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1. Introduction

At first sight, “quantizing hydrodynamics” appears nonseals Hydrodynamics is usually
defined as a classical theory, because it is an infraredtigtiedescription of “many” microscopic
degrees of freedom which have equilibrated. Nevertheesshown in[[1[]2[] 3], ideal hydrody-
namicscanbe rewritten in quantum form. Can we learn something usefuhfthis exercise?

A lot has been written, recently, about the hydrodynamidtloh“infinitely strongly coupled”
theories, and weather a “quantum lower limit” of viscositepentropy densityr(/s) exists. While
famous results in both the Boltzmann linfif [4] and the stigrgupled planar limit of a conformal
field theory [] suggest the existence of such a lower bound'st- ¢ (10—2), a physical argument
for such a limit’s existence beyond such idealized setupslisacking.

As argued in [[B] and[[7], such an argument might come from thesibility, at “infinitely
small mean free path”, fahermalfluctuations to excite hydrodynamic degrees of freedom: Whe
viscosity is so low that “typical” sound waves, of frequeneyl and amplitude comparable to a
thermal fluctuationAp/ (p) ~ Cy /T3 (wherep is the energy densitgy the heat capacity arfl
the temperature), survive for a time much larger than therthescale,~ 1/T, Kubo’s formula
needs to be renormalized to account for the energy-momecéuried by the sound waves.

While in the planar limit[[p] this contribution is negligilas it is¢’ (Ng), at any finite degen-
eracy it will alter both the “viscosity” and the “entropy dety”, and, because of turbulence, such
perturbations are not guaranteed to stay small withoutaffcut

In the absence of a sizable microscopic cutoff, quantum aréch becomes relevant: a typi-
cal turbulent evolution in four dimensions involves a cagcrom high amplitude low frequency
perturbations to low amplitude high frequency onfgs [8]. sTiaicitly assumes that one can con-
serve energy by, simultaneously, decreasing the amplidundeincreasing the frequency indefi-
nitely. Classically, this is indeed possible. However, llgriek’s law, a sound wave can not have
a transverse energy wcg ?Ap smaller than its frequenay in natural units. Quantum mechanics
and energy conservation, therefore, cut the Kolmogorovazesat frequencies T in natural units.
Since this cutoff is usually provided by viscosity, the ¢éaiige of a quantum limit on viscosity is
plausible from hydrodynamic arguments alone.

More generally[[P], it is often neglected that hydrodynasrian expansion not in one small
parameter, but two: The most explored one is the dissipKinglsen numbery Imtp/R~n/(sTR,
the mean free path{tp~ 1 /(ST) ~ the sound wave dissipation length) over “system sikeThe
other parameter, the “distance between microscopic degfdecedom”~ 1/(gT), whereg is the
microscopic degeneracy, has to el p for the BBGKY hierarchy to converge (ifi] [SNe — o
gives the same effect). Thus, hydrodynamics requiresrmd@f the microscopic degeneragy
the entropys, and the viscosity;, that

Imicro < |mfp < Imacro (1-1)

N—— ~— N——
s13~1/QYT  n/(sT)  Redup

Keeping the mean free path small mamparableto 1/(gT) is precisely the limit where micro-

scopic thermal fluctuations can excite sound-waves. Tlas isxplored limit, yet it is relevant for

systems such as heavy ion collisions and ultracold atomstenthe number of degrees of freedom

is clearly nowhere near infinite, arf@®Vv )~ is not far from(sTR /1.
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2. Thetheory

3D Ideal hydrodynamics with no conserved chatgean be rewritten[J1[]2] in terms of three
fields ¢'=122, which physically correspond to they, z coordinates of the comoving frame w.r.t.
the lab frame. The choice gf =122 is of course not unique, as a perfect fluid is homogeneous, and
in its comoving frame, invariant under rotations and raegal This ambiguity can be represented
as a symmetry, restricting the Lagrangian to the form

L=F(B)=TyF (det(By)) , Biy=0"@du® (2.1)

The functionF (B) is left arbitrary, as it corresponds to different equatiohstate for the fluid.

Dimensional analysis makes it apparent thatfB) should be defined, in terms of an energy
scaleTy. To, in this context, must be the “temperature” of the microscajegrees of freedom.
Equivalently,TO‘1 means the distance at which such microscopic degrees aloire®ecome rel-
evant. Note that this tells usnly about the density (and equilibrium/quantum fluctuation&)of
and is in general different from the mean free path of therauting theory, which in the ideal
hydrodynamic limit goes to zero.

