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Abstract

Usually the charge and the energy of stable Q-balls vary in a wide range or are even

unbounded. In the present paper we study an interesting possibility that this range is

parametrically small. In this case the spectra of stable Q-balls look similar to the one of

free particles.

Among the variety of non-topological solitons (see [1, 2] for review) Q-balls [3, 4] and their

properties were thoroughly examined, in particular, due to the interest encouraged by cosmology

(see, for example, [5]). The main soliton characteristics, the energy E and the charge Q, are

functions of the parameter ω (the standard Q-ball solution in a scalar field theory with global

U(1) invariance has the form φ(t, ~x) = f(|~x|)eiωt), which results in the possibility of different

forms of E(Q) dependence for different scalar field potentials.

Of course, the most interesting Q-ball solutions are stable solutions. In general, there are

three types of the Q-ball stability:

1. The first type is the quantum mechanical stability, i.e., the stability with respect to decay

into free particles. If E(Q) < MQ for a Q-ball of charge Q, where M is the mass of a

free particle in the theory under consideration (without loss of generality, from here on

we suppose that ω ≥ 0 and Q ≥ 0), then such a Q-ball is quantum mechanically stable.1

2. The second type is the stability against fission. Q-balls are stable against decay into

Q-balls with smaller charges if d2E/dQ2 < 0 (a simple justification of this fact in the

general case can be found in [7]).
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1In the case of special interactions with fermions this kinematic consideration should be revised, see [6].
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3. The third type is the classical stability, i.e., the stability with respect to small perturba-

tions of the scalar field. The stability criterion proposed in [2, 8] implies that a Q-ball is

classically stable if dQ

dω
< 0.

Below we will consider only those Q-ball solutions which satisfy all the three stability criteria,

presented above. We will call them “absolutely stable” Q-balls. It should be noted that since

the equality dE
dQ

= ω always holds for Q-balls, the latter leads to

d2E

dQ2
=

dω

dQ
. (1)

Thus, the criterion of stability against fission and the criterion of classical stability coincide,

i.e., classically stable Q-balls are stable against fission.

Note that our definition of the absolute stability (at least in the absence of fermions) differs

from the one of papers [9, 10], where the stability with respect to decay into free particles is

supposed to be the strongest criterion, which Q-balls should satisfy, and such Q-balls are called

absolutely stable in these papers. Our definition is different because, as we will see below, the

stability with respect to decay into free particles does not imply the classical stability in the

general case.

As it was noted above, the E(Q) dependencies may have rather different forms in models

with different potentials. As the first example one can recall the model presented in the well-

known paper [8]. The E(Q) dependence in this model consists of two branches, one of which

(the lower one) is classically stable. Moreover, there exists QS such that for Q > QS the

inequality E(Q) < MQ holds for the lower branch (see Fig. 3(a) in [8]). Thus, Q-balls with

Q > QS from the lower branch of the E(Q) dependence are absolutely stable. An analogous

form of the E(Q) dependence is inherent to other models, see, for example, [7, 11, 12, 13].

Another type of Q-balls is the one with only one branch. As an example one may consider

the model with |φ|4 potential studied in [14]. The E(Q) dependence in this model consists

of only one branch with d2E/dQ2 > 0, and all Q-balls in such a model are even classically

unstable (this was also shown explicitly in [14]).

An interesting model with a logarithmic unbounded2 scalar field potential was proposed in

[15] and thoroughly examined in [16]. The E(Q) dependence in this model also consists of two

branches, one of which is classically stable (again it is the lower branch). The charge of the

Q-balls from the stable branch varies from 0 to Qmax < ∞. An analogous E(Q) behavior has

the model with a simple polynomial potential discussed in [13].

In all the examples presented above the spectra of stable Q-balls (if they exist) either have

no upper limit, or have an upper limit, but start from zero. In any case, the charge and the

2Surely, one can add positive terms to the potential for very large values of the field modulus without altering

the physics at the scale of stable Q-balls.
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energy of such Q-balls vary in a wide range or are even unbounded. There arises a question: is

it possible to make this range parametrically small?

