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(Dated: July 5, 2021)

We compute the full cosmic microwave background temperature bispectrum generated by nonlin-
earities after single-field inflation. By integrating the photon temperature at second order along a
perturbed geodesic in Newtonian gauge, we derive an expression for the observed temperature fluc-
tuations that, for the first time, clarifies the separation of the gravitational lensing and time-delay
effects from the purely second-order contributions. We then use the second-order Boltzmann code
CosmoLib2nd to calculate these contributions and their bispectrum. Including the perturbations
in the photon path, the numerically computed bispectrum exactly matches the expected squeezed
limit. Moreover, the analytic squeezed-limit formula reproduces well the signal-to-noise and shape
of the full bispectrum, potentially facilitating the subtraction of the bias induced by second-order
effects. For a cosmic-variance limited experiment with lmax = 2000, the bias on a local signal is
f loc
NL = 0.73 negligible for equilateral and orthogonal signals. The signal-to-noise ratio is unity at
lmax ∼ 3000, suggesting that second-order effects may hopefully be measured in the future.

One of the main results of the Planck satellite nominal
mission is that primordial non-Gaussianity is small [1]. It
is tempting to conclude that single-field models of infla-
tion are confirmed (although multi-field inflation is still
compatible with small non-Gaussianity [2]); however, the
current constraints still allow for many models predicting
f loc

NL ∼ few, which may be detected once that all the 2.5
years temperature and polarization data will be consid-
ered. Since so much is at stake, any little improvement
on these constraints may very important.

To clean the data from any contamination of the pri-
mordial signal we must consistently account for the non-
linear relation between the initial conditions and the
CMB anisotropies. An important nonlinear effect that
has been clearly detected [1] comes from the integrated
Sachs-Wolfe (ISW)-lensing correlation (see e.g. [3]).

Other late-time nonlinearities are expected to con-
tribute, in a minor part, to the bispectrum. Although
small, their subtraction should be taken into account.
Due to the complexity of their calculation, these effects
require dedicated numerical studies. During the last few
years there has been an intense effort to derive the com-
plete second-order equations [4–11], which recently led to
the development of CosmoLib2nd [12], a numerical Boltz-
mann code at second-order to compute the CMB bispec-
trum from nonlinear effects. This code predicted that the
bias on local non-Gaussianity is small but non-negligible,
which has been qualitatively confirmed by other two in-
dependent numerical studies [13, 14].

A challenging aspect of second-order codes is the inte-
gration of the photon temperature along the line of sight.
In particular, the photon Boltzmann equation contains
second-order couplings between the gravitational poten-
tials and all multipoles of the temperature generated by
free-streaming after recombination [12]. Since the solu-
tion fails to converge by naively truncating at finite l,

incorrect treatment of these terms has led to overesti-
mating their effect on the bispectrum [10]. In [12] we
have shown that the solution to this problem is to rewrite
the infinite sum of multipoles as a boundary term and a
term that contributes only before recombination, where
frequent Thomson scatterings suppress high multipoles.

On the other hand, all previous calculations have been
performed along an unperturbed geodesic in Newtonian
conformal gauge. However, to ensure that the final result
is observable and gauge invariant one needs to include de-
viations from a straight geodesic and understand the sep-
aration of lensing and time delay from the other second-
order effects. As pointed out in [14, 19], a longstanding
obstacle hindering this inclusion is a convergence prob-
lem similar to the one discussed above.

In this Letter, we first remove this obstacle and—to
our knowledge for the first time—clarify the separation
between lensing, time-delay and intrinsic second-order ef-
fects that need a dedicated code to be computed. Second,
we calculate the full observable CMB temperature bispec-
trum (in the absence of primordial non-Gaussianity) and
show that only once the above separation is clear one
can reach an exact agreement with the analytic formula
in the squeezed limit [3, 15–18]. Finally, we compare
the signal-to-noise of the reduced bispectrum computed
with the code to the one from the squeezed-limit approx-
imation and recompute the values of the contamination
up to lmax ∼ 3000 with higher accuracy than previous
computations.

