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Abstract

We employ methods of gauge/string duality to analyze the non-relativistic Brow-

nian motion and the concomitant Langevin equation of a heavy quark in a strongly

coupled, thermal, anisotropic Yang-Mills plasma in the low anisotropy limit. We

consider fluctuations both along and perpendicular to the direction of anisotropy

and study the effects of anisotropy on the drag coefficient, the diffusion constant

and the Langevin coefficient for both the directions. We also verify the fluctuation-

dissipation theorem for Brownian motion in an anisotropic medium.
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1 Introduction

A particle immersed in a hot fluid exhibits an incessant, random dynamics known as

Brownian motion [1]. The Brownian motion originates from the collisions experienced by

the particle with the constituents of the fluid undergoing a random thermal motion. The

consideration of these random collisions requires the fact that the fluid medium is not

a continuum but made of finite-size constituents. Hence, the Brownian motion actually

offers a better understanding of the underlying microscopic physics of the medium. The

random dynamics of a Brownian particle is encoded in the Langevin equation describing

the total force acting on the particle as a sum of dissipative and random forces. Although

both of these forces have the same microscopic origin, phenomenologically the dissipative

force describes the in-medium frictional effect and the random force stands for a source

of random kicks from the medium.

Brownian motion is a universal phenomenon for all finite temperature systems. There-

fore, a heavy probe quark immersed in a strongly coupled hot quark-gluon plasma (QGP)

which is believed to be created in the RHIC and LHC experiments [2], undergoes the same

thermal motion [3]. From field theoretical standpoint, the random motion in QGP phase
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is hard to study due to non-perturbative strong coupling effects. However, the AdS/CFT

correspondence [4–7] seems to be a good theoretical tool in this regard, since it has been

extensively used to study a large class of strongly coupled plasma having well-defined

gravity duals. In spite of intensive efforts, till date, the gravity dual of strongly cou-

pled QGP phase remains elusive and the gauge theories having well defined gravity duals

are different from QGP in several aspects. Nonetheless, it is remarkably found in some

instances that, many strong coupling features extracted holographically from known geo-

metric duals for UV conformal theories agree with the thermal QGP phase. For example,

in [8,9], the AdS/CFT correspondence has been used to show that the shear viscosity to

the entropy ratio of four-dimensional SU(Nc) (Nc being the number of colors) Yang-Mills

theory with N = 4 supersymmetries is 1/4π. This low viscosity is also speculated from the

estimation of the RHIC data for QGP [10]. Later the ratio was found to be universal for

all the strongly coupled gauge theories, in the Nc → ∞ limit, having a gravity dual [11].

Subsequently, it was found that there are other physical quantities, such as, R-charge

conductivity to charge susceptibility ratio, a certain combination of thermal conductivity,

temperature and chemical potential, that show universal behavior too [11,12]. Motivated

by these universal outcomes, there has been a substantial amount of holographic analysis

of dissipative physics of various thermal plasma having dual gravity to understand the

dynamical feature of QGP phase in a better way, see, for example, [13–33]. Recently, as

an important improvement in this direction, the Brownian motion of a probe particle has

been successfully studied using the framework of the AdS/CFT correspondence [34, 35].

The bulk interpretation of the Brownian motion of a heavy probe quark immersed in a

SU(Nc) Yang-Mills theory with N = 4 supersymmetries emerges from the consideration

of a probe fundamental string in the dual AdS black hole background, stretching between

the AdS boundary and the horizon. The end point of the string attached to the boundary

is holographically mapped to the boundary probe quark. The transverse modes of the

probe string are thermally excited by the black hole environment. This excitation propa-

gates up to boundary and holographically incorporates the Brownian motion of boundary

quark. In an intuitive way, the fact that, semiclassically, the traverse string modes are

thermally excited by Hawking radiation reflects the bulk interpretation of random force in

the boundary Langevin equation. On the other hand, the fact that the string excitation

is absorbed by the black hole environment stands for the bulk realization of boundary

frictional force. In the detailed course of computation, we need to quantize the transverse

string modes. As explained in [36], the Hawking radiation associated with the string

excitations occurs upon quantizing these modes. Once these modes are quantized, using

holographic prescription, the erratic motion of string end point attached to the boundary
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can be realized as the Brownian motion.

There are two independent approaches available in the literature to obtain these re-

sults. In the first approach, the state of the quantized scalar fields are identified with the

Hartle-Hawking vacuum representing the black hole at thermal equilibrium [34]. In the

second approach, the GKPW prescription [5,6] of computing retarded Green’s function is

utilized. The computation of Langevin equation is done by exploring the correspondence

between Kruskal extension of the AdS black hole geometry and the Schwinger-Keldysh

formalism [35]. The detailed comparison between the two independent approaches is given

in [37]. There are further generalizations in this direction. Holographic Brownian motion

has been studied in the case of charged plasma [38], rotating plasma [39–41], non-Abelian

super Yang-Mills (SYM) plasma [42], non-conformal plasma [43] and (1 + 1)-dimensional

strongly coupled CFT at finite temperature [44]. It has also been studied in the low

temperature domian (near criticality) [45,46]. The relativistic formulation of holographic

Langevin dynamics has been successfully addressed in [47]. Moreover, some important

universality related issues regarding the Langevin coefficients computed along the longi-

tudinal as well as the transverse directions to the probe quark’s motion has been studied

in [48].

In our paper, we study the holographic Brownian motion of a heavy probe quark

moving in a strongly coupled anisotropic plasma at finite temperature. For simplicity,

we only consider the non-relativistic limit, i.e., we take v ≪ 1 where v is the velocity

of the heavy quark that undergoes Brownian motion. We also take the medium to have

small anisotropy and consider only the low-lying modes of the string fluctuations. These

conditions are imposed only to facilitate analytical computation. The anisotropic thermal

plasma we are interested in is a spatially deformed four-dimensional N = 4 SU(Nc) SYM

plasma at finite temperature [49, 50]. The deformation in the gauge theory has been

achieved by adding a topological Yang-Mills coupling where the coupling parameter has

a functional dependence on one of the three spatial boundary coordinates signifying the

anisotropic direction. The dual bulk geometry develops an anisotropic black hole horizon

and behaves as a regular solution embedded in type IIB string theory. The motivation for

studying the Brownian motion in the context of anisotropic N = 4 SYM plasma comes

from experimental observations at the RHIC signifying the possible existence of a locally

anisotropic phase of QGP at thermal equilibrium. In the heavy ion collisions, right after

the plasma is formed, it is anisotropic and also far away from equilibrium for a time t < τout

. Further, in the temporal window τout < t < τiso it settles down into an equilibrium state

but still does not achieve isotropy. Thus, if one wishes to probe the early time dynamics

of the plasma it is essential to take into consideration this intrinsic anisotropy. In the
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regime τout < t < τiso the plasma has a significant momentum anisotropy that leads to

an unequal expansion of the plasma in the beam direction and the transverse directions.

Although the anisotropic plasma we are interested in does not incorporate the dynamical

anisotropy as in QGP, however it can be a good toy model since it has a well-defined

gravity dual.

With this gravity background, following [34], we study the bulk interpretation of the

boundary Brownian motion. In particular, we explicitly compute the friction coefficient,

the diffusion constant and the random force correlator from a holographic perspective

when the thermal background has an inherent anisotropy and verify the fluctuation-

dissipation theorem and the Einstein-Sutherland relation. In our bulk analysis, we in-

clude fluctuations of the probe string modes along both isotropic as well as anisotropic

directions. We systematically study the effect of anisotropy in the low frequency limit of

the thermal fluctuation.

