive (of the order of MGUT ).
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This means we recover the usual low-energy degrees of freedom from the MSSM. Also, the
16 and 10 of SO(10) in the 27F ’s mix, i.e. the light states do not live just in the 16.

The explicit fitting of these mass matrices to the experimental values of the masses and
mixings is complicated by the nonlinear way the various matrices enter into the equations.
This is typical for contributions from vector-like families. Although the full analysis is
beyond the scope of this paper, we note here that there are 3 Yukawa matrices involved.
The number of free parameters seems more than likely large enough to allow a successful
fit. We leave the full analysis for a future publication.

7 Proton decay

The D = 5 proton decay [43, 44, 45, 46] is mediated here3 by color triplets of the type
T ∼ (3, 1,−1

3
) and T ∼ (3̄, 1, 1

3
). All such triplets in our model have been identified in

Tables 2 and 5: there are 15 triplet/antitriplet pairs altogether, with 12 pairs coming from

the non-tilde fields 27, 27, 351′ and 351′, while 3 pairs are in the tilde fields 2̃7 and 2̃7.
Note that the triplets and antitriplets in 27iF do not mediate proton decay, since the Z2

matter parity forbids cubic vertices 273F .
The full superpotential of our model is

Wfull = m27 27 27 +m351′ 351
′ 351′ +m2̃7 2̃7 2̃7

+ λ1 351
′3 + λ2 351′

3
+ λ3 27

2 351′ + λ4 27
2
351′ + λ5 27

3 + λ6 27
3

+ κ1 2̃7
2 351′ + κ2 2̃7

2 351′ + κ3 2̃7
2 27 + κ4 2̃7

2 27

+ 1
2
Y ij
27 27iF 27jF 27 + 1

2
Y ij

351
′ 27

i
F 27jF 351′ + 1

2
Y ij

2̃7
27iF 27jF 2̃7. (110)

The relevant couplings for proton decay can be written in terms of SM irreducible
representations generically as

W
∣∣
proton

= TA (MT )
AB TB + C ijA

1 Qi Qj TA + C ijA
2 uc

i e
c
j TA

+ C
ijA

1 Qi Lj TA + C
′ijA
1 Qi L

′
j TA + C

ijA

2 dci u
c
j TA + C

′ijA
2 d′ci u

c
j TA, (111)

where i, j are generation indices andA,B = 1, . . . , 15 are indices over all the color triplets/antitriplets,

with sums over repeated indices; we define T12+A := T̃A and T 12+A := T̃A (with A = 1, 2, 3).
We suppress the SU(3)C and SU(2)L indices in our notation; the indices in the fields are
contracted with the epsilon tensors in the order the fields are written, with ε123 = ε12 = 1.

The triplet mass matrix MT has contributions from the following terms in equa-
tion (110): the mass terms m27, m351′ and m2̃7, the λ-terms and the κ-terms. The tilde
and non-tilde fields do not mix in the mass terms because the tilde fields have vanishing
VEVs, so MT has the block form

MT =

((
Mtriplets

)
12×12

0

0
(
M̃triplets

)
3×3

)
. (112)

3Although 351′ contains also triplets (3, 1,− 4

3
), it (as well as the 27’s) does not contain the antitriplets

(3̄, 1, 4
3
). These are part of 351′, which however does not couple to the MSSM matter supermultiplets.

19



The two matrices are

Mtriplets =



m27 −6c1λ5

√
2m

351′λ3
3
√

15λ
1/3
1

λ
2/3
2

−
√

8

5
c1λ3 0 0 0 0 0 0 0 0

− 3m27m351′λ6
c1λ3λ4

m27 0 0 −
√

2m27m351′√
5c1λ3

0 0 0 0 0 0 0
√

2m
351′λ4

3
√

15λ
2/3
1

λ
1/3
2

0 m27 0 0 −m27m351′√
2c1λ3

0 0 0 0 0 0

−
√

2m27m351′√
5c1λ3

0 0 m
351′ 0 0 0 0 0 −m

351′λ
1/3
1√

6λ
1/3
2

0 0

0 −
√

8

5
c1λ3 0 0 m

351′ 0 0 0 −m
351′λ

1/3
2

2
√

30λ
1/3
1

0 − 5m
351′λ

1/3
2

2
√

6λ
1/3
1

0

0 0 −
√
2c1λ3 0 0 m

351′ 0 0 0 0 0 0

0 0 0 0 0 0 m
351′ 0 −m

351′λ
1/3
2

2
√

2λ
1/3
1

0

√
5m

351′λ
1/3
2

6
√

2λ
1/3
1

0

0 0 0 0 0 0 0 m
351′ 0 −

√
5m

351′λ
1/3
1√

6λ
1/3
2

0 0

0 0 0 0 −m
351′λ

1/3
1

2
√

30λ
1/3
2

0 −m
351′λ

1/3
1

2
√

2λ
1/3
2

0 m
351′ 0 0 0

0 0 0 −m
351′λ

1/3
2√

6λ
1/3
1

0 0 0 −
√
5m

351′λ
1/3
2√

6λ
1/3
1

0 m
351′ 0 0

0 0 0 0 − 5m
351′λ

1/3
1

2
√

6λ
1/3
2

0

√
5m

351′λ
1/3
1

6
√

2λ
1/3
2

0 0 0 m
351′

2
√

5m
351′λ

1/3
1

3λ
1/3
2

0 0 0 0 0 0 0 0 0 0
2
√

5m
351′λ

1/3
2

3λ
1/3
1

m
351′




,

(113)

M̃triplets =




m2̃7 −2c1κ3 −2
√
10λ

2/3
1

λ
1/3
2 (2m27m351′κ3κ4−m2

2̃7
λ3λ4)√

3m
351′κ2λ3λ4

−m27m351′κ4

c1λ3λ4

m2̃7 0
√
2m

351′κ2

3
√
15λ

2/3
1

λ
1/3
2

0 m2̃7


 . (114)

These matrices can also be found in equations (143) and (82), but we have now plugged
in the solution (66)-(72) and the DT fine-tuning from (86). A reminder: the VEV c1 is
determined by the polynomial (73).

