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Abstract

Spectra of Thomson and Compton radiation, emitted during electron scattering off an intense

laser beam, are calculated using the frameworks of classical and strong-field quantum electrody-

namics, respectively. Both approaches use a plane-wave-fronted pulse approximation regarding

the driving laser beam. Within this approximation, a very good agreement between Thomson and

Compton frequency distributions is observed provided that frequencies of the emitted radiation

is relatively low. The dependence of frequency spectra on the laser pulse envelope is analyzed.

This becomes important in the context of ultra-short pulse generation, as illustrated by numerical

examples.

The lecture presented during the 22nd International Laser Physics Workshop,

Prague, July 15-19, 2013.
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I. INTRODUCTION

Compton scattering occurs when an electron scattered against a laser beam emits elec-

tromagnetic radiation [1, 2]. A complete description of this phenomenon is given within the

framework of strong-field quantum electrodynamics (QED) using the Furry picture [3]. The

classical counterpart of the Compton process is called Thomson scattering [4, 5]. In the

Thomson approach the emitted radiation spectrum is calculated from the Lorentz-Maxwell

equations with the use of the Liénard-Wiechert potentials [6, 7]. In this paper the incident

laser beam will be modeled as a plane-wave-fronted pulse [8] and both the Compton and

Thomson approaches will be studied.

In many works devoted to nonlinear Compton and Thomson scattering the driving laser

beam is treated as a monochromatic plane wave field [9–26]. In fact, only a few works on

Compton scattering, which go beyond this approximation, can be found in literature. This

includes the case when the slowly-varying envelope approximation [27] (see, also Refs. [28,

29]) and, more recently, the plane-wave-fronted pulse approximation [30–37] is used with

regard to the driving laser field. The latter is applicable when highly energetic electrons

move in a laser pulse, as the action of the ponderomotive force pushing these electrons

aside with respect to the pulse propagation direction is negligible [38]. In this case it is

assumed that the laser pulse has infinite extension in the transverse direction. In the classical

limit, on the other hand, a more accurate description of the scattering process is available.

This indicates the importance of studies which underline the relation between quantum

and classical approaches. These are of particular interest in light of various applications

of Compton and Thomson scattering, e.g., the production of ultra-short laser pulses in the

x-ray domain [16], determining the carrier envelope phase of intense ultra-short pulses [31],

measuring the electron beam parameters [39], and generating coherent comb structures in

strong-field QED for radiation and matter waves [40].

Note that a comparison of Compton and Thomson scattering, based on a plane-wave-

fronted pulse approximation, was carried out in Refs. [31–34]. In this context, we compare

the respective spectra for pulse envelopes which consists of subpulses. We investigate the

possibility of generating coherent frequency combs. Specifically, we look at the sensitivity of

these structures to a time delay between the incident subpulses. As we demonstrate, these

frequency combs can be synthetized into ultra-short pulses with a repetition rate depending

on the time delay between the subpulses.

In this paper we use units such that ~ = 1. Numerical results are given in relativistic
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units where also me = c = 1 (here, me is the electron rest mass).

The paper is organized as follows. In Sec. II we introduce the main results for Thomson

scattering based on classical electrodynamics. In Sec. III we introduce the Compton scatter-

ing theory arising from strong-field QED. Sec. IV contains numerical illustrations comparing

Thomson and Compton spectra. The main results are summarized in Sec. V.

