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ABSTRACT
The physical processes affecting the thermalization of cosmic microwave background spectral
distortions are very simple and well understood. This allows us to make precise predictions
for the distortions signals caused by various energy release scenarios, where the theoretical
uncertainty is largely dominated by the physical ingredients that are used for the calculation.
Here, we revisit various approximations for thedistortion visibility function – defined using
the fraction of the released energy that does not thermalize– and earlyµ-type distortions.
Our approach is based on a perturbative expansion, which allows us to identify and clarify
the origin of different improvements over earlier approximations. It provides a better than
≃ 0.1%−1% description of our numerical results over a wide range of parameters. In particu-
lar, we are able to capture the high-frequency part of theµ-distortion, which directly depends
on the time derivative of the electron temperature. We also include lowest order double Comp-
ton and Compton scattering relativistic corrections, finding that because of cancelation they
increase the thermalization efficiency in the tail of the distortion visibility function by only
≃ 10% (atz ≃ 6× 106), although individually their effect can reach≃ 20%− 40%.
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1 INTRODUCTION

Energy release in the early Universe can cause deviations
of the cosmic microwave background (CMB) energy spec-
trum from a pure blackbody shape (e.g., Zeldovich & Sunyaev
1969; Sunyaev & Zeldovich 1970; Illarionov & Sunyaev 1975;
Danese & de Zotti 1977). These spectral distortions can tellus
about processes occurring well before photons last scattered at
redshift z ≃ 1100, allowing us to constrain the thermal history
of our Universe looking deep into the pre-recombination plasma.
This exciting possibility has recently spurred renewed theoretical
interest into how spectral distortions form and evolve, showing
that the distortion signals may open a new unexplored windowto
early-universe and particle physics (see Chluba & Sunyaev 2012;
Sunyaev & Khatri 2013; Chluba 2013a, for broader overview).

The physics going into the thermalization problem – the pro-
cess that restores the pure blackbody spectrum after some perturba-
tion from thermal equilibrium – are pretty simple and well under-
stood. For primordial spectral distortions, we are only concerned
with the average CMB spectrum, so that spatial perturbations can
be neglected and the Universe can be described as uniformly ex-
panding, thermal plasma consisting of free electrons, hydrogen and
helium atoms, and their corresponding ions inside a bath of photons
from the CMB. We shall restrict ourselves to redshiftsz . few×107,
when electron-positron pairs already completely disappeared. With

⋆ E-mail: jchluba@pha.jhu.edu

these assumptions, any energy release inevitably causes a momen-
tary distortion of the CMB spectrum. This can be understood with
the following simple arguments: a pure blackbody spectrum,Bν(T ),
is fully characterized by one number, its temperatureT . Changing
the energy density,ργ, of the photon field by some∆ργ/ργ ≪ 1
(e.g., from some particle decay) means that the photon number also
has to be readjusted by∆Nγ/Nγ ≈ (3/4)∆ργ/ργ. These additional
photons, furthermore, have to be distributed according to∂Bν/∂T in
energy, to correctly shift the initial blackbody temperature fromT
to T ′ ≈ T + (1/4)∆ργ/ργ. In the early Universe, the double Comp-
ton (DC) and Bremsstrahlung (BR) processes are controllingthe
number of CMB photons, while Compton scattering (CS) allows
photons to diffuse in energy. The exact interplay of these interac-
tions between matter and radiation determines the spectrumof the
CMB at any stage of its evolution. When studying different energy
release mechanisms, the question thus is whether there was enough
time between the energy release event and our observation topro-
duce and redistribute those∆Nγ/Nγ of missing photons, thereby
fully digesting the energy injection, rendering thedistortion visi-
bility tiny.

The thermalization problem has been studied thor-
oughly both analytically (e.g., Zeldovich & Sunyaev 1969;
Sunyaev & Zeldovich 1970; Illarionov & Sunyaev 1975;
Danese & de Zotti 1977; Burigana et al. 1995; Chluba
2005; Khatri & Sunyaev 2012b,a) and numerically (e.g.,
Burigana et al. 1991; Hu & Silk 1993; Burigana & Salvaterra
2003; Procopio & Burigana 2009; Chluba & Sunyaev 2012;
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2 Chluba

Chluba 2013a). From these studies, the following simple picture
can be drawn: atz & 2 × 106, the thermalization process is ex-
tremely efficient and practically any distortion can be erased until
today. At lower redshifts, the CMB spectrum becomes vulnerable
to disturbances in the thermal history and only small amounts of
energy can be ingested without violating the tight experimental
bounds from COBE/FIRAS (Mather et al. 1994; Fixsen et al.
1996; Fixsen & Mather 2002) and other distortion measurements
(Kogut et al. 2006; Zannoni et al. 2008; Seiffert et al. 2011).

The transition from efficient to inefficient thermalization is en-
coded by the distortion visibility function,J(z, z′), which deter-
mines by how much the distortion amplitude is suppressed between
redshiftz andz′ < z. The shape of the final distortion is close to
a superposition ofµ- andy-type distortion (Zeldovich & Sunyaev
1969; Sunyaev & Zeldovich 1970), with a smaller residual (non-
µ/non-y) which provides additional time-dependent information
at 104

. z . 3 × 105 (Burigana et al. 1991; Hu 1995;
Chluba & Sunyaev 2012; Khatri & Sunyaev 2012a; Chluba 2013b;
Chluba & Jeong 2014). How far into thecosmic photosphere (Bond
1996) one can view, furthermore depends on the sensitivity of the
experiment and how much energy needs to be thermalized.

The distortion visibility function is independent of the pre-
cise form of the distortion and just measures how much of the
released energy is left in the distorted spectrum. To determine its
shape, it is sufficient to study the evolution of distortions in the
µ-era (3× 105

. z), since later the visibility function is already
extremely close to unity. This simplifies the problem immensely,
since the photon distribution is brought into kinetic equilibrium
with the matter within a very short time and only evolves rather
slowly along a sequence of quasi-stationary stages. Due to the
huge entropy of the Universe (there are≃ 1.6 × 109 times more
photons than baryons), the DC process is furthermore the crucial
source of photons in theµ-era, so that the distortion visibility func-
tion is roughly given byJDC(z, z′) = e−(z/zdc)

5/2
e(z′/zdc)

5/2
, with ther-

malization redshiftzdc ≈ 1.98× 106 (Sunyaev & Zeldovich 1970;
Danese & de Zotti 1977; Hu & Silk 1993).

For the analysis of future CMB distortion data (see
Kogut et al. 2011; PRISM Collaboration et al. 2013; André etal.
2014, for discussion of some experimental concepts), it is of in-
terest to improve the approximation forJ(z, z′). While numeri-
cally, it is straightforward, although time consuming, to compute
J(z, z′) precisely (e.g., using CosmoTherm; Chluba & Sunyaev
2012), deeper physical insight can be gained analytically.Recently,
Khatri & Sunyaev (2012b) [KS12, henceforth] took some stepsinto
this direction. They showed that it is easy to analytically include
the additional thermalization effect from BR, which becomes sig-
nificant atz . 106. They also added a correction to the shape of
theµ-distortion caused by small deviations from quasi-stationarity,
showing that at 106 . z this captures the associated increase in the
thermalization efficiency relative toJDC(z, z′) seen numerically.

Here, we revisit this problem with a slightly different ap-
proach, basing our analysis on a perturbative expansion of the evo-
lution equation. We show that several terms add at a similar order
to the thermalization problem as the non-stationary correction dis-
cussed by KS12. We demonstrate that at low frequencies, small
frequency-dependent variations of the photon production rate are
significant in our approach. The time derivative of the critical fre-
quency,xc, characterizing the transition from effective to ineffective
photon production also affects the shape of the distortion at the later
stages (z . 106). Finally, we extend the validity of the solution for
the spectral distortion to high frequencies, showing that it is driven
by the time derivative of the electron temperature (see Sect. 5.5),

which is in contrast to KS12, who argued that there the time deriva-
tive of the chemical potential amplitude is most important.While
the latter does not affect the result for the distortion visibility func-
tion by much, as we show here, it is possible to capture this aspect
in a simple way, obtaining an≃ 0.1% description of the distortion
shape at basically all relevant energies.

We fix the integration constants using energetic arguments
(Sect. 2.2), finding an. 0.1% − 1% agreement of our approxi-
mation for the distortion visibility function with the fullnumerical
result. We also argue that at late times (z . 2× 105), photons pro-
duced by BR no longer are able to up-scatter efficiently and thus
remain trapped at low frequencies (Sect. 3.3.4). This meansthat
the distortion visibility function becomes very close to unity at that
point. By also including this effect, we reproduce our numerical re-
sult and overcome some of the small differences with respect to the
numerical solution seen by KS12 atz . 106.

Finally, Chluba & Sunyaev (2012) included improved approx-
imations for the DC Gaunt factor (Chluba 2005; Chluba et al.
2007). Due to higher order temperature corrections, the DC emis-
sivity reduces relative to the non-relativistic case (Lightman 1981;
Thorne 1981), making thermalization less efficient. On the other
hand, frequency-dependent corrections move the maximal emis-
sion towards slightly higher frequencies, increasing the photon pro-
duction rate. These effects can be captured analytically, giving a
net increase in the thermalization efficiency at early times, which is
in excellent agreement with our numerical result (Sect. 6.1). This
effect is partially counteracted by lowest order temperature correc-
tions to CS, a modification that was not included by previous nu-
merical treatments. Our perturbative approach again allows captur-
ing this effect, providing a simple understanding for the origin of
this correction (Sect. 6.2).

The paper is structured as follows: Sect. 2 and Sect. 3 provide
some of the basic ingredient for computing the evolution of the
distortion. Parts of this are very pedagogical and can be skipped
by the expert. In Sect. 4 and Sect. 5, we discuss the solutionsfor
the thermalization problem, assuming small distortions. We also
give our discussion for the distortion visibility function, with the
main result shown in Fig. 8. We close our analysis by including
lowest order relativistic corrections to DC and CS in Sect. 6. Our
conclusions are given in Sect. 7.1

2 NON-EQUILIBRIUM THERMODYNAMICS OF
BOSE-EINSTEIN SPECTRA

To formulate the problem, it is useful to first go over the defini-
tions of occupation number, number density, energy densityand
entropy density of a Bose-Einstein spectrum with small frequency-
dependent chemical potential variable2, µ̄(t, x). We envision condi-
tions in the early Universe at redshiftz & few × 105, when CS is
still very efficient in redistributing photons over energy. Any photon

1 Our reference cosmology is:Yp = 0.24, h = 0.71, Neff = 3.046,Ωb =

0.044,Ωcdm = 0.216,ΩΛ = 0.74 andT0 = 2.726 K.
2 We call it ‘variable’ because it provides a simple parametrization of the
spectrum that appears like a chemical potential, but is not generally iden-
tical with the thermodynamic chemical potential, which under equilibrium
conditions vanishes for photons. In the text, we will usually drop the term
‘variable’, but it should be kept in mind.
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µ-type distortions 3

distribution can be expressed as3

n(x) =
1

ex+µ̄(t,x) − 1
≈ nPl(x) −G(x)

µ̄(t, x)
x
+ O(µ̄2), (1)

wherex = hν/kTγ denotes the dimensionless frequency with tem-
peratureTγ = T0(1+ z), which is used to define a reference energy
scale, andT0 = 2.726 K (Fixsen et al. 1996; Fixsen 2009). Further-
more,nPl(x) = 1/[ex−1] is the occupation number of a blackbody at
temperatureTγ andG(x) = −x∂xnPl(x) = xex/[ex−1]2 describes the
spectrum of a simple temperature shift: adding/removing photons
with this spectral shape does not create a distortion unlesshigher
order terms become important (i.e.,∆T/T becomes too large).

Importantly, withTγ ∝ (1 + z) no redshifting term appears
in the photon Boltzmann equation, which simplifies the problem
significantly. Note, however, thatTγ generally is not identical to
the effective temperature of the photon field, which for a distorted
spectrum can, for instance, be defined in terms of photon number
or energy density (cf. Sect. 2.2). It is also generally not identical to
the Rayleigh-Jeans temperature,TRJ, defined atx ≪ 1, which due
to photon emission and absorption processes is very close tothe
electron temperature,Te, at sufficiently low frequencies.

At any moment, the total CMB spectrum is given by a black-
body part at some temperature,Tbb, plus a distortion relative to this.
In general,Tbb , Tγ, and if we admit thatTbb can change because
of energy release, we can write the parametrization

µ̄(t, x) = x

(

Tγ(t)

Tbb(t)
− 1

)

+ µ∞(t) µ̂(t, x) (2)

for the chemical potential. Here, the first term just represents the
correct temperature shift ofnPl(x) to nPl(x Tγ/Tbb). The overall am-
plitude of the effective chemical potentialµ(t, x) = µ∞(t) µ̂(t, x) is
defined byµ∞(t), with all frequency-dependent terms captured by
µ̂(t, x). Since generally bothµ∞(t) and µ̂(t, x) depend on time, we
still need a convenient normalization condition to uniquely deter-
mine the factorization, but we shall return to this point later.

The temperatureTbb in principle can be chosen freely, but now
its time dependence is generally unknown before the solution of the
problem is obtained. Since at low frequencies the photon distribu-
tion is pushed very close to equilibrium with the electrons by the
double Compton and Bremsstrahlung processes, one useful choice
is Tbb ≡ TRJ = Te, which we shall use henceforth. This also re-
moves any contribution ˆµ(t, x) ∝ x from the effective chemical po-
tential, as we will see below.