The terms with the C-coefficients come from the three Yukawa terms Y ij
27 , Y

ij

351
′ and Y ij

2̃7

in equation (110). The barred C coefficients come in pairs, e.g. C1 and C
′
1, since the light

state L̂ is a linear combination of L and L′, and similarly d̂c is a combination of dc and d′c.
The coefficients C are computed to be

2 C ijA
1 = −Y ij

27 δ
A
1 − Y ij

2̃7
δA1+12 +

1
2
√
10
Y ij

351
′ δ

A
5 − 1

2
√
6
Y ij

351
′ δ

A
7 − 1

2
√
3
Y ij

351
′ δ

A
12, (115)

2 C ijA
2 = −Y ij

27 δ
A
1 − Y ij

2̃7
δA1+12 +

1
2
√
10
Y ij

351
′ δ

A
5 − 1

2
√
6
Y ij

351
′ δ

A
7 +

2
2
√
3
Y ij

351
′ δ

A
12, (116)

2 C
ijA

1 = −Y ij
27 δ

A
2 − Y ij

2̃7
δA2+12 +

1
2
√
10
Y ij

351
′ δ

A
4 +

1
2
√
2
Y ij

351
′ δ

A
8, (117)

2C
′ijA
1 = Y ij

27 δ
A
3 + Y ij

2̃7
δA3+12 − 1

2
√
10
Y ij

351
′ δ

A
9 − 1

2
√
2
Y ij

351
′ δ

A
11, (118)

2 C
ijA

2 = −Y ij
27 δ

A
2 − Y ij

2̃7
δA2+12 +

1
2
√
10
Y ij

351
′ δ

A
4 − 1

2
√
2
Y ij

351
′ δ

A
8, (119)

2C
′ijA
2 = Y ij

27 δ
A
3 + Y ij

2̃7
δA3+12 − 1

2
√
10
Y ij

351
′ δ

A
9 +

1
2
√
2
Y ij

351
′ δ

A
11. (120)

Notice the different coefficients in front of δA12, a consequence of different Clebsch-
Gordan coefficients in Table 5.

Integrating out the triplets TA and antitriplets TA from the relevant terms, we obtain
(to lowest order in the operators)

W = −
(
C

ijA

1 Qi Lj + C
′ijA
1 Qi L

′
j + C

ijA

2 dci u
c
j + C

′ijA
2 d′ci u

c
j

)(
M̂−1

T

)
AB

(
CklB

1 Qk Ql + CklB
2 uc

k e
c
l

)
.

(121)

20



Note that we have written the inverse matrix M̂−1
T with a hat. A triplet mode and

an antitriplet mode are massless, which means the block Mtriplets cannot be inverted. The
massless modes correspond to the would-be Goldstone bosons in the Higgs mechanism;
these unphysical degrees of freedom can be rotated out of the Yukawa terms by a gauge
transformation, which is equivalent to plugging a zero for their field value. This is for-
mally equivalent to introducing a mass term for these modes, integrating them out, and
then pushing the introduced mass to infinity, so they decouple from the theory. A basis
independent ansatz for the computation of the inverse of the physical degrees of freedom,
while automatically decoupling the would-be Goldstone bosons, is

M̂−1
T = lim

M→∞

(
MAB +M fAeB

)−1
, (122)

where eA and fA are the components of right and left null eigenvectors of M, respectively.
They need not be normalized, since the normalization factors can be absorbed into M . In
our basis, we can take

eA =
3
√
2c1λ

2/3
1 λ

1/3
2

m351′
δA3 +

λ
1/3
1√
6λ

1/3
2

δA4 +
6c1

2λ
2/3
1 λ

1/3
2 λ3

m2
351′

δA6 +

√
5λ

1/3
1√

6λ
1/3
2

δA8 + δA10, (123)

fA =
3m27λ

1/3
1 λ

2/3
2√

2c1λ3λ4

δA3 +
λ
1/3
2√
6λ

1/3
1

δA4 +
3m2

27λ
1/3
1 λ

2/3
2

2c12λ2
3λ4

δA6 +

√
5λ

1/3
2√

6λ
1/3
1

δA8 + δA10. (124)

Although formally elegant, this method is hard to implement since it requires to first
explicitly invert a large matrix and only then take the limit M → ∞. An equivalent but
more explicit procedure would be to rotate the (N +1)-dimensional system of triplets into
the N -dimensional part orthogonal to the Nambu-Goldstone zero mode. Let the normalized
right and left Nambu-Goldstone eigenstates respectively be

e

|e| ≡
(√

1− α†α

α

)
,

f

|f | ≡
(√

1− ᾱ†ᾱ

ᾱ

)
, (125)

with the columns α = αa and ᾱ = ᾱa, a = 1, . . . , N .
The unitary (N + 1)× (N + 1) matrix

U(α) =

(√
1− α†α −α†

α 1− αα†

1+
√

1−α†α

)
(126)

then transforms the old basis
TA → UA

B(α)TB, (127)

where now TB = (T0, Ta) with T0 the would-be Nambu-Goldstone triplet. The TA are
analogously transformed by U(ᾱ). The choice of U represents just one simple possibility
of choosing the transformations matrix; it is not unique since we could have composed it
with an arbitrary rotation in the orthogonal complement of the zero mode (space of Ta’s).
Dropping the zero modes T0, T 0, equation (111) can now be written as

W
∣∣
proton

= Ta (U
T )aA(α) (MT )