II. NONLINEAR THOMSON SCATTERING

By Thomson scattering we mean the process consisting in scattering of electrons by a

laser beam, described entirely within the framework of classical mechanics and classical

electrodynamics. The two most important results relevant to our considerations are the

Newton-Lorentz equation and the frequency-angular distribution of energy radiated by an

accelerating electron. The Newton-Lorentz equation [7, 41]

r̈ =
e

me

√

1− β2
[

E(k · x)− β(β · E(k · x)) + cβ ×B(k · x)
]

, (1)

describes the acceleration of the electron moving at the reduced velocity β ≡ ṙ/c when

placed in the electromagnetic field generated by a laser. Distribution of energy radiated by

the electron is given by [6]
d3ETh

dωKd2ΩK

= α|ATh|
2, (2)

where α = e2/(4πε0c) is the fine-structure constant (ε0 denotes the vacuum electric permit-

tivity) and

ATh =
1

2π

∫

nK × [(nK − β)× β̇]

(1− β · nK)2
exp[iωK(t− nK · r/c)]dt. (3)

In order to make use of this formula we must compute a specific trajectory of the scattered

electron, according to Eq. (1), i.e., we must know the electric and magnetic fields of the laser

pulse. The laser pulse is specified by a shape function that we choose as follows. Let us

assume that the total pulse consists of Nrep identical subpulses that are separated by the

time interval Td and each of them lasts for Tsub and contains Nosc laser field oscillations of

the frequency ωL. This means that ωLTsub = 2πNosc and for the envelope function we choose

the sine-squared function. For the time interval 0 6 t 6 Td + Tsub we define the function

F (t) =











sin2
(

π t−Td/2
Tsub

)

sin(ωL(t− Td/2) + χ), Td/2 6 t 6 Td/2 + Tsub,

0, otherwise,
(4)
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and repeat it Nrep times. In this equation the real parameter, χ, denotes a carrier envelope

phase. Now, we introduce the frequency ω = 2π/Tp with Tp = Nrep(Td + Tsub), and define

the shape function f(φ) for 0 6 φ 6 2π such that its derivative over the phase φ equals

f ′(φ) = NAF (φ/ω). (5)

From now on, we use the Coulomb gauge for the radiation field, in which case the electric

and magnetic field components are equal to

E(k · x) = −∂tA(k · x) = −ck0A′(k · x), (6)

B(k · x) = ∇×A(k · x) = −k ×A′(k · x). (7)

Because the electric field generated by lasers has to fulfill the following condition,
∫

∞

−∞

E(ck0t− k · r)dt = 0, (8)

we have also that

lim
t→−∞

A(ck0t− k · r) = lim
t→∞

A(ck0t− k · r), (9)

and, hence, we can assume that in the remote past and far future the vector potential

vanishes. Therefore, for the electromagnetic potential we choose

A(k · x) = A0Noscεf(k · x), (10)

with the shape function f(k · x) such that f(k · x) = 0 for k · x < 0 and for k · x > 2π. In

addition, ε is the linear polarization vector of the laser field such that ε2 = −1 and k · ε = 0.

Moreover, we define the dimensionless and relativistically invariant parameter

µ =
|eA0|

mec
, (11)

which determines the intensity of the laser pulse.

Note that the shape function (5) determines the electric and magnetic fields of the laser

pulse, Eqs. (6) and (7). Thus, the shape function for the electromagnetic potential equals

f(k · x) =

∫ k·x

0

dφf ′(φ), (12)

and, as desired, vanishes for k · x < 0 and k · x > 2π. In Eq. (5), the normalization constant

NA is defined such that
1

2π

∫ 2π

0

dφ [f ′(φ)]2 =
1

2
. (13)
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FIG. 1. (Color online) In panel (a), the shape function f ′(k · x) defining the electric and magnetic

field components of the 32-cycle laser pulse is shown for Td = 0 and Nrep = 1. In the remaining

panels, the solution of the relativistic Newton-Lorentz equation (1) for the electron moving in the

depicted laser pulse is presented (i.e., electron position, speed, and acceleration). The parameters

of the pulse are such that µ = 1, ωL = 10−4mec
2, and Nosc = 32, where the scaled amplitude of

vector potential, µ, measures the peak intensity of the laser field. Initially, the electron is at rest

in the center of the coordinate system.