To answer this question, we recall that in some models there is another form of the E(Q)

dependence. It consists of three branches, one of which, – the “lowest” branch, contains Q-balls

which are classically stable. An important feature of this branch is that there exist both a lower

bound on the charge Qmin and an upper bound Qmax such that Q-balls with Qmin < Q < Qmax

are classically stable. Such an E(Q) dependence arises in the models with piecewise parabolic

potentials examined in [7, 12] (these scalar field potentials were originally proposed in [3]), and

in the model with a polynomial potential discussed in [13]. Below we will focus on examination

of such an E(Q) dependence with three branches.

In order to find out whether it is possible that the range of charges, where the absolutely

stable Q-balls exist, can be made small, it is better to have an analytically solvable model.

The models discussed in [7, 12] are analytically solvable (the model of [7] provides a very

simple analytic Q-ball solution, which is very useful for examining perturbations above the Q-

ball solution explicitly), but the scalar field potentials utilized in these models contain breaks,

which is rather unphysical and demands an additional regularization of the potentials. Below

we will propose a model with a continuous and differentiable potential, admitting the existence

of a simple analytic Q-ball solution and providing the E(Q) dependence with three branches,

one of which corresponds to classically stable Q-balls. We will calculate QS and Qmax in this

model and answer the question posed above.

We consider the globally U(1) invariant scalar field theory with a piecewise potential of the

form

V (φ∗φ) = M2φ∗φ θ(v2 − φ∗φ) (2)

+
(

m2φ∗φ+ 2v(M2 −m2)
√

φ∗φ− v2(M2 −m2)
)

θ(φ∗φ− v2),

where M2 > 0, θ is the Heaviside step function with the convention θ(0) = 1

2
. The form of this

scalar field potential for different values of the dimensionless parameter m
M

is presented in Fig. 1.

We will be looking for a solution to the corresponding equation of motion of the standard form

1 2

Φ*Φ

v

1

VHΦ*ΦL

M2 v2
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M2 v2
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Φ*Φ

v

1

VHΦ*ΦL
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Figure 1: The forms of the scalar field potential described by Eq. (2): m2 < 0, |m|/M = 2 (left

plot); m = 0 (middle plot); m2 > 0, m/M = 0.9 (right plot).
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φ = f(r, ω)eiωt, where r = |~x|. Without loss of generality, we suppose that f(r, ω) > 0. The

monotonic solution for f such that df

dr

∣

∣

r=0
= 0 and f |r→∞ = 0 can be easily found and has the

form

f(r, ω) = v
(M2 −m2)

(ω2 −m2)
− v

(M2 − ω2)

(ω2 −m2)

R

r

sin(
√
ω2 −m2r)

sin(
√
ω2 −m2R)

, r < R, (3)

f(r, ω) = v
R

r

e−
√
M2−ω2r

e−
√
M2−ω2R

, r ≥ R, (4)

where the matching radius R is such that f(R, ω) = v. For r < R we have f(r, ω) > v, whereas

for r > R we have f(r, ω) < v. It is evident that if m2 > 0, then M > ω > m; if m = 0, then

M > ω > 0; otherwise M > ω ≥ 0.

The continuity of f(r, ω) and of its first derivative leads to the following equation for R =

R(ω):

(

M2 −m2

ω2 −m2
+
√
M2 − ω2R

)

tan(
√
ω2 −m2R) =

M2 − ω2

√
ω2 −m2

R. (5)

This equation can be easily solved numerically for a given ω. Note that equation (5) is valid

only for Q-ball solutions without nodes. For such a solution and for a given ω one should take

the first (smallest) root of (5) satisfying the condition R(ω) > π√
ω2−m2

.