AB UB
b(ᾱ) T b + Ta (U

T )aA(α)
(
C ijA

1 Qi Qj + C ijA
2 uc

i e
c
j

)

+
(
C

ijB

1 Qi Lj + C
′ijB
1 Qi L

′
j + C

ijB

2 dci u
c
j + C

′ijB
2 d′ci u

c
j

)
UB

b(ᾱ) T b. (128)
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Defining now a N ×N invertible matrix

(mT )
ab ≡ (UT )aA (α)(MT )

AB UB
b(ᾱ), (129)

we arrive to (121) with the inverse of the Mtriplets block given by

(
M̂−1

T

)
AB

= UA
a(ᾱ)

(
m−1

T

)
ab

(UT )bB(α). (130)

Finally, we have to project onto the light matter superfields. Remember that the 27F ’s
contain a vector-like pair of quarks and leptons in the 10 of SO(10). This 10 mixes with
the 16, so dc mixes with d′c and L mixes with L′. This is rotated to the basis of light and
heavy states with the help of the matrix U in equation (96). Generic particles q and q′ can
be decomposed into light and heavy states ql and qH , respectively, with

(
q q′

)
=
(
ql qH

)
U . (131)

This implies the following projections to the light states d̂c and L̂:

dci =
[
(1 + 4

9
X∗

0 X
T
0 )

−1/2
]
i
j d̂cj + . . . , (132)

d′ci =
[
2
3
XT

0 (1 + 4
9
X∗

0 X
T
0 )

−1/2
]
i
j d̂cj + . . . , (133)

Li =
[
(1 +X∗

0 X
T
0 )

−1/2
]
i
j L̂j + . . . , (134)

L′
i =

[
−XT

0 (1 +X∗
0 X

T
0 )

−1/2
]
i
j L̂j + . . . , (135)

where X0 is defined in equation (105).
Writing in terms of only light states (those at the scale mW ) and only for the lepton

and baryon number violating operators, we get the following low-energy effective operators
for D = 5 proton decay:

W
∣∣
proton

= −
[(
C

inA

1 − C
′imA

1 (XT
0 )m

n
)[
(1 +X∗

0X
T
0 )

−1/2
]
n
j (M̂−1

T )AB CklB
1

]
QiL̂jQkQl

−
[(
C

njA

2 + 2
3
C

′mjA

2 (XT
0 )m

n
)[
(1 + 4

9
X∗

0X
T
0 )

−1/2
]
n
i (M̂−1

T )AB CklB
2

]
d̂ciu

c
ju

c
ke

c
l .

(136)

In spite of the fact that the final expression is rather complicated, we can draw some
general conclusions and leave the numerical analysis in combination with the study of the
Yukawa part for a future publication.

• Since we are in E6 with several possible heavy thresholds, there is no necessary light
color triplet as in the minimal renormalizable SU(5) with low-scale supersymmetry
[47].

• Only some elements of the inverse matrix need to be small, similar to the SO(10)
case, which also has multiple triplet contributions. Notice that the triplets in 351′, 27

and 2̃7 do not couple to the matter fields, and neither do some triplets in 351′ (seen
from the C-coefficients).

• The final expressions are functions of a number of parameters: the masses, the λ
and κ parameters, as well as three Yukawa matrices. Since the constraints on these
parameters come from the fit to a smaller number of parameters of the SM Yukawas,
there will likely be some residual freedom in parameter space, which would allow for
proton decay supression.
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All these reasons make nucleon decay amplitude suppressions probable. Finally, if all this
fails, we can still use some version of a (moderately) split supersymmetric spectrum.

8 Conclusions

This paper represents a first attempt to write down and solve a realistic E6 model. We
concentrated on a supersymmetric and renormalizable case and found strong evidence that
such a model includes the fields 351′ + 351′ + 27 + 27 to spontaneously break E6 into the
SM, another pair of 27+27 for the MSSM Higgs fields, and three copies of matter 27’s. To
simplify the analysis we made two assumptions: an extra Z2 symmetry which automatically
preserves R-parity, and some vanishing couplings of the superfields that contain the MSSM
Higgses. Although the first assumption is probably unavoidable, the second may not be
needed.

We noticed some interesting features which are not usually encountered in theories with
lower groups:

• The existence of asymmetric solutions: although the D-terms are satisfied by the
natural solution |φi| = |φ̄i| with i going over all complex Higgs representations, the
F-terms are not, unless the same VEVs vanish or there are some fine-tuned relations
among the superpotential parameter. We avoided such an assumption, and found an
asymmetric solution |φi| 6= |φ̄i|.

• The minimal sector that breaks into the SM could not describe the MSSM Higgses in
spite of the fact that it contains fields with the right quantum numbers. The reason
is the impossibility of performing a realistic DT splitting.

• The automatic presence of 3 vector-like families, which makes the analysis of the
Yukawa sector nonlinear.

An obvious problem with this type of models is the Landau pole which occurs at a scale
Λ less than one order of magnitude above the GUT scale (the gauge beta function is -153
compared to -109 of the minimal SO(10) [21, 22, 23]). So even if we believe that for some
reason gravity will not produce higher dimensional operators suppressed by inverse powers
of MP lanck, a consistent perturbative treatment of our type of models should assume the
absence of operators suppressed by inverse powers of Λ as well. There is nothing we can
say in defense of this, except that well studied SO(10) models have similar problems.