We have improved CosmoLib2nd with respect to the
version used in [12]. In particular, we now compute fluc-
tuations in the free-electron density by consistently per-
turbing RECFAST [20] to first order, thus including He-
lium recombination; we have also increased the accuracy
of the 3-d integrator and consistently included vector and
tensor (i.e., m = ±1,±2) contributions. None of these
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improvements sensibly affects the results of [12]. Res-
onable convergence of the line-of-sight integral can be
obtained for l ≤ 3 in the second-order source but here we
safely use l ≤ 7. We employ Planck cosmological param-
eters [21] (without reionization) in all calculations. We
will give more details on the present version of the code
in a longer paper [22].

Full bispectrum. The Boltzmann equation for pho-
tons can be written in terms of the fractional brightness
∆ ≡ δI/Ī, with I(η, ~x, n̂) ≡

∫
dp p3f(η, ~x, ~p); f is the

photon distribution and we have rewritten the momen-
tum of photons in the local inertial frame, pi, as pi ≡ pni,
nin

i = 1. Using a perturbed metric at second order in
the Poisson gauge, ds2 = a2(η)[−e2Φdη2 + 2ωidηdx

i +
(e−2Ψδij +χij)dx

idxj ], with ωi,i = 0 and χii = 0 = χij,j ,
the brightness equation reads

d

dη
(∆ + 4Φ) ≡

(
∂

∂η
+
dxi

dη
∂i +

dni

dη
∂ni

)
(∆ + 4Φ)

= 4∆(Ψ̇− Φ,in
i) + E − (τ̇ + δτ̇)F ,

(1)

where a dot denotes the derivative with respect to η;
τ̇ ≡ −neσTa is the unperturbed differential optical depth
and δτ̇ ≡ τ̇(δe + Φ) its perturbation, where δe ≡ δne/ne
is the free-electron density contrast. We assume there
is no reionization; hence, both τ̇ and δτ̇ vanish today.
In the second line, E ≡ 4(Φ̇ + Ψ̇) − 4ω̇in

i − 2χ̇ijn
inj is

the redshift in photon energy due to integrated effects:
the ISW contribution (whose second-order part is the
Rees-Sciama (RS) effect), and the vector and tensor con-
tributions, respectively [9]. Finally, the collision term
of the Boltzmann equation, F , can be read off from the
RHS of eq. (78) of [7], with the notation for Φ and Ψ
interchanged.

As explained in [12], the first term in the second line of
eq. (1) couples the gravitational potentials to all the mul-
tipole moments of ∆ generated by photon free-streaming
along the line of sight. Hence, solving this equation by
naively truncating the multipole expansion at finite or-
der leads to a lack of convergence of its solution. As
shown in [12], this term can be traded by a total deriva-
tive and terms proportional to τ̇ , which vanish after re-
combination and whose multipole expansion can be thus
safely truncated at low l. Indeed, by replacing Φ,in

i by

dΦ/dη − Φ̇ and dividing eq. (1) by 1 + ∆ we can rewrite
it, up to second order, as

d

dη

[
(∆G + 4Φ) e−(τ+δτ)

]
= (E − τ̇R)e−(τ+δτ) , (2)

τ̇R ≡ (τ̇ + δτ̇)(FG + ∆G + 4Φ) , (3)

with ∆G ≡ ∆− 1
2∆2 and FG ≡ F (1−∆).