2.1 Photon number and energy densities

SettingTbb = TRJ = Te in the expressions from above, we can
obtain the number, energy and entropy densities of the distorted
photon field as (cf., Sunyaev & Zeldovich 1970)

Nγ ≈ NPl
γ (Tγ)

[

1+ 3
∆Te

Tγ
− µ∞M2

]

, (3a)

ργ ≈ ρPl
γ (Tγ)

[

1+ 4
∆Te

Tγ
− µ∞M3

]

, (3b)

sγ ≈ sPl
γ (Tγ)

[

1+ 3
∆Te

Tγ
− 3

4
µ∞M3

]

, (3c)

where∆Te = Te − Tγ, andNPl
γ , ρPl

γ and sPl
γ = (4/3)ρPl

γ /Tγ denote
the photon number, energy and entropy densities of a blackbody at
temperatureTγ, respectively (for explicit definition ofsγ in terms

3 See Appendix A for general values of ¯µ = const.

of photon occupation number, see Appendix B). For convenience,
we also introduced the integralsMk as

Mk =
1

GPl
k

∫

xk−1G(x) µ̂(t, x) dx
µ̂=1
↓
=

kGPl
k−1

GPl
k

, (4a)

GPl
k =

∫

xknPl(x) dx. (4b)

A few important examples forGPl
k areGPl

1 ≈ 1.6449,GPl
2 ≈ 2.4041,

GPl
3 ≈ 6.4939,GPl

4 ≈ 24.886 andGPl
5 ≈ 122.08. The integralsMk

directly depend on the shape of the distortion ˆµ(x, t), which also
introduces additional time dependence to the problem. Assuming
µ̂ = 1 we haveMc

2 ≈ 1.3684 andMc
3 ≈ 1.1106. Henceforth, the

superscript ‘c’ will indicate that ˆµ = 1 was used for the variable.

2.2 Effective temperatures of the photon field

One can easily show that for small distortions the effective temper-
atures4 of the distorted spectrum with respect to photon number,
T ∗N , and energy density,T ∗ρ , are respectively given by

T ∗N ≈ Te −
1
3

Tγ µ∞M2 ≈ Tγ

[

1+
∆Te

Tγ
− 0.4561µ∞

]

(5a)

T ∗ρ ≈ Te −
1
4

Tγ µ∞M3 ≈ Tγ

[

1+
∆Te

Tγ
− 0.2776µ∞

]

, (5b)

where for the second approximate sign we assumed constant (inde-
pendent of frequency) chemical potential. Without distortion one
naturally hasT ∗N = T ∗ρ = Te. The effective temperature following
from the entropy density, Eq. (3c), is identical to the one ofthe
energy density. For positiveµ∞ and µ̂ = 1 (constant chemical po-
tential), Eq. (5) impliesT ∗N < T ∗ρ , or explicitly

T ∗ρ − T ∗N =
Tγ
4

κρ(t)µ∞(t)

3
≈ 0.1785µ∗∞(t)Tγ, (6)

where we definedκρ(t) = 4M2−3M3, which for constant chemical
potentialµ(t, x) = µ∞(t) givesκcρ = 4Mc

2 − 3Mc
3 ≈ 2.1419. Once

thermalization createsµ∞ → 0, this also means thatT ∗N → T ∗ρ ,
restoring full thermal equilibrium.

In Eq. (6), we introduced the effective amplitude of the chem-
ical potential,µ∗∞(t) = κ̂ρ(t) µ∞(t), with κ̂ρ(t) = κρ(t)/κcρ. If µ̂ = 1,
we have ˆκρ(t) = 1 and henceµ∗∞(t) ≡ µ∞(t), but generally ˆκρ(t) , 1.
Since we still have the freedom to normalize ˆµ, for convenience
we choose its normalization such that ˆκρ(t) ≡ 1 at all times. This
simplifies all the expressions discussed below and we can use
µ∗∞(t) = µ∞(t) andκρ(t) = κcρ without loss of generality.

2.3 Compton equilibrium temperature

It is well known that in the early Universe after a very short time the
free electrons approach a temperature that is dictated by the shape
of the (high-frequency) photon distribution and the energyex-
change through Compton scattering (Zel’dovich & Levich 1970):

Te ≈ T eq
e = Tγ

∫

n(1+ n)x4 dx

4
∫

nx3 dx
. (7)

For a constant chemical potentialµ(t, x), one hasn(1 + n) = −∂xn
and after integration by parts one findsT eq

e = Tγ ≡ TRJ. This is no

4 These are defined by equating the true number and energy densities with
the one of a blackbody at the corresponding effective temperature.
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4 Chluba

longer exactly true once photon production starts to revertthe dis-
torted spectrum to a blackbody atx ≪ 1. In this case,Te is pushed
away fromTγ and the global energetics have to be considered.

2.4 Initial state after very short burst of energy release

After energy release ceases, the comoving energy density ofthe
photon-baryon system remains constant. Assuming that there was
no time to produce photons, but that Compton scattering already
brought electrons and photons into kinetic equilibrium, wecan
compute the initial photon temperature and chemical potential.
Defining the photon temperature before the energy release asT in

γ

and assuming that a total of∆ργ/ργ ≪ 1 of energy was injected
at redshiftzin, with Eq. (5), assumingµ = µst

∞ = const (so that
Te = Tγ = TRJ), we find (cf., Sunyaev & Zeldovich 1970)

T st
γ ≈ T in

γ

[

1+ 0.4561µ∞
] ≡ Tγ = T0(1+ zin) (8a)

µst
∞ ≈

3
κcρ

∆ργ

ργ
≈ 1.401

∆ργ

ργ
. (8b)

Without additional photon production by the DC and BR processes
and without subsequent energy release, this would describethe
state of the CMB spectrum even today because the adiabatic expan-
sion of the Universe leaves the photon distribution unaltered once
Compton scattering brought things into kinetic equilibrium5.

Expression (8a) forT st
γ also defines the initial Rayleigh-Jeans

temperature of the photon field. Once photon production starts and
transport of photons to higher frequencies reduces the value ofµ∞,
one findsT st

γ > TRJ = Te. On the other hand, the temperature
following from the energy density isT ∗ρ ≈ T in

γ (1 + 1
4∆ργ/ργ) ≈

T st
γ (1 − 0.2776µst

∞) < T st
γ . This determines the final temperature

of the blackbody (corrected for the effect of redshifting), which is
slowly approached as the thermalization process completes. In this
process, a total of∆Nγ/Nγ ≈ (3/4)∆ργ/ργ photons have to be re-
plenished by BR and DC emission relative to the initial blackbody
at temperatureT in

γ , at least if there was a sufficient amount of time
to completely thermalize the distortions.

2.5 Evolution equations forNγ and ργ

The equations (3) are similar to the expressions given by
Sunyaev & Zeldovich (1970); however, we do not make the as-
sumption that the integralsMk are constant and can be computed
for µ̂ = const. Combining the comoving time derivatives of Eq. (3),
we can thus write the more general evolution equations

κcρ

M2M3

d
dt

Te

Tγ
≈

d lna4ργ

M3 dt
−

d lna3Nγ
M2 dt

+ µ∞
d
dt

ln

(

M3

M2

)

(9a)

dµ∞
dt
≈ 3
κcρ

d lna4ργ

dt
− 4
κcρ

d lna3Nγ
dt

, (9b)

wherea = (1+ z)−1 is the scale factor normalized to unity atz = 0.
As explained in Sect. 2.2, we chose the normalization of ˆµ(t, x)
such thatκρ(t) = κcρ = const. The only additional assumption at this
point is that the overall amplitude of the distortion is small and only
linear order terms need to be considered.

The terms on the r.h.s. of Eq. (9b) determine real changes of

5 This is not entirely true since the slow Hubble expansion leads to ex-
tra Compton cooling of photons caused by the difference in the adiabatic
indices of baryons and photons and hence a change of the spectrum by ad-
ditional Compton scattering (Chluba & Sunyaev 2012).

the photon energy and number density. These need to be obtained
from the photon Boltzmann equation, which includes the effect of
electron scattering and emission/absorption. After energy release
ends, only d lna4Nγ/dt drives the evolution ofµ∞(t) andTe(t). To
compute this term, assumingµ(t, x) ≈ µ∞(t) is insufficient, since
at low frequencies, where most of the photon production happens,
emission and absorption processes return the photon distribution
to a blackbody very quickly (i.e., ˆµ(t, x) → 0 at x ≪ 1), reduc-
ing d lna4Nγ/dt to a finite (!) value that critically depends on the
shape of the low-frequency spectrum. Knowing the exact timede-
pendence of this term is therefore crucial for describing the overall
evolution of the distortion (see Sect. 5).

2.6 Consistency relations

The way the problem is set up, we have three unknown functions:
Te(t), µ∞(t) and µ̂(t, x). By construction,µ∞(t) and µ̂(t, x) define
the deviation of the CMB spectrum with respect to the Rayleigh-
Jeans temperature,TRJ ≡ Te. Assuming that only a single injec-
tion of ∆ργ/ργ occurs attin, we already know the initial state of
the photon distribution from Eq. (8) with ˆµ(tin, x) = 1. As ther-
malization proceeds,µ andTRJ ≡ Te slowly approachµ = 0 and
Te(z) = T in

γ (1+ 1
4∆ργ/ργ)(1+ z)/(1+ zin) after full thermalization.

In this picture, a few consistency relations ought be fulfilled
by the solution at any time. First, if only one episode of energy
release occurs, then at any timet > tin we should find

∆Te(t)
Tγ

≈ M3(t)
4
µ∞(t) − 3

4

Mc
3

κcρ

∆ργ

ργ
, (10)

reflecting conservation of the comoving energy density6 by the sys-
tem. The coefficient reads (3/4)(Mc

3/κ
c
ρ) ≈ 0.3889.

Similarly, the total number of photons that have been created
by DC and BR emission since the energy release should at any stage
of the evolution be given by

∆Nγ(t)

Nγ
≈ 3

4

(

∆ργ

ργ
−
κcρ µ∞(t)

3

)

, (11)

where∆Nγ(t)/∆Nγ is computed with respect to the initial black-
body spectrum before the energy release. This expression already
shows thatκcρ µ∞(t)/3 can be interpreted as the energy density car-
ried by the non-blackbody part of the spectrum, or explicitly

µ∞(t) ≡ 3
κcρ

∆ργ(t)

ργ
− 4
κcρ

∆Nγ(t)

Nγ
. (12)

Here, the energy density and number densities are momentaryval-
ues computed directly from the distorted photon field. This expres-
sion is independent of which temperature is used for the pureblack-
body part, as terms ˆµ ∝ x automatically cancel. This is because the
distortion is defined with respect to photon deficit (for positive µ∞)
relative to the photon energy density, also reflected by Eq. (9b).
This is a very sensible interpretation of the distortion, since scatter-
ing processes leave the number of photons unchanged. In addition,
we need two boundary conditions for ˆµ(t, x) to close the problem.
By construction, we have ˆµ(t, x) → 0 for x ≪ 1. This also implies
that we need to ensure thatTRJ = Te. The final condition follows
from κρ = 4M2 − 3M3 = κ

c
ρ, which fixes the overall normalization

for µ̂ as explained in Sect. 2.2.

6 We neglect the tiny heat capacity of ordinary matter here.
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µ-type distortions 5

3 THE PHOTON BOLTZMANN EQUATION

In this section, we give the Boltzmann equation for photons writ-
ing out first-order relativistic corrections to the Comptonand DC
processes. Although slightly technical, we need these equations to
obtain the solutions for the chemical potential. We linearize the ex-
pressions assuming small spectral distortions. Discussion of the so-
lutions is presented in Sect. 5.

3.1 General form

In the early Universe, photons undergo many interactions with the
electrons. At redshiftsz & 4 × 105, the most important processes
are CS and DC scattering: DC serves as a source of soft pho-
tons at low frequencies, whereas CS efficiently redistributes pho-
tons over frequency. At lower redshifts (z . 4 × 105), BR starts
taking over the photon production; however, at that stage, the up-
scattering of photons becomes inefficient. It is convenient to ex-
press all time-scales in units of the Thomson scattering time-scale,
tC = 1/σT Ne c ≈ 2.3×1020(1+ z)−3 sec. Then the Boltzmann equa-
tion describing the time evolution of the photon phase spacedensity
nγ(τ, x) in the expanding Universe is given by

∂n
∂τ
=
∂n
∂τ

∣

∣

∣

∣

∣

CS
+
∂n
∂τ

∣

∣

∣

∣

∣

DC
+
∂n
∂τ

∣

∣

∣

∣

∣

BR
+ S(τ, x), (13)

where we introduced the optical depth dτ = dt/tC to Thomson
scattering as dimensionless time variable. The terms on ther.h.s.
of this equation, respectively, describe the effect of CS, DC scatter-
ing, BR and additional sources of photons with the source function,
S(τ, x). This source function, for example, could include the effect
of dissipation of acoustic modes in the early Universe (e.g., see
Chluba et al. 2012b) or photons produced by decaying or annihilat-
ing particles. As explained in the previous section, inx = hν/kTγ
we choseTγ = T0(1+ z) and describe the distortion with respect to
a blackbody at the temperature of the electronsTbb = Te ≡ TRJ.