There are several open questions, which are beyond the scope of this paper. First, it
would be interesting to check what happens if other terms in the light Higgs superpotential
are introduced, i.e. if the terms linear or cubic in ”tilde” fields appear. Second, since
the neutrino masses need a slightly lower see-saw scale than the GUT scale, the usual
approximate one-step supersymmetric unification [48, 49, 50, 51] may be at risk due to
large representations involved, and the knowledge of the mass spectrum may turn out to
be necessary. Third, more elegant solutions to the doublet-triplet splitting problem can be
looked for: both the missing VEV [52, 53] and the missing partner [54, 55, 56] however
seem to need the 650: a full minimization with this field should thus be performed. Fourth,
a thorough study of the E6 could be studied at the non-renormalizable level: in this case we
could consider an asymptotically free theory with 78+27+27 only in the Higgs sector. Fifth,
non-supersymmetric theories could be considered, where the Higgs sectors are typically
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more complicated, and intermediate states are mandatory. Finally, although we checked
some simple cases with 78, there are still some possibilities for the Higgs sector to consider,
for example 78+351+351 or 78+351′+351

′
. With the techniques described in this paper

all these and other issues can be attacked. We leave them for the future.
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A Detailed identification of various states

It is possible to refer to states in various E6 representations by using familiar labels of
particles. The fundamental 27 representation is 16 + 10 + 1 in SO(10) language, so we
denote the various SM irreducible representations in the following way:

• The 16 contains Q ∼ (3, 2,+1
6
), L ∼ (1, 2,−1

2
), uc ∼ (3, 1,−2

3
), dc ∼ (3, 1,+1

3
),

ec ∼ (1, 1, 1) and νc ∼ (1, 1, 0).

• The 10 contains L′c ∼ (1, 2,+1
2
), L′ ∼ (1, 2,−1

2
), d′c ∼ (3, 1,+1

3
) and d′ ∼ (3, 1,−1

3
).

These are vector-like pairs of leptons and quarks.

• The SO(10) singlet is labeled by s ∼ (1, 1, 0).

The conjugate representation of 27 contains exactly the conjugate SM representations
of the listed ones. We denote them by bars, so the particle content of 27 is labeled by Q̄,
L̄, d̄c, ūc, ēc, ν̄c, L̄′, L̄′c, d̄′c, d̄′ and s̄.

Similarly, we can use this particle notation also for other irreducible representations.
The representation 351′ is contained in the symmetric product of 27 × 27, so we label
the states with two successive labels of the 27, while suppressing manifest symmetricity
in our notation; to get the 351′ in the 27 × 27 matrix, we also have to project out the 27
with the d-tensor, but that does not change the rules of notation. Due to simplicity, we
also suppress any color or weak indices from our notation, but summation over them is
sometimes implicit.

As an example, consider the antitriplet (3, 1,+1
3
) contained in the product of two

(3, 2,+1
6
): we label it simply by QQ, but this written out explicitly would be εabcQ

biQcjεij,
where a, b, c = 1, 2, 3 are color indices, i, j = 1, 2 are weak indices and ε are the antisym-
metric tensors; note that the only remaining free index is the lower a, which indicates the
state is a 3 under SU(3)C . Another example is the antidoublet (1, 2,−1

2
) in Quc: explic-

itly, we actually mean Qai(uc)a + (uc)aQ
ai (note also the symmetricity), with the same

convention for the color and weak indices as before. Notice that we do not write (overall)
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normalization factors in particle notation; we use this notation only to identify the relevant
states (which is non-trivial in the case of 351′, since it is necessary to project out the 27),
while in explicit computations we always use properly normalized states, such that for the
doublet and triplets (see Table 5), we have

351′∗µν 351′µν + 351′
∗µν 351′µν =

11∑

i=1

(
|Di|2 + |Di|2

)
+

12∑

j=1

(
|Tj |2 + |T j |2

)
+ . . . . (137)

We list the labels and particle identifications for the relevant fields in various tables
below. The SM singlets are listed in Table 4, while the weak doublets and triplets relevant
for DT splitting are listed in Table 5. We write them out explicitly in particle notation only
in the unbarred representations, since the corresponding states in the conjugate represen-
tation would have the same form, but with ordinary letters substituted by barred letters.
Also, the list of weak triplets contributing to type II seesaw has already been presented in
Table 3.

Note that the states are part of distinct representations, so they need to be orthogonal.
This can be easily checked by the reader from particle notation (i.e. the different two-label
states are orthogonal basis vectors), but one should not forget about our convention of
suppression of indices; what looks like a single term at first glance may indeed be a sum of
multiple terms.

Table 4: Singlet labels and their identification in particle notation.

label E6 ⊇ SO(10) ⊇ SU(5) p.n. label E6 ⊇ SO(10) ⊇ SU(5) p.n.

c1 27 ⊇ 1 ⊇ 1 s d1 27 ⊇ 1 ⊇ 1 s̄

c2 27 ⊇ 16 ⊇ 1 νc d2 27 ⊇ 16 ⊇ 1 ν̄c

e1 351′ ⊇ 126 ⊇ 1 νcνc f1 351′ ⊇ 126 ⊇ 1 ν̄cν̄c

e2 351′ ⊇ 16 ⊇ 1 νcs f2 351′ ⊇ 16 ⊇ 1 ν̄cs̄

e3 351′ ⊇ 1 ⊇ 1 s s f3 351′ ⊇ 1 ⊇ 1 s̄ s̄

e4 351′ ⊇ 54 ⊇ 24 L′L′c − 2
3
d′cd′ f4 351′ ⊇ 54 ⊇ 24 L̄′L̄′c − 2

3
d̄′cd̄′

e5 351′ ⊇ 144 ⊇ 24 L L′c − 2
3
dc d′ f5 351′ ⊇ 144 ⊇ 24 L̄ L̄′c − 2

3
d̄c d̄′
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Table 5: Doublet and triplet labels and identification in particle notation.

label E6 ⊇ SO(10) ⊇ SU(5) label E6 ⊇ SO(10) ⊇ SU(5) doublet in p.n.
triplet in p.n.

