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1. Introduction

Multi-gluon amplitudes in perturbative QCD pose two very different computational chal-
lenges. On one hand, there is the calculation of on-shell matrix elements, a field that has seen
tremendous activity and progress during the last decade, particularly so for the massless and/or
SUSY cases. A whole host of new concepts and techniques have emerged, such as unitarity-based
methods [1, 2], twistors [3], BCFW recursion [4, 5], and Grassmannians [6, 7]; see [8] and [9] for
recent reviews.

On the other hand, there are the off-shell gluon amplitudes, which carry additional physical
information, particularly on the infrared properties of QCD (see, e.g., [10]). They are also essential
for the matching of perturbative information with lattice data (see, e.g., [11]), and constitute an
essential ingredient for the Schwinger-Dyson equations. In the latter context, previously only the
two and three-point amplitudes were used with their full loop-corrected structure, but a need for the
inclusion of the four-gluon vertex is already felt [12]. Off-shell, the natural building blocks are not
the connected but the one-particle-irreducible (‘1PI’) N - gluon Green’s functions, also called ‘N
- gluon vertices’. For their calculation, no progress comparable to the on-shell case was achieved
in recent years, and their explicit computation is presently essentially still stuck at the three-point
level.

Let us shortly review what is known about the N - gluon vertices. Following early work by
Celmaster and Gonsalves [13] and Pascual and Tarrach [14], in 1980 Ball and Chiu [15] studied the
off-shell gluon amplitudes for the gluon loop in Feynman gauge. They analyzed the Ward identities
and derived a form factor (“Ball-Chiu”) decomposition of the three-gluon vertex, valid to all loop
orders. Cornwall and Papavassiliou [16] in 1989 constructed a “gauge invariant three-gluon vertex”
through the pinch technique (see [17] for a review of this technique). Freedman et al. in 1992
studied the conformal properties of this vertex [18]. In 1993 J. Papavassiliou [19] extended this
construction to the four-gluon vertex. Davydychev, Osland and Tarasov [20] in 1996 calculated
the gluon loop contribution to the one-loop three-gluon vertex in arbitrary covariant gauge, and
also the massless fermion loop contribution. The fermion loop calculation was later generalized
to the massive case by Davydychev, Osland and Saks [21]. In 2006, Binger and Brodsky [22]
studied the one-loop three-gluon vertex in various dimensions, using the background field method
[23, 24]. Besides the gluon and fermion loop cases, they now also included the scalar loop, as is
needed for SUSY extensions of QCD, and they derived various sum rules relevant to the SUSY
case. They also verified that, as had been suggested in [25, 26], in the gluon loop case the use of
the background field method with quantum Feynman gauge leads to precisely the same vertex as
the pinch technique. At two loops, the three-gluon vertex has been obtained so far only for some
very special momentum configurations [27, 28, 29]).

Our aim here is to demonstrate that the string-inspired approach to perturbative QCD, origi-
nally developed in the on-shell context by Bern and Kosower [30, 31, 32], is also extremely promis-
ing as a tool for the derivation of form factor decompositions of the N - gluon amplitudes off-shell
(see also J. Cornwall’s talk at this workshop [33]).
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2. The Ward identities for the off-shell gluon amplitudes

Off-shell, the Ward identities for the gluon amplitudes are inhomogeneous and map the N -
vertex to N−1 - point amplitudes. E.g. for the four-point case one finds [19]

pµ

1 Γ
abcd
µναβ

(p1, p2, p3, p4) = fabeΓ
cde
ναβ

(p1 + p2, p3, p4)+ perm. (2.1)

These identities as they stand hold for the scalar and spinor loop unambiguously, but for the gluon
loop only if one uses the pinch technique, or equivalently the background field method with quan-
tum Feynman gauge. Other gauge fixings of the gluon loop will generally lead to a more compli-
cated right-hand side involving ghosts.