3.2 Compton scattering

The contribution of CS by thermal electrons to the r.h.s. of Eq. (13),
including first-order relativistic corrections, may be compactly
written as (compare Challinor & Lasenby 1998; Itoh et al. 1998;
Sazonov & Sunyaev 1998; Chluba 2005):

dn
dτ

∣

∣

∣

∣

∣

CS
=
θe

x2

∂

∂x
x4

[

F + θe

{

5
2

F +
21
5

x
∂F
∂x

+
7
10

x2

[

φ F− (φ − 6 F−) +
∂2F+
∂x2

]}]

+ O(θ3e) . (14)

Here,θe = kTe/mec2, φ = Tγ/Te, and we defined the photon flux
functionsF = ∂xnγ+φ n(n+1) andF± = F±φ n(n+1). The first term
in the bracket represents the Kompaneets equation (Kompaneets
1956), whereas the terms proportional toθ2e arise from first-order
relativistic corrections, i.e., higher order Doppler effect [≃ O(θ2e)],
recoil effect [≃ O((hν/mec2)2)] and cross terms [≃ O(θe hν/mec2)].
We assumed that the photon distribution is isotropic even ifit de-
viates from the pure blackbody shape. One can readily verifythat
for a blackbody spectrum at temperatureTγ ≡ Te the flux F van-
ishes; also the combination of terms related toF± vanishes, so that
in equilibrium CS leaves the photon distribution unaffected.

We now linearize Eq. (14) with respect toµ ≪ 1. The effect of
CS on the blackbody,nPl(x Tγ/Te), which we chose as a reference
(see previous section), vanishes identically. For terms that involve

µ(τ, x) = µ∞(τ) µ̂(τ, x), as defined in Eq. (2), withF → −Gµ/x, the
linearized Compton collision term reads:

dnγ
dτ

∣

∣

∣

∣

∣

∣

CS

≈ −θγ
G
x

[

x2 µ′′ + 2g1(x) x µ′
]

(

1+
5
2
θγ

)

(15a)

− θ2γ
G
x

[

−42
5

f1(x) x µ′ +
21
5

f2(x) x2µ′′
]

− θ2γ
G
x

[

28
5

f3(x) x3µ′′′ +
7
10

x4µ′′′′
]

,

whereθγ = hν/kTγ. Here, primes denote derivatives with respect to
x and we defined the frequency-dependent functions

g1(x) = −YSZ

2G
≈ 1− x2

12
+

x4

720
(15b)

f1(x) = xYSZ − xG(1+ Cx − 5Sx) ≈ 1+
5x2

12
− 29x4

720
(15c)

f2(x) = 5+
x2

6
+ 2xG(1− 3Sx) ≈ 1− x2

2
+

x4

60
(15d)

f3(x) =
1
2

[1 + g1(x)] ≈ 1− x2

24
+

x4

1440
, (15e)

with Cx = x coth(x/2),Sx = x/ sinh(x/2) and they-distortion shape
YSZ(x) = G(x)[x coth(x/2)−4]. For the functionsg1 and fi, we also
gave the limitsx ≪ 1. These functions are defined such that to
leading order inx≪ 1 they are all equal to unity.

If we look at the terms in Eq. (15) in this limit, we can see that
they all are of similar order inx. However, the higher derivative
terms are suppressed by an extra factorθγ ≪ 1. This allows us to
first consider only the lowest order solution, neglecting terms∝ θ2γ.
Relativistic correction can then be added as perturbationsto the
non-relativistic solution (Sect. 6).

3.2.1 Effect on the photon energy density

By integrating Eq. (14) overx2 dx, it is trivial to confirm that the
collision terms for CS conserve the photon number. To compute
the energy exchange between electrons and photons via Comp-
ton scattering, we integrate Eq. (14) overx3 dx. This yields (see
Sazonov & Sunyaev 2001; Chluba 2005, for similar expressions):

− 1
a4ρPl

γ

da4ργ

dτ

∣

∣

∣

∣

∣

∣

CS

≈ I4

G3
θγ − 4θe − 10θ2e −

21
5
G5

G3
θ2γ (16)

+
I4

G3

(

47
2
− 21

5
H6

I4

)

θe θγ,

where the integralsGi are defined by Eq. (4b) withnPl(x) → n(x).
For convenience, we also introducedIi =

∫

xin(1 + n) dx and
Hi =

∫

xi(∂xn)2 dx. The first two terms in Eq. (16) determine
the usual contributions in the non-relativistic limit, while the other
terms capture relativistic corrections. From this expression, the
Compton equilibrium temperature can be given by

θeq ≈ θnr
eq

[

1− 21
5
θnr

eq

{

4G3G5

I2
4

+
H6

I4
− 5

}]

≈ θγ
[

1+ δγ1 − θγ δγ2

]

, (17a)

using the fact that the non-relativistic Compton equilibrium tem-
perature is small, i.e.,θnr

eq = θγI4/4G3 ≪ 1, and keeping terms up
to second order ofθnr

eq only. In the second line, we linearized the
problem for small distortion. The corrections to the integrals thus
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6 Chluba

take the form

δγ1 =
δI4

4GPl
3

− δG3

GPl
3

(17b)

δγ2 =
21
20

[(

δG5

GPl
3

−
GPl

5

GPl
3

δG3

GPl
3

)

+ 4

(

δH6

IPl
4

−
HPl

6

IPl
4

δI4

IPl
4

)]

− 4π2γ1,

where we only have to compute the terms for the spectral distor-
tions, as indicated by ‘δ’. These do, however, generally include the
difference in the spectrum due toTRJ = Te , Tγ, so that for exam-
pleδγ1 ≈ ∆Te/Tγ + δγ

µ

1, where now the second term only includes
contributions∝ µ̂. Note also thatIPl

4 ≡ 4GPl
3 .

With Eq. (17a) one can recast Eq. (16) into the form

−
d lna4ργ

dτ

∣

∣

∣

∣

∣

∣

CS

≈ 4
(

θeq− θe
)

[

1+ θ(0)
eq

(

21
5
H6

I4
− 37

2

)]

≈ 4
(

θeq− θe
) [

1− 17.239θγ
]

, (18)

where in the second line we again linearized the problem for small
distortion, with 2π2 − 5/2 ≈ 17.239. This shows that at the lowest
order, the distortions only affect the Compton equilibrium temper-
ature. Furthermore, the time-scale on which Compton equilibrium
is achieved is increased by≃ [1−17.239θγ]−1, which atz ≃ 2×106

implies an≃ 2% effect. The change in the equilibration time-scale
and even the exact value for the equilibrium temperature are, how-
ever, not relevant to the final solution for the chemical potential,
and only enter the problem at higher perturbation order.

3.3 Double Compton and Bremsstrahlung emission

The contribution of DC scattering and BR to the r.h.s. of the
photon Boltzmann equation (13) can be written in the form (cf.,
Rybicki & Lightman 1979; Lightman 1981; Thorne 1981):

dnγ
dτ

∣

∣

∣

∣

∣

∣

DC+BR

=
e−x

x3

[

1− nγ (eφ x − 1)
]

Λ(x, θγ, θe) (19)

where the emission coefficientΛ is given by the sum of the con-
tribution due to double Compton scattering and Bremsstrahlung,
Λ = ΛDC + ΛBR. As this expression shows, the leading order emis-
sion term scales∝ x−3. This is the reason why at low frequencies
the spectrum returns to a blackbody in equilibrium with the elec-
trons after a very short time.

At lowest order in the distortion, we have

dnγ
dτ

∣

∣

∣

∣

∣

∣

DC+BR

≈ Λ
x4

(1− e−x)G µ (20)

where we inserted Eq. (1) and (2). Note that the emission coeffi-
cient,Λ, is evaluated at the background level, i.e., it just depends
on x andθγ. At low frequencies, its dependence onx is rather weak,
a fact that can be used to simplify the problem. Also, since wechose
the temperature of the electrons as reference (Tbb = Te), no addi-
tional emission/absorption term related to the blackbody part arises,
one of the reasons for this definition.

3.3.1 Double Compton scattering

Due to the large entropy of the Universe, DC emission dominates
over BR at high redshifts (z & 4×105). The DC scattering emission
coefficient can be expressed as

ΛDC(x, θγ) =
4α
3π
θ2γ exgdc(x, θγ) , (21)
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Figure 1. Critical frequency,xc, defined by Eq. (25) as a function ofz. Pho-
ton transport is inefficient belowz ≃ 2× 105 so that the distortion visibility
function quickly approaches unity. DC temperature corrections become no-
ticeable atz & 106. The approximations are from Eq. (26) and (27).

whereα is the fine structure constant andgdc(x, θγ) is the effective
DC Gaunt factor. It has the form (Chluba 2005; Chluba et al. 2007;
Chluba & Sunyaev 2012):

gdc(x, θγ) ≈
IPl

4 HPl
dc(x)

1+ 14.16θγ
, (22)

whereIPl
4 =

∫

x4nPl(nPl + 1) dx = 4π4/15≈ 25.976, and

HPl
dc(x) ≈ e−2x

[

1+
3
2

x +
29
24

x2 +
11
16

x3 +
5
12

x4

]

. (23)

Here, we included the first-order relativistic correction in the pho-
ton temperature. At low frequencies,ΛDC(x, θγ) ∝ (1 + 1

2 x). In the
non-relativistic limit, we haveHPl

dc(x) ≈ e−x andgdc(x, θγ) ≈ IPl
4 e−x.

3.3.2 Bremsstrahlung

At low redshifts (z . 4 × 105), Bremsstrahlung becomes the main
source of soft photons. One can define the Bremsstrahlung emis-
sion coefficient by (cf. Burigana et al. 1991; Hu & Silk 1993)

ΛBR(x, θe) =
αλ3

e

2π
√

6π

θ
−7/2
e ex(1−φ)

φ3

∑

i

Z2
i Ni gff(Zi , x, θe) . (24)

Here,λe = h/me c is the Compton wavelength of the electron, and
Zi , Ni andgff(Zi , x, θe) are the charge, the number density and the
BR Gaunt factor for a nucleus of the atomic species i, respectively.

Various simple analytical approximations exist
(Rybicki & Lightman 1979), but nowadays more accurate fit-
ting formulae, valid over a wide range of temperatures and
frequencies, may, for example, be found in Nozawa et al. (1998)
and Itoh et al. (2000). We find, however, that the differences
introduced by the various approximations forΛBR are not very
important, both for the shape of the distortion and the distortion
visibility function. It is pretty straightforward to include them
consistently, so that for any of the computations we just usethe
expressions of Itoh et al. (2000).

3.3.3 Critical frequency

For the computations below, we need the critical frequency deter-
mined by (compare Sunyaev & Zeldovich 1970; Danese & de Zotti
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1982; Burigana et al. 1991; Hu & Silk 1993)

xc(τ) ≡
√

Λ(xc)/θγ. (25)

Close toxc, the rate of Compton scattering equals that of photon
emission/absorption, roughly defining the maximum of the photon
production, with some corrections which are important for the late-
time evolution (see Sect. 5.2). For DC alone, one has

xDC,0
c ≈

√

4α
3π
θγIPl

4 ≈ 8.60× 10−3

[

1+ z
2× 106

]1/2

(26a)

xDC
c ≈ xDC,0

c

(

1+
1
2

xDC,0
c

)1/2

/
(

1+ 14.16θγ
)1/2
, (26b)

where for xDC,0
c we neglected relativistic corrections to the DC

Gaunt factor, while we included them forxDC
c .

The critical frequency for DC is shown in Fig. 1. One can see
that at high redshifts, the temperature correction reducesthe criti-
cal frequency notably. As we will see below, this implies that ther-
malization should be less efficient, since the frequency at which
most photons are produced decreases. At the thermalizationred-
shift z ≃ 2 × 106, the temperature correction to the critical fre-
quencyxc is roughly 0.5% and it reaches≃ 1% at z ≃ 4 × 106.
Although this appears to be small, since the critical frequency en-
ters the problem through an integral, the cumulative effect matters
so that the correction is amplified and hence significant (seebelow).
At z & few × 107, the number of electrons and positrons becomes
comparable to the number of photons, so that there the thermaliza-
tion efficiency increases vastly. A treatment of the thermalization
problem in that era is, however, beyond the scope of this paper.

For BR alone, we determined the critical frequency numeri-
cally using the expressions from Itoh et al. (2000) and assuming a
helium mass fraction ofYp = 0.24. We find7

xBR
c ≈ 1.23× 10−3

[

1+ z
2× 106

]−0.672

(27)

to work very well. Comparing with Eq. (26a), we can see that atthe
thermalization redshiftz ≃ 2 × 106 BR contributes about 10% to
the value of the critical frequency. However, the contribution drops
rapidly towards higher redshifts (Fig. 1). To percent precision, the
total critical frequency isx2

c ≈ (xDC
c )2 + (xBR

c )2 (Hu & Silk 1993).

3.3.4 Transport of photons towards higher frequencies

Photons, produced by DC and BR at low frequencies, can only help
thermalizing the distortion if they actually reach the high-frequency
part of the spectrum before being reabsorbed or before no time to
up-scatter is left. We thus need to estimate until when the photon
redistribution by Compton scattering is efficient. The evolution of
a narrow line within an ambient blackbody radiation field canbe
computed for any value of the Comptony-parameteryγ =

∫

θγ dτ
using the analytic solutions from Chluba & Sunyaev (2008). These
are valid as long as electron recoil remains negligible. They in-
clude the extra drift of photons towards lower frequencies caused
by stimulated effects. The average photon energy thus increases like
ν ≃ ν0 e2yγ (the classical result of Zeldovich & Sunyaev 1969, does
not include stimulated effects and thus givesν ≃ ν0e4yγ ).

Assuming that photons start their journey aroundx ≃ xc ≪ 1,
we can estimate the time it takes for the average photon distribution

7 Note that again we can evaluateΛ assumingTe = Tγ.

to reachx ≃ 1. This then implies that we needyγ & (1/2) ln x−1
c .