D1, T1 27 ⊇ 10 ⊇ 5 D1, T 1 27 ⊇ 10 ⊇ 5 L′c

d′

D2, T 2 27 ⊇ 10 ⊇ 5 D2, T2 27 ⊇ 10 ⊇ 5 L′

d′c

D3, T 3 27 ⊇ 16 ⊇ 5 D3, T3 27 ⊇ 16 ⊇ 5 L
dc

D4, T4 351′ ⊇ 10 ⊇ 5 D4, T 4 351′ ⊇ 10 ⊇ 5 Qdc − Lec − 4L′cνc

QL− ucdc − 4d′s

D5, T 5 351′ ⊇ 10 ⊇ 5 D5, T5 351′ ⊇ 10 ⊇ 5 Quc − Lνc − 4L′s
ucec−dcνc+QQ−4d′cs

D6, T 6 351′ ⊇ 16 ⊇ 5 D6, T6 351′ ⊇ 16 ⊇ 5 −Ls
−dcs

D7, T 7 351′ ⊇ 126 ⊇ 5 D7, T7 351′ ⊇ 126 ⊇ 5 −Quc − 3Lνc

−ucec − 3dcνc −QQ

D8, T8 351′ ⊇ 126 ⊇ 45 D8, T 8 351′ ⊇ 126 ⊇ 45 Qdc + 3Lec

QL+ ucdc

D9, T9 351′ ⊇ 144 ⊇ 5 D9, T 9 351′ ⊇ 144 ⊇ 5 −Qd′c + 4L′cνc + L′ec

−QL′ + ucd′c + 4d′νc

D10, T 10 351′ ⊇ 144 ⊇ 5 D10, T10 351′ ⊇ 144 ⊇ 5 −L′νc

−d′cνc

D11, T11 351′ ⊇ 144 ⊇ 45 D11, T 11 351′ ⊇ 144 ⊇ 45 −dd′c − 3e′ec

−QL′ − ucd′c

T 12 351′ ⊇ 126 ⊇ 50 T12 351′ ⊇ 126 ⊇ 50 /
2ucec −QQ

B Details of the vacuum

We present here some details of the SM (supersymmetric) vacuum, obtained by the partic-
ular solution in equations (66)-(72).
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B.1 Gauge boson masses

The masses of the gauge bosons Aµ
a can be computed explicitly. The gauge boson mass

terms can be written as

Lmass = g2A a
µM

abAµ b, (138)

where g is the E6 gauge coupling constant, and the the mass-square matrix Mab is defined
as

Mab ≡ (t̂a27)†(t̂b27) + (t̂a27)†(t̂b27) + (t̂a351′)†(t̂b351′) + (t̂a351′)†(t̂b351′). (139)

The symbol t̂a denotes the action of the a-th generator on the representation. Knowing
the explicit form of the generators ta in the fundamental representation, and using E6

tensor methods, we can compute the matrix Mab explicitly, and determine the squares
of the gauge boson masses by diagonalization. The results for the specific solution with
c2 = d2 = e2 = f2 = e4 = f4 = 0 are given in Table 7. The nonzero VEVs of the solution
are not plugged in.

Notice that the SU(5) singlets in 45 and 1 of SO(10) mix among themselves, as do the
singlets in the 16 and 16 of SO(10). The SU(5) 10’s in the 45 and 16 do not mix, and neither
do the 10’s in the 45 and 16. Plugging f5 = e5 = 0, only the SU(5) singlets are nonzero,
so we get 24 massless gauge bosons, while the other bosons in SU(5) representations get
the same mass. The same thing happens if only the SO(10) singlets c1, d1, e3 and f3 are
nonzero: we get 45 massless gauge bosons, and the others’ masses get grouped according
to SO(10) representations.
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Table 7: Masses-squared of gauge bosons in SM representations using the ansatz
c2 = d2 = e2 = f2 = e4 = f4 = 0.

SO(10) ⊃ SU(5) ⊃ SM ⊃ (mass)2/g2

45 24 (8, 1, 0) 0

45 24 (1, 3, 0) 0

45 24 (1, 1, 0) 0

45 24 (3, 2,+5
6
) 5

6
|e5|2 + 5

6
|f5|2

(3, 2,−5
6
)

45 10 (3, 2,+1
6
) |e1|2 + |f1|2 + 1

2
|e5|2 + 1

2
|f5|2

10 (3, 2,−1
6
)

45 10 (3, 1,−2
3
) |e1|2 + |f1|2 + 1

2
|e5|2 + 1

2
|f5|2

10 (3, 1,+2
3
)

45 10 (1, 1,+1) |e1|2 + |f1|2 + 1
2
|e5|2 + 1

2
|f5|2

10 (1, 1,−1)

16 10 (3, 2,+1
6
) 1

2
|c1|2 + 1

2
|d1|2 + |e3|2 + |f3|2 + 5

6
|e5|2 + 5

6
|f5|2

16 10 (3, 2,−1
6
)

16 10 (3, 1,−2
3
) 1

2
|c1|2 + 1

2
|d1|2 + |e3|2 + |f3|2

16 10 (3, 1,+2
3
)

16 10 (1, 1,+1) 1
2
|c1|2 + 1

2
|c1|2 + |e3|2 + |f3|2

16 10 (1, 1,−1)

16 5 (3, 1,+1
3
) 1

2
|c1|2 + 1

2
|d1|2 + |e1|2 + |f1|2+

16 5 (3, 1,−1
3
) +|e3|2 + |f3|2 + 1

2
|e5|2 + 1

2
|f5|2

16 5 (1, 2,−1
2
) 1

2
|c1|2 + 1

2
|d1|2 + |e1|2 + |f1|2+

16 5 (1, 2,+1
2
) +|e3|2 + |f3|2 + 1

2
|e5|2 + 1

2
|f5|2

45
1

1
1

(1, 1, 0)
(1, 1, 0)