3. The QCD three-gluon vertex and its Ball-Chiu decomposition

The three-gluon vertex in QCD at tree level,

−ig f a1a2a3
[
gµ1µ2(p1− p2)µ3 + cycl.

]
, (3.1)

is corrected at the one-loop level by the 1PI three-gluon vertex with a spinor or gluon loop. E.g.
for the spinor loop case we have the diagram shown in Fig. 1 (and a second one with the other
orientation of the fermion).

a1 �1p1 a2 �2p2
a3 �3p3

Figure 1: Three-gluon vertex.

The Ball-Chiu decomposition of the vertex is [15]

Γµ1µ2µ3(p1, p2, p3) = A(p2
1, p2

2; p2
3)gµ1µ2(p1− p2)µ3 +B(p2

1, p2
2; p2

3)gµ1µ2(p1 + p2)µ3

+C(p2
1, p2

2; p2
3)[p1µ2 p2µ1− p1 · p2gµ1µ2 ](p1− p2)µ3

+
1
3

S(p2
1, p2

2, p2
3)(p1µ3 p2µ1 p3µ2 + p1µ2 p2µ3 p3µ1)

+F(p2
1, p2

2; p2
3)[p1µ2 p2µ1− p1 · p2gµ1µ2 ][p2µ3 p1 · p3− p1µ3 p2 · p3]

3
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+H(p2
1, p2

2, p2
3)
(
−gµ1µ2 [p1µ3 p2 · p3− p2µ3 p1 · p3]+

1
3
(p1µ3 p2µ1 p3µ2− p1µ2 p2µ3 p3µ1)

)
+[cyclic permutations of (p1,µ1),(p2,µ2),(p3,µ3)] .

(3.2)

This form factor decomposition is universal, that is, valid for the scalar, spinor and gluon loop, and
also for higher loop corrections. Only the coefficient functions A,B,C,F,H,S change. At tree level,
A = 1, the other functions vanish. Explicit calculation shows that S still vanishes at one-loop. The
tensor structures multiplying F,H are manifestly transversal.

4. The string-inspired formalism

In 1991 Bern and Kosower in their seminal work derived, by an analysis of the infinite string
limit of certain string amplitudes, the following Bern-Kosower master formula [30, 31, 32]:

Γ
a1...aN [p1,ε1; . . . ; pN ,εN ] = (−ig)N tr(T a1 . . .T aN )

∫
∞

0
dT (4πT )−D/2e−m2T

×
∫ T

0
dτ1

∫
τ1

0
dτ2 . . .

∫
τN−2

0
dτN−1

×exp

{
N

∑
i, j=1

[
1
2

GBi j pi · p j− iĠBi jεi · p j +
1
2

G̈Bi jεi · ε j

]}∣∣∣∣∣
lin(ε1...εN)

.

(4.1)

As it stands, this is a parameter integral representation for the (color-ordered) 1PI N - gluon ampli-
tude induced by a scalar loop, with momenta pi and polarizations εi, in D dimensions. Here m and
T are the loop mass and proper-time, τi fixes the location of the ith gluon, and GBi j ≡ GB(τi,τ j)

denotes the “bosonic” worldline Green’s function, defined by

GBi j = |τi− τ j|−
(τi− τ j)

2

T
, (4.2)

and dots generally denote a derivative acting on the first variable. Explicitly,

ĠB(τ1,τ2) = sign(τ1− τ2)−2
(τ1− τ2)

T

G̈B(τ1,τ2) = 2δ (τ1− τ2)−
2
T
.

(4.3)

In the Bern-Kosower formalism, the master formula serves as a generating functional for the full
on-shell N - gluon amplitudes for the scalar, spinor and gluon loop, through the use of the Bern-
Kosower rules:

• For fixed N, expand the generating exponential and take only the terms linear in all polariza-
tion vectors.
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• Use suitable integrations-by-parts (IBPs) to remove all second derivatives G̈Bi j.