Estimating the totaly-parameter from some initial redshiftz until
today usingyγ ≈ 4.3[(1+ z)/3× 105]2 (radiation domination) then
implies that atz . 105

√

ln x−1
c photons can no longer be sufficiently

up-scattered. This implies that aroundz ≃ 2 × 105, photon trans-
port no longer is efficient enough to replenish the high-frequency
photon deficit. At that moment, the low- and high-frequency parts
of the photon distribution practically decouple, and the effective
chemical potential (or more precisely the high-frequency photon
number) freezes in. Belowz ≃ 2 × 105, basically all the released
energy remains in the distortion, and the distortion visibility func-
tion thus becomes unity. This statement is in fact irrespective of the
shape of the distortion at late times (µ, y and residual distortion).
Our numerical computations confirm this statement (see Fig.9).

3.3.5 Effect on number and energy density

In contrast to Compton scattering, DC and BR change the photon
number density. To compute the effective photon production and
associated change in the photon energy density caused by this, we
can simply integrate Eq. (20) overx2 dx andx3 dx, finding:

d lna3Nγ
dτ

∣

∣

∣

∣

∣

∣

DC,BR

≈ 1

GPl
2

∫

Λ(x)
x[ex − 1]

µdx

d lna4ργ

dτ

∣

∣

∣

∣

∣

∣

DC,BR

≈ 1

GPl
3

∫

Λ(x)
ex − 1

µdx = Hem. (28)

In general these integrals have to be performed numericallyonce
the solution for the low-frequency distortion is known. In particu-
lar, the non-trivial frequency dependence of the BR Gaunt factor
renders it difficult to find accurate analytic approximations. This is
because at the percent level the integrals picks up small contribu-
tions even at higher frequencies and the assumption of constantΛ
is not well justified. The integrand scales likeΛ(x)µ(x)/x2 at low
frequencies, so that forΛ(x) ≈ const we needµ to vanish faster
than≃ x2 to obtain a finite result for d lna3Nγ/dτ. For d lna3ργ/dτ,
we find µ ∝ x is sufficient, at least to first order in perturbations.
This shows that the integrals in Eq. (28) both diverge for constantµ,
but the lowest order solution (see Sect. 5.2)µ = e−xc/x is sufficient
to regularize these expressions.

We also mention a slight inconsistency of the formulation that
is present in all treatments of the problem so for. The energyneeded
for the production of DC photons is taken partially (in the limit of
resting electron in which the DC Gaunt factor is derived in fact
fully!) from the photon field itself: the incoming high-energy pho-
tons scatter and redistribute in energy, giving rise to a small correc-
tion to the Compton process and heat exchange with the electrons
in addition to the photon emission. This implies that the emission
integralHem should be slightly smaller; we are, however, going to
neglect this effect, given that the total energy used up by photon
production is small. For additional discussion, see Chluba(2005).

4 EVOLUTION OF THE MATTER TEMPERATURE

At high redshifts, electrons and photons rapidly exchange energy
via Compton scattering, while Coulomb interactions keep electrons
and baryons in equilibrium at one temperature,Tm = Te. The elec-
trons also cool by BR and DC emission; in addition, the matter
(electrons plus baryons) in the Universe cools because of the adia-
batic expansion of the medium. And finally, energy release can heat
the matter and thereby increase its temperature.
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8 Chluba

Including all these processes, the evolution equation for the
matter temperature can be written as (e.g., Chluba & Sunyaev
2012)

dθe/θγ
dτ

=
Q̇e

αhθγ
+

4ρ̃∗γ
αhθγ

[θeq− θe] −
ρ̃γ

αhθγ
Hem− H tC

αnr
h − ξh
αhθγ

θe,

αh = α
nr
h + ξh, ξh =

15
4
θe

1− 1
2Yp

1− Yp
Ne ≈ 4.342Ne θe. (29)

Here,kαnr
h =

3
2k[Ne + NH + NHe] denotes the matter heat capacity,

andξh defines its lowest order temperature correction8. The num-
ber densities,Ni , are for free electrons (i=‘e’), total number of hy-
drogen (i=‘H’) and helium (i=‘He’) nuclei, andYp ≃ 0.24 is the
helium mass fraction. Furthermore, we introduced the energy in-
jection term,Q̇e ≡ (mec2)−1 dQe/ dτ, which for example could be
caused by some decaying or annihilating particles; the energy den-
sity of the photon field in units of electron rest mass is defined as
ρ̃γ = κγθ

4
γ G3 with κγ = 8πλ−3

e ≈ 1.760× 1030 cm−3 andλe denot-
ing the Compton wavelength of the electron. Finally, the Compton
equilibrium temperature,θeq, is given by Eq. (17a), which includes
first-order relativistic corrections to the problem and theeffect of
spectral distortions. We also used expression (18) for the Compton
energy exchange between electrons and photons. This is indicated
by the asterisk on ˜ργ, which means ˜ρ∗γ = ρ̃γ[1 − 17.239θγ]. The
cooling by DC and BR is defined asHem ≡ d lna4ργ/dτ

∣

∣

∣

DC,BR
.

4.1 Perturbative solution for Te

Without knowing the exact solution of the CMB spectrum, it is
still possible to obtain a solution forTe, because for conditions in
the early Universe it evolves along a sequence of quasi-stationary
stages. Assuming that only the matter is heated directly by the
energy release, this then allows us to eliminate d lna4ργ/ dτ in
Eq. (9b). Setting d(θe/θγ)/dτ ≈ 0, from Eq. (29) we thus find

θ(0)
e ≈ θ(0)

eq +
Q̇e

4ρ∗γ
−
ρ̃γ

4ρ̃∗γ
H (0)

em −
H tCαnr

h θγ

4ρ̃∗γ

[

1− λhθγ
]

. (30)

with λhθγ = ξh(θ)/αnr
h ≈ 1.39θγ. This means that at the lowest order

in perturbations, the Compton energy-exchange term reads

d lna4ρ
(0)
γ

dτ

∣

∣

∣

∣

∣

∣

∣

CS

≈ Q̇e

ργ
−H (0)

em −
H tCαnr

h θγ

ρ̃γ

[

1− λhθγ
]

. (31)

Therefore the net change in the photon energy density is

d lna4ρ
(0)
γ

dτ
≈

d lna4ργ

dτ

∣

∣

∣

∣

∣

∣

CS

+H (0)
em ≈

Q̇e

ργ
−

H tCαnr
h θγ

ρ̃γ

[

1− λhθγ
]

.

The emission integral and also the precise value of the Comp-
ton equilibrium temperature dropped out of the problem. At low-
est order perturbation theory, the spectral distortion therefore does
not directly affect the heat exchange between electrons and pho-
tons. Higher order temperature corrections only enter the ther-
malization problem via the heat capacity of the electrons. This
reduces the distortion created by the adiabatic cooling of matter
(Chluba & Sunyaev 2012) by a small amount. However, the effect
only reaches 1 percent atz ≃ 1.6 × 107, where the distortion visi-
bility is already extremely small (see next Section). This effect can
therefore be safely neglected.

Neglecting higher order corrections to the adiabatic cooling

8 Only the contribution from electrons matters here, since the terms for the
baryons are suppressed by ratios of the masses (Chluba 2005).

term, and realizing that the corrections toHem are always canceled
by the corresponding photon emission term (a consequence ofen-
ergy conservation), we find the correction to the electron-photon
energy-exchange term d lna4ρ

(1)
γ /dτ ≈ −(αhθγ/ρ̃γ)∂τ(T

(0)
e /Tγ).

Knowing the solution for the spectral distortion at lowest order in
perturbation theory, one can compute d(T (0)

e /Tγ)/dτ using Eq. (9a)
to close the system of equations. This in principle allows usto
obtain the next-order correction to the photon distribution. As we
will see below, d(T (0)

e /Tγ)/dτ ≈ O(xc). In comparison with any
of the external heating terms,̇Qe, the correction is suppressed by
an additional factor of the photon-to-baryon ratio, so thatfrom
the practical point of view this correction again can be neglected.
Henceforth, we will thus simply write the photon heating term as
d lna4ργ/dτ ≈ Q̇e/ργ −

[

H tC + d(T (0)
e /Tγ)/dτ

]

αhθγ/ρ̃γ ≡ Q̇∗e/ργ.
This defines the effective photon heating rate caused by energy re-
lease that initially only affects the temperature of ordinary matter in
the Universe. The second term will be neglected in our discussion.

5 SOLUTION FOR THE SPECTRAL DISTORTIONS IN
THE LIMIT OF SMALL CHEMICAL POTENTIAL

In this section, we develop a perturbative treatment for theapprox-
imation to the chemical potential,µ(τ, x). Before adding higher or-
der corrections, we briefly recap the classical solution obtained by
Sunyaev & Zeldovich (1970). The basic ansatz is that time- and
frequency-dependent parts of the solution can be approximately
separated:µ(τ, x) ≈ µ∞(τ) µ̂(x). This means thatµ(τ, x) only evolves
veryslowly with time, moving along a sequence of quasi-stationary
stages, with the main time dependence being captured by an overall
amplitude factor, while theshape of the distortion is fixed to≃ µ̂(x).
Here, we go beyond this approximation. It is furthermore clear, that
DC and BR emission are effective only at rather smallx, so that one
can expect to find the main frequency dependence of the solution
there, while at much higher frequencies the solution variesonly
slowly with x. This introduces an energy scale, suggesting the scal-
ing x→ xcξ, wherexc is a critical frequency at which the spectrum
changes rapidly. This provides a natural perturbation parameter,xc,
with corrections being ranked by their order inxc ≪ 1.

5.1 Integral solution

With the general ansatzµ(τ, x) = µ∞(τ) µ̂(τ, x), we can already
write an integral solution to Eq. (9b). In contrast to the original
works, we do not assume that ˆµ(τ, x) ≈ µ̂(x), but explicitly include
slow time dependence in the shape of the distortion. Scalingout the
main terms, with Eq. (28) the photon production rate is givenby

d lna3Nγ
dτ

∣

∣

∣

∣

∣

∣

DC,BR

≈
θγxc

GPl
2

µ∞ Iµ̂

Iµ̂(τ) =
∫

Λ(x)
Λ(xc)

xc µ̂(τ, x)
x[ex − 1]

dx (32)

Generally,Iµ̂ is very close to unity with corrections ofO(xc) [i.e.,
higher order terms]. Inserting this into Eq. (9b), with the definition
of the effective heating ratėQ∗e given in Sect. 4.1 we find

dµ∞
dτ
≈ γρ

Q̇∗e
ργ
− γN θγxcIµ̂ µ∞

γρ = 3/κcρ ≈ 1.401, γN = 4/(GPl
2 κ

c
ρ) ≈ 0.7769, (33)
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whereκcρ = 2.1419. Then, by introducing the optical depth

τµ(z) = τµ,0(z) + ∆τµ(z),

τµ,0(z) = γN

∫ z

0

θγxc

tC

dz′

H(1+ z′)
, (34a)

∆τµ(z) = γN

∫ z

0

θγxc

tC

(

Iµ̂ − 1
) dz′

H(1+ z′)
, (34b)

and assuming that there is no initial distortion at very early times,
we can finally write

µ∞(z) ≈ 1.401
∫ ∞

z

Q̇∗e
ργ

e−τµ(z
′ ,z) dz′

H(1+ z′)
(35)

with τµ(z, z′) = τµ(z) − τµ(z′). Equation (35) gives the formal solu-
tion for µ∞(z) at high redshifts, including all important effects that
affect the integrated energy and number density of the photon field
when heating the ordinary matter by some process occurs. Theop-
tical depth,τµ, is affected by (i) the shape of the spectral distortion
at low frequencies (which entersIµ̂; see Fig. 7) and (ii) the pre-
cise redshift dependence of the critical frequency,xc (see Fig. 1).
At lowest order inxc, we haveIµ̂ ≈ 1, so that∆τµ(z) ≈ 0.

5.1.1 Total photon emission

Inserting the solution forµ into Eq. (32), we can directly compute
the total change in the number of photons over the energy release
history. This yields the simple expression

∆Nγ
Nγ
≈ 3

4

∫ ∞

z

∂τµ(z′)

∂z′

(∫ ∞

z′

Q̇∗e
ργ

e−τµ(z
′′,z′ ) dz′′

H(1+ z′′)

)

dz′

=
3
4

∫ ∞

z

∂e−τµ(z
′)

∂z′

(∫ ∞

z′

Q̇∗e
ργ

e−τµ(z
′′) dz′′

H(1+ z′′)

)

dz′

=
3
4

∫ ∞

z

Q̇∗e
ργ

(

1− e−τµ(z
′,z)

) dz′

H(1+ z′)

=
3
4

(

∆ργ

ργ
−
∆ργ

ργ

∣

∣

∣

∣

∣

∣

dist

)

≡ 3
4

∆ργ

ργ

∣

∣

∣

∣

∣

∣

T

, (36)

where we used the definition ofτµ given in Eq. (34) and identified
the energy density changes

∆ργ

ργ
=

∫ ∞

z

Q̇∗e
ργ

dz′

H(1+ z′)
(37a)

∆ργ

ργ

∣

∣

∣

∣

∣

∣

dist

=

∫ ∞

z

Q̇∗e
ργ

e−τµ(z
′,z) dz′

H(1+ z′)
(37b)

∆ργ

ργ

∣

∣

∣

∣

∣

∣

T

=
∆ργ

ργ
−
∆ργ

ργ

∣

∣

∣

∣

∣

∣

dist

. (37c)

These expressions give the following picture: the total energy re-
lease branches into temperature shift and distortion. At any mo-
ment, part of the total energy release,∆ργ/ργ, is stored in the
distortion (non-blackbody) and carries an energy density change
∆ργ/ργ|dist. The remainder∆ργ/ργ|T is carried by the blackbody and
is associated with a shift of the initial blackbody temperatureT in

γ by
(T ∗N − T in

γ )/T in
γ =

1
3∆Nγ/Nγ = 1

4∆ργ/ργ |T . The branching ratio be-
tween the distortion and temperature parts depends on time and the
efficiency of the thermalization process. This defines the distortion
visibility function,J(z′, z) = e−τµ(z

′,z), which determines the energy
branching ratio atz given that the heating occurred atz′.