The Q-ball charge and energy can also be easily calculated and have the form

Q = 2ω

∞
∫

0

f 2d3x = (6)

4πωv2
[

R3

(ω2 −m2)2

(

2

3
(M2 −m2)2 + (M2 − ω2)2 + (ω2 −m2)(M2 − ω2)

)

+
R2

√
M2 − ω2

(ω2 −m2)2
(

5M2 − 6m2 + ω2)
)

+ 5
R(M2 −m2)

(ω2 −m2)2
+

R2

√
M2 − ω2

]

,

E = ωQ+ 4πv2
M2 −m2

ω2 −m2

[

R3

3
(M2 − ω2) +R2

√
M2 − ω2 +R

]

, (7)

where we have used Eq. (5) in the derivation.

Now let us examine the E(Q) dependence for different values of the model parameters, i.e.,

for m2 > 0, m = 0 and m2 < 0. It is not difficult to show that the charge (6) and the energy

(7) can be represented as

Q =
4πv2

M2
Q̃, E =

4πv2

M
Ẽ, (8)

where Q̃ and Ẽ depend only on ω
M

and m
M

and do not depend on v. So, below we will not

specify the values of v and M while examining the main properties of Q-balls in our model:
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the E(Q) dependencies can be examined by considering the dimensionless quantities Q̃ and Ẽ

for different choices of m
M
. Such a simplification is possible only because of the simple form of

the scalar field potential, which appears to be very useful for calculations.

The corresponding plots are presented in Figs. 2 and 3. We see that the E(Q) diagrams for

the cases m2 > 0 and m = 0 resemble those in the models discussed in [8, 11, 12, 13]. All four

cases, presented in Figs. 2 and 3, also exist in the model discussed in [7].
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Figure 2: E(Q) for m2 > 0, m
M

= 0.5 (left plot) and for m = 0 (right plot). The dashed line

corresponds to free scalar particles of mass M .
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Figure 3: E(Q) for m2 < 0. |m|
M

= 1 (left plot) and |m|
M

= 5 (right plot). The dashed line

corresponds to free scalar particles of mass M .
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It should be noted that, though ω is bounded from above, ω < M , in the limit ω → M

the charge and the energy tend to infinity in all four cases, presented in Figs. 2 and 3. This

happens because the factor
√
M2 − ω2 in the exponent of (4) tends to zero for ω → M , whereas

R(ω)|ω→M → π√
M2−m2

; so the scalar field falls off not exponentially, but as 1

r
in this limit. The

latter leads to infinite charge and energy of the Q-ball for ω → M . Due to the large size of the

Q-ball core, such Q-balls were called “Q-clouds” in [11].

As it was noted above, we will be interested in the last case m2 < 0. As it can be seen from

Fig. 3, there are two phases: the first phase contains three branches on the E(Q) diagram,

whereas the other phase contains only one branch (the latter case is similar to the one of

the model with |φ|4 potential studied in [14]). The transition between the phases occurs at
|m|
M

≈ 1.775. One also sees from the left plot in Fig. 3 that the most part of the lowest stable

branch lies under the E = MQ line corresponding to free particles, which means that the

range of charges of absolutely stable Q-balls is rather large. Note that the part of the upper

classically unstable branch (which starts from Q = 0) on the left plot in Fig. 3 also lies under

the E = MQ line corresponding to free particles, which means that the stability with respect

to decay into free particles indeed does not imply the classical stability in the general case.

We would like to note that the existence of a locally maximal charge in the phase with three

branches (see Fig. 3) seems to be a consequence of the turnover of the scalar field potential.

We think that this is a rather general property, which is inherent to other models of Q-balls.

Although we can not prove it in a rigorous way, we do not know exceptions from this rule.

Meanwhile, the opposite is not correct — the existence of the turnover of the scalar field

potential does not guarantee the existence of a locally maximal charge, which is confirmed by the

existence of the phase without maximal charge for |m|
M

> 1.775 in our case and by the examples

of other models (see, for example, [14]). We also stress that the maximal value of f(r, ω) (which

is simply f(0, ω)) of the Q-ball with locally maximal charge is not connected with the point

of the maximum of the scalar field potential for m2 < 0. Indeed, the scalar field potential is

maximal at fVmax = v
(

1 + M2

|m|2

)