• Apply two types of pattern-matching rules:

– The “tree replacement rules” generate (from a field theory point of view) the contribu-
tions of the missing reducible diagrams.

– The “loop replacement rules” generate the integrands for the spinor and gluon loop
from the one for the scalar loop.

5. The worldline path integral approach

Shortly after the work of Bern and Kosower, Strassler [34] rederived the master formula and
the loop replacement rules using worldline path integral representations of the gluonic effective
actions. E.g. for the scalar loop,

Γ[A] = tr
∫

∞

0

dT
T

e−m2T
∫

Dx(τ)Pe
−
∫ T

0 dτ

(
1
4 ẋ2+igẋ·A(x(τ))

)
, (5.1)

where Aµ = Aa
µT a and P denotes path ordering. This also showed that the master formula and the

loop replacement rules hold off-shell, which was not obvious from its original derivation. More-
over, in a beautiful but unpublished paper [35] Strassler noted that the IBP generates automatically
abelian field strength tensors

f µν

i ≡ pµ

i ε
ν
i − ε

µ

i pν
i , (5.2)

in the bulk, and color commutators [T ai ,T a j ] as boundary terms. Those fit together to produce full
nonabelian field strength tensors

Fµν ≡ Fa
µνT a = (∂µAa

ν −∂νAa
µ)T

a + ig[Ab
µT b,Ac

νT c] , (5.3)

in the low-energy effective action. Thus we see something very interesting, namely the emergence
of gauge invariant tensor structures at the integrand level.

However, the removal of all G̈Bi j by IBP can be done in many ways! Moreover, it is not
obvious how to do it without breaking the bose symmetry between the gluons. In [35] Strassler
started to investigate this ambiguity at the four-point level, but an algorithm valid for any N and
manifestly preserving the permutation invariance was given only much later [36, 37] by one of the
authors. This algorithm still followed the objective of achieving a form of the N - gluon vertex that,
in x - space, would correspond to a manifestly covariant representation of the nonabelian effective
action. However, it turns out not be optimized from another point of view, which is important, e.g.,
for the Schwinger-Dyson equations, namely it does not lead to a clean separation of the vertices
into transversal and longitudinal parts. This remaining obstacle has been overcome only recently in
[38], where we give two IBP algorithms that work for arbitrary N and lead to explicit form-factor
decompositions of the off-shell N - gluon amplitudes:

5
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• The first algorithm uses only local total derivative terms and leads to a representation that
matches term-by-term with the low-energy effective action (“Q-representation ”).

• The second algorithm uses both local and nonlocal total derivative terms and leads to the
transversality of all bulk terms at the integrand level (“ S-representation”).

In [39], we applied both algorithms to the three-point case and showed that, in particular, the
second algorithm generates precisely the Ball-Chiu decomposition. Very recently, we have carried
out the same program also for the four-gluon vertex [40]. We will now sketch these rather involved
calculations as well as space permits.

6. The Q-representation of the three-gluon vertex

For N = 3, the Q-representation is (for the scalar loop) [39]

Γ =
g3

(4π)
D
2

tr(T a1 [T a2 ,T a3 ])(Γ3 +Γ
2 +Γ

bt) ,

(6.1)

where

Γ
3 = −

∫
∞

0

dT

T
D
2

e−m2T
∫ T

0
dτ1

∫
τ1

0
dτ2 Q3

3 exp
{ 3

∑
i, j=1

1
2

GBi j pi · p j

}
Γ

2 = Γ
3(Q3

3→ Q2
3)

Γ
bt =

∫
∞

0

dT

T
D
2

e−m2T
∫ T

0
dτ1ĠB12ĠB21

[
ε3 · f1 · ε2 eGB12 p1·(p2+p3)+ cycl.

]
,

(6.2)

and

Q3
3 = ĠB12ĠB23ĠB31tr( f1 f2 f3)

Q2
3 =

1
2

ĠB12ĠB21tr( f1 f2)ĠB3kε3 · pk +2perm .