5.1.2 Single energy release

Assuming that the distortion caused by the adiabatic cool-
ing of matter is negligible, from Eq. (35) we find (cf.

Sunyaev & Zeldovich 1970)

µ∞(z) ≈ 1.401
∆ργ

ργ
e−τµ(zh,z) = µst

∞J(zh, z) (38)

for a single energy release of∆ργ/ργ at heating redshiftzh. Here,
we usedµst

∞ = 1.401∆ργ/ργ. The factor e−τµ(zh,z) is the spectral dis-
tortion visibility between the heating redshiftzh andz. Explicitly,
the amount of energy stored in distortions (independent of its spe-
cific shape actually) at any moment is

∆ργ

ργ

∣

∣

∣

∣

∣

∣

dist

≡
∆ργ

ργ
e−τµ(zh,z). (39)

In the above formulation, onlyτµ(zh, z) has to be computed pre-
cisely to obtain approximations forµ∞(z). Both quantities require a
solution forµ̂, which we shall discuss below. According to Eq. (11),
the added number of photons therefore is

∆Nγ(t)

Nγ
≈ 3

4

∆ργ

ργ

(

1− e−τµ(zh,z)
)

≡ 3
4

∆ργ(t)

ργ

∣

∣

∣

∣

∣

∣

T

, (40)

again with respect to the initial blackbody at temperatureT in
γ < Tγ.

From Eq. (10), it also immediately follows that

∆Te(t)
Tγ

≈ 3
4

Mc
3

κcρ

(

M3(t)
Mc

3

e−τµ(zh,z) − 1

)

∆ργ

ργ
. (41)

Initially ∆Te(t)/Tγ = 0 and as thermalization proceeds,Te = TRJ

decreases until∆Te(t)/Tγ ≈ −0.3889∆ργ/ργ, so that in the final
stageT ∗N = T ∗ρ = T in

γ (1 + 1
4∆ργ/ργ). These relations show that

J(zh, z) and µ̂(t, x) fully characterize the solution of the thermal-
ization problem in terms of photon energy and number density.

5.1.3 Numerical computation of J(z′, z)

Equations (38)–(40) suggest a procedure to numerically compute
the distortion visibility functionwithout directly relying on the am-
plitude of the chemical potential at different frequencies: in the pic-
ture given above,J(zh, z) determines how much of the injected
energy is available for distortions at redshiftz. Numerically, this
means: (i) compute the effective temperature of the photon distri-
bution with respect to the photon number density,T ∗N [Eq. (5a)] and
(ii) subtract the corresponding energy density based on this temper-
ature from the total injected energy density,∆ργ/ργ. The remainder
determines the total amount of energy that went into distortions,
∆ργ/ργ |dist, and from the final ratio of the injected energy densities
one can obtain

J(zh, z) ≈
∆ργ/ργ |dist

∆ργ/ργ
. (42)

Since the high-frequency spectrum varies logarithmicallywith x
[see Eq. (70)], this approach provides a more robust (valid even
after theµ-era) definition for the visibility function, removing pos-
sible ambiguities introduced by comparing the chemical potential
at some fixed frequency and different times to construct the visibil-
ity function. We will now derive analytic expressions forJ(zh, z)
in different limits and then compare them with numerical results.

5.2 Classical solution of Sunyaev & Zeldovich (1970)

We already mentioned that for the evolution ofµ∞(τ), we need to
obtain an approximation for d lna3Nγ/dτ in terms of µ̂(x). From

c© 0000 RAS, MNRAS000, 000–000
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Eq. (15) and (20) with dn/dτ = −(G/x) ∂τµ, we have the general
evolution equation for the chemical potential

∂µ

∂τ
− x ∂τ

Te

Tγ
≈ θγ

[

x2 µ′′ + 2g1(x) xµ′
]

− Λ
x3

(1− e−x)µ. (43)

We discuss terms of O(θ2γ) in Sect. 6. Following
Sunyaev & Zeldovich (1970), we set the l.h.s. of this equa-
tion to zero and go to the limitx ≪ 1, finding

0 ≈ x2 µ′′ + 2 xµ′ −
Λ/θγ

x2
µ = ∂x x2∂xµ −

Λ/θγ

x2
µ. (44)

Since at low frequencies,Λ varies only slowly withx (cf. Sect. 3.3),
we can replace it by a constant,Λ(x) ≈ Λ(xc) = θγx2

c. The idea is
thatΛ(x) evaluated atxc roughly determines the maximum of the
emission. The lowest order solution found by Sunyaev & Zeldovich
(1970) therefore readsµ(0)(τ, x) = µ∞(τ) e−xc(τ)/x. This solution be-
comes constant at high frequencies and vanishes at low frequencies.
It does, however, not follow our normalization conditionκρ = κcρ,
but the deviation is of higher order inxc and thus is neglected now.9

5.2.1 Lowest order solution for µ∞(τ)

To lowest order inxc, we can setIµ̂ ≃ 1. Assuming that energy
release occurs only at one single heating redshift,zh, we then have
τµ,0(zh,0) ≈ γµ

∫ zh

0
(1 + z) xc(z) dz. Using H(1 + z)/σTNec ≈ 4.79

for H ≈ 2.09× 10−20(1 + z)2 sec−1 [radiation-dominated era], the
coefficientγµ is given by

γµ ≈ γN
cNe,0σT

Hrad,0

kT0

mec2
≈ 7.45× 10−11, (45)

whereNe,0 ≈ 1.12× 10−5Ωbh2(1− Yp/2) cm−3 is the electron num-
ber density atz = 0 andHrad,0 = Ω

1/2
rel H0 ≈ 2.09×10−20 sec−1. Here,

Ωrel is the density parameter of relativistic species (radiation+ neu-
trinos) andH0 denotes the Hubble parameter today. Neglecting BR
[i.e. xc ∝ (1+ z)1/2] then yields

µ∞(z = 0) ≈ 1.401
∆ργ

ργ
e−(zh/zdc)5/2, (46)

or τDC
µ,0(z) = (z/zdc)5/2, where the DC thermalization redshift is given

by zdc =
[

(2/5)γµx
DC,0
c (z = 0)

]−2/5
≈ 1.98× 106. The exponential

factor is the distortion visibility function,JDC = e−(zh/zdc)5/2, dis-
cussed above. Usingxc = xBR

c from Eq. (27) instead, we find

τBR
µ,0(z) ≈ γµ

∫ z

0
(1+ z) xBR

c dz ≈
(

1+ z
5.27× 106

)1.328

. (47)

In the classical result, given first by Sunyaev & Zeldovich (1970),
the power-law coefficient is 5/4 = 1.25 because a different ap-
proximation for the BR Gaunt factor was utilized. Similar expres-
sions were also given by Danese & de Zotti (1982) and Hu & Silk
(1993). This shows that the thermalization redshift is significantly
higher when only BR is included. In addition, the distortionvisibil-
ity function is less steep atz & 5.27× 106.

Since for energy release at high redshifts the photon distribu-
tion evolves through both the DC- and BR-era, we need to take the

9 A small improvement is in principle possible here. Usingµ(0)(x, τ) one
can show that for nearly frequency independentΛ(x) the maximum emis-
sion arises aroundxm ≃ xc/2 instead ofxc. Therefore, instead of Eq. (25)
one should useΛ(xc/2)(1− e−xc/2)/(xc/2) = θγx2

c to determinexc. This as-
pect becomes noticeable during the BR-era, but for simplicity we shall treat
the associated difference as a correction.
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Figure 2. Change in the distortion visibility,J = e−τµ,0(z,0), when using
the total optical depth including DC and BR. The dotted line is for the sim-
ple approximation Eq. (48), while the solid line is obtainedby evaluating
Eq. (34a) numerically. We compared toJDC = exp(−[z/zdc]5/2) with ther-
malization redshiftzdc ≈ 1.98× 106. The thermalization optical depth cor-
rection was computed betweenz andz = 0, so that the correction is slightly
overestimated (see text).

full expression forxc into account when computingτµ(z, z′). With
xc ≈ [(xDC

c )2 + (xBR
c )2]1/2, the integral is rather simple and given by

τµ,0(z) ≈ 5
5− γ

(

z
zdc

)5/2
√

1+ (z/zbr)−γ (48)

×
[

1− γ (z/zbr)γ

5+ γ 2F1

(

1,1+
5
2γ
,
3
2
+

5
2γ
,−(z/zbr)γ

)]

,

where we introducedγ = 2× 0.672+ 1 = 2.344,zdc = 1.98× 106,

zbr =
[

xBR,0
c (z = 0)/xDC,0

c (z = 0)
]2/γ
≈ 3.81× 105 and 2F1(a, b, c, x)

is the hypergeometric function. Here, we neglected DC temperature
and frequency corrections. All the coefficients just follow from the
expressions for the critical frequency.

In Fig. 2, we illustrate the effect on the visibility function,
comparing withJDC. Close to the thermalization redshiftzdc ≃
2× 106, the visibility of spectral distortions is reduced by≃ 5% in
comparison to the DC only approximation. This is in good agree-
ment with the recent findings of KS12. We only show the correction
to the visibility function up to∼ 3 times the thermalization redshift,
since thereJ ≃ 1.7×10−7, which for∆ρ/ρ ≃ 1% could still lead to
a detectableµ-distortion for PRISM. We see that at high redshifts
the approximation, Eq. (48), starts to break down. This is because
especially aroundz ≃ 4 × 105 the true critical frequency deviates
slightly from the approximationxc ≈ [(xDC

c )2 + (xBR
c )2]1/2, which

leads to degradation of the total integral for very largezh. Full nu-
merical determination ofxc is trivial and Eq. (48) will thus only be
used for estimates.

We also already explained in Sect. 3.3.4 that photon transport
ceases atz . 2× 105. Photons produced by BR below this redshift
are stuck at low frequencies and no longer help thermalizingthe
full spectrum. The total DC thermalization optical depth between
z ≃ 2× 105 andz = 0 is onlyτµ ≈ 0.003, but when including BR,
from Eq. (47) we findτµ ≃ 0.01. This leads to an≃ 1% overes-
timation of the thermalization efficiency and hence a similar error
in the distortion visibility function. Corrections to the thermaliza-
tion optical depth should thus only be computed at 2× 105

. z,
a modification that is straightforward to include but was omitted
before.
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5.2.2 Compton equilibrium temperature

To check the consistency of the solution, we briefly turn to the con-
dition Te = TRJ. Usingµ(0) = µ∞(τ) e−xc(τ)/x, we can readily com-
pute the Compton equilibrium temperature in the distorted radia-
tion field. From Eq. (17a), neglecting termsO(θ2γ) it is given by

T eq,(0)
e ≈ T (0)

RJ −
Tγ

4GPl
3

∫ ∞

0
x2YSZ(x) µ(0)(τ, x) dx. (49)

For frequency independentµ(0)(τ, x), this immediately implies
T eq,(0)

e = T (0)
RJ because

∫

x2YSZ(x) dx vanishes; however, when in-
serting the lowest order solution, the integral no longer vanishes
and T eq,(0)

e deviates fromT (0)
RJ by O(xc/10). Since after the en-

ergy release stopped, at lowest perturbation order one should find
T (0)

e = T eq,(0)
e ≡ T (0)

RJ , this means that the solution is slightly incon-
sistent, but the discrepancy is indeed of higher order inxc.

5.3 First-order corrections

At this point, we have not included any additional physics but sim-
ply kept all lowest order terms, consistent withO(xc) in the evo-
lution equation forµ and definition ofτµ. The derived corrections
were already present in previous numerical calculations and even
without improvements of the BR and DC Gaunt factors introduced
in CosmoTherm could have been obtained with little effort. The next
step is to obtain the corrections toIµ̂ and then evaluate the changes
to the optical depth term,∆τµ(z), given by Eq. (34b), adding terms
of O(x2

c) to the integrant.