We want to integrate this equation along the perturbed
photon trajectory. While at linear order one usually re-
lies on the so called Born approximation and integrate
the first-order source along an unperturbed geodesic, here

we need to go at one order higher. To do that, we de-
fine the lensing deviation δxi ≡ ~x(η, n̂) − ~x0(η), where
~x0(η) ≡ n̂(η − η0) is the unperturbed geodesic, and the
deviation angle δni, with δni(η0) = 0. The evolution of
these quantities along the line of sight can be computed
using the photon geodesic equation (see e.g. eqs. (63) and
(65) of [7]),

dδxi/dη = δni + ni(Φ + Ψ) , (4)

dδni/dη = −∇i⊥(Φ + Ψ) , (5)

with ∇i⊥ ≡ (δij −ninj)∂j . Plugging these equations into
the definition of convective derivative in the first line of
eq. (1), we can formally solve eq. (2) as

∆obs(n̂) =
1

2
[∆obs(n̂)]

2
+

∫ η0

0

dηe−τ
{

(1− δτ)(E − τ̇R)

−
[
(Φ + Ψ)ni∂i −∇i⊥(Φ + Ψ)∂ni

]
(∆ + 4Φ)

}
,

(6)

where now all the quantities in the integrand on the RHS
are evaluated along the unperturbed geodesic.

In Ref. [12], the last line of this equation was not in-
cluded in the source for the calculation of the bispectrum.
This line seems to involve the same difficulties encoun-
tered in the calculation of the first term in the second
line of eq. (1), i.e. couplings between Φ and Ψ with the
full hierarchy of multipoles of ∆. However, also in this
case we can rewrite it as a total derivative—yielding a
boundary term once integrated—and terms which can
be truncated at finite l. Indeed, after an integration by
parts −e−τ (Φ + Ψ)ni∂i(∆ + 4Φ) becomes

d

dη

[
φD∗n

i∂i(∆ + 4Φ)
]
−D∗φni∂i (E − τ̇F ) , (7)

where we have defined the gravitational time-delay po-
tential at time η and the angular diameter distance to
recombination, respectively as

φ(η, n̂) ≡ − 1

D∗

∫ η

0

dη′e−τ (Φ + Ψ) , (8)

D∗ ≡ η0 − η∗ , η∗ ≡
∫ η0

0

dητ̇e−τη . (9)

It is lengthier but straightforward to show that
e−τ∇i⊥(Φ + Ψ)∂ni(∆ + 4Φ) can be rewritten as

d

dη
[∂niψ∂ni(∆ + 4Φ)]− ∂niψ

d

dni
(E − τ̇F )

+
d∂niψ

dη
(η − η0)e−τ τ̇ ∂niR ,

(10)

where d
dni ≡ ∂ni + (η − η0)∂i and we have defined the

gravitational lensing potential at time η as

ψ(η, n̂) ≡
∫ η0

0

dη′g (min(η, η′)) (Φ + Ψ) , (11)

g(η) ≡ 1

η − η0

∫ η

0

dη′τ̇ e−τ
η − η′

η′ − η0
, (12)
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which shows that the lensing angle ∂niψ describes the dif-
ference between the deviation angle at time η and that
at the time of last scattering. The photon brightness ap-
pearing in F and R in eqs. (7) and (10) is always propor-
tional to τ̇ ; hence, higher-order multipoles are suppressed
and we can safely truncate the multipole expansion of ∆
at finite l. The second line in eq. (10) takes into ac-
count that sources at the last scattering are generally
anisotropic and gravitational lensing changes the angle
at which they are viewed. This contribution only affects
the very small multipoles [23] and we neglect it here.

In conclusion, replacing the last line of eq. (6) with the
expressions (7) and (10) and integrating the boundary
terms, the observed total CMB temperature anisotropy
at second order is given by the sum of four contributions
(which are not separately gauge invariant [16]),

∆
(2)
obs(n̂) =

1

2
[∆obs(n̂)]

2
+ ∆

(2)
S (η0, n̂)

+ φ(η0, n̂)D∗n
i∂i∆obs(n̂) + ∂niψ(η0, n̂)∂ni∆obs(n̂) ,

(13)

where ∆S(η0, n̂) is given, up to second order, by

∆S(η0, n̂) =

∫ η0

0

dη

[
e−τ (1− δτ) (E − τ̇R)

−D∗φni∂i (E − τ̇F )− ∂niψ
d

dni
(E − τ̇F )

]
.