They mix:

2
3

(
(A+B)±

√
(A+B)2 − 15

4
AB

)
,

A ≡ 4|e1|2 + 4|f1|2 + |e5|2 + |f5|2
B ≡ 4|e3|2 + 4|f3|2 + |c1|2 + |d1|2

16
16

1
1

(1, 1, 0)
(1, 1, 0)

They mix:

1
2

(
(C +D)±

√
(C −D)2 + 16|E|2

)
,

C ≡ |c1|2 + 2|f1|2 + 2|e3|2 + |e5|2
D ≡ |d1|2 + 2|e1|2 + 2|f3|2 + |f5|2
E ≡ e1e3

∗ + f1
∗f3
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B.2 No flat directions check

In order to check that our solution is an isolated point and that there are no flat directions
in the F -terms, we check the mass matrix of the SM VEV-acquiring singlets in our model.
The relevant singlets live in the representations 27, 27, 351′ and 351′ of the Higgs sector.
We label the singlets by sx, where x is the label of the VEV; our singlets are therefore sci,
sdi , sej and sfj , where i = 1, 2 and j = 1, . . . , 5.

The mass term can be written as

1

2

(
sdi sci sfj sej

)
Msinglets




sci
sdi
sej
sfj


 , (140)

where Msinglets is the matrix




m27 0 2λ4e3
√
2λ4e2 0

√
2λ4d2 2λ4d1 0 0 0 0 0 0 0

0 m27

√
2λ4e2 2λ4e1 2λ4d2

√
2λ4d1 0 0 0 0 0 0 0 0

2λ3f3
√
2λ3f2 m27 0 0 0 0 0 0 0

√
2λ3c2 2λ3c1 0 0√

2λ3f2 2λ3f1 0 m27 0 0 0 0 0 2λ3c2
√
2λ3c1 0 0 0

0 2λ3c2 0 0 m
351′ 0 0 0 0 0 0 0 0 6λ2f5√

2λ3c2
√
2λ3c1 0 0 0 m

351′ 0 0 0 0 0 0 −3
√
2λ2f5 −3

√
2λ2f4

2λ3c1 0 0 0 0 0 m
351′ 0 0 0 0 0 6λ2f4 0

0 0 0 0 0 0 0 m
351′ 0 0 −3

√
2λ2f5 6λ2f4 6λ2f3 −3

√
2λ2f2

0 0 0 0 0 0 0 0 m
351′ 6λ2f5 −3

√
2λ2f4 0 −3

√
2λ2f2 6λ2f1

0 0 0 2λ4d2 0 0 0 0 6λ1e5 m
351′ 0 0 0 0

0 0
√
2λ4d2

√
2λ4d1 0 0 0 −3

√
2λ1e5 −3

√
2λ1e4 0 m

351′ 0 0 0
0 0 2λ4d1 0 0 0 0 6λ1e4 0 0 0 m

351′ 0 0

0 0 0 0 0 −3
√
2λ1e5 6λ1e4 6λ1e3 −3

√
2λ1e2 0 0 0 m

351′ 0

0 0 0 0 6λ1e5 −3
√
2λ1e4 0 −3

√
2λ1e2 6λ1e1 0 0 0 0 m

351′




(141)

Plugging in the specific solution from equations (66)-(72), the matrix gets 4 massless modes.
Since the E6 → SM breaking also breaks 4 of the 5 SM singlet generators in the 78, we
expect that any solution of the equations of motion breaking to the SM will automatically
produce 4 massless singlet modes of scalars due to the Higgs mechanism. Any additional
massless modes would correspond to a flat direction of the superpotential around the specific
vacuum. Since there are no additional massless singlet modes, there are no flat directions
in our solution.

C The doublet-triplet splitting

Suppose we have a Higgs sector consisting of fields 351′ + 351′ + 27 + 27 and we want the
SM Higgs to live in both the 27 and 351′, similar to how the Higgs lives both in the 10 and
126 in the SO(10) model. The mass terms connecting doublets (1, 2,+1

2
) to antidoublets

(1, 2,−1
2
) and the triplets (3, 1,−1

3
) to antitriplets (3, 1,+1

3
) will come from the breaking

part of the superpotential in equation (29). The mass matrices of the doublets and triplets
in the fermionic 27iF are distinct and do not mix with the mass matrices in the breaking
sector due to Z2 matter parity.

The list of all the doublets and triplets, along with our label conventions, is already
compiled in Table 5. There are 11 doublet/antidoublet pairs and 12 triplet/antitriplet pairs
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in the breaking sector, so the doublet and triplet mass matrices are 11 × 11 and 12 × 12,
respectively.

Writing the doublet and triplet mass terms as

(
D1 · · · D11

)
Mdoublets




D1

...

D11


+

(
T1 · · · T12

)
Mtriplets




T 1

...

T 12


 , (142)