5.3.1 Correction to µ̂(τ, x) at order O(xc)

Since the photon production integral, Eq. (32), is ofO(xc), we have
to improve the solution of ˆµ(τ, x) to orderO(xc). From the low-
est order solution, we know already that the time derivatives ∂τµ
and ∂τ(Te/Tγ) are both of orderO(xc). Similarly, Λ(x)/θγ ≃ x2

c.
We furthermore already understand that the main frequency de-
pendence of the solution is found aroundx ≃ xc ≪ 1. Defining
σ = xcy = xc

∫

θγ dτ, and re-scaling the frequency asx = xc ξ, we
have the evolution equation:

xc
∂µ

∂σ
− x2

cξ ∂σ
Te

Tγ
≈ ξ2µ′′ + 2g1(xcξ) ξµ′ −

λ(xcξ)
ξ2

(1− e−xcξ)
xcξ

µ,

where primes now denote derivatives with respect toξ and we de-
fined λ = Λ(x)/[θγx2

c] = 1 + ∆λ [for double Compton∆λ = 0
when neglecting frequency corrections to the Gaunt factor]. Scal-
ing the equations in this way shows that both the temperatureterm
on the l.h.s. of this equation and the higher order Compton cor-
rection [∝ 2(g1 − 1) ≃ −x2/6[1 − x2/60] for x ≪ 1] enter the
problem at higher order in perturbation theory, so that we neglect
them for now10. For the correction to the emission term, we have
λ(xcξ)(1−e−xcξ)/(xcξ) ≈ 1−xcξ/2+O(x2

c) in the DC-era. During the
BR-era, matters are complicated by the logarithmic dependence of
the Gaunt factor onx. This means that in this case deviations from
Λ(x) = const enter at order≃ xc ln(xc). For simplicity we define

αem(x) = Λ(x)(1− e−x)/(θγx
2
cx) − 1, (50)

10 As we will see in Sect. 5.5, this is too naive and the Compton terms give
O(xc) contributions at intermediate frequencies.

and include all frequency correction terms simultaneouslyat the
first perturbation order. For the time derivative ofµ(0)(x, τ), we have

∂µ(0)(xc(τ)ξ, τ)
∂y

≈ µ(0)

[

∂ ln µ(0)
∞ (τ)
∂y

− xc

x
∂ ln xc(τ)
∂y

]

. (51)

The first term was recently considered by KS12, although there it
was treated asµ(0)∂y lnµ(0)

∞ (τ) → µ ∂y lnµ(0)
∞ (τ), giving a modified

Bessel function solution forµ. The second term leads to a small
correction at high redshifts (z & 106), but in our approach it does
become significant later.

Put together, this then determines the evolution equation for
the first correctionµ(1)(τ, x) = µ(0)

∞ (τ)µ̂(1)(τ, x) + µ(1)
∞ (τ)µ̂(0)(τ, x):

S (1)(x) =

[

∂ lnµ(0)

∂y
+ αem(x)

]

µ̂(0) ≈ ∂x x2∂xµ̂
(1) − x2

c

x2
µ̂(1). (52)

The general solution of this equation reads

µ̂(1) = C1 e−xc/x + C2 exc/x +

∫ x

0
sinh

( xc

x′
− xc

x

)

S (1)(x′)
dx′

xc
, (53)

where C1 and C2 are fixed by the boundary conditions. Inserting
the expression forS (1)(x), then gives the first-order correction to
the chemical potential as

µ̂(1) ≈ C1 e−xc/x + ln(x/xc) e−xc/x∂y lnµ(0)
∞ (54)

+ Dµ(xc/x)

[

∂y ln µ(0)
∞ +

1
2
∂y ln xc

]

+ Dem(xc, xc/x) xc.

The new integration constant can be fixed by requiringκρ = κcρ (see
Sect. 5.3.2). We directly absorbed any contribution from the source
term leading to an asymptotic behavior∝ e−xc/x at x ≪ 1 into this
integration constant. The functionsDµ andDem are defined as

Dµ(ζ) = e−ζ
[

ln(2ζ) + γE − e2ζ Ei(−2ζ)
]

Dem(xc, ζ) = Fem(xc,0) e−ζ − Fem(xc, ζ) (55)

Fem(xc, ζ) =
e−ζ

2xc

∫ x

0
ζ′αem(x′)

[

e2(ζ−ζ′) − 1
] dx′

x′
,

where in the expression forFem we usex = xc/ζ and x′ = xc/ζ
′.

The integral forFem can be carried out numerically very efficiently.
We scaled the two correction function so that they are compa-

rable in amplitude. Their shapes are illustrated in Fig. 3. The main
correction appears aroundx ≃ 2xc, where also most of the photon
emission comes from. This also implies that, while these twocor-
rection functions change little for the total energetics, they directly
affect the thermalization efficiency. In particular atz . 106, when
BR starts dominating, the correction related toDem becomes sig-
nificant, giving rise to a nontrivial dependence on frequency. This
is partially due to the small mismatch ofxc with the real position of
the emission maximum caused by the frequency dependence of the
DC and BR Gaunt factors, but also the≃ (1− e−x)/x modulation of
the emission term in Eq. (20).

To obtain the final solution, we can use∂y lnµ(0)
∞ ≈ −0.7769xc,

which follows from Eq. (33). The derivative of the critical fre-
quency with respect toy is approximately given by

∂τxc

2xcθγ
≈ 2.01× 10−2

1+ z
∂τz
x2

c













1− 2.75× 10−2

[

1+ z
2× 106

]−2.344










, (56)

where we used the expression given in Sect. 3.3.3, but neglected
relativistic corrections. During the radiation-dominated era (z &
3300), we have∂τz = −H(1+ z)/σTNec ≈ −4.80. The second term
in parentheses arises because of BR, which can be neglected at high
redshifts. Atz = 2× 106, we find 1

2∂y ln xc ≈ −6× 10−4 ≃ −0.07xc;
however, atz ≃ 2× 105 we have1

2∂y ln xc ≃ 6× 10−2 ≃ 9.4xc (see
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Figure 3. Frequency dependence of the correction functionsDµ and Dem

in comparison to ˆµ(0) = e−xc/x. The upper panel illustrates the case for
xc ≃ 0.015 (z ≃ 6× 106). Dµ andDem have a very similar shape at low fre-
quencies, although rescaling them to coincide around the maximum reveals
small differences atx & 1. In the lower panel, we show the functions for
xc ≃ 5.3×10−3 (z ≃ 5×105), for which, due to the logarithmic dependence
of the BR Gaunt factor on frequency,Dµ andDem differ significantly.
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Figure 4. Contributions to the time derivative of the lowest order solution
to µ∞. At late times, the low-frequency spectrum changes mostly because
of emission and absorption processes (∂y ln xc becomes significant), so that
scattering-driven quasi-stationarity no longer is a good assumption.

Fig. 4 for more details), which shows that at low frequenciesthe
quasi-stationary approximation starts to break down in this regime.
This behavior is expected, since the efficiency of Compton scat-
tering decreases with redshift, so that full kinetic equilibrium be-
tween photons and electrons can no longer be established. Wethus
do not expect to obtain very accurate analytic approximations at
z . 2× 105 using our perturbative approach.

At z . 2 × 105, photons produced by BR are furthermore
stuck at low frequencies and no longer up-scatter strongly (see
Sect. 3.3.4). In this regime, the shape of the low-frequencyspec-
trum is fully determined by photon emission and absorption,and
the effect of scattering can be added as a perturbation. Since here
we are mainly interested in theµ-era, we leave a more detailed dis-
cussion of this problem for another paper.

5.3.2 Fixing the integration constant C1

To give the full first-order solution, we still need to determine the
integration constant C1 in Eq. (54). It simply follows from our nor-
malization conditionκρ ≡ κcρ. Since the lowest order solution is
µ̂ = e−xc/x, we can just set 1+ C1 = A(xc) in Eq. (54) and di-
rectly discuss the full solution up to first order inxc. Just using
µ̂ = A0(xc) e−xc/x, we find that

A0(xc) ≈ [1 − 1.85x0.83
c /(1+ 2.44xc)]

−1 (57)

fulfills the normalization condition for 10−3 ≤ xc ≤ 0.05 very well.
For µ̂ = A(xc) e−xc/x + ln(x/xc) e−xc/x∂y lnµ(0)

∞ , we obtain the
correction

∆Aln(xc) ≈ 1.06A0(xc)(1+ 0.98 lnxc) ∂y ln µ(0)
∞ (58)

to A0(xc). Since the term associated withDµ can become significant
at late times, we have the additional contribution

∆Aµ(xc) ≈ 1.15xc A0(xc)[1 + 22.7(1− 0.97x0.029
c ) ln xc] α(τ), (59)

with α(τ) = ∂y[ln µ
(0)
∞ + (1/2) ln xc], which works well when using

µ̂ = A(xc) e−xc/x + ln(x/xc) e−xc/x∂y ln µ(0)
∞ +Dµ(xc/x)α(τ). Note that

in terms of perturbations,∆Aµ(xc) formally is of higher order inxc

at z & 4× 105; however, at late times it becomes pretty significant,
so that we generally include it.

In Fig. 5, we show the numerical results forA(xc) in differ-
ent cases. The changes in the normalization are≃ 1% − 10% in
the shown redshift range. The ln(x/xc) e−xc/x term is clearly impor-
tant at all times, and especially at late times the contribution from
Dµ(xc/x) becomes large. The correction due toDemxc is not as cru-
cial and the normalization constant for the full solution iswell rep-
resented by adding all terms from Eq. (57)–(59).

The solution for ˆµ is illustrated in Fig. 6 for two redshifts.
The largest corrections are due to the renormalization factor, A(xc),
and the logarithmic term in Eq. (54), which are significant atboth
x ≃ xc and largex. These two terms capture the main behavior
of the expression given by KS12. Notice that they normalizedtheir
solution using the conditionµ∞ = µ(x = 0.5). They furthermore ne-
glected the correction caused by the≃ O(xc) emission terms lead-
ing to Dem, as well as the time derivative ofxc, which does become
significant at the later stages (see Fig. 4). However, the difference
due to this does not seem as crucial.

In Fig. 6, we show a comparison with the numerical result
obtained with CosmoTherm. Our approximation captures the shape
of the solution very well. Only at high frequencies, which matters
for the overall energetics of the solution but not as much forthe
photon production, the approximation Eq. (54) deviates noticeably
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Figure 5. Normalization constantA(xc) for the three cases discussed in
Sect. 5.3.2. The change in the normalization when addingDem(x) is very
small and can generally be neglected.

from the full numerical result. This is expected since our pertur-
bative approach is meant to work atx . 1 only. We can further
improve the solution by matching with the high-frequency solution
obtained in Sect. 5.5.1, reaching agreement at all relevantfrequen-
cies to≃ 0.1%− 1% atz & few× 105.

5.3.3 Compton equilibrium temperature

By construction, we should findTe = TRJ at least toO(x2
c ln xc),

which implies the condition

0 =
∫

x2µ̂(t, x)YSZ(x) dx = 〈µ̂〉SZ , (60)

like in Sect. 5.2.2. For this, we only need to worry about the first
two terms of Eq. (54), as the other are energetically much less im-
portant. We find

〈

e−xc/x
〉

SZ
≈ −0.127xc (61a)

〈

ln(x/xc)e
−xc/x

〉

SZ
≈ −0.277(1+ 0.336x0.598

c ), (61b)

which with ∂y lnµ(0)
∞ ≈ −0.7769xc implies an imbalance of order

≃ 0.1xc. This means that our solution is slightly inconsistent, but
at this point we have no freedom left to ‘fix’ this discrepancy. The
situation is improved a bit once we correct the high-frequency so-
lution using the asymptotic behavior determined in Sect. 5.5. How-
ever, a small difference larger thanO(x2

c) remains. For the photon
production rate, this discrepancy does not seem to matter and will
be neglected below.

5.3.4 Change in the photon production rate

In Fig. 7, we show howΣ = Iµ̂−1 changes for different approxima-
tions. This is the relevant quantity for the optical depth correction,
∆τµ, defined by Eq. (34b). Just using ˆµ = e−xc/x already gives a sig-
nificant correction; however, for consistency the renormalization
A(xc) , 1 has to be included. We note also that during the BR-era
the logarithmic dependence of the Gaunt factor is very important,
and assumingΛ(x) = const gives incorrect results atz . 106.

If we neglect the contributions fromDµ and Dem in the ap-
proximation Eq. (54), we obtain the dashed red line, where the dif-
ference to the previous case is only caused by the logarithmic term,
∝ ln(x/xc)e−xc/x. For the violet double-dash dotted curve, we used
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Figure 6. Comparison of the lowest order solution ˆµ(0) = e−xc/x and
Eq. (54) with the numerical result obtained with CosmoTherm. We scaled
the numerical solution forµ(t, x) by µ∞(t) = [3∆ργ(t)/ργ −4∆Nγ(t)/Nγ ]/κcρ
in agreement with our normalization condition for ˆµ. The upper panel shows
the solution forxc = 0.015 (z ≃ 6× 106), while in the lower panel we have
xc = 5.3 × 10−3 (z ≃ 4.8 × 105). The difference at high frequencies can
be captured by matching with the high-frequency limit of thephoton Boltz-
mann equation, giving extremely good agreement with the numerical result
over the full range of frequencies (Sect. 5.5.1 and Fig. 11).

the full first-order expression, Eq. (54), for ˆµ, but neglected the con-
tribution from ∂y ln xc, which becomes large at low redshifts. At
z . 5 × 105, neglecting the extra emission terms bringsΣ again
closer to the lowest order case, while the change is much smaller
at earlier times. When also adding the contribution from∂y ln xc

we find a large change ofΣ during the BR-era. This difference is
not as important eventually, since the total optical depth contribu-
tion becomes rather small at late times. Also, atz . few × 105,
the approximation is not expected to be as accurate (we find that it
works well untilz ≃ 3× 105), but the overall effect on the visibility
function remains small.

5.3.5 Effect on the distortion visibility function

With Fig. 7, we can now compute the visibility function for differ-
ent approximation. In Fig. 8, we show the comparison ofJDC and
our approximation with the numerical result obtained with Cos-
moTherm. The agreement of our approximation is extremely good,
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Figure 8.Distortion visibility function at different redshifts. The red dashed

curve showsJDC = e−(z/zdc)5/2 with zdc = 1.98× 106. The solid black line
gives our approximation based on Eq. (54), with all terms included. The
numerical result was obtained using CosmoTherm.
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Figure 9. Corrections to the distortion visibility function at different red-
shifts. For all curves, the numerical result obtained usingCosmoTherm

was used as reference. The dashed red line showsJDC = e−(z/zdc)5/2 with
zdc = 1.98×106. When only including the BR correction to the optical depth
(Sect. 5.2), we obtain the dotted blue line. Only adding the ln(x/xc)e−xc/x

term, we improve the agreement at early times. The solid black line gives
our approximation based on Eq. (54), with all terms included, showing pre-
cision below the level expected in terms of perturbation order≃ xc.

without any matching with the numerical solution being carried out.
Also, evaluation of the simple integrals over the emission term and
the optical depth integrals take no more than a few seconds asop-
posed to a couple of hours for the full numerical calculation, giving
a huge improvement of the performance. We note that the full ef-
fect of the distortion visibility function and the full shape of the dis-
tortion are also captured by the efficient Green’s function method
introduced earlier (Chluba 2013b).

