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After discussing the problem of defining the hydrodynamic limit from microscopic scales, we give

an introduction to ideal hydrodynamics in the Lagrange picture, and show that it can be viewed as

a field theory, which can be quantized using the usual Feynmansum-over-paths prescription. We

then argue that this picture can be connected to the usually neglected thermal microscopic scale

in the hydrodynamic expansion. After showing that this expansion is generally non-perturbative,

we show how the lattice can be used to understand the impact quantum and thermal fluctuations

can have on the fluid behavior.
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1. Introduction

At first sight, “quantizing hydrodynamics” appears nonsensical: Hydrodynamics is usually
defined as a classical theory, because it is an infrared effective description of “many” microscopic
degrees of freedom which have equilibrated. Nevertheless,as shown in [1, 2, 3], ideal hydrody-
namicscanbe rewritten in quantum form. Can we learn something useful from this exercise?

A lot has been written, recently, about the hydrodynamic limit of “infinitely strongly coupled”
theories, and weather a “quantum lower limit” of viscosity over entropy density (η/s) exists. While
famous results in both the Boltzmann limit [4] and the strongly coupled planar limit of a conformal
field theory [5] suggest the existence of such a lower bound atη/s∼O

(
10−2

)
, a physical argument

for such a limit’s existence beyond such idealized setups isstill lacking.
As argued in [6] and [7], such an argument might come from the possibility, at “infinitely

small mean free path”, forthermalfluctuations to excite hydrodynamic degrees of freedom: When
viscosity is so low that “typical” sound waves, of frequency∼ T and amplitude comparable to a
thermal fluctuation,∆ρ/〈ρ〉 ∼CV/T3 (whereρ is the energy density,CV the heat capacity andT
the temperature), survive for a time much larger than the thermal scale,∼ 1/T, Kubo’s formula
needs to be renormalized to account for the energy-momentumcarried by the sound waves.

While in the planar limit [5] this contribution is negligible as it isO
(
N0

c

)
, at any finite degen-

eracy it will alter both the “viscosity” and the “entropy density”, and, because of turbulence, such
perturbations are not guaranteed to stay small without a cutoff.

In the absence of a sizable microscopic cutoff, quantum mechanics becomes relevant: a typi-
cal turbulent evolution in four dimensions involves a cascade from high amplitude low frequency
perturbations to low amplitude high frequency ones [8]. This tacitly assumes that one can con-
serve energy by, simultaneously, decreasing the amplitudeand increasing the frequency indefi-
nitely. Classically, this is indeed possible. However, by Planck’s law, a sound wave can not have
a transverse energy∼ ωc−2

s ∆ρ smaller than its frequencyω in natural units. Quantum mechanics
and energy conservation, therefore, cut the Kolmogorov cascade at frequencies∼T in natural units.
Since this cutoff is usually provided by viscosity, the existence of a quantum limit on viscosity is
plausible from hydrodynamic arguments alone.

More generally [9], it is often neglected that hydrodynamics is an expansion not in one small
parameter, but two: The most explored one is the dissipativeKnudsen number,∼ lm f p/R∼η/(sTR),
the mean free path (lm f p∼ η/(sT)∼ the sound wave dissipation length) over “system size”R. The
other parameter, the “distance between microscopic degrees of freedom”∼ 1/(gT), whereg is the
microscopic degeneracy, has to be≪ lm f p for the BBGKY hierarchy to converge (in [5],Nc → ∞
gives the same effect). Thus, hydrodynamics requires, in terms of the microscopic degeneracyg,
the entropys, and the viscosityη , that

lmicro
︸︷︷︸

s−1/3∼1/g1/3T

≪ lm f p
︸︷︷︸

η/(sT)

≪ lmacro
︸ ︷︷ ︸

R∼∂µ ρ

(1.1)

Keeping the mean free path small butcomparableto 1/(gT) is precisely the limit where micro-
scopic thermal fluctuations can excite sound-waves. This isan explored limit, yet it is relevant for
systems such as heavy ion collisions and ultracold atoms, where the number of degrees of freedom
is clearly nowhere near infinite, and(T3V)−1 is not far from(sTR)/η .
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2. The theory