; whereas the value of f(0, ω) decreases monotonically (this

can be checked numerically) from f(0, 0) to f(0,M) = 2v. So, if |m|
M

≥ 1 (see, for example,

left plot in Fig. 3), then f(0, ω) > 2v ≥ fVmax: the maximum of the absolute value of the

Q-ball scalar field is larger than the point of the maximum of the scalar field potential for any

0 ≤ ω < M , i.e., for any Q-ball. An interesting observation in the opposite case |m|
M

< 1 is

that Q-balls with ω → M lie on the unstable branch, whereas f(0,M) = 2v < fVmax in this

case. These examples demonstrate that there is no (at least obvious) connection between the

maximal absolute value of the Q-ball scalar field, the point of the maximum of the scalar field

potential and the Q-ball stability.

Now let us check what happens when we change the parameter m̃ = |m|
M
. The result is

presented in Fig. 4. We see that the larger m̃ is, the smaller the “triangle” in the corresponding

E(Q) diagram is. Moreover, the larger m̃ is, the smaller part of this “triangle” turns out to lie
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Figure 4: E(Q) for m2 < 0. |m|
M

= 0.6 (a); |m|
M

= 1.2 (b); |m|
M

= 1.31886 (c); |m|
M

= 1.4 (d). The

dashed line stands for free particles of mass M .

under the E = MQ line corresponding to free particles. For m̃ = m̃x ≈ 1.31886 the “triangle”

touches the free particles line by the upper cusp, whereas for m̃ > m̃x all the classically stable

Q-balls are quantum mechanically unstable. For m̃ & 1.775 the “triangle” disappears and there

is no classically stable branch in the E(Q) dependence at all.

The observations presented above indicate that there exist such values of the parameters that

absolutely stable Q-balls can exist only in a very narrow range of charges (and, consequently,

energies). As an example, let us take m̃ = 1.315. The upper right part of the “triangle”,

including the cusp, is presented in Fig. 5. The lower branch in this figure is the stable one.

The values of Q̃ = QM2

4πv2
and Ẽ = EM

4πv2
, corresponding to the dots on the plot, are the following:

Q̃S ≈ 32.268, ẼS ≈ 32.268, Q̃max ≈ 32.394, Ẽmax ≈ 32.334. The ranges of the charges and the

energies, for which the absolutely stable Q-balls can exist, are

∆Q̃ = Q̃max − Q̃S ≈ 0.126, ∆Ẽ = Ẽmax − ẼS ≈ 0.066.

These ranges are much smaller than the absolute values of the charges and the energies respec-

tively.

The closer (from below) m̃ to m̃x ≈ 1.31886 is, the smaller ∆Q̃ and ∆Ẽ are. For ∆Q̃ ≪ Q̃max
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Figure 5: E(Q) for m2 < 0. |m|
M

= 1.315. The dashed line stands for free particles of mass M .

the E(Q) dependence of the absolutely stable Q-balls is similar to the one in the limiting case

m̃ → m̃x:

E = MQx,

where Q̃x = Q̃max|m̃=m̃x
≈ 32.034. But it looks exactly like the E(Q) dependence of free

particles at rest! The only difference is that the charge of free particles Qp = 1, whereas for Q-

balls we have in the limiting case Qx ≈ 324πv2

M2 . Of course, analogous anti-Q-balls (i.e., Q-balls

with ω < 0 and Q < 0) also exist and possess the same properties.

We think that the existence of such particle-like Q-balls should be inherent not only to the

model presented above, but to other models providing an E(Q) dependence with three branches

(namely, to models with scalar field potential admitting the existence of a true vacuum at

φ∗φ > 0 or at least having a negative slope after some nonzero value of the scalar field modulus),

like those in [7, 12, 13]. In such models there is a possibility to tune the charge of a stable

Q-ball to a nearly determined value, i.e., it is possible to have absolutely stable Q-balls with the

ranges of charges and energies much smaller than the absolute values of charges and energies

themselves. The spectra of such Q-balls are very similar to the spectrum of free particles of

the theory and Q-balls behave like clusters of free particles, which looks very intriguing.
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