In our investigations we use the plane-wave-fronted pulse approximation. An applicability

of this approximation is based on the assumption that the transverse variation of the electron

trajectory in the laser field is negligible when compared to the size of the laser focus, as

illustrated in Fig. 1. In Fig. 1(a), we present the solution of the relativistic Newton-Lorentz

equation (1) for the electron initially at rest and in the presence of the laser pulse. The

carrier frequency of the laser field ωL is equal to 10−4mec
2 (which corresponds to the laser

photon energy of about 50 eV), Nosc = 32, Nrep = 1, Td = 0, and µ = 1. The conditions are

set such that initially the electron is at rest in the center of the coordinate system, so its

velocity is zero before the arrival of the laser pulse. Fig. 1(b) depicts the x- and z-coordinates

of the electron’s position, Fig. 1(c) – the reduced velocity, and Fig. 1(d) – the acceleration

of the electron. The colors of these distributions correspond to the colors of the laser pulse
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[Fig. 1(a)]. It turns out, that for higher amplitudes of the field depicted in Fig. 1(a), the

trajectory of the electron preserves its shape form [Fig. 1(b)]; however, the values of the

speed components βx(t) and βz(t) [Fig. 1(c)] attain higher values.

As one can see from Fig. 1, the classical electron placed in a linearly polarized laser

field exhibits an oscillatory motion along the direction of the electric field component (i.e.,

along the x-axis) together with a drift motion in the propagation direction of the laser pulse

(i.e., in the z-direction). It may also be observed that for a given laser field frequency the

displacement of the electron is larger for a stronger laser field than for a weaker laser field.

A useful measure of the relativistic length unit is the reduced electron Compton wavelength

λC =
~

mec
= 3.8616× 10−13m ,

which equals 1 in relativistic units. Note that for the chosen laser field parameters the

electron displacement along the electric field vector is of the order of 10−9m (Fig. 1). Taking

this into account, we find that the electron displacement along the electric field direction

is of the order of 0.001µm. For lasers available today, a typical linear dimension of their

focus is a few µm. Therefore, the electron displacement in the transverse direction (even

for very powerful laser fields) can be neglected on the scale of the focus, provided that the

laser frequency is sufficiently large in the reference frame in which initially electrons are at

rest. We conclude that the plane-wave-fronted pulse approximation is perfectly suitable for

describing the nonlinear Thomson scattering processes generated by currently available laser

sources.

III. NONLINEAR COMPTON SCATTERING

Using the S-matrix formalism of strong-field QED, we derive that the probability am-

plitude for the Compton process, e−piλi
→ e−pfλf

+ γKσ, with the initial and final electron

momenta and spin polarizations piλi and pfλf , respectively, equals

A(e−piλi
→ e−pfλf

+ γKσ) = −ie

∫

d4x j
(++)
pfλf ,piλi

(x) · A
(−)
Kσ(x), (14)

where Kσ denotes the Compton photon momentum and polarization. Here, we consider the

case when both the laser pulse and the Compton photon are linearly polarized. In Eq. (14),

A
(−)
Kσ(x) =

√

1

2ε0ωKV
εKσe

iK·x, (15)
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where V is the quantization volume, ωK = cK0 = c|K| (K · K = 0), and εKσ = (0, εKσ)

are the polarization four-vectors satisfying the conditions

K · εKσ = 0, εKσ · εKσ′ = −δσσ′ , (16)

for σ, σ′ = 1, 2. Moreover, j
(++)
pfλf ,piλi

(x) is the matrix element of the electron current operator

with its ν-component equal to

[j
(++)
pfλf ,piλi

(x)]ν = ψ̄
(+)
pfλf

(x)γνψ
(+)
piλi

(x). (17)

Here, ψ
(+)
pλ (x) is the so-called Volkov solution of the Dirac equation coupled to the electro-

magnetic field [42, 43] (see, also Refs. [44–46] for possible generalizations)