In Fig. 9, we illustrate more clearly which terms actually mat-
ter most. The simplest approximation,JDC = e−(z/zdc)

5/2
, shows

excellent agreement with the numerical result untilz ≃ 2 × 105,
when low-frequency photons produced by BR start reaching the
high-frequency domain. In particular atz & 106, the visibility is
significantly lower than estimated withJDC. Adding the BR cor-
rection to the optical depth, significantly improves the solution be-
low z . 106 even to the sub-0.1% level. Clearly, by calculating the
full optical depth integral and realizing that atz ≃ 2 × 105 photon
transport to high frequencies shuts down, one can improve the ap-
proximation significantly. All the physics of this correction were
already included by the early treatments (Sunyaev & Zeldovich
1970; Burigana et al. 1991; Hu & Silk 1993), but since atz . 106,
alsoJDC already has. 3% precision, it was previously not of much
interest and only added recently by KS12 in preparation for high-
precision spectral distortion measurements.

Once we also add the ln(x/xc)e−xc/x term to the expression for
µ̂, we further improve the agreement atz & 106. The slight dis-
agreement introduced at lower redshifts is cancelled mostly when
all terms are added to the approximation. This shows, the impor-
tance of bothDµ andDem at z & 106; in our approach these terms
need to be included to obtain an approximations below the expected
level of precision which is comparable to≃ xc.

5.4 Comparison with Khatri & Sunyaev 2012

In Fig. 10, we compare our numerical results directly with the ap-
proximations for the distortion visibility function givenby KS12.
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Figure 10. Comparison of the approximation given by KS12 with our nu-
merical result from CosmoTherm. We compare for the cosmology used in
KS12 (blue dashed) and the one used here (black dash-dotted). Their simple
expression (heavy lines) works very well overall. Our approximation (thin
lines) represents our numerical result below the expected precision≃ xc

at all redshifts and giving. 0.1% precision atz . 106. In Sect. 5.4.1, we
briefly discuss the possible explanations for difference with KS12.

We included DC relativistic corrections, because KS12 applied
the expressions from Chluba & Sunyaev (2012) in their numerical
computations, which included these aspects (see Sect. 6 formore
discussion). Overall, their approximation captures the full numeri-
cal result very well. We give the comparison for two slightlydiffer-
ent cosmologies, showing that their expression representsour result
for the distortion visibility to a few percent precision. Our approx-
imation performs a little better, representing our numerical result
below the expected precision≃ xc at all redshifts and giving much
higher precision atz . 106. Also, the cosmology dependence is not
as pronounced. This is reassuring, demonstrating that our perturba-
tive approach works very well; the achieved level of precision is,
however, generally very futuristic, although the computational cost
is also very small.

At low redshift (z . 106), the approximation of KS12 slightly
underestimates the true distortion visibility function, an effect that
is also visible in their Fig. 7. This is because they did not take into
account that photon transport from low to high frequencies stops
belowz ≃ 2×105 (see Sect. 3.3.4). Also, at those epochs, it becomes
difficult even numerically to define the amplitude ofµ∞ without us-
ing energetic arguments, because the shape of the distortions starts
departing from a pureµ-distortion. Our approach avoids this com-
plication (see discussion below).

5.4.1 Possible causes for the small differences with KS12

Although pretty small, the differences between our numerical result
and the approximations of KS12 are larger than the stated precision
of their formulae. In particular, atz & 106, they obtain sub-percent
agreement with their numerical solution. What could be the possi-
ble causes for the differences?

One possibility is simply the numerical treatment. This is
however unlikely, since both KS12 and our approximate solu-
tions provide an approach that is independent of the more deli-
cate partial differential equation solving, finding excellent agree-
ment internally. The next possibility is the included physics. Again,
this seems unlikely, since they also base their physical setup on

Chluba & Sunyaev (2012) and what went into CosmoTherm. The
only small problem could be related to the fact that KS12 did not
explicitly separate the physics of DC relativistic corrections, possi-
bly explaining some part of the cosmology dependence we find.

The most plausible cause of the differences is the normaliza-
tion condition. In the derivation of Eq. (9b), it was explicitly re-
quired that∂τκρ = 0. In our formulation, this is directly achieved
using the normalization conditionκρ(t) = κcρ ≈ 2.1419 to fix the free
integration constant in Eq. (54). In contrast, KS12 just normalized
their solution at one fixed frequency. This generally gives∂τκρ , 0,
so that the equivalent of Eq. (9b) reads

d(κ̂ρµ∞)

dt
≈ 3
κcρ

d lna4ργ

dt
− 4
κcρ

d lna3Nγ
dt

. (62)

This adds another small time-dependent term to the problem,which
can be thought of as an equivalent of the effective heat capacity for
the distorted photon field. This term was not discussed by KS12,
while we absorbed it in the definition ofµ∗∞. Physically, this proba-
bly implies that the distortion visibility function of KS12does not
exactly represent the fraction of energy that is stored by the distor-
tion at a given moment. However, since the difference is small, we
address this question in some future work.

5.5 High-frequency matching and corrections due to other
neglected terms

While in terms of perturbation theory, we have already included all
contributionsO(xc) into the analysis of Sect. 5.3, it is interesting
to understand the role of higher order corrections inx. These are
expected to become relevant at intermediate frequenciesx ≃ 1,
reaching similar amplitudes as the other terms. We start by using
the solution obtained in the high-frequency limit and matchit with
the low-frequency solution discussed in Sect. 5.3. We then proceed
by adding the temperature drift term and higher order Compton
corrections in frequency.

5.5.1 High-frequency solution matching

Our numerical results show that the high-frequency behavior is
not well represented by extrapolating the low-frequency solution
Eq. (54). Instead, we should separately consider the high-frequency
limit of the photon Boltzmann equation and then match the solu-
tions at some matching pointxm.

At high frequencies, emission and absorption terms can be ne-
glected and we only need to worry about the effect of Compton
scattering. This gives the evolution equation

∂yµ − x ∂y(Te/Tγ) ≈ x2 µ′′ − x2µ′. (63)

Assuming that the time-derivative terms can be treated as pertur-
bations, we find the lowest order solutionµ(0)

high(x) ≈ Chigh, which

is consistent with the low-frequency solutionµ = C1e−xc/x. In the
next iteration, we find

µhigh(x) ≈ Chigh + ln(x) ∂y(T
(0)
e /Tγ), (64)

which shows that energetically the time derivative of the elec-
tron temperature plays the most important role at high frequen-
cies. Physically, this makes a lot of sense as well, since theen-
ergy exchange is dominated by the high-energy spectrum, which is
mainly driven by the Compton process and hence directly related
to the electron temperature and its rate of change. From Eq. (9a),
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Figure 11. Difference of the analytic approximation for ˆµ with respect to
the numerical solution obtained from CosmoTherm at z = 6 × 106 and
z = 4.8 × 105. The approximation, Eq. (54), shown as dashed blue line
captures the behavior well at low frequencies, while at highfrequencies
it deviates from the numerical solution at the level of a few percent. Ne-
glecting the contributions fromDµ and Dem (violet dash-dot-dotted line)
degrades the solution at low frequencies. Matching with thehigh-frequency
solution, Eq. (64), gives sub-percent agreement. Also adding the Compton
scattering correctionDK to the low-frequency solution and using Eq. (70)
for the high-frequency part further improves the agreement.

we find∂y(T
(0)
e /Tγ) ≈ (M3/4)∂yµ

(0)
∞ ≈ −0.2157xcµ

(0)
∞ , which im-

plies that the contribution of the log-term is reduced roughly 3
times with respect to the low-frequency solution. Looking at Fig. 6
suggests that this goes into the right direction. Note, however,
that according to Eq. (9a) also (M2M3/κ

c
ρ)d ln(M3/M2)/dy ≈

−0.25xc(1 + 0.88 lnxc)(1 + 1.81xc)d ln xc/dy contributes to the
derivative∂y(T

(0)
e /Tγ) at late times.

As the next step, we should continuously match the two limit-
ing solutions at some frequencyxm. We know that the termsDµ and
Dem in Eq. (54) are rather small atx & 1, so that for the matching
condition we can use

A(xc) + ln(xm/xc)∂y ln µ(0)
∞ ≈ Chigh + ln(xm/xc)

∂y(T
(0)
e /Tγ)

µ
(0)
∞

(65)

Note that we scaled the whole solution relative toµ(0)
∞ . To determine

the best value forxm, we require smooth derivatives of the solution.

This then implies Chigh ≈ A(xc) − 0.56xc ln(xm/xc). The matching
point is always close toxm ≈ 1.8.

We find that this procedure improves the agreement of the nu-
merical and analytical solutions significantly, in particular captur-
ing the high-frequency scaling (cf. Fig. 11). However, since we
leave the low-frequency solution practically unchanged, for the
computation of the visibility function this modification can be omit-
ted. In addition, a small correction to the normalization arises but it
is≃ O(x2

c), and can also be neglected.
In terms of the photon spectrum, Eq. (64) implies that the

high-frequency solution for the photon occupation number is

n(t, xe) ≃ α(t)xγe(t) e−xe, (66)

with power-law coefficientγ = −∂y(T
(0)
e /Tγ) andxe = hν/kTe. This

shows that due to the lack of high-frequency photons, the spectrum
only slowly reaches a pure Wien-spectrum at the electron tempera-
ture,n(t, xe) ≃ e−xe. If the electron temperature changes, the shape
of the spectrum is determined by the transport of photons between
low and high frequencies. In particular, this indicates that the chem-
ical potential generally remains non-zero at high frequencies. This
limiting behavior is not captured by the solution given by KS12.

5.5.2 Temperature drift term

Let us consider the term−x ∂y(Te/Tγ) on the left-hand side of
Eq. (43). As before we shall treat it as a source term in Eq. (53).
Carrying out the integrals and absorbing any contribution∝ exc/x

(these can be absorbed by the boundary condition atx → 0) and
∝ e−xc/x at x ≫ 1, we find:

µ̂T (τ, x) = [xcDT (xc/x) − x]
∂y(T

(0)
e /Tγ)

2µ(0)
∞

DT (ζ) =
1
2

[

e−ζ Ei(ζ) − eζ Ei(−ζ)
]

. (67)

The frequency dependence ofDT is illustrated in Fig. 12. While the
corresponding correction isO(x2

c), we find thatDT peaks slightly
below≃ 2xc, with a long tail towards lower frequencies, making
its fractional contribution rather significant in comparison to the
corrections discussed in the previous section (compare Fig. 3). Still,
we neglect this second-order correction, as we expect otherterms
to contribute at similar order.

The second correction is physically more interesting, exhibit-
ing a µ̂ ∝ x scaling. This term has to be interpreted as a shift in
the electron temperature∆T (1)

e /Tγ ∝ 1
2∂y(T

(0)
e /Tγ). Since forµ̂ ∝ x,

the photon emission integral diverges (see Sect. 3.3.5), this term
eventually does not appear as contribution to the distortion and is
absorbed as small correction toTe = TRJ, again regularizing the ex-
pression. Overall, the corrections due to the temperature drift term
should be neglected atO(xc) and all frequencies.

5.5.3 Compton scattering corrections

Earlier we argued that correction caused byg1(x) is of second-order
in xc. While this is true at very low frequencies, it turns out to be
incorrect atxc ≤ x ≤ 1. We can again include the effect be simply
adding the associated corrections as source term to the lowest order
solution. For the Compton scattering corrections, it reads

S (1)
K (x, µ(0)) = 2[1− g1(x)]x ∂xµ

(0) = µ(0) xc

x

[

x
1+ e−x

1− e−x
− 2

]

.

c© 0000 RAS, MNRAS000, 000–000



µ-type distortions 17

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

10
1

10
2

x

0

0.2

0.4

0.6

0.8

1
D

i(x
)

Lowest order solution
D

T
D

K

Figure 12. Comparison of ˆµ = e−xc/x with DT (xc/x) andDK(xc, xc/x) for
xc = 0.015 (z ≃ 6× 106).

Inserting this into the solution Eq. (53), we find

µ̂K(τ, x) = xc ln(x/xc) e−xc/x + 6 DK(xc, xc/x) xc

DK(xc, ζ) =
1
6

[

FK (xc,0) e−ζ − FK (xc, ζ)
]

(68)

FK (xc, ζ) = ln(x) e−ζ +
e−ζ

xc

∫ x

0

[

x′

2
1+ e−x′

1− e−x′ − 1

]

[

e2(ζ−ζ′) − 1
] dx′

x′
.

The frequency dependence ofFK (x) is illustrated in Fig. 12. It has
most of its contributions at frequenciesx > 2xc, so that in com-
parison with the previous correction functions it dominates in this
range. In particular, the typical amplitude of the correction is not
≃ O(x2

c) but ratherO(xc). At intermediate frequencies, this is the
dominant correction we missed in our treatment above.