3D Ideal hydrodynamics with no conserved charges1 can be rewritten [1, 2] in terms of three
fields φ I=1,2,3, which physically correspond to thex,y,z coordinates of the comoving frame w.r.t.
the lab frame. The choice ofφ I=1,2,3 is of course not unique, as a perfect fluid is homogeneous, and
in its comoving frame, invariant under rotations and rescalings. This ambiguity can be represented
as a symmetry, restricting the Lagrangian to the form

L = F(B) = T4
0 F (det(BIJ)) , BIJ = ∂ µφI ∂µφJ (2.1)

The functionF(B) is left arbitrary, as it corresponds to different equationsof state for the fluid.
Dimensional analysis makes it apparent that theF(B) should be defined, in terms of an energy

scaleT0. T0, in this context, must be the “temperature” of the microscopic degrees of freedom.
Equivalently,T−1

0 means the distance at which such microscopic degrees of freedom become rel-
evant. Note that this tells usonly about the density (and equilibrium/quantum fluctuations ofit),
and is in general different from the mean free path of the interacting theory, which in the ideal
hydrodynamic limit goes to zero.

Thus, if Eq. 2.1 is used to build a partition function, the effective “Planck’s constant” becomes
dimensionful; It is natural to identifyT−1

0 with the lmicro parameter in Eq. 1.1, since asT0 → ∞ the
classical picture of hydrodynamics should emerge. Eq. 2.1,however, makes it clear the expansion
in T0 might be strongly non-perturbative, as can be expected froma “turbulent” thermally fluctu-
ating ideal fluid. It is straight-forward to show that the energy-momentum tensor corresponding to
the Lagrangian in Eq. 2.1 is that of ideal hydrodynamics

Tµν = (p+ρ)uµuν − pgµν (2.2)

and hence this is simply an unusual reparametrization of ideal hydrodynamics. The energy density
and pressure in this notation are

ρ =−F(B) , p= F(B)−2B
dF
dB

(2.3)

hydrodynamic flow is defined in terms of enenrgy flow as

uµ =
1

6
√

B
ε µαβγεIJK∂α φ I ∂β φJ∂γφK (2.4)

We can also show that∂µ(
√

Buµ) = 0. By inspection, without any conserved charges (those are
examined in [3]) we can identify

s= gT3
0

√
B (2.5)

with the microscopic entropy. Using the Gibbs-Duhem relation, then, the temperature will be

T =
e+ p

s
= T0

√
B(dF/dB)

g
(2.6)

1We assume, for simplicity there are no conserved charges, soall “density” is energy density (any “particles” are
balanced by antiparticles”). Dense systems can be described by an extension of the approach described here [3]
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The non-perturbative nature of the theory is confirmed by examining the “vortex” degrees of free-
dom [2]: In a hydrostatic background, vorticesdo not propagate, yet carry arbitrarily small amounts
of energy and momentum. Thus, an S-matrix cannot be defined, since quantum vortices can survive
for an arbitrarily long time, and dominate the vacuum (in theT0 → ∞ limit all such quantum fluctu-
ations are suppressed). Thus, at finiteT0, the quantum expectation value ofTµν could very well be
different from the classical one, due to the backreaction ofsound waves and vortices. On the lattice,
one can investigate this independently of any perturbativeexpansion, and without deforming the
theory in the infrared (as was done in [1, 7]).

Conversely, a lattice calculation could show the theoryis deformed in the IR in a way that
breaks some, if not most, of the lagrangian’s symmetries. Anexample for this in 2d classical
hydrodynamics is the famous regular patterns of vortices that form in 2d fluids [10]. If quantum
fluctuations generate solutions like this, the low energy theory will contain effective terms which
break most of the symmetries of Eq. 2.1, but will be missing inthe perturbative expansion.