the mass matrices Mdoublets and Mtriplets can be compactly written as




m27 αλ3

f4√
15

−6λ5c1 αλ3

f5√
15

+6λ5c2 −
√

8

5
λ3c1 0 0 0 0

√
8

5
λ3c2 0 0 0

αλ4

e4√
15

−6λ6d1 m27 0 0 −
√

8

5
λ4d1 0 0 0 0 −

√
2λ4d2 0 0

αλ4

e5√
15

+6λ6d2 0 m27 0 −λ4

d2√
10

−
√
2λ4d1 −

√
3

2
λ4d2 0 0 0 0 0

−
√

8

5
λ4d1 0 0 m

351′ α
√

3

5
λ1e4 0 0 0 0 −α

√
3

2
λ1e5 0 0

0 −
√

8

5
λ3c1 −λ3

c2√
10

α
√

3

5
λ2f4 m

351′ 0 0 0 −α 1

4

√
3

5
λ2f5 0 −β 5

√
3

4
λ2f5 0

0 0 −
√
2λ3c1 0 0 m

351′ 0 0 α
√

3

2
λ2f4 0 β

√
15

2
λ2f4 0

0 0 −
√

3

2
λ3c2 0 0 0 m

351′ β
√
5λ2f4 −α 3

4
λ2f5 0 β

√
5

4
λ2f5 0

0 0 0 0 0 0 β
√
5λ1e4 m

351′ 0 −β
√

15

2
λ1e5 0 α

√
10λ1e4√

8

5
λ4d2 0 0 0 −α 1

4

√
3

5
λ1e5 α

√
3

2
λ1e4 −α 3

4
λ1e5 0 m

351′ 0 0 0

0 −
√
2λ3c2 0 −α

√
3

2
λ2f5 0 0 0 −β

√
15

2
λ2f5 0 m

351′ 0 0

0 0 0 0 −β 5
√

3

4
λ1e5 β

√
15

2
λ1e4 β

√
5

4
λ1e5 0 0 0 m

351′ α
√
10λ1e5

0 0 0 0 0 0 0 α
√
10λ2f4 0 0 α

√
10λ2f5 m

351′




.

(143)

For the triplet matrix take α = β = 2, while for the doublet matrix remove the last row
and column and take α = −3 and β = −

√
3.

Note the form of the above matrix Mij : for i, j = 1, 2, 3, the doublets and triplets come
from the pair 27 + 27, while indices i, j = 4, . . . , n refer to fields coming from the pair
351′ + 351′, where n = 11 and n = 12 for doublets and triplets, respectively. That means
the matrix has the block form

(
M3×3 M3×(n−3)

M(n−3)×3 M(n−3)×(n−3)

)
, (144)

where the blocks are in addition to the mass terms populated by the following invariants:

• Block M3×3 is populated by 272 × 〈27, 351′〉 and 27
2 × 〈27, 351′〉.

• Blocks M3×(n−3) and M(n−3)×3 are populated by 27×351′×〈27〉 and 27×351′×〈27〉.

• Block M(n−3)×(n−3) is populated by 351′2 × 〈351′〉 and 351′
2 × 〈351′〉.

Notice that ci and di are SU(5) singlets, so matrix entries with these VEVs for the doublets
and triplets are the same, since both come from the same SU(5) representation. The SU(5)
singlets e1, e2, e3 and f1, f2, f3 from 351′ and 351′ do not come into play, but the VEVs
e4, e5, f4, f5 do. The latter VEVs are 〈24〉 under SU(5), so the matrix entries containing
these VEVs differentiate between the doublets and triplets, as one would expect, so values
of α and β between doublets and triplets differ. The value for the α comes directly from
the VEV 〈24〉 ∝ diag(2, 2, 2,−3,−3) which couples 5’s to 5’s, while β has the unusual value
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−
√
3 for triplets. This is due to the fact that the β entries couple the doublets/triplets in

the 45 and 5 (or equivalently 45 and 5) of SU(5); the −
√
3 is due to the normalization of

the doublets and triplets in the representations 45 and 45.
Performing doublet-triplet splitting would involve a fine-tuning of parameters m351′ ,

m27 and λi, such that we get a massless doublet mode, while keeping all the triplets
heavy. Solving the equations of motion and plugging their solution into the mass matrices
(i.e. using equations (56)-(65)), we automatically get a massless doublet/antidoublet and
triplet/antitriplet mode. This should come as no surprise, since the breaking E6 → SM
involves breaking the generators transforming as 16 + 16 of SO(10), which contain ex-
actly one doublet/antidoublet pair and one triplet/antitriplet pair: the doublet and triplet
massless modes of scalars are eaten up by the corresponding gauge bosons due to the Higgs
mechanism. We thus have the extra complication of already having a massless doublet and
triplet mode, so DT splitting involves making a second doublet mode massless.

In principle, the massless modes can be straightforwardly extracted from the scalar
squared-mass matricesM†

doubletsMdoublets andM†
tripletsMtriplets. In our case, however, squar-

ing a matrix would unnecessarily complicate the calculation, so we use methods which work
on the matrices Mdoublets and Mtriplets themselves.

Already having a massless mode in M†M implies

detM = 0. (145)

The condition for another massless mode in M†M can be written as

Cond(M) :=
limǫ→0 det(M+ ǫI)/ǫ

〈f |e〉 = 0, (146)

where I is the identity matrix and |e〉 and |f〉 are the already present right and left zero-
mass eigenmodes of M:

M|e〉 = M†|f〉 = 0. (147)

Using our vacuum solution and confirming

detMdoublets = detMtriplets = 0, (148)

the DT splitting conditions read

Cond(Mdoublets) =
1

72
m9

351′m27
λ3λ4

λ1λ2
= 0, (149)

Cond(Mtriplets) =
4

243
m10

351′m27
λ3λ4

λ1λ2
6= 0. (150)

We see that due to the simplicity of the conditions, which are just a product of the
Lagrangian parameters, we cannot perform a fine-tuning on the doublets independently
from the triplets: an extra massless doublet necessarily implies an extra massless triplet.
The usual procedure of DT splitting via fine-tuning is therefore not possible in this case.

We cure this problem of the model by adding an extra 2̃7 + 2̃7 pair.
Although explicit calculation shows DT splitting is not possible without the tilde fields,

we are unable to find a clear-cut reason, which would explain — without calculation —
why the usual method of fine-tuning fails. Note that the mass matrices by themselves do
not have this feature: the impossibility of DT splitting shows itself only after solving the
F -term equations of motion and plugging in the solutions. In the following, we list peculiar
details and possible reasons, a combination of which might contribute to this inability:
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• It seems DT splitting is a problem only for solutions breaking to the SM. It is possible
to fine-tune in the alternative solution 〈27〉 = 〈27〉 = 0, which breaks to Pati-Salam.