We furthermore see that the correction ˆµK picks up a contribu-
tion ≃ xc ln(x/xc) e−xc/x, changing the extrapolated behavior of the
total low-frequency solution to ˆµ(τ, x) ≈ A(xc) + 0.233xc ln(x/xc)
rather than ˆµ(τ, x) ≈ A(xc) − 0.777xc ln(x/xc) at high redshifts.
This behavior suggests a problem with matching the low- and
high-frequency solutions smoothly, since from Eq. (64) we find
a negative derivative for µ̂high with respect tox. The problem is
solved when including the next-order corrections inx for the high-
frequency limit, giving the evolution equation

∂yµ − x ∂y(Te/Tγ) ≈ x2 µ′′ + (4− x)xµ′. (69)

and hence

µ̂high(x) ≈ Chigh + ln(x)
∂y(T

(0)
e /Tγ)

µ
(0)
∞

+













∂y ln µ(0)
∞ − 3

∂y(T
(0)
e /Tγ)

µ
(0)
∞













1+ 1
x +

2
3x

x
. (70)

Matching with this high-frequency approximation is no problem,
with the typical matching frequencyxm ≈ 1.5, from requiring
smooth first derivatives. Including the Compton correctionterm in
Eq. (68), we find agreement of the analytic solution with the numer-
ical solution at the level. 0.1% at 0.1xc ≤ x ≤ 100 andz & 3× 105

(e.g., see Fig. 11). That is without any direct fitting to the full nu-
merical result, underlining the advantages of our approach.
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Figure 13.DC and CS corrections to the distortion visibility function. The
full non-relativistic result is used as a reference. The thin solid blue lines
give the simple approximations discussed in Sect. 6, while the other lines
were obtained by modifying our perturbation expansion, Eq.(54), accord-
ingly. For the DC corrections, we also show the full numerical result for the
correction obtained with CosmoTherm.

6 FIRST-ORDER RELATIVISTIC CORRECTIONS

We finish our analysis for the earlyµ-distortions including low-
est order relativistic corrections to the DC and Compton processes.
Part of the corrections were studied analytically in Chluba(2005).
The DC corrections were also already included numerically by
Chluba & Sunyaev (2012) as part of CosmoTherm, but no more de-
tailed discussion was given.

6.1 DC corrections

The effect of relativistic corrections caused by DC scattering is
straightforward to include in our perturbation approach. The main
effect is driven by a shift in the critical frequency of a few percent
(see Fig. 1) and a change in the emission integral,Iµ̂, caused by the
frequency dependence of the DC Gaunt factor. These effects can be
estimated relative to the standard DC visibility function.

Neglecting the additional frequency dependence of the DC
Gaunt factor,ΛDC(x, θγ) ≈ ΛDC(0, θγ), the dominant effect can be
captured by re-evaluating the optical depth integral forτµ,0 with
modifiedxc [obtained from Eq. (26b)], giving (cf. Chluba 2005)

∆τDC
µ (z,0) ≈ −5.06θγ (z/zdc)

5/2, (71)

which atz ≃ 6 × 106 implies a∆J/JDC ≃ 5.06θγ ≃ 22% visi-
bility increase relative toJDC. The effect is illustrated in Fig. 13,
where we compared with the full non-relativistic result instead of
JDC. At high redshifts, the correction-to-correction is noticeable,
and the simple expression, Eq. (71), slightly underestimates the ef-
fect; however, our full perturbation approximation agreesvery well
with the numerical result obtained with CosmoTherm, taking only
a few seconds to evaluate rather than hours.

When also accounting for the frequency dependence of the
DC Gaunt factor, both Eq. (34a) and (34b) have to be re-evaluated,
where we simply insert ˆµ ≈ e−xc/x. We find∆Iµ̂ ≈ 3.70× 10−3 +

1.46xc captures the correction toIµ̂ pretty well, where we used
ΛDC(x, θγ)/ΛDC(0, θγ) ≈ 1+ x/2. Evaluating the optical depth inte-
grals then gives

∆τDC
µ (z,0) ≈ [3.70× 10−3 + 1.43xDC,0

c ] (z/zdc)
5/2. (72)

c© 0000 RAS, MNRAS000, 000–000



18 Chluba

The contribution toτµ,0(z), Eq. (34a), just coming from the shift in
the critical frequency by∆xc ≈ xc/4 [cf. Eq. (26b)] is≃ 0.21xDC,0

c ,
while re-evaluation of Eq. (34b) gave rise to the rest. This correc-
tion cancels the DC temperature correction, leading to a netchange
∆J/JDC ≃ −17% atz ≃ 6 × 106. The full result is illustrated
in Fig. 13. This time, our simple approximation overestimates the
effect slightly, due to corrections-to-corrections that werenot in-
cluded. Our full perturbation approximation again agrees very well
with the numerical result obtained with CosmoTherm.

We also mention, that at lowest order inx, the frequency
modulation of the emission term, Eq. (20), caused by the factor
(1− e−x)/x ≈ 1− x/2 andΛDC(x, θγ) ∝ 1+ x/2 cancel identically.
Since previously we corrected for the effect of (1−e−x)/x, inclusion
of the frequency correction toΛDC(x, θγ) reverses this correction. In
our perturbation approach, this is easy to account for, and for the
correction Eq. (72) we also included it.

6.2 CS temperature corrections

To include CS temperature correction, we return to Eq. (15) and
insertµ̂(0) = e−xc/x. By keeping only terms at lowest order inx ≪ 1,
we find the additional source term

S (1)
CS(x) = θγ

(

17
10
+

14
5

xc

x
− 7

10
x2

c

x2

)

x2
c

x2
µ̂(0). (73)

Inserting this into the integral of Eq. (53), we obtain the following
frequency dependent correction (cf. Chluba 2005)

µ̂CS(x) ≈ CCSe−xc/x − θγ DCS(xc/x) (74)

DCS(ζ) =
ζ

2

(

11
4
+

21
20
ζ − 7

30
ζ2

)

e−ζ . (75)

We absorbed any term∝ e−xc/x into the constant and also ensured
µ → 0 for smallx. SinceDCS(ζ) > 0 aroundx ≃ 2xc, the main ef-
fect of CS temperature corrections is to move the critical frequency
of the solution towards slightly higher values. The mean shift of the
photon energy per scattering is given by∆ν/ν ≃ 4θe[1 + (5/2)θe]
(e.g., Sazonov & Sunyaev 2000), which makes CS win the up-
per hand over DC at slightly higher frequencies, but this time de-
creasing the effective photon production rate, because according to
ΛDC/[θγ(1+(5/2)θγ)] = x2

c the effective critical frequency decreases
by ∆xc ≃ −(5/4)xcθγ. Inserting the correction functionDCS(ζ) into
the emission integral Eq. (32), we find

∆ICS
µ̂ ≈ −[1.72− 0.82xc] θγ, (76)

which is in agreement with the argument given above. The effect
is slightly larger than expected from the simple estimate∆ICS

µ̂
≈

−(5/4)θγxc. This is likely due to the higher derivative terms and the
precise shape ofDCS(ζ). The final correction to the thermalization
optical depth thus is

∆τCS
µ (z,0) ≈ −1.23θγ (z/zdc)

5/2, (77)

which is roughly≃ 4 times smaller than the DC temperature correc-
tion, but it goes into the same direction. This is in good agreement
with the estimates of Chluba (2005).

Adding the CS correction to our perturbation treatment, we
obtain the thick solid black line in Fig. 13. Since the correction due
to CS appears to be relatively small, we did not go through thetrou-
ble of implementing the effect numerically for CosmoTherm. It is
possible to iteratively include the correction using a Compton ker-
nel approach, similar to how it was done in connection with refined
helium recombination calculations (Chluba et al. 2012a). However,

we leave a numerical confirmation of the CS scattering correction
to some future work.

For completeness, by redetermining the normalization of our
full solution (see Sect. 5.3.2), we find a small negative correction
∆ACS ≈ xcA0(xc)[0.138+1.06 lnxc] θγ, which usually is negligible.

7 CONCLUSION

We carried out a systematic study of approximations for the distor-
tion visibility function and earlyµ-distortions, basing our analysis
on a perturbative expansion of the solution in terms of the critical
frequency,xc ≪ 1. Our approximations for both the distortion visi-
bility function and theµ-type distortions, over a wide range of red-
shifts and frequencies, agree very well with the numerical solutions
obtained with CosmoTherm. Only a few simple integrals have to be
evaluated numerically, speeding the computation up from several
hours11 down to seconds.

We demonstrate that the high-frequency chemical potential
scales likeµ(x) ∝ const+∂y(Te/Tγ) ln x (see Sect. 5.5.1). The shape
of the high-frequency spectrum is thus driven by the evolution of
the electron temperature, giving rise to ann(x) ≃ xγe−x dependence
of the photon occupation number at largex = hν/kTγ. The non-
stationary correction caused by the time derivative of the chemi-
cal potential amplitude discussed by KS12 is noticeable at low fre-
quencies, although a slightly larger term∝ ln(x/xc)e−xc/x arises due
to Compton scattering frequency corrections [see Eq. (68)]. At in-
termediate frequenciesx ≃ 1, additional modifications due to the
Compton process become noticeable (Sect. 5.5.3). These correc-
tions allow us to smoothly match the solutions for theµ-distortion
obtained in the high- and low-frequency limit, giving an accurate
description of the distortion atz & 3×105, with no extra calibration
of constants relative to the numerical result required (Fig. 11). This
extends the validity for theµ-distortion approximations in compar-
ison to the approach of KS12 at practically no additional cost.

Overall our results for the distortion visibility functionagree
well with the approximations of KS12. Being slightly more elab-
orate, our approach seems to agree a bit better with our numerical
result (see Fig. 10). We argue (see Sect. 5.4.1) that part of the dif-
ference could be related to the precise definition of what thedis-
tortion visibility function really is, which in our case is ensured to
represent the momentary fraction of energy that is stored bythe dis-
tortion. We will investigate the source of the deviations ina future
work. A simple code for computing the distortion visibilityfunc-
tion will be made available atwww.Chluba.de/CosmoTherm.

Finally, in Sect. 6 we explain how DC and CS relativistic cor-
rections affect the distortion visibility at 106 . z. DC and CS tem-
perature corrections decrease the thermalization efficiency, with the
effect reaching∆J/JDC ≃ 27% atz ≃ 6 × 106. This is canceled
by DC frequency-dependent corrections to the Gaunt factor,giving
rise to a net∆J/JDC ≃ −10% atz ≃ 6×106 (see Fig. 13). Including
all corrections discussed here, atz ≃ 6×106 the distortion visibility
function thus is about a factor of≃ 2 smaller than the simplest ap-
proximation,JDC(z) = e−(z/zdc)2.5, a modification that is important
for the interpretation of future spectral distortion data (see Figs. 8
and 9 for more details).

11 For sampling the visibility function at≃ 60 redshifts.
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Figure A1. Shape of the CMB spectrum with large chemical potential. For
the considered case, the crossover frequency is atν ≈ 158GHz. Number
changing processes at low frequencies were neglected, but would restore
the blackbody shape atν . 1 GHz.
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APPENDIX A: BOSE-EINSTEIN SPECTRUM FOR FIXED
NUMBER AND ENERGY DENSITY

Assuming that the photon occupation number is given by a Bose-Einstein
spectrum, we can determine the precise shape from the numberand energy
density of the distribution. Using the ansatz,n = 1/(exφ+µ̄ − 1) [φ is needed
to fix the correct number density andµ > 0 is constant], we can write

φ =















2 Li3(e−µ)

GPl
2















1/3

≈ 1− 0.4561µ − 0.137µ2 ln µ, (A1)

where Lin(x) is the polylogarithm. We assumed that the number density of
the photon distribution did not change. With this solution,one can obtain
the correct Bose-Einstein spectrum as a function ofx andµ (see Fig. A1).
Fixing the energy density, we find that

1+
∆ργ

ργ
=

6 Li4(e−µ)

ρ4GPl
3

≈ 1+ 0.7140µ + (0.815+ 0.555 lnµ)µ2 (A2)

can be used to determine the value ofµ. Evidently, at lowest order one has
µ ≈ 1.401∆ργ/ργ, as expected.

One interesting aspect is that for larger values ofµ, the zero crossing
of the distortion with respect to the blackbody increases. The crossover fre-
quency is roughly given byνcr ≈ 124GHz(1−0.304µ ln µ), so that even for
very large values ofµ ≃ 0.01 the zero does not change dramatically.

APPENDIX B: ENTROPY OF A NON-EQUILBRIUM
BOSE-EINSTEIN SPECTRUM

In terms of the photon occupation number,n = 1/(ex+µ̄ − 1), the photon
entropy density can be written as (Landau & Lifshitz 1980)

sγ = 8πk

(

kTγ
hc

)3 ∫

x2 [(1 + n) ln(1+ n) − n ln n] dx

= 8πk

(

kTγ
hc

)3 ∫

x2 [ln(1 + n) + n(x + µ̄)] dx

=
4
3

ργ

Tγ
− 8πk

3

(

kTγ
hc

)3 ∫

x3 µ̄ ∂xn dx

µ̄≪1
↓≈ 4

3

ρPl
γ (Tγ)

Tγ

[

1+ 3
∆Te

Tγ

]

−
ρPl
γ (Tγ)

Tγ
µ∞M3

=
4GPl

3

3GPl
2

kNγ +
κρ

3

ρPl
γ (Tγ)

Tγ
µ∞ ≈ 3.601kNγ [1 + 0.5355µ∗∞], (B1)

where we usedρPl
γ (T ) = (GPl

3 /G
Pl
2 )kT NPl

γ (T ) ≈ 2.701kT NPl
γ (T ) and the

effective chemical potentialµ∗∞