The paper is organized as follows. In section 2 we briefly review the field theoretic

aspects of Brownian motion and follow it, in section 3, with the holographic description

of Brownian motion in anisotropic medium. Section 3 is divided into four subsections. In

3.1 we describe the gauge theory and its supergravity dual that we are interested in. In

3.2 we discuss some generic features of the holographic formulation of the problem. In

3.3 we perform the holographic computation for the anisotropic direction and from there

the computation for the isotropic direction follows in a special limit which is discussed in

3.4. Finally, we conclude with a discussion of our results in section 4.

2 Brownian motion in the boundary

We begin by presenting a brief review of the field theoretic aspect of the problem following

[34,38,42]. The simplest phenomenological model which attempts to explain the Brownian

motion of a nonrelativistic particle of mass m immersed in a thermal bath is given by the

Langevin equation along the i-th spatial direction4,

ṗi(t) = −γ(i)
o pi(t) +Ri(t), (1)

where pi(t) = mẋi is the nonrelativistic momentum of the Brownian particle along the

i-th direction. The model, though simple, is capable of capturing the salient features of a

particle undergoing Brownian motion. The particle is acted upon by a random force Ri(t)

4We shall explicitly keep track of the direction index i in our discussion since we need to distinguish

between the anisotropic direction and the directions transverse to it.
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arising out of its interaction with the thermal bath and, at the same time, it is suffering

energy dissipation due to the presence of the frictional term with γ
(i)
0 being the friction

coefficient. Under the effect of these two competing forces the particle undergoes random

thermal motion. The interaction between the Brownian particle and the fluid particles

at a temperature T allows for an exchange of energy between the Brownian particle

and the fluid leading to the establishment of a thermal equilibrium. In an isotropic

medium the friction coefficient does not depend upon the particular space direction under

consideration. However, if the medium in which the particle is immersed has an anisotropy

then we expect the drag coefficient along the anisotropic direction γ
||
0 to be different from

that in the isotropic plane γ⊥
0 .

The random force Ri(t) can be approximated by a sequence of independent impulses,

each of random sign and magnitude, such that the average vanishes. Each such impulse is

an independent random event, i.e., Ri(t) is independent of Ri(t
′) for t 6= t′. Such a noise

source goes by the name of white noise. These considerations imply

〈Ri(t)〉 = 0, 〈Ri(t)Rj(t
′)〉 = κ

(i)
0 δijδ(t− t′) (2)

where we call κ
(i)
0 the Langevin coefficient. Again, the presence of anisotropy inflicts

a directional dependence upon κ
(i)
0 . Note that, in particular, the random forces at two

different instants are not correlated. The two parameters γ
(i)
0 and κ

(i)
0 completely charac-

terize the Langevin equation (Eq.1). As we shall see, γ
(i)
0 and κ

(i)
0 are not independent,

which is not unexpected since they are related by the fluctuation-dissipation theorem5,

γ
(i)
0 =

κ
(i)
0

2mT
. (3)

Assuming the theorem of equipartition of energy which states that each degree of freedom

contributes 1
2
T to the energy (T being the temperature and we have set the Boltzmann

constant kB = 1), it is possible to derive the the temporal variation of the displacement

squared of the particle [34]

〈si(t)2〉 = 〈(xi(t)− xi(0))2〉 = 2D(i)

γ
(i)
0

(

γ
(i)
0 t− 1 + e−γ

(i)
0 t

)

(4)

where D(i) is defined to be the diffusion constant. It is related to the friction coefficient

5The relation between the two quantities has its root in the fact that both the frictional force and the

random force have the same origin - microscopically, they arise due to the interaction of the particle with

the thermal medium. In this sense, the separation of the R.H.S. of Eq.(1) in two parts is ad hoc from the

microscopic point of view, being only dictated by considerations of phenomenological simplicity.

6



γ
(i)
0 through the Einstein-Sutherland relation,

D(i) =
T

γ
(i)
0 m

. (5)

The solution to Eq.(1) has a homogeneous part determined by the initial conditions and an

inhomogeneous part proportional to the random force. The homogeneous part will decay

to zero in a time of order t
(i)
relax = 1/γ

(i)
0 and the long-time dynamics will be governed

entirely by the inhomogeneous part, independent of the initial conditions. Based on these

considerations, one can distinguish between two different temporal domains: t ≪ 1/γ
(i)
0

whence si ∼
√

T/m t showing that the particle moves under inertia as if no force is acting

upon it. The speed in this case is fixed by the equipartition theorem. In the opposite

regime t ≫ 1/γ
(i)
0 one obtains si ∼

√
2D(i)t which is reminiscent of the random walk

problem. In this time domain, the Brownian particle loses its memory of the initial value

of the velocity. The transition from one regime to another occurs at the critical value of

t
(i)
relax ∼

1

γ
(i)
0

(6)

which represents a characteristic time-scale of the theory, called the relaxation time,

beyond which the system thermalizes.

The model we have considered above is based on two assumptions: i) the friction to be

instantaneous and ii) the random forces at two different instants to be uncorrelated. The

validity of these assumptions holds good only when the Brownian particle is very heavy

compared to the constituents of the medium. However, this does not give the correct

picture when the Brownian particle and the constituents of the medium have comparable

masses. To overcome these pitfalls the Langevin equation is generalized such that the

friction now depends upon the past history of the particles and also the random forces

at different instants are correlated. To incorporate these effects we modify Eq.(1) to the

generalized Langevin equation,

ṗi(t) = −
∫ t

−∞

dt′γ(i)(t− t′)pi(t
′) +Ri(t) +Ki(t). (7)

Note that now the history of the particle is encoded in the function γ(i)(t − t′) and we

have also included the possibility of an external force impressed upon the particle through

the term Ki(t). Ri(t) now obeys,

〈Ri(t)〉 = 0, 〈Ri(t)Ri(t
′)〉 = κ(i)(t− t′). (8)
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At this stage it is convenient to go over to the Fourier space representation of the gener-

alized Langevin equation

pi(ω) =
Ri(ω) +Ki(ω)

−iω + γ(i)[ω]
(9)

where pi(ω), Ri(ω) and Ki(ω) are the Fourier transforms of pi(t), Ri(t) and Ki(t) respec-

tively, i.e.,

pi(ω) =

∫ ∞

−∞

dt pi(t)e
iωt (10)

and so on. On the other hand, causality restricts γ(i)(t) = 0 for t < 0 so that γ(i)[ω] is

the Fourier-Laplace transform

γ(i)[ω] =

∫ ∞

0

dtγ(i)(t)eiωt. (11)

Upon taking statistical average in Eq.(9), one finds,

〈pi(ω)〉 = µ(i)(ω)Ki(ω) (12)

where we have made use of Eq.(8).