(14)

The first term on the RHS of eq. (13) comes from the
local relation between ∆G and ∆ [12]. The third term
is the standard gravitational time delay and the fourth
one is lensing. In particular, the potentials φ(η0, n̂) and
ψ(η0, n̂) respectively correspond to d(n̂) and φ(n̂), de-
fined in eqs. (6), (1) and (2) of Ref. [23]. The time delay
is suppressed by η∗/D∗ and can be neglected [23]. Hence
the total bispectrum reads

bl1l2l3 =
[
(Cl1 +Ll1l2l3C

Tψ
l1

)Cl2 +perms
]
+bS,l1l2l3 , (15)

where Ll1l2l3 ≡ [l1(l1+1)+l2(l2+1)−l3(l3+1)]/2, CTψl is
the cross-correlation spectrum between the temperature
and the lensing potential (dominated by the ISW-lensing
correlation) and bS,l1l2l3 is the bispectrum computed from
eq. (14). Since the terms in bracket on the RHS are due to
the modulation of the short-scale power spectrum by the
long modes, this formula is nonperturbative in the short
modes and involve the lensed small-scale power spectrum
rather than the unlensed one [3]. The last term, bS,l1l2l3 ,
is the only one that requires a second-order Boltzmann
calculation. In the rest of this Letter we concentrate our
study on this contribution.

Squeezed limit. As argued in [12, 15], an important
check of any Boltzmann code is to reproduce the bispec-
trum in the squeezed limit, which can be computed ana-
lytically because it is dominated by the angular modula-
tion of the small-scale power spectrum by super-horizon

modes at recombination [3, 15–18]. Here we show that
the last line of eq. (14) is crucial to correctly reproduce
the squeezed-limit formula.

The contribution to the bispectrum from ∆S in eq. (14)
can be computed analytically in the squeezed limit, by
considering the effect of spatial coordinates redefinition
at recombination by a long wavelength of the primordial
curvature perturbation ζ, ~x → ~x(1 + ζ). This transfor-
mation (which leaves unaffected the lensing angle ∂niψ)
generates the following contributions to the integrand of
eq. (14),

ζ(η − η0)ni∂i(Ẽ − τ̇R)−
(∫ η

0

dη′e−τζ

)
ni∂i

(
Ẽ − τ̇F

)
,

(16)
where we have used Φ + Ψ = −ζ for the long wave-
length time-delay potential. Since the long mode only
modulates quantities at recombination, we use a tilde
to denote that we have removed the late-ISW contribu-
tion. Integrating both terms in eq. (16) by parts along
the line of sight gives a spatial redefinition of the tem-

perature fluctuation, ∆
(2)
S (η0, n̂) ≈ ζD∗ n

i∂i∆̃(η0, n̂). In
the squeezed limit l1 � l2, l3 and for l1 � lH , where
lH ' (Ha/cs)∗D∗ ' 110, this corresponds to the reduced
bispectrum

bS,l1l2l3 ≈ C
Tζ
l1

1

l2
d(l2C̃l)

d ln l
, (17)

where ~l ≡ (~l2 − ~l3)/2 and CTζl1 is the cross-correlation
spectrum between the temperature and ζ. One can verify
that a long wavelength time-coordinate transformation
η → η+ ε(η) induced by the long mode leaves unchanged
eq. (14) up to corrections of order η∗/D∗.

In Fig. 1 we compare the bispectrum numerically
computed using eq. (14) with the approximate formula
eq. (17). As expected, the agreement is of O(l1/l)

2.
While the last term in bracket in eq. (14) can be ne-
glected in the squeezed limit, the third term, here called
“time shift”, becomes important—and crucial to per-
fectly match the approximate formula—when the early-
ISW effect is large. (When Λ = 0 the early-ISW effect
is negligible and agreement can be obtained also in the
absence of the last line of eq. (14) [12].)