Thus, if Eq.[2]1 is used to build a partition function, theeeffve “Planck’s constant” becomes
dimensionful; It is natural to identifi!'gl with thelmicro parameter in Eq. 1.1, since &— o the
classical picture of hydrodynamics should emerge.[Eq.Hbdever, makes it clear the expansion
in To might be strongly non-perturbative, as can be expected &dtarbulent” thermally fluctu-
ating ideal fluid. It is straight-forward to show that the epyemomentum tensor corresponding to
the Lagrangian in Ed. 3.1 is that of ideal hydrodynamics

Ty = (p+p)uHu’ — pg (2.2)

and hence this is simply an unusual reparametrization af idgdrodynamics. The energy density
and pressure in this notation are

o= F® . p=F@® 2% (2.3)
dB
hydrodynamic flow is defined in terms of enenrgy flow as
uH = is“aﬁyamda @' 9@’ d,0¢ (2.4)

6vB

We can also show thai“(\/ﬁu“) = 0. By inspection, without any conserved charges (those are
examined in[[B]) we can identify
s=gTcVB (2.5)

with the microscopic entropy. Using the Gibbs-Duhem relgtthen, the temperature will be

_etp_ o vB(dF/dB)
IWe assume, for simplicity there are no conserved chargesl) &ensity” is energy density (any “particles” are

balanced by antiparticles”). Dense systems can be deddnpan extension of the approach described rl}re [3]

T (2.6)
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The non-perturbative nature of the theory is confirmed byremang the “vortex” degrees of free-
dom [2]: In a hydrostatic background, vorticgs not propagateyet carry arbitrarily small amounts
of energy and momentum. Thus, an S-matrix cannot be defiimag guantum vortices can survive
for an arbitrarily long time, and dominate the vacuum (inThe- o limit all such quantum fluctu-
ations are suppressed). Thus, at fifgethe quantum expectation value f, could very well be
different from the classical one, due to the backreacticsoohd waves and vortices. On the lattice,
one can investigate this independently of any perturbaiggnsion, and without deforming the
theory in the infrared (as was done Jh [1, 7]).

Conversely, a lattice calculation could show the theigrgeformed in the IR in a way that
breaks some, if not most, of the lagrangian’'s symmetries. eRample for this in 2d classical
hydrodynamics is the famous regular patterns of vorticas firm in 2d fluids [I0]. If quantum
fluctuations generate solutions like this, the low energgoti will contain effective terms which
break most of the symmetries of Hq.]2.1, but will be missinthsperturbative expansion.

The theory formulated via EQ. 2.1 can be put on the lattichénusual way, via

InZ :/9(9 exp(i/d4xL+Jqq> P /d(,qi exp [—(aTo)4ZF((n)+Jqq (2.7)
lattice+-Wick !

care needs to be taken since this theory is non-renormbleead, oncd-(B) has been defined,
has no free parameters. The existence of a well-definednuanis limit is therefore not guaran-
teed. The scaling of observables wilhas one approaches the limit @ — c can however still
be explored. As we will investigate non-trivial quanturmustures in configuration space, such as
guantum-seeded vortices, the large lattice limit will bénagortant as the continuum limit.

3. Latticeimplementation

In order to ensure that the fields on all lattice sites pguditg in the same updating procedure,
we use one-sided finite differences for derivatives andaaeepver the eight per hypercube. The
derivativesd, @' and all quantities derived from them (e.Bys, uy, T,y) are thereby envisioned as
occupying the centers of the hypercubes.

Since the fields represent the comoving coordinates of tha fluis better to use “shifted”
variables to avoid problems with the periodic boundaries,(bne subtracts the hydrostatic back-
ground):

m=¢ —xX — 94¢' =0d,m 413, . (3.1)

We expect this theory to describe quite extended strucfigrgs, vortices) which are easily

created from the “vacuum” and we therefore use HMC updates iattempt to learn something

about their amenability to change in the Markov process. sTe require the variation of the
action with respect to the local field values:

5S 58S &VB 5(d.¢")

= 3.2
5000 5B ) 391 ¢2
y—6/2
dF N A A B__
=3y —5”6(y—xiu/2iv/2io/2)%BJKHEWO—O,\ao,(pK .
yifv.0 dVB g2
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L* | C(=aTp) | traj diyp accept
20 0.8 4000 | 0.001/0.0005| 49% / 85%
16* 1 10000 0.001 52%
12 | 1.33333 | 10000 0.0005 61%
10* 1.6 10000 0.0005 41%
8t 2 10000 0.00025 72%
6* | 2.66667 | 10000 0.00025 56%

Table 1: Lattice parameters for runs with constant volume.

We have implemented the updating algorithm and the calounlatf observables in C code,
with parallelization via OpenMP. Tab[é 1 displays a subgetw runs performed with the aim
of preserving the physical volume:* = (16/(aTo))*. To achieve reasonable acceptance rates,
quite small values of the molecular-dynamics time stdq, () are required (even at such small
volumes). Correspondingly, convergence to a plateau {8ay/B)) is slow, typically requiring
the omission of the first few thousand trajectories from olaggles and blocking of data to avoid
autocorrelations. In future runs at larger volumes andctatspacings (ideallyl.~! < 151, <
a~! < Tp), we may need to add mass terms to the scalar fields (or pewwgsat finite density:
see Ref.[[3]) and extrapolate to the massless (zero cheputattial) limit.