µ(i)(ω) ≡ 1

−iω + γ(i)[ω]
(13)

is called the admittance and since it depends upon γ(i) it inherits the anisotropic ef-

fect. The admittance is a measure of the response of the Brownian particle to external

perturbations. In particular, if the external force is taken as

Ki(t) = K
(0)
i e−iωt (14)

then the response is,

〈pi(t)〉 = µ(i)(ω)K
(0)
i e−iωt. (15)

If the memory kernel γ(i)(t− t′) is sharply peaked around t′ = t then

∫ ∞

0

dt′γ(i)(t− t′)pi(t
′) ≈

∫ ∞

0

dt′γ(i)(t′)pi(t) =
1

t
(i)
relax

pi(t). (16)

Thus, for the generalized Langevin equation, described by Eq.(7), the generalization of

the relaxation time is

t
(i)
relax ∼

(
∫ ∞

0

dtγ(i)(t)

)−1

=
1

γ(i)[ω = 0]
= µ(i)(ω = 0). (17)
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The Wiener-Khintchine theorem relates the power spectrum IO(ω) of any quantity O with

its two-point function as follows,

〈O(ω)O(ω′)〉 = 2πδ(ω + ω′)IO(ω) (18)

where the power spectrum IO(ω) is defined as

IO(ω) =

∫ ∞

−∞

dt〈O(t0)O(t0 + t)〉eiωt. (19)

For stationary systems this does not depend upon the choice of t0 and hence, we can as

well set t0 = 0. Now if we turn off the external force Ki(t) then from Eq.(9) we get,

pi(ω) =
Ri(ω)

−iω + γ(i)[ω]
= µ(i)(ω)Ri(ω) (20)

which leads to the obvious result

Ipi(ω) =
IRi

(ω)

|γ(i)[ω]− iω|2 = |µ(i)(ω)|2IRi
(ω). (21)

Making use of Eqs.(8,21) we are lead to the result,

κ(i) = IRi
=

Ipi(ω)

|µ(i)(ω)|2 . (22)

The random force correlator κ(i) provides yet another time scale involved in the Brownian

motion. If we take κ(i) to be of the form,

κ(i)(t) = κ(i)(0)e
− t

tcol (23)

then tcol is the width of the correlator. It is the temporal span over which the random

forces are correlated and gives the time-scale for the duration of a collision.

In the next section, following holographic techniques prescribed in [34], we investigate

the bulk realization of the boundary Brownian motion of a heavy probe moving in an

anisotropic thermal plasma. In doing so, we first describe the profile of the probe string

stretching between the AdS boundary and the horizon as well as the black hole background

dual to the anisotropic plasma. Then we describe how to compute bulk correlators of the

transverse fluctuations of the probe string.

3 The holographic story

To incorporate heavy dynamical probe quark in the boundary theory, one introduces Nf

D7-flavor branes located at r = rm. We work within probe approximation meaning Nf ≪
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Nc and neglect the backreaction of the flavor brane on the background (for simplicity we

take Nf = 1). On the gauge theory side this is tantamount to working in the quenched

approximation. The probe string stretches from the boundary at r = rm to the black

hole horizon r = rh. The flavor brane spans the four gauge theory directions, the radial

direction and also a 3-sphere S3 ⊂ S5. We take the boundary gauge theory to live at

the radial coordinate r = rm. We assume that the source of the fluctuations of the

string modes is purely Hawking radiation. Moreover, keeping the string coupling gs small

ensures that we can ignore the interaction between the transverse fluctuation modes and

the closed string modes in the bulk.

3.1 The anisotropic supergravity dual

In this subsection we briefly provide the details of the gauge theory we are interested in

and its supergravity dual. The gauge theory under consideration is a spatially deformed

N = 4, SU(Nc) SYM plasma at large t’Hooft coupling λ = g2YMNc. The deformation is

achieved by introducing a θ-parameter in our theory that depends linearly upon any one

of the three spatial directions, which we take to be x3 in our case. Consequently, we can

write the gauge theory action as,

Sgauge = SSYM + δS (24)

where

δS =
1

8π2

∫

θ(x3)TrF ∧ F. (25)

The presence of θ(= 2πnD7x
3) reduces the SO(3) rotational symmetry of the original

theory down to a SO(2) symmetry in the x1-x2 plane (where we have taken {t, x1, x2, x3}
to be the gauge theory coordinates) and is responsible for making the theory anisotropic.

Here nD7 is a constant with energy dimension. In the context of heavy ion collisions, x3

will correspond to the direction of beam whereas the x1, x2-directions span the transverse

plane. In heavy ion collisions the plasma will expand and cool down gradually and

the anisotropy parameter will also decay with time. However, here we shall restrict

ourselves to a time domain where such temporal variation can be neglected. The type

IIB supergravity dual to this gauge theory was given in [49,50] inspired by [51] and reads

in the string frame,

ds2 = r2
(

−FBdt2 + (dx1)2 + (dx2)2 +H(dx3)2 +
dr2

r4F

)

+ e
1
2
φdΩ2

5, (26)

χ = ax3, φ = φ(r) (27)
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where the axion χ, is proportional to the anisotropic direction x3, the proportionality

constant a being the anisotropy parameter. The theory also has a running dilaton φ(r).

r is the AdS radial coordinate with the boundary at r = ∞ and the horizon at r = rh,

dΩ2
5 is the metric on the five-sphere S5. We have suppressed the common radius R of

the AdS space and S5 setting R = 1. There is also a RR self-dual five-form which will

not play any role in our discussion here. The axion, which is dual to the gauge theory

θ-term, is responsible for making the background anisotropic. It turns out [49] that the

anisotropy parameter a is proportional to nD7, the number density of D7-branes along the

x3 direction, a = λnD7/4πNc. The D7-branes, which source the axion, wrap around S5

and extend along the transverse directions, x1, x2. However, the D7-branes do not span

the radial direction and hence, do not reach the boundary. So they do not contribute any

new degrees of freedom to the theory. F ,B,H are all functions of the radial coordinate r

and are known analytically only in the limiting cases when the anisotropy is very high or

low (with respect to the temperature). In the intermediate regime, they are known only

numerically. F is the usual ‘blackening factor’ that vanishes at the horizon, i.e., F(rh) = 0.

The presence of anisotropy implies that the dual theory develops an anisotropic horizon.

The strength of anisotropy can be tuned by varying the parameter a. In this paper, we

shall consider only weakly anisotropic plasma (the small a or high temperature T limit,

whence a/T ≪ 1). In this regime, the functions F ,B,H can be expanded to leading order

in a around the black D3-brane solution,

F(r) = 1− r4h
r4

+ a2F2(r) +O(a4),

B(r) = 1 + a2B2(r) +O(a4),

H(r) = e−φ(r) with φ(r) = a2φ2(r) +O(a4) (28)

where

F2(r) =
r2h
24r4

[

8 (r2 − r2h)

r2h
− 10 log 2 +

3r4 + 7r4h
r4h

log

(

1 +
r2h
r2

)]

,

B2(r) = − 1

24r2h

[

10r2h
r2h + r2

+ log

(

1 +
r2h
r2

)]

,

φ2(r) = − 1

4r2h
log

(

1 +
r2h
r2

)

. (29)

The Hawking temperature of the above solution is

T =
rh
π

+
a2

rh

(5 log 2− 2)

48π
+O(a4) (30)

11



which is identified as the temperature of the deformed SYM theory. The horizon position

can be obtained in terms of the temperature, which, in the limit a/T ≪ 1, reads

rh ∼ πT

[

1− a2
5 log 2− 2

48π2T 2

]

+O(a4). (31)

3.2 Bulk view of Brownian motion

To study the dynamics of the fundamental string in the background given by Eq.(26) we

need to evaluate the Nambu-Goto string worldsheet action,

SNG =
1

2πα′

∫

dσdτ
√

−detgαβ (32)

where gαβ is the induced metric on the string worldsheet,

gαβ = Gµν

∂Xµ

∂ξα
∂Xν

∂ξβ
. (33)

Here ξα,β are the coordinates on the string worldsheet Σ: ξ0 = τ and ξ1 = σ, Gµν is

the ten-dimensional metric as given in Eq.(26) and {Xµ(τ, σ)} are the ten-dimensional

coordinates which specify the string embedding in the full ten-dimensional spacetime. We

choose the static gauge for evaluating Eq.(32) as τ = t, σ = r. The trivial solution that

satisfies the equation of motion obtained by variation of SNG is given by Xm = {t,~0, r}.
This corresponds to a quark that is in equilibrium in a thermal bath and in the bulk

picture to a string hanging straight down radially. We now wish to consider fluctuations

around this classical solution. We want to see the effects of anisotropy both along the

anisotropic direction as well as in the isotropic plane. To this end we consider fluctuations

of the form: Xm = {t, X1(t, r), 0, X3(t, r), r} where X1(t, r) is a fluctuation in a isotropic

direction while X3(t, r) is a perturbation along the anisotropic direction. The position of

the quark is given by, xµ = {t, X1(t, rm), 0, X3(t, rm)}. Using this parametrization we find

out the components of the worldsheet metric as,

gττ = r2
(

−FB + (Ẋ1)
2 +H(Ẋ3)