Bispectrum amplitude and shape. We define the Fisher
matrix between two bispectra X and Y as [25]

FX,Y ≡
∑

2≤l1≤l2≤l3≤lmax

B
(X)
l1l2l3

B
(Y )
l1l2l3

Cl1Cl2Cl3∆l1l2l3

, (18)

with ∆l1l2l3 = 1, 2, 6 for triangles with no, two or three
equal sides. The indices X and Y run from “sec, app,
loc, eq, ort”, respectively denoting the contributions
from second-order effects, i.e. Cl1Cl2 +Cl1Cl3 +Cl2Cl3 +
bS,l1l2l3 , their analytic approximation in the squeezed
limit, i.e. 2Cl1Cl plus eq. (17), the local, equilateral
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FIG. 1: Reduced bispectrum from eq. (14), bS,l1l2l3 , for l1 = 6
as a function of l2 = l3, decomposed in its different contribu-
tions and compared to the squeezed-limit formula. The “time
shift” denotes the contribution from the second term on the
RHS of eq. (14) while the one from the last term is not shown
here due to its smallness in the squeezed limit. The horizontal
axis uses logarithmic (linear) scale for l ≤ 100 (l > 100).
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FIG. 2: Signal-to-noise ratio of second-order effects,
i.e. Cl1Cl2 + Cl1Cl3 + Cl2Cl3 + bS,l1l2l3 , compared to the
one from the squeezed-limit approximation, i.e. 2Cl1Cl plus
eq. (17), and bias to local, equilateral and orthogonal signals.

and orthogonal shapes. A complete list of the elements
of FX,Y (including the separation with late-time and
m = 0,±1,±2 contributions) as a function of lmax can
be found in [24].

In Fig. 2 we plot the signal-to-noise ratio of second-

order effects, (S/N)sec ≡ F
1/2
sec,sec, the squeezed-limit ap-

proximation, (S/N)app ≡ F
1/2
app,app, and their overlap de-

fined as αsec,app ≡ Fsec,app/(Fsec,secFapp,app)1/2. The
signal-to-noise agrees with Ref. [14] (and qualitatively
with [13] at lmax = 2000) and is well approximated,
up to ∼ 10% differences both in the amplitude and in
the shape, by its analytic approximation in the squeezed
limit. We have also checked that late-time second-order
effects, the most relevant of which are the RS and the
late-time part of the time shift, only contribute by ∼ 10%
to (S/N)sec, roughly independently of lmax for lmax & 700
[24]. Hence, most of (S/N)sec originates at recombina-
tion. Figure 2 also shows the bias of second-order sources

(f
(X)
NL ≡ FX,sec/FX,X) on local, equilateral and orthog-

onal primordial signals. The bias on a local signal is
small but non-negligible and should be subtracted from
the current constraints. Biases on equilateral and orthog-
onal signals are always smaller than an order of magni-
tude of their variance and can thus be totally neglected.
We disagree by 10% with the value of f loc

NL reported in
[12]; this is mainly due to a sub-optimal binning scheme,
here corrected [24]. Comparison with [13, 14] on the val-
ues of the contamination is not straightforward, because
these references integrate different terms along the line
of sight.

Conclusion. Second-order effects in the CMB tem-
perature are finally completely under control. We have
clearly separated second-order sources at recombination
from the better-known ISW-lensing correlation. Even
though the former is smaller than the latter, we propose
that both should be included in future Planck analysis
of non-Gaussianity. This task could be simplified by di-
rectly using eq. (15) with bS,l1l2l3 given by the analytic
formula in the squeezed limit, eq. (17) [3, 15, 18], which
we showed to approximate well the second-order effects.

As the signal-to-noise ratio of these effects becomes
unity at lmax ∼ 3000, they may eventually be measured
by combining present and future CMB temperature and
polarization data and become an important cross-check
of standard cosmology beyond linear theory.

N.B. We thank the authors of [13, 14], P. Creminelli,
A. Lewis, C. Pitrou and B. van Tent for very stimulating
discussions and useful correspondence, the SNS of Pisa
for kind hospitality and we acknowledge support by the
ANR Chaire d’excellence Junior CMBsecond ANR-09-
CEXC-004-01.
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