ψ
(+)
pλ (x) =

√

mec2

V Ep

(

1−
e

2k · p
/A/k

)

u
(+)
pλ e−iS

(+)
p (x), (18)

with

S(+)
p (x) = p · x+

∫ k·x[eA(φ) · p

k · p
−
e2A2(φ)

2k · p

]

dφ. (19)

Moreover, Ep = cp0, p = (p0,p), p·p = m2
ec

2, and u
(+)
pλ is the free-electron bispinor normalized

such that

ū
(+)
pλ u

(+)
pλ′ = δλλ′ . (20)

The four-vector potential A(k·x) in Eq. (18) represents an external electromagnetic radiation

generated by lasers, in the case when a transverse variation of the laser field in a focus is

negligible. In other words, A(k · x) represents the plane-wave-fronted pulse. In this case,

k · A(k · x) = 0 and k · k = 0, which allows one to exactly solve the Dirac equation for such

electromagnetic fields.

The probability amplitude for the Compton process (14) becomes

A(e−piλi
−→ e−pfλf

+ γKσ) = i

√

2παc(mec2)2

Epf
Epi

ωKV 3
A, (21)

where

A =

∫

d4x ū
(+)
pfλf

(

1− µ
mec

2pf · k
f(k · x)/ε/k

)

/ε
Kσ

(

1 + µ
mec

2pi · k
f(k · x)/ε/k

)

u
(+)
piλi

e−iS(x), (22)

with

S(x) = S(+)
pi

(x)− S(+)
pf

(x)−K · x . (23)
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While moving in a laser pulse, the electron acquires an additional momentum shift [35, 47],

this leads to a notion of the laser-dressed momentum:

p̄ = p− µmec
p · ε

p · k
〈f〉 k +

1

2
(µmec)

2 1

p · k

〈

f 2
〉

k . (24)

Having this in mind we can define

Neff =
K0 + p̄0f − p̄0i

k0
= cTp

K0 + p̄0f − p̄0i
2π

, (25)

which is both gauge- and relativistically invariant [35].

The frequency-angular distribution of energy of the emitted photons for an unpolarized

electron beam is given by

d3EC

dωKd2ΩK

=
1

2

∑

σ=1,2

∑

λi=±

∑

λf=±

d3EC,σ(λi, λf)

dωKd2ΩK

, (26)

where
d3EC,σ(λi, λf)

dωKd2ΩK

= α |AC,σ(ωK, λi, λf)|
2 , (27)

and the scattering amplitude equals

AC,σ(ωK , λi, λf) =
mecK

0

2π
√

p0i k
0(k · pf)

∑

N

DN
1− e−2πi(N−Neff )

i(N −Neff)
, (28)

with the functions DN defined in [35].

In Fig. 2, we compare the Thomson and Compton energy distributions for a single laser

pulse in the reference frame in which initially electrons are at rest. As expected, for ωK ≪

mec
2 both theories give the same results, as depicted in the left panel. However, for larger

laser carrier frequency ωL and energies of generated photons ωK the Compton distribution is

red-shifted with respect to the Thomson one. Such a shift has been analyzed in [32] within

the slowly changing envelope approximation. This analysis has been extended to arbitrarily

short laser pulses in [48], together with the discussion of the significant role played by the

polarization of emitted radiation and the spin degrees of freedom of the electron initial and

final states.

IV. COMPTON HIGH-ORDER HARMONICS AND GENERATION OF ULTRA-

SHORT PULSES

High-order harmonics generated via non-relativistic interaction of intense laser pulses

with atoms allow to synthesize attosecond pulses of coherent radiation [49]. Currently, the

8
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FIG. 2. (Color online) The energy distribution of radiation emitted by the scattered electron. The

black solid line corresponds to Nrep = 1, the red dashed line to Nrep = 2, whereas the blue solid

line is for Nrep = 3. Each subpulse contains eight field oscillations (Nosc = 8). The detection

angles are ϕK = 0 and θK = π/10. While the results presented in panel (a) relate to µ = 1 and