2
)

,

gσσ = r2
(

(X ′
1)

2 +H(X ′
3)

2 +
1

r4F

)

,

gτσ = r2
(

HẊ1X
′
3 +HX ′

1Ẋ3

)

(34)

where X ′
i ≡ ∂σXi and Ẋi ≡ ∂τX

i. From now on, we suppress the explicit r-dependence

of the metric elements F ,B,H. If we restrict ourselves to small perturbation around
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the classical solution we can safely leave out terms higher than quadratic order in the

fluctuations whence the action reduces to 6

SNG =
1

4πα′

∫

dτdσ
√
B
[

Fr4
(

(X ′
1)

2 +H(X ′
3)

2
)

− 1

FB
(

(Ẋ1)
2 +H(Ẋ3)

2
)

]

. (35)

While writing Eq.(35) we have omitted a constant factor that is independent of Xi. Vari-

ation of the above action yields the equation of motion for the fluctuation X3

Ẍ3 −
F
√
B

H r2h∂y

(√
BHFy4X ′

3

)

= 0 (36a)

where we have used the new scaled coordinate, y = r/rh and now the prime ′ denotes

derivative with respect to y. The equation of motion for X1 is obtained in a similar

fashion,

Ẍ1 − F
√
Br2h∂y

(√
BFy4X ′

1

)

= 0 (36b)

which is the same as Eq.(36a) with H = 1. Later on, we shall also consider forced motion

of the quark under the effect of an electromagnetic field. This is simply achieved by

switching on a U(1) electromagnetic field on the flavor D7-brane. Since the string end

point on the boundary represents a quark, it is charged, and hence will couple to the

electromagnetic field. Consequently, we need to incorporate this effect at the level of the

action. The action SNG is then generalized to S = SNG + Sb where

Sb =

∫

∂Σ

(

At + AiẊi

)

dt. (37)

Since it is just a boundary term it will not affect the dynamics of the string in the bulk.

However, it will modify the boundary conditions that we need to impose upon the string

endpoint. We need to find solutions to Eqs.(36a,36b) near the boundary which we shall do

by employing the matching technique. The solutions are, in general, quite complicated.

However, they are readily obtained near the horizon. So before finding out the actual

solutions let us see how these solutions behave in the vicinity of y → 1. First of all, we

inflict a coordinate transformation r → r∗ which takes us to the tortoise coordinates so

that
d

dr
=

1

r2F
√
B

d

dr∗
(38)

and

dr = r2F
√
Bdr∗. (39)

6This essentially means that we are in the regime |∂tXi| ≪ 1 which, in turn, implies taking the

nonrelativistic limit. Hence, on the gauge theory side, the dual picture will also be nonrelativistic.
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In this new coordinate system, the Nambu-Goto action assumes the form,

SNG =
1

4πα′

∫

dτdr∗r
2
[(

(∂r∗X1)
2 − (Ẋ1)

2
)

+H
(

(∂r∗X3)
2 − (Ẋ3)

2
)]

. (40)

Near the horizon it simplifies to,

SNG =
1

4πα′
r2h

∫

dτdr∗

[(

(∂r∗X1)
2 − (Ẋ1)

2
)

+H(rh)
(

(∂r∗X3)
2 − (Ẋ3)

2
)]

. (41)

The equation of motion for both X1 and X3 obtained by varying this action turns out to

be the same,
(

∂2
r∗
− ∂2

τ

)

X1,3 = 0. (42)

So near the boundary, the fluctuations are governed by a Klein-Gordon equation for

massless scalars. From now on, in this section, we shall refer to the fluctuations as Xi, it

being understood that everything we discuss here holds true for both X1 as well as X3.

From Eq.(26) it is clear that t is an isometry of the background and hence we can try

solutions of the form,

Xi(t, r) ∼ e−iωtgω(r) (43)

Eq.(42) has two independent solutions corresponding to ingoing and outgoing waves re-

spectively which we write as,

Xout
i (r) = e−iωtgouti (r) ∼ e−iω(t−r∗) (44a)

X in
i (r) = e−iωtgini (r) ∼ e−iω(t+r∗). (44b)

To find r∗ we need to solve Eq.(39) which yields,

r∗ =
1

4rh
log

(

r

rh
− 1

)[

1− ã2

48
(5 log 2− 2)

]

(45)

where we have defined ã = a
rh

∼ a
πT

. Hence,

g
out/in
i (r) =

(

r

rh
− 1

)± iν

4

(

1− ã
2

48
(5 log 2−2)

)

(46)

where ν = ω
rh
. One thus finds that, gouti = (gini )

∗.

Following standard quantization techniques of scalar fields in curved spacetime we can

perform a mode expansion of the fluctuations as

Xi(t, r) =

∫ ∞

0

dω

2π
[aωuω(t, r) + a†ωuω(t, r)

∗]. (47)

14



Here uω(t, r) is a set of positive frequency basis. These modes can in turn be expressed

as a linear combination of the ingoing and the outgoing waves

uω(t, r) = A[gout(r) +Bgin(r)]e−iωt. (48)

The constant B is determined by imposing boundary condition at r = rm, i.e., y = 1.

However, as we shall later see, B turns to be a pure phase. This implies that the outgo-

ing and the ingoing modes have the same amplitude. This signifies that the black hole

environment which can emit Hawking radiation is in a state of thermal equilibrium. One

is then left with determining the constant A which is fixed by demanding normalization

of the modes through the conventional Klein-Gordon inner product defined via,

(fi, gj)σ = − i

2πα′

∫

σ

√

g̃nµGij(fi∂µg
∗
j − ∂µfig

∗
j ). (49)

Here, σ defines a Cauchy surface in the (t, r) subspace of the ten-dimensional spacetime

metric, g̃ is the induced metric on the surface σ and nµ denotes a unit normal to σ in

the future direction. Without any loss of generality we can take the surface σ to be a

constant t surface since the inner product does not depend upon the exact choice of the

surface in the (t, r)-plane [52]. Following [38] we argue that the primary contribution to

the above integral arises from the IR region. Of course, regions away from the horizon

do contribute but since the horizon is semi-infinite in the tortoise coordinate, the normal-

ization is completely fixed by the near-horizon regime. For the anisotropic direction this

gives,

(fi, gj)σ = −iδijr
2
hH(rh)

2πα′

∫

r∗→−∞

dr∗(fiġj
∗ − ḟig

∗
j ) (50)

from which we can extract A to be,

A =

√

πα′

ωr2hH(rh)
. (51)

On the other hand, for fluctuations along the isotropic direction we have,

(fi, gj)σ = −iδijr
2
h

2πα′

∫

r∗→−∞

dr∗(fiġj
∗ − ḟig

∗
j ) (52)

which fixes A as,

A =

√

πα′

ωr2h
. (53)

15



The normalisation ensures that the inner product (uω, uω) = 1 which in turn, guarantees

that the canonical commutation relations are satisfied,

[aω, aω′] = [a†ω, a
†
ω′ ] = 0, [aω, a

†
ω′] = 2πδ(ω + ω′). (54)

In the semiclassical approximation the string modes are thermally excited by the Hawking

radiation of the worldsheet horizon and obey the Bose-Einstein distribution,

〈aωa†ω〉 =
2πδ(ω + ω′)

eβω − 1
. (55)