4. Some preliminary results
A good initial example is the ideal gas EOS,
F(B) = T§B?3. (4.1)

This can be easily generalized to any monotonic EoS (witpbaske transitions), for example an
EoS ,say, fitting the QCD cross-ové} [7]. The ideal gas, hewes a good testing laboratory as all
of its parameters are very simple

gn"2
60 ’

g
45

(6) =TgB*° = (p) = <—§> . (9=TgVB=TT |, T= %JTOBU6 (4.2)
This allows us to fill in all members @, in the static frame{T,, ) =diag|(e), (€) /3, (e} /3, (€) /3]

Correlations should be localized around standard thermendjc fluctuations

4

(e(X)e0) — (e(x)) (e(x)) = &% (R—%) Oy T2 ~ S

g1 (4.3)

Fig. [1 shows average and fluctuations of stabservable. We have checked that the other observ-
ables scale with entropy as expected from|[Eq. 4.2.

The left panel of Fig[]1 shows the entropy density as a funaifahe lattice spacing. Allowing
for finite-size effects, no appreciable dependence is s&&e. same goes for the rather sizable,
relative fluctuations in the entropy density (middle pldthere also appears to be little dependence
upon the “macroscopic temperatur@N )1, i.e., the temperature of the phonon / vortex gas. It
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Figure 1: The expectation value of the entropy density (left), theesponding fluctuation (middle) and
the relative spatial correlation alomdright).

will be especially interesting to see if this trend (or lablerteof) continues as we push to larger
lattice extents at largexTy values: i.e., as we push from the microscopic-dominatepytregion
to one where macroscopic structures carry a large sharetifpgn The fluctuations do indeed
lead to a “correction” to the input equation of state (EoBg:EoS dictates/T2 = 27/64 ~ 0.422,
whereas averaging first over the lattice leadgsjg/ (T>§ ~ 0.496. One can see in the rightmost
plot that the spatial correlations in the entropy densitssisé across the lattice (the same can be
seen forT, p, andp). We cannot comment more on this result as yet, beyond réngatkat it
might show that quantum fluctuations are non-negligibleofuservables aill scales.

The ideal hydrostatic background further requires anyegamponent of a vector or tensors

observable’s average should be zero. These can be parzdétrio the flow tensor

(Quv) = (Ut +guv) = (B3 ' @) (4.4)

which gives insight to the turbulence seeded by quantumuitticins. While, unlike the locally-
defined scalar perturbation, the aver&ljg is set by symmetries, its correlation function can reveal
interesting structures. In particular, a non-vanishinlgieat large distances can signal the vacuum
generally contains “quantum turbulence”, and can breakesofrthe symmetries of the original
Lagrangian.

The left plot in Fig.[P shows a zero-momentum-projected ftemsor correlator (source at
t = 8a). While there appears to be some structure, suggestingrésemqce of a quantum “sound
mode”, the same is not seen at all lattice spacings (out$itthee Senhancement” dt=tsgyrco. Like
with the entropy density, some components (or combinatiogeof) of the flow and stress-energy
tensors show non-zero, persistent spatial correlatioidd{mplot). Indeed, the off-diagonal spatial
componentsT; andQ;;j) give non-zero averages (indicating non-zero flow) whicly eanish in
the “thermodynamic” limit L — o; see the rightmost plot). Even then, some ensembles appear t
be rather stubborn and find a different minimum of the actparhaps due to macroscopic, topo-
logical features (e.g., vortex rings wrapped around thesfort would be interesting to search these
lattices for such structures in order to determine to whgrexsuch ensembles should contribute
to an overall average (i.e., whether they are indeed dueetbdndary conditions or not). That
these elements are non-zero may also be a hint of existersteiofures analogous to well-studied
calorons and instantons in QCD. In a hydrodynamic contbesd structures can be interpreted as
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Figure 2: Left: zero-momentum-projected; flow-tensor correlators. Middle: Spatial correlations of
XX— zzstress-energy tensor. Right: the squared-averagig ab a function of lattice extemht (red symbols
at constant physical side[] 1/C, circles aiC = 1; the lowest lying data fit te- L~38514),

guantum vortices, perhaps triggering turbulence. Obgdrgasuch as the relativistic circulation
Cp = §p(p+e)uydx across a closed path P can be used to investigate the eristedcelevance
of such phenomena.

In conclusion, we have argued that a lattice implementaifddeal quantum hydrodynamics
can give insight into a hitherto unexplored limit of stropgiteracting matter, one where the dissi-
pation vanishes but the microscopic and macroscopic lesggtles may not be well separated. We
have discussed the technical details of this implememtatina presented some preliminary results.
None of the latter should be taken as anything other thansbiéty demonstration, this is the
beginning of what can only be a very involved research ptojec
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