(6.3)

Here Γbt comes from the boundary terms, and the upper indices on Γ2,3,Q2,3 refer to the “cycle
content”; e.g. Q3

3 contains a factor ĠB12ĠB23ĠB31 whose indices form a closed cycle involving
three points, called “three-cycle”. Dummy indices like the one appearing in Q2

3 are to be summed
from 1 to N = 3. To pass from the scalar to the spinor loop, one applies the “loop replacement
rules”

ĠBi jĠB ji → ĠBi jĠB ji−GFi jGF ji

ĠB12ĠB23ĠB31 → ĠB12ĠB23ĠB31−GF12GF23GF31 ,

(6.4)
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where GFi j = sign(τi− τ j). Similarly, the integrand for the gluon loop is obtained from the scalar
loop one by

ĠBi jĠB ji → ĠBi jĠB ji−4GFi jGF ji

ĠB12ĠB23ĠB31 → ĠB12ĠB23ĠB31−4GF12GF23GF31 .

(6.5)

As stated above, the gluon loop vertex obtained in this way corresponds to the background field
method with quantum Feynman gauge [34, 41]. And for all three cases - scalar, spinor and gluon
loop - the vertex allows a perfect match with the low-energy effective action. We recall that the low
energy expansion of the one-loop QCD effective action induced by a loop particle of mass m has
the form (see, e.g., [42])

Γ[F ] =
∫

∞

0

dT
T

e−m2T

(4πT )D/2 tr
∫

dx0

∞

∑
n=2

(−T )n

n!
On[F ] , (6.6)

where On(F)is a Lorentz and gauge invariant expression of mass dimension 2n. To lowest orders,

O2 = c2g2FµνFµν ,

O3 = c3
3 ig3 Fκλ Fλ µFµκ + c2

3g2Dλ FµνDλ Fµν ,

(6.7)

where only the coefficients c2,c
2,3
3 depend on the spin of the loop particle. We recognize the

correspondences

Γ
3↔ F λ

κ F µ

λ
F κ

µ = f λ
κ f µ

λ
f κ
µ +higher point terms

Γ
2↔ (∂ + igA)F(∂︸ ︷︷ ︸+igA)F

Γ
bt↔ ( f + ig [A,A])( f︸ ︷︷ ︸+ig[A,A]) .

(6.8)

7. The S-representation of the three-gluon vertex

In the S-representation, the three-gluon vertex becomes

Γ̃ =
g3

(4π)
D
2

tr(T a1 [T a2 ,T a3 ])(Γ̃3 + Γ̃
2 + Γ̃

bt) ,

(7.1)

where

7
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Γ̃
3 = −

∫
∞

0

dT

T
D
2

e−m2T
∫ T

0
dτ1

∫
τ1

0
dτ2 S3

3 exp
{ 3

∑
i, j=1

1
2

GBi j pi · p j

}
Γ̃

2 = Γ̃
3(S3

3→ S2
3)

Γ̃
bt =

∫
∞

0

dT

T
D
2

e−m2T
∫ T

0
dτ1ĠB12ĠB21

{[
ε3 · f1 · ε2−

1
2

tr( f1 f2)ρ3 +
1
2

tr( f3 f1)ρ2

]
×eGB12 p1·(p2+p3)+ cycl.

}
,

(7.2)

and

S3
3 = ĠB12ĠB23ĠB31tr( f1 f2 f3)

S2
3 =

1
2

ĠB12ĠB21tr( f1 f2)ĠB3k
r3 · f3 · pk

r3 · p3
+2perm .