Equipped with this much machinery we are now ready to compute the displacement

squared for the test quark in the boundary. This is required if we wish to find out an

expression for the diffusion constant. Recalling that the position of the Brownian particle

is specified by xi(t) = Xi(t, rm) we have

〈xi(t)xi(0)〉 =
∫ ∞

0

dωdω′

(2π)2
[〈aωa†ω′〉uω(t, rm)uω′(0, rm)

∗ + 〈a†ωaω′〉uω(t, rm)
∗uω′(0, rm)] (56)

However, this is afflicted by a divergence that can be attributed to the zero point en-

ergy which persists even we go to the zero temperature limit. The way to bypass this

catastrophe is to invoke the normal ordering of products

〈: xi(t)xi(0) :〉 =
∫ ∞

0

dω

2π

2|A|2 cosωt
eβω − 1

|gout(rm) +Bgin(rm)|2. (57)

Finally, after a little algebra we arrive at the expression for displacement squared,

s2i (t) ≡ 〈: [xi(t)− xi(0)]
2 :〉 = 4

π

∫ ∞

0

dω|A|2 sin
2 ωt/2

eβω − 1
|gout(rm) +Bgin(rm)|2. (58)

With the general formalism in place, we are now in a position to take up the problem

of analyzing Brownian motion in an anisotropic strongly coupled plasma from the holo-

graphic point of view. In 3.3 we study the case of Brownian motion in the plasma along

the anisotropic direction. We discuss this case in detail. Later in 3.4 we consider Brownian

motion along one of the isotropic directions.

3.3 Brownian motion along anisotropic direction

Our first job will be to solve Eq.(36a) in the asymptotic limit. Making use of Eq.(43) we

recast Eq.(36a) as,

ν2g(y) +
F
√
B

H ∂y

(√
BHFy4g′

)

= 0. (59)
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Inserting the explicit expressions of the various functions, this can be written as,

g′′(y) + 4
y3

y4 − 1

[

1 + ã2Ψ(y)
]

g′(y) +
y4ν2

(y4 − 1)2
[

1 + ã2Υ(y)
]

g(y) = 0 (60)

where

Ψ(y) =
1

96y4(y4 − 1)

[

3− 9y2 − 23y6 + y4(29 + 40 log 2)− 40y4 log

(

1 +
1

y2

)]

Υ(y) =
1

24(y4 − 1)

[

6− 6y2 + 20 log 2− 5(3 + y4) log

(

1 +
1

y2

)]

.

(61)

We need to find a solution to this equation. However, as it turns out, obtaining an analytic

solution is a notoriously difficult problem for any arbitrary frequency ν. To circumvent

this difficulty we work only in the low frequency approximation and then attempt to solve

the equation by the ‘matching technique’. Since we only require the solution near the

boundary, we just give here the expression of the required solution. The interested reader

is referred to appendix A for the details of the solution. We shall have two solutions

corresponding to the ingoing and outgoing waves

gout/in = k
out/in
1

[

1 +
ν2

2y2
+O

(

1

y4

)]

+ k
out/in
3

[

1

y3
+O

(

1

y5

)]

(62)

where

k
out/in
1 =1∓ iν

8
(π − 2 log 2)± iνã2

768

[

28− 16β(2)− 20(log 2)2

+π(−8 + π + 14 log 2) + 8 log 2] +O(ν2)

k
out/in
3 =∓ iν

3
(1 +

ã2

4
log 2) +O(ν2)

(63)

where β(2)7 ∼ 0.915966. We find that the relation, gout = gin∗, obtained earlier in the

near horizon analysis, continues to hold true in the asymptotic limit.

We can now use these solutions, supplemented by the appropriate boundary conditions

to find out various quantities of interest. However, before going into the intricacies of the

actual computation, let us digress a little bit to clarify the boundary conditions involved

in the problem.

Although we are interested in the worldsheet theory of the probe string, the choice of

the static gauge implies that the characteristics of the background spacetime is encoded

in the induced metric. Hence, we can exploit the rules of the AdS/CFT correspondence

to understand the boundary conditions. When working in the Lorentzian AdS/CFT it is

7β(s) is the Dirichlet beta function given by β(s) =
∞
∑

n=0

(−1)n

(2n+1)s .
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customary to choose normalisable boundary conditions [53] for the modes. In the present

scenario this amounts to pushing the boundary all the way up to y → ∞. However, the

AdS/CFT dictionary tells us that the radial distance is mapped holographically to the

mass of the probe quark so that placing the boundary at y → ∞ essentially means that

we are considering our probe quark to be infinitely massive. Of course, this at once rules

out any possibility of the quark undergoing Brownian motion. The problem can be solved

if, instead, we impose a UV cut-off in our theory. More specifically, we introduce a UV

cut-off surface and identify it with the boundary where the gauge theory lives. In fact,

this is exactly the location of the flavor brane ym to which the endpoint of the string is

attached. The relation between the position of the UV cut-off and the mass of the probe

can be read off easily as,

m =
1

2πα′

∫ rm

rh

dr
√−gttgrr =

1

2πα′

[

ym − 1 +
ã2

24
(log 2− 3π)

]

(64)

and the worldsheet metric elements gtt, grr are written for the classical string configuration,

i.e., omitting the contribution arising out of the fluctuations. On this surface we can

impose Neumann boundary condition8 ∂rXi = 0. However, this works only when we

consider the free Brownian motion of the particle in the absence of any external force. In

the case of forced motion this is modified to,

Πy
i

∣

∣

∂Σ
≡ ∂L

∂X ′
i

= Ki = K
(0)
i e−iωt. (65)

where we have assumed a fluctuating external force.

Now the general solution Xi is a linear combination of the outgoing and the ingoing

modes at the horizon,

Xi = AoutXout
i + AinX in

i . (66)

where X
out/in
i = e−iωtgout/in and gout/in is given in Eq.(62). In the semiclassical approxima-

tion the outgoing modes are thermally excited by the Hawking radiation emanating from

the black hole whereas the ingoing modes can be arbitrary. Since the Hawking radiation

is a random phenomena the phase of Aout takes random values and and its average 〈Aout〉
vanishes. So we can omit the first term in Eq.(66) and need to consider only the ingoing

wave.

When one plugs in the form of the Lagrangian in Eq.(65) one finds that, like the equa-

tions of motion, the boundary conditions along the anisotropic direction and the isotropic

directions decouple which allows us to treat each direction separately. Coming back to

8One can not impose Dirichlet condition since it implies no fluctuation on the boundary at all.
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the particular case of the anisotropic direction, the boundary condition given in Eq.(65)

assumes the form,
1

2πα′
HF

√
By4r3hX ′

3

∣

∣

y=ym
= K3 = K

(0)
3 e−iωt. (67)

This yields

Ain =
2πα′K

(0)
3

HF
√
By4r3hg′(y)

∣

∣

∣

∣

∣

y=ym

. (68)

where g(y) represents the ingoing solution in Eq.(62). So, on the boundary the average

position of the Brownian quark is given by,

〈x3(t)〉 = 〈X3(t, ym)〉 = K
(0)
3 e−iωt 2πα′g

HF
√
By4r3hg′

∣

∣

∣

∣

∣

y=ym

. (69)

The average momentum is,

〈p3(t)〉 = m〈ẋ3〉 = −K3
2iπα′mνg

HF
√
By4r2hg′

∣

∣

∣

∣

∣

y=ym

. (70)

Comparison with Eq.(12) results in,

µ||(ν) ≡ µ(3)(ν) = − 2iπα′mνg

HF
√
By4r2hg′

∣

∣

∣

∣

∣

y=ym

. (71)

Here we have used the superscript “||” to denote quantities along the anisotropic direction

(the x3 direction). Reinstating the expressions for the various functions and expanding

up to O(ã2) in the low frequency regime we obtain the relaxation time for heavy quark

diffusing along the anisotropic direction,

µ||(0) = t
||
relax =

2m

π
√
λT 2

[

1− a2

24π2T 2
(2 + log 2)

]

(72)

from which one gets the drag coefficient along the anisotropic direction

γ||[0] =
π
√
λT 2

2m

[

1 +
a2

24π2T 2
(2 + log 2)

]

= γiso

[

1 +
a2

24π2T 2
(2 + log 2)

]

(73)

where γiso represents the drag coefficient when the quark moves in a isotropic SYM plasma.