The theory formulated via Eq. 2.1 can be put on the lattice in the usual way, via

lnZ =
∫

DφI exp

(

i
∫

d4xL+JφI

)

→
︸︷︷︸

lattice+Wick

∫

dφ i
I exp

[

−(aT0)
4∑

i

F(φi)+JφI

]

(2.7)

care needs to be taken since this theory is non-renormalizeable and, onceF(B) has been defined,
has no free parameters. The existence of a well-defined continuous limit is therefore not guaran-
teed. The scaling of observables withT0 as one approaches the limit ofT0 → ∞ can however still
be explored. As we will investigate non-trivial quantum structures in configuration space, such as
quantum-seeded vortices, the large lattice limit will be asimportant as the continuum limit.

3. Lattice implementation

In order to ensure that the fields on all lattice sites participate in the same updating procedure,
we use one-sided finite differences for derivatives and average over the eight per hypercube. The
derivatives∂µφ I and all quantities derived from them (e.g.,BIJ, uµ , Tµν ) are thereby envisioned as
occupying the centers of the hypercubes.

Since the fields represent the comoving coordinates of the fluid, it is better to use “shifted”
variables to avoid problems with the periodic boundaries (i.e., one subtracts the hydrostatic back-
ground):

π I = φ I −xI → ∂α φ I = ∂α π I +1δ I
α . (3.1)

We expect this theory to describe quite extended structures(e.g., vortices) which are easily
created from the “vacuum” and we therefore use HMC updates inan attempt to learn something
about their amenability to change in the Markov process. Thus, we require the variation of the
action with respect to the local field values:

δS
δφ I (x)

=
δS

δ
√

B

δ
√

B
δ (∂α φJ)

δ (∂α φJ)

δφ I (x)
(3.2)

= ∑
y,µ ,ν ,σ

dF

d
√

B
δ IJδ (y−x± µ̂/2± ν̂/2± σ̂/2)

√
B

8
B−1

JK |εµνσα |∂α φK

∣
∣
∣
∣
∣

y−α̂/2

y+α̂/2

.
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L4 C(= aT0) traj dτMD accept

204 0.8 4000 0.001 / 0.0005 49% / 85%
164 1 10000 0.001 52%
124 1.33333 10000 0.0005 61%
104 1.6 10000 0.0005 41%
84 2 10000 0.00025 72%
64 2.66667 10000 0.00025 56%

Table 1: Lattice parameters for runs with constant volume.

We have implemented the updating algorithm and the calculation of observables in C code,
with parallelization via OpenMP. Table 1 displays a subset of our runs performed with the aim
of preserving the physical volume:L4 = (16/(aT0))

4. To achieve reasonable acceptance rates,
quite small values of the molecular-dynamics time step (dτMD) are required (even at such small
volumes). Correspondingly, convergence to a plateau (say,in 〈

√
B〉) is slow, typically requiring

the omission of the first few thousand trajectories from observables and blocking of data to avoid
autocorrelations. In future runs at larger volumes and lattice spacings (ideally,L−1 ≪ l−1

macro≪
a−1 ≪ T0), we may need to add mass terms to the scalar fields (or perhapswork at finite density:
see Ref. [3]) and extrapolate to the massless (zero chemicalpotential) limit.

4. Some preliminary results

A good initial example is the ideal gas EOS,

F(B) = T4
0 B2/3 . (4.1)

This can be easily generalized to any monotonic EoS (withoutphase transitions), for example an
EoS ,say, fitting the QCD cross-over [7]. The ideal gas, however, is a good testing laboratory as all
of its parameters are very simple

〈e〉=T4
0 B2/3 =

gπ2

60
T4 , 〈p〉= 〈e〉

3
, 〈s〉=T3

0

√
B=

gπ2

45
T3 , T =

4
3g

T0B1/6 (4.2)

This allows us to fill in all members ofTµν in the static frame,
〈
Tµν

〉
= diag[〈e〉 ,〈e〉/3,〈e〉/3,〈e〉/3]

Correlations should be localized around standard thermodynamic fluctuations

〈
e(x′)e(x)

〉
−〈e(x)〉

〈
e(x′)

〉
= δ 3(~x−~x′

)
CVT2 ∼ 4π2

15
gT8

0 (4.3)

Fig. 1 shows average and fluctuations of thes observable. We have checked that the other observ-
ables scale with entropy as expected from Eq. 4.2.