(7.3)

Here we have introduced three vectors ri which obey ri · pi 6= 0 but are arbitrary otherwise, and
ρi := ri·εi

ri·pi
. Note that S3 is the same as Q3 above, but that in S2, contrary to Q2, all three polarization

vectors εi are absorbed in abelian field strength tensors fi. Thus all bulk terms are now manifestly
transversal, even at the integrand level, and it turns out that with the cyclic choice

r1 = p2− p3,r2 = p3− p1,r3 = p1− p2 ,

we get a term-by-term match with the Ball-Chiu decomposition:

H(p2
1, p2

2, p2
3) = C(r)

d0g2

(4π)D/2 Γ(3− D
2
)ID

3,B(p2
1, p2

2, p2
3)

A(p2
1, p2

2; p2
3) = C(r)

d0g2

2(4π)D/2 Γ(2− D
2
)
[
ID
bt,B(p2

1)+ ID
bt,B(p2

2)
]

B(p2
1, p2

2; p2
3) = C(r)

d0g2

2(4π)D/2 Γ(2− D
2
)
[
ID
bt,B(p2

1)− ID
bt,B(p2

2)
]

F(p2
1, p2

2; p2
3) = C(r)

d0g2

(4π)D/2 Γ(3− D
2
)
ID
2,B(p2

1, p2
2, p2

3)− ID
2,B(p2

2, p2
1, p2

3)

p2
1− p2

2

C(p2
1, p2

2; p2
3) = C(r)

d0g2

(4π)D/2 Γ(2− D
2
)
ID
bt,B(p2

1)− ID
bt,B(p2

2)

p2
1− p2

2

S(p2
1, p2

2; p2
3) = 0 ,

(7.4)

where we have used tr(T a1 [T a2 ,T a3 ]) = iC(r) f a1a2a3 .
Here we have written down the scalar loop case, but due to the loop replacement rules (6.4) and
(6.5), the spinor and gluon loop cases differ from it only in the coefficient functions on the right-
hand sides. For completeness, let us write down these coefficient functions also in terms of standard
Feynman-Schwinger parameter integrals (again for the scalar loop)

8
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ID
3,B(p2

1, p2
2, p2

3) =
∫ 1

0
dα1dα2dα3δ (1−α1−α2−α3)×

(1−2α1)(1−2α2)(1−2α3)(
m2 +α1α2 p2

1 +α2α3 p2
2 +α1α3 p2

3

)3−D
2

ID
2,B(p2

1, p2
2, p2

3) =
∫ 1

0
dα1dα2dα3δ (1−α1−α2−α3)×

(1−2α2)
2(1−2α1)(

m2 +α1α2 p2
1 +α2α3 p2

2 +α1α3 p2
3

)3−D
2

ID
bt,B(p2) =

∫ 1

0
dα

(1−2α)2(
m2 +α(1−α)p2

)2−D
2
.

(7.5)

They are, of course, of the same type as the ones arising in other approaches.

8. The four-gluon vertex

Proceeding to the four-point case, here the Q-representation for the scalar loop has the following
bulk terms:

Γ
a1a2a3a4 = g4tr(T a1 . . .T a4)

∫
∞

0
dT (4πT )−D/2e−m2T

×
∫ T

0
dτ1

∫
τ1

0
dτ2

∫
τ2

0
dτ3Q4 exp

{ 4

∑
i, j=1

1
2

GBi j pi · p j

}
,

(8.1)

Q4 = Q4
4 +Q3

4 +Q2
4−Q22

4

Q4
4 = Ġ(1234)+ Ġ(1243)+ Ġ(1324)

Q3
4 = Ġ(123)T (4)+ Ġ(234)T (1)+ Ġ(341)T (2)+ Ġ(412)T (3)

Q2
4 = Ġ(12)T (34)+ Ġ(13)T (24)+ Ġ(14)T (23)+ Ġ(23)T (14)

+Ġ(24)T (13)+ Ġ(34)T (12)

Q22
4 = Ġ(12)Ġ(34)+ Ġ(13)Ġ(24)+ Ġ(14)Ġ(23) ,

(8.2)

where we have now employed a more condensed notation:

Ġ(i1i2 · · · in) := ĠBi1i2ĠBi2i3 · · · ĠBini1

(1
2

)δn,2
tr( fi1 fi2 · · · fin)

T (i) := ∑
r

ĠBirεi · pr

T (i j) := ∑
r,s

{
ĠBirεi · prĠ jsε j · ps +

1
2

ĠBi jεi · ε j

[
ĠBir pi · pr− ĠB jr p j · pr

]}
.