Here we have used the standard AdS/CFT dictionary, R4 = (α′)2λ with R = 1 in

our convention. Our expression for the friction coefficient γ|| matches exactly with that

obtained in [17] in the nonrelativistic limit v ≪ 1 along the anisotropic direction. Note

that the drag force increases compared to its isotropic counterpart when the quark moves
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along the anisotropic direction.

Next we turn towards computing the displacement squared for the Brownian particle

from which we can extract the expression for the diffusion constant D||. We have already

provided a generic expression for s2i in Eq.(58). The details of the calculation will depend

upon the background metric. Let us again return to the boundary condition Eq.(65), but

now with the gauge fields turned off. Eq.(65) then reads for the anisotropic direction,

∂L
∂X ′

3

=
1

2πα′
HF

√
By4r3hX ′

3

∣

∣

∣

∣

y=ym

= 0 (74)

which translates to X ′
3 = 0 at the boundary. The fluctuations Xi(t, y) can be expressed

as the sum of outgoing and ingoing modes as,

Xi(t, y) = A[gout(y) +Bgin(y)]e−iωt. (75)

It then easily follows that, X ′
3 = 0 implies

B = −gout
′

gin
′

∣

∣

∣

∣

y=ym

= 1 +O(ν) (76)

which gives,

|gout(ym) +Bgin(ym)|2 = 4 +O(ν). (77)

Using Eqs.(51,77) in Eq.(58) one then has,

s23 =
4t

πT
√
λ

[

1− a2

24π2T 2
(2 + log 2)

]

. (78)

Hence, the diffusion constant along the anisotropic direction is,

D|| =
2

πT
√
λ

[

1− a2

24π2T 2
(2 + log 2)

]

=
T

mγ||
. (79)

This is nothing but the Einstein-Sutherland relation (Eq.(5)) mentioned earlier. We have

thus performed an explicit verification of the relation from the bulk point of view.

Finally, we proceed to verify the fluctuation-dissipation theorem for which we need to

know the random force correlator. First of all, we compute the two-point correlator of

the momentum along the i-th direction,

〈: pi(t)pi(0) :〉 ≡ −m2∂2
t 〈: xi(t)xi(0) :〉

=

∫ ∞

0

dω

2π

2m2ω2|A|2 cosωt
eβω − 1

|gout(ym) +Bgin(ym)|2.
(80)
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Invoking the Wiener-Khintchine theorem (Eq.(18)), and the expression for A (Eq.(51))and

specialising to the anisotropic direction we find,

Ip3(ω) = 4
m2π

r2hα
′H(y = 1)β

βω

eβω − 1
. (81)

Expanding in ω and keeping only the leading order term one has

Ip3(ω) =
4m2

√
λπT

(

1 +
a2

24π2T 2
(5 log 2− 2)

)(

1− a2

4π2T 2
log 2

)

+O(ω). (82)

Now, the Langevin coefficient along the direction of anisotropy is

κ|| = IR3 =
Ip3(ω)

|µ||(ω)|2

= 2mT
π
√
λT 2

2m

[

1 +
a2

24π2T 2
(2 + log 2)

]

= 2mTγ||

= κiso

[

1 +
a2

24π2T 2
(2 + log 2)

]

(83)

(where κiso is the Langevin coefficient in isotropic plasma) which is nothing but the

statement of the fluctuation-dissipation theorem. We thus observe that the strength of

the auto-correlator along the anisotropic direction increases in the presence of anisotropy.

Thus, we explicitly check the validity of the fluctuation-dissipation theorem for a heavy

test quark executing Brownian motion in a strongly coupled, anisotropic plasma when

the fluctuations are aligned with the direction of anisotropy.

3.4 Brownian motion transverse to the anisotropic direction

In this subsection we discuss the case of the Brownian motion in the isotropic plane. For

definiteness, we take the motion to be along X1 direction. The calculations in this case

proceeds in almost the same way as in 3.3. As is evident upon comparing Eqs.(36a,36b)

the equation of motion in the isotropic direction can be simply obtained by setting H = 1

in the anisotropic case. This can also be understood by looking at the metric in Eq.(26).

So we shall be brief in our discussion here. The equation to solve is

ν2g(y) + F
√
B∂y

(√
BFy4g′

)

= 0 (84)

which can be recast as,

g′′(y) + 4
y3

y4 − 1

[

1 + ã2Ψ̃(y)
]

g′(y) +
y4ν2

(y4 − 1)2

[

1 + ã2Υ̃(y)
]

g(y) = 0 (85)
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where

Ψ̃(y) =
1

96y4(y4 − 1)

[

15− 21y2 − 11y6 + y4(17 + 40 log 2)− 40y4 log

(

1 +
1

y2

)]

Υ̃(y) =
1

24(y4 − 1)

[

6− 6y2 + 20 log 2− 5(3 + y4) log

(

1 +
1

y2

)]

.

(86)

As in the anisotropic version, here, too, we look for solutions by resorting to the matching

technique. Here we present only the final form of the solution in the asymptotic limit,

gout/in = k̃
out/in
1

[

1 +
ν2

2y2
+O

(

1

y4

)]

+ k̃
out/in
3

[

1

y3
+O

(

1

y5

)]

(87)

where

k̃
out/in
1 =1∓ iν

8
(π − 2 log 2)∓ iνã2

768
[−80β(2)

+π(8 + 5π)− 4(7 + 2 log 2) + 10(π + 2 log 2) log 2] +O(ν2)

k̃
out/in
3 =∓ iν

3
.

(88)

We thus find that while the y-dependence is the same as in its anisotropic counterpart;

only the coefficients k̃1 and k̃3 are different. Note that in particular, the coefficient k̃3

does not pick up any contribution from anisotropy. The boundary condition now reads

in the presence of the gauge field on the boundary

1

2πα′
F
√
By4r3hX ′

1

∣

∣

y=ym
= K1 = K

(0)
1 e−iωt. (89)

which fixes the normalisation factor

Ain =
2πα′K

(0)
1

F
√
By4r3hg′

∣

∣

∣

∣

∣

y=ym

. (90)

One can now easily obtain expressions for the position and hence, the momentum of the

Brownian quark from which follows the expression for the admittance,

µ⊥(ν) = − 2iπα′νmg

F
√
By4r2hg′

∣

∣

∣

∣

∣

y=ym

. (91)

with g(y) now being the ingoing solution in Eq.(87). Here we denote the direction trans-

verse to the anisotropic one as “⊥”. Reinstating the expressions for the various functions

and expanding upto O(ã2) in the low frequency domain we obtain the relaxation time for

fluctuations in the transverse plane.