ωL = 3× 10−3mec
2, the results presented in panel (b) are for µ = 10 and ωL = 3× 10−2mec

2.
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FIG. 3. (Color online) The Compton energy distribution for the laser pulse parameters: ωL =

4.15× 10−4mec
2, µ = 1, Nosc = 16, θK = 0.2π, ϕK = 0, and χ = π. Different panels correspond to

four different delay times Td. The solid black lines (envelopes) present the energy distributions for

a single pulse (Nrep = 1), the dashed red lines are for Nrep = 2, whereas the solid blue lines are for

Nrep = 3. The corresponding energy distributions are divided by N2
rep, which proves the coherent

properties of the generated high-order harmonics comb structures.
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FIG. 4. (Color online) Temporal power distributions of generated radiation, synthesized from the

Compton amplitude (28) for λiλf = 1 and for the laser field parameters specified in Fig. 3. The

upper two panels show the power distributions defined by Eqs. (29) and (31) for a single pulse

(Nrep = 1), after being normalized to the maximum value. The middle and the bottom panels

show the temporal power distributions (31) composed from the energy distributions represented in

Fig. 3 by the blue lines (Nrep = 3) for Td = 0 and Td = Tsub, respectively.

energy bandwidth of the harmonic plateau can reach a few keV [50]. In order to extend this

spectrum up to MeV domain a relativistic treatment is necessary. The Compton process

offers such a possibility, as it is presented in Fig. 3. For a single laser pulse (Nrep = 1), we

observe a broad and smooth energy distribution from which we choose a part of the band-

width approximately equal to the carrier frequency ωL. However, if we apply the sequence

of Nrep pulses the energy distribution shows an equally spaced peaks with maxima which

scale as N2
rep. This scaling law indicates that the generated comb structure is temporarily

coherent. Moreover, the distance between the peaks can be controlled by a delay of the laser

subpulses. Therefore, one can interpret the emergence of such a structure as the result of

the interference of Compton photons emitted from different subpulses [40].
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In order to further investigate the coherent properties of such a high-order harmonic

spectrum let us consider the temporal power distribution of emitted radiation. This power

distribution is related to the Compton amplitude (28) by the formula

d2PC,σ(φr, λi, λf)

d2ΩK

=
α

π

(

ℜÃ
(+)
C,σ(φr, λi, λf)

)2
. (29)

where

Ã
(+)
C,σ(φr, λi, λf) =

∫

∞

0

dωAC,σ(ω, λi, λf)e
−iωφr/ωL . (30)

Here, ℜ denotes the real part and φr = ωL(t − R/c), with R being a distance from the

scattering region to the observation point. In general, the power distribution (29) is a very

rapidly oscillating function of time. One can define the temporal power distribution of

generated radiation, avaraged over these oscillations,

d2〈PC,σ〉(φr, λi, λf)

d2ΩK

=
α

2π
|Ã

(+)
C,σ(φr, λi, λf)|

2. (31)

Fig. 4 depicts the temporal power distributions, (29) or (31), as functions of the dimen-

sionless retarded phase φr = ωL(t − R/c), instead of the observation time t. The power

distributions have been synthesized from the energy distributions presented in Fig. 3. As we

see, the radiation is emitted in the form of short pulses. Similar conclusions can be drawn

from the classical Thomson scattering, although some significant discrepancies between the

classical and quantum theories can be observed [51].

V. CONCLUSIONS

In this paper, we have presented the theory of Thomson and Compton processes in intense

laser pulses. We have shown that, by applying the sequence of laser pulses, it is possible to

create high-order harmonics structures in the emitted radiation. We have investigated this

problem in the electron beam reference frame. It appears, however, that in the laboratory

frame, when electrons have the energy of the order of GeV, the bandwidth of the generated

harmonic spectrum is of the order of a few MeV. This can be further synthesized into zepto-

or even yoctosecond pulses, as will be presented elsewhere [51].
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