(8.3)

9
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The IBP procedure now leads to both single boundary terms (three-point integrals) and double
boundary terms (two-point integrals). The following rules emerge:

• Each single boundary term, say for the limit 3 → 4, matches some bulk term in the Q-
representation of the three-gluon vertex, with momenta (p1, p2, p3 + p4), and f3 = p3⊗ε3−
ε3⊗ p3 replaced by ε3⊗ ε4− ε4⊗ ε3.

• Each double boundary term, say for the limit 1→ 2,3→ 4, matches the bulk term in the
Q-representation of the two-point function, with momenta (p1+ p2, p3+ p4), and the double
replacement

f1 = p1⊗ ε1− ε1⊗ p1→ ε1⊗ ε2− ε2⊗ ε1

f2 = p2⊗ ε2− ε2⊗ p2→ ε3⊗ ε4− ε4⊗ ε3 .

(8.4)

Effectively, a boundary term always completes a fi to a full nonabelian field strength tensor; that
is, we are seeing just the projection to plane waves of the completion

∂µAν −∂νAµ → ∂µAν −∂νAµ + ig[Aµ ,Aν ] . (8.5)

Moreover, this recursive structure is compatible with the replacement rules.
The S-representation looks similar, but has the bulk terms written completely in terms of the

fi, so that all non-transversality has now been pushed into the boundary terms. It involves now the
choice of four vectors ri with ri · pi 6= 0.

9. Off-shell one-loop four-gluon vertex in N = 4 SYM

In N = 4 SYM the one-loop two - and three - gluon amplitudes vanish (this relates to the
conformal invariance and finiteness of the theory). The one-loop four-gluon vertex is the first
non-vanishing one, and it is extremely simple: all boundary terms cancel out (since they would
covariantize the nonexisting lower point amplitudes) and the bulk term factors as

Γ
a1a2a3a4 = 4g4tr(T a1T a2T a3T a4)F4

ssB(1234) + non− cyclic permutations ,

(9.1)

where B(1234) is the off-shell scalar box integral with momenta p1, . . . , p4, and the whole Lorentz
structure is contained in the invariant

F4
ss = tr( f1 f2 f3 f4)+ tr( f1 f2 f4 f3)+ tr( f1 f3 f2 f4)

−1
4

tr( f1 f2)tr( f3 f4)−
1
4

tr( f1 f3)tr( f2 f4)−
1
4

tr( f1 f4)tr( f2 f3) .

(9.2)

10
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Although this explicit form of the off-shell one-loop four-gluon amplitude in N = 4 SYM appears
to be new, the Lorentz tensor Fss is well-known to string theorists, since it appears in the low energy
expansion of the effective action of the open superstring; see [43] and refs therein.

10. Summary and Outlook

To summarize, the main points which we wanted to make here are:

• In the string-inspired formalism, form factor decompositions of the N - vertex compatible
with Bose symmetry and gauge invariance can be generated simply by an integration-by-
parts procedure starting from the Bern-Kosower master formalism, which originally was
derived as a generating functional for on-shell matrix elements.

• At the one-loop level, the parameter integrals appearing in the form factors for the scalar,
spinor and gluon loop cases are all obtained directly from the Bern-Kosower master formula.

• We have carried out this program explicitly for the three- and four-point cases.

• In particular, we have obtained a natural four-point generalization of the Ball-Chiu decompo-
sition. It is distinguished by the fact that all true four-point terms are manifestly transversal,
so that all longitudinal components are given by lower-point integrals.
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