The left panel of Fig. 1 shows the entropy density as a function of the lattice spacing. Allowing
for finite-size effects, no appreciable dependence is seen.The same goes for the rather sizable,
relative fluctuations in the entropy density (middle plot).There also appears to be little dependence
upon the “macroscopic temperature”(aNt)

−1, i.e., the temperature of the phonon / vortex gas. It
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Figure 1: The expectation value of the entropy density (left), the corresponding fluctuation (middle) and
the relative spatial correlation along ˆx (right).

will be especially interesting to see if this trend (or lack thereof) continues as we push to larger
lattice extents at largeraT0 values: i.e., as we push from the microscopic-dominated entropy region
to one where macroscopic structures carry a large share of entropy. The fluctuations do indeed
lead to a “correction” to the input equation of state (EoS): the EoS dictatess/T3 = 27/64∼ 0.422,
whereas averaging first over the lattice leads to〈s〉x/〈T〉3

x ∼ 0.496. One can see in the rightmost
plot that the spatial correlations in the entropy density persist across the lattice (the same can be
seen forT, p, andρ). We cannot comment more on this result as yet, beyond remarking that it
might show that quantum fluctuations are non-negligible forobservables atall scales.

The ideal hydrostatic background further requires any space component of a vector or tensors
observable’s average should be zero. These can be parametrized into the flow tensor

〈
Ωµν

〉
=

〈
uµuν +gµν

〉
=
〈
B−1

IJ ∂µφ I ∂νφJ〉 , (4.4)

which gives insight to the turbulence seeded by quantum fluctuations. While, unlike the locally-
defined scalar perturbation, the averageΩµν is set by symmetries, its correlation function can reveal
interesting structures. In particular, a non-vanishing value at large distances can signal the vacuum
generally contains “quantum turbulence”, and can break some of the symmetries of the original
Lagrangian.

The left plot in Fig. 2 shows a zero-momentum-projected flow-tensor correlator (source at
t = 8a). While there appears to be some structure, suggesting the presence of a quantum “sound
mode”, the same is not seen at all lattice spacings (outside of the “enhancement” att = tsource). Like
with the entropy density, some components (or combinationsthereof) of the flow and stress-energy
tensors show non-zero, persistent spatial correlations (middle plot). Indeed, the off-diagonal spatial
components (Ti j andΩi j ) give non-zero averages (indicating non-zero flow) which only vanish in
the “thermodynamic” limit (L → ∞; see the rightmost plot). Even then, some ensembles appear to
be rather stubborn and find a different minimum of the action,perhaps due to macroscopic, topo-
logical features (e.g., vortex rings wrapped around the torus). It would be interesting to search these
lattices for such structures in order to determine to what extent such ensembles should contribute
to an overall average (i.e., whether they are indeed due to the boundary conditions or not). That
these elements are non-zero may also be a hint of existence ofstructures analogous to well-studied
calorons and instantons in QCD. In a hydrodynamic context, these structures can be interpreted as
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Figure 2: Left: zero-momentum-projectedxy flow-tensor correlators. Middle: Spatial correlations of
xx− zzstress-energy tensor. Right: the squared-average ofTi j as a function of lattice extentL (red symbols
at constant physical sizeL ∝ 1/C, circles atC= 1; the lowest lying data fit to∼ L−3.85(14)).

quantum vortices, perhaps triggering turbulence. Observables such as the relativistic circulation
CP =

∮

P(p+e)uµdxµ across a closed path P can be used to investigate the existence and relevance
of such phenomena.

In conclusion, we have argued that a lattice implementationof ideal quantum hydrodynamics
can give insight into a hitherto unexplored limit of strongly interacting matter, one where the dissi-
pation vanishes but the microscopic and macroscopic lengthscales may not be well separated. We
have discussed the technical details of this implementation and presented some preliminary results.
None of the latter should be taken as anything other than a feasibility demonstration, this is the
beginning of what can only be a very involved research project.
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