µ⊥(0) = t⊥relax =
2m

π
√
λT 2

[

1 +
a2

24π2T 2
(5 log 2− 2)

]

(92)
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from which one gets the drag coefficient along the isotropic direction

γ⊥[0] =
π
√
λT 2

2m

[

1− a2

24π2T 2
(5 log 2− 2)

]

= γiso

[

1− a2

24π2T 2
(5 log 2− 2)

]

. (93)

This expression for the friction coefficient γ⊥ in the isotropic direction agrees with that

obtained in [17] in the nonrelativistic limit v ≪ 1. It is to be observed, that the isotropic

direction also picks up correction from anisotropy, i.e., even the isotropic plane can “feel”

the presence of anisotropy in the normal direction. Moreover, while the presence of

anisotropy increases the drag force along the anisotropic direction it leads to a suppression

in the drag force in the isotropic plane.

The computation for the displacement squared for the Brownian particle proceeds in

exactly similar fashion as in the previous subsection. Switching off the external field we

impose the free Neumann condition,

∂L
∂X ′

i

=
1

2πα′
F
√
By4r3hX ′

1

∣

∣

∣

∣

y=ym

= 0 (94)

which translates to X ′
1 = 0 at the boundary that furnishes,

B = −gout
′

gin
′

∣

∣

∣

∣

y=ym

= 1 +O(ν) (95)

which implies,

|gout(ym) +Bgin(ym)|2 = 4 +O(ν). (96)

Using Eqs.(96,53) in Eq.(58) one then has,

s21 =
4t

πT
√
λ

[

1 +
a2

24π2T 2
(5 log 2− 2)

]

. (97)

We can now easily read off the diffusion constant to be,

D⊥ =
2

πT
√
λ

[

1 +
a2

24π2T 2
(5 log 2− 2)

]

. (98)

A comparison of Eqs.(93,98) reveals the relation,

D⊥ =
T

mγ⊥
(99)

which verifies the validity of the Einstein-Sutherland relation in the isotropic plane.

Next we find the random force correlator κ⊥ along the isotropic direction. We have,

Ip1(ω) = 4
m2π

r2hα
′β

βω

eβω − 1

=
4m2

√
λπT

(

1 +
a2

24π2T 2
(5 log 2− 2)

)

+O(ω).

(100)
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Now,

κ⊥ = IR1 =
Ip1(ω)

|µ⊥(ω)|2

= 2mT
π
√
λT 2

2m

[

1− a2

24π2T 2
(5 log 2− 2)

]

= 2mTγ⊥

= κiso

[

1− a2

24π2T 2
(5 log 2− 2)

]

.

(101)

Hence, we find that the fluctuation-dissipation theorem continues to hold true in the

isotropic plane too and also the random forces are less correlated in the isotropic plane

due to the presence of anisotropy in the perpendicular direction.

4 Conclusion

In this work we have studied the holographic Brownian motion of a non-relativistic heavy

probe quark immersed in an weakly anisotropic, strongly coupled hot plasma. Our compu-

tation in the bulk theory involves an explicit solution of the transverse fluctuation modes

of the probe string in the low frequency regime along anisotropic as well as isotropic

directions. The above restrictions are imposed to have an analytic handle upon the com-

putations. One might try to relax some of these restrictions, like considering general

values of the parameter a/T . For large values of a/T or, small values of T , the gravity

background is known analytically and one might try to perform a similar computation.

However, in that regime of the parameter space, the quantum fluctuations will dominate

over the random fluctuations. For intermediate values of a/T no analytical results are

available and one will have to fall back upon numerical means right from the outset. It

might also be possible that some of the results obtained in this paper, get modified away

from these limits we have considered. Hence, it might be interesting to investigate the

Brownian motion in more general scenarios9. The analytic solution is obtained using

matching boundary techniques. Recently it has been shown that in the presence of a

background electric field in the bulk, the worldsheet of the probe open string develops an

induced horizon structure. This is also true when the probe string possesses a non-trivial

velocity profile [55, 56]. Since we have not considered such configurations, our solution

smoothly interpolates from the boundary to the black hole horizon. The only horizon

structure is embedded in the black hole background. It is important to note that if we

could precisely measure the Brownian dynamics in the boundary, it would have been a

9In a recent paper [54], the authors study the relativistic Langevin diffusion of a heavy quark in strongly

coupled, anisotropic Yang-Mills plasma for both small and large values of the anisotropy parameter.
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very promising step towards learning the quantum dynamics of black hole physics. How-

ever, that requires the knowledge of non-perturbative gauge theory correlators which is

beyond the scope of this paper. In this work, using the holographic prescription, we have

computed the drag coefficient, the diffusion constant and the strength of the random force

in a low frequency as well as non-relativistic limits. The expressions for the drag coefficient

and the Langevin coefficient along the anisotropic direction clearly signify an enhance-

ment over the corresponding isotropic counterparts. The fluctuations along the isotropic

direction also respond to the anisotropy in the bulk. As a result, in the boundary theory,

we observe that both the drag coefficient and the coefficient of auto correlator take lower

value compared to the case of ordinary SYM plasma. We have also checked that even in

the presence of anisotropy, the fluctuation-dissipation theorem is still valid for random

variation along both isotropic and anisotropic directions. Moreover, we have computed

the diffusion constant and reproduced the Einstein-Sutherland relation in a holographic

sense. Before closing let us also observe an interesting qualitative agreement of our result

with those obtained in the case of non-commutative Yang-Mills (NCYM) plasma which

also has an inherent anisotropy built into it. In [42] the drag force, the diffusion constant

and the Langevin coefficient were holographically computed for strongly coupled NCYM.

In the case of NCYM , an unbroken SO(2) symmetry is confined to the non-commutative

plane whereas for spatially deformed anisotropic YM plasma, the unbroken SO(2) sym-

metry lives on the isotropic plane (x1-x2 plane). Therefore it is reasonable to compare the

result in the isotropic plane in the present paper with the NCYM result. Within the small

anisotropy approximation, it is observed that in both cases, the drag force coefficient is

weaker than the one computed in the context of ordinary YM plasma. This observation

is also true for the relevant Langevin coefficient. It is important to check the validity of

this comparison for arbitrary strength of anisotropy. However this is beyond the scope of

analytic computation and is left for a future work.
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A Details of the solution along anisotropic direction

by matching technique

In this appendix we present the details of the solution (Eq.(62)) referred to in section 3.3.

We employ the so-called matching technique. The solution to Eq.(60) is extremely difficult

to obtain analytically for any frequency. To make the problem tractable we focus only on

the behavior of the solution in the low frequency domain. In this frequency domain we

resort to the matching technique whereby we find the solutions in three different regimes

and then match these solutions to the leading in the frequency at the interface of two

domains. To be more specific, we find solutions to Eq.(60) in the following three limiting

cases: (A) Near the horizon, i.e., y → 1 for arbitrary frequency and then take the low

frequency limit. (B) Throughout the bulk (i.e., arbitrary y) but for low frequency ν ≪ 1

and then take the near horizon limit. We match this solution with the low frequency limit

of the solution obtained in (A). Finally in (C) we solve the equation in the asymptotic

limit (y → ∞) for arbitrary ν. Then taking the low frequency limit we match it with the

solution of (B). Below we elucidate the details of the solutions for each regime.

A.1 Near horizon limit

In this regime we solve Eq.(60) near the horizon, i.e., in the limit y → 1. In the near

horizon regime, Eq.(60) simplifies to,

g′′A(y) +
1

y − 1
g′A(y) +

ν2

16(y − 1)2

[

1 +
ã2

24
(5 log 2− 2)

]

gA(y) = 0. (102)

This has a solution,

gA(y) = Aout(y − 1)
iν

4

[

1− ã
2

48
(5 log 2−2)

]

+ Ain(y − 1)
− iν

4

[

1− ã
2

48
(5 log 2−2)

]

(103)

where the coefficients Aout/in correspond to outgoing and ingoing modes respectively. We

normalize these modes according to Eq.(46) and expand for low frequencies to obtain,

g
out/in
A (y) ∼ 1± iν

4
log(y − 1)

[

1− ã2

48
(5 log 2− 2)

]

+O(ν2). (104)

A.2 Low frequency limit

Next we attempt to solve Eq.(60) in the low frequency limit but for arbitrary y, i.e.,

throughout the bulk. We can perform a series expansion in powers of ν to write the
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solution in the generic form,

gB(y) = g0(y) + νg1(y) + ν2g2(ν) + ... (105)

Inserting this ansatz in Eq.(60), setting the coefficient of each power of ν to zero and

solving the resulting equations we can find g0, g1, g2. At the zeroth order, the equation to

solve is,

g′′0(y) +
4y3

y4 − 1

[

1 + ã2Ψ(y)
]

g′0(y) = 0 (106)

with Ψ(y) being given in Eq.(61). The solution to the equation for general y is quite

complicated and is given by,

g0(y) =
1

2
C1(tan

−1 y + tanh−1 y) + C2 +
ã2

768(y4 − 1)
C1

{

− 16y + 16y3 + 80y log 2

+ log

(

1 +
1

y2

)

(−80y − 51(y4 − 1) log(1− y)− 9(y4 − 1) log(y − 1)

+ 60(y4 − 1) log(1 + y))− (y4 − 1)

[

log(y − 1)
[

− 17− 9 log

(

1 +
1

y2

)

]

+ log(1− y)(25 + 102 log y + 17 log(y2 + 1))

− 8(1 + 17 log y) log(1 + y)− 8 log(y2 + 1) log(1 + y)

+ 4 log(−i+ y)
[

2i log(1− iy) + 2 log

(

i
y + 1

y − 1

)

− i log(4(−i+ y))
]

+ 4 log(i+ y)
[

− 2i log(1 + iy) + 2 log

(

i
y + 1

1− y

)

+ i log(4(i+ y))
]

]

− 8(y4 − 1) tanh−1 y(15 log 2 + 17 log(1 + y2))

+ 8(y4 − 1) tan−1 y(4− 15 log 2 + 4 log y)

+ 8(y4 − 1)

[

2Li2(1− y)− iLi2

(

1

2
(1 + iy)

)

+ 2Li2(−y)− 2iLi2(−iy)

+ 2iLi2(iy)− Li2

(

1

2
(−1 + i)(y − i)

)

+ Li2

(

1

2
(1 + i)(−i+ y)

)

− Li2

(

1

2
(−1 − i)(i+ y)

)

+ iLi2

(

1

2
(1− iy)

)

+ Li2

(

1

2
(1− i)(i+ y)

)]

}

+O(ã4)

(107)
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with C1 and C2 being the constants of integration and Lin(z) is the Polylogarithm function.

Upon taking the near horizon limit it reduces to 10

g0(y) = C2 + C1

[(

1

8
− i

4

)

π +
log 2

4
− log(y − 1)

4

]

+
ã2C1

2304
[84− 48β(2) + (24− 75i− π)π − 90(1− 2i)π log 2

−204(log 2)2 + 24 log 2− 24 log(y − 1) + 204 log 2 log(y − 1)
]

.

(108)

Upon comparison with Eq.(104) we can extract the coefficients C1 and C2 as,

C1 = 0, C2 = 1 (109)

for both outgoing and ingoing waves. Next we proceed to find g1(y). Now note that

g1(y) satisfies the same equation as g0 and so has the same solution (Eq.(107,108)) albeit

with different constants of integration, but now the matching has to be done with the

coefficient of ν in Eq.(104). Replacing C1 and C2 in Eq.(108) with C̃1 and C̃2 respectively

and comparing with Eq.(104) we can extract the constants for both the outgoing and

ingoing waves as

C̃
out/in
1 = ∓i

[

1 +
ã2

4
log 2

]

+O(ã4),

C̃
out/in
2 = ±

(

1

4
+

i

8

)

π ± 1

4
i log 2∓ i

ã2

2304
[−84 + 48β(2)− (24− 75i− π)π

+ (18(1− 2i)π + 60 log 2− 24) log 2] +O(ã4).

(110)

The constants so evaluated can now be used in the full solution for gB(y) and not just in

the near horizon limit (the restriction to low frequency regime still holds, though), which

10While taking the near horizon limit we have let y → 1 + ǫ and used the following expansion

Lin (z + (a+ ib)ǫ) = Lin (z) + ǫ
a+ ib

z
Lin−1 (z) +O(ǫ2)
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now reads

gB(y) = 1 + ν

[

1

2
C̃1(tan

−1 y + tanh−1 y) + C̃2

]

+
νã2

768(y4 − 1)
C̃1

{

− 16y + 16y3

+ 80y log 2 + log

(

1 +
1

y2

)

(−80y − 51(y4 − 1) log(1− y)− 9(y4 − 1) log(y − 1)

+ 60(y4 − 1) log(1 + y))− (y4 − 1)

[

log(y − 1)
[

− 17− 9 log

(

1 +
1

y2

)

]

+ log(1− y)(25 + 102 log y + 17 log(y2 + 1))

− 8(1 + 17 log y) log(1 + y)− 8 log(y2 + 1) log(1 + y)

+ 4 log(−i+ y)
[

2i log(1− iy) + 2 log

(

i
y + 1

y − 1

)

− i log(4(−i+ y))
]

+ 4 log(i+ y)
[

− 2i log(1 + iy) + 2 log

(

i
y + 1

1− y

)

+ i log(4(i+ y))
]

]

− 8(y4 − 1) tanh−1 y(15 log 2 + 17 log(1 + y2))

+ 8(y4 − 1) tan−1 y(4− 15 log 2 + 4 log y)

+ 8(y4 − 1)

[

2Li2(1− y)− iLi2

(

1

2
(1 + iy)

)

+ 2Li2(−y)− 2iLi2(−iy)

+ 2iLi2(iy)− Li2

(

1

2
(−1 + i)(y − i)

)

+ Li2

(

1

2
(1 + i)(−i+ y)

)

− Li2

(

1

2
(−1− i)(i+ y)

)

+ iLi2

(

1

2
(1− iy)

)

+ Li2

(

1

2
(1− i)(i+ y)

)]

}

+O(ã4)

(111)

Next we can take the asymptotic limit of the full solution to arrive at,

g
out/in
B ∼1∓ iν

8
(π − 2 log 2)

± iνã2

768

[

28− 16β(2)− 20(log 2)2 + π(−8 + π + 14 log 2) + 8 log 2
]

+O(ν2)

∓ 1

y3

[

iν

3

(

1 +
ã2

4
log 2

)

+O(ν2)

]

+O(1/y4).

(112)

A.3 Asymptotic limit

Finally, we are to solve Eq.(60) in the asymptotic limit, i.e., near the boundary where the

gauge theory lives. We attempt a power series in the form,

gC(y) = k0 + k1/y + k2/y
2 + k3/y

3. (113)
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It turns out the only the constants k0 and k3 are independent and the solution assumes

the form,

gC(y) = k0

[

1 +
ν2

2y2
+O(1/y4)

]

+ k3

[

1

y3
+O(1/y5)

]

. (114)

Matching the coefficients with Eq.(112) in the low frequency limit furnishes the two un-

determined constants k0 and k3 as follows,

k
out/in
0 =1∓ iν

8
(π − 2 log 2)

± iνã2

768

[

28− 16β(2)− 20(log 2)2 + π(−8 + π + 14 log 2) + 8 log 2
]

+O(ν2)

k
out/in
3 =∓

[

iν

3

(

1 +
ã2

4
log 2

)

+O(ν2)

]

.

(115)

The final result is then given in Eq.(62).
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