• Without the tilde fields, the SM Higgs would live in representations already involved
in the E6 breaking: these representations would thus acquire both GUT and EW
scale VEVs.

• We already have a massless doublet and triplet mode present in the mass matrices
due to the Higgs mechanism.

• There are only a few specific places in the mass matrices (in the M3×3 block), where
there is a sum of the type A 〈1〉+B 〈24〉, which enables DT splitting in the simplest
SU(5) case. When plugging in a specific solution with the ansatz c2 = d2 = e4 = f4 =
0, one of the two terms always disappears. Also, the mass matrices contain a lot of
zero entries.

As a final point, we allude to the missing partner mechanism (MP mechanism) [54, 55,
56] for DT splitting as it pertains to our model. At first glance, the MP mechanism would
seem promising for our model, since we already have one more triplet than a doublet due
to the presence of 50 and 50 of SU(5) in the representations 351′ and 351′. The above
explicit computation already shows that the mechanism is not at work in our case, which
is perhaps expected: the MP mechanism involves a specific setup of fields and form of the
mass matrix, so it would be too optimistic to expect it for free in a general setup. To
implement the MP mechanism, it is necessary to have the 50 of SU(5) with the triplet but
not the doublet, but also the 75, which couples the triplet in the 50 with the antitriplet in
the 5. The lowest dimensional E6 representation, which contains the 75 of SU(5), is the
650. In our case, simplicity therefore seems to dictate to forego the MP mechanism, and

just add the extra 2̃7 + 2̃7 pair.

32



References

[1] F. Gürsey, P. Ramond and P. Sikivie, “A Universal Gauge Theory Model Based on
E6,” Phys. Lett. B 60 (1976) 177.

[2] H. Georgi and S. L. Glashow, “Unity of All Elementary Particle Forces,” Phys. Rev.
Lett. 32 (1974) 438.

[3] F. Gürsey and M. Serdaroglu, “Basic Fermion Masses and Mixings in the E6 Model,”
Lett. Nuovo Cim. 21 (1978) 28.

[4] Y. Achiman and B. Stech, “Quark Lepton Symmetry and Mass Scales in an E6 Unified
Gauge Model,” Phys. Lett. B 77 (1978) 389.

[5] Q. Shafi, “E6 as a Unifying Gauge Symmetry,” Phys. Lett. B 79 (1978) 301.

[6] H. Ruegg and T. Schucker, “Masses for Fermions in a Unified Gauge Model Based on
E6,” Nucl. Phys. B 161 (1979) 388.

[7] O. K. Kalashnikov and S. E. Konshtein, “Hierarchy of Interactions and Mass Relations
in Asymptotically Free E6 Model of Unified Interaction,” Nucl. Phys. B 166 (1980)
507.

[8] R. Barbieri and D. V. Nanopoulos, “An Exceptional Model for Grand Unification,”
Phys. Lett. B 91 (1980) 369.

[9] G. L. Shaw and R. Slansky, “A E6 Model with Composite Muon and Tau Families,”
Phys. Rev. D 22 (1980) 1760.

[10] B. Stech and Z. Tavartkiladze, “Fermion Masses and Coupling Unification in E6: Life
in the Desert,” Phys. Rev. D 70 (2004) 035002 [hep-ph/0311161].

[11] F. Caravaglios and S. Morisi, “Fermion Masses in E6 Grand Unification with Family
Permutation Symmetries,” hep-ph/0510321.

[12] F. Caravaglios and S. Morisi, “Gauge Boson Families in Grand Unified Theories of
Fermion Masses: E6

4 ×S4,” Int. J. Mod. Phys. A 22 (2007) 2469 [hep-ph/0611078].

[13] B. Stech and Z. Tavartkiladze, “Generation Symmetry and E6 Unification,” Phys.
Rev. D 77 (2008) 076009 [arXiv:0802.0894 [hep-ph]].

[14] F. Buccella and G. Miele, “SO(10) from Supersymmetric E6,” Phys. Lett. B 189

(1987) 115.

[15] S. Bertolini, L. Di Luzio and M. Malinsky, Phys. Rev. D 83 (2011) 035002
[arXiv:1011.1821 [hep-ph]].

[16] E. S. Fradkin, O. K. Kalashnikov and S. E. Konshtein, “Asymptotically Free E6 Model
of Unified Interaction,” Lett. Nuovo Cim. 21 (1978) 5.

[17] F. Wilczek and A. Zee, “Families from Spinors,” Phys. Rev. D 25 (1982) 553.

33

http://arxiv.org/abs/hep-ph/0311161
http://arxiv.org/abs/hep-ph/0510321
http://arxiv.org/abs/hep-ph/0611078
http://arxiv.org/abs/0802.0894
http://arxiv.org/abs/1011.1821


[18] R. N. Mohapatra, “New Contributions to Neutrinoless Double Beta Decay in Super-
symmetric Theories,” Phys. Rev. D 34 (1986) 3457.
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[37] R. N. Mohapatra and G. Senjanović, “Neutrino Mass and Spontaneous Parity Viola-
tion,” Phys. Rev. Lett. 44 (1980) 912.

[38] M. Magg and C. Wetterich, “Neutrino Mass Problem and Gauge Hierarchy,” Phys.
Lett. B 94 (1980) 61.

[39] J. Schechter and J. W. F. Valle, “Neutrino Masses in SU(2) × U(1) Theories,” Phys.
Rev. D 22 (1980) 2227.

[40] G. Lazarides, Q. Shafi and C. Wetterich, “Proton Lifetime and Fermion Masses in an
SO(10) Model,” Nucl. Phys. B 181 (1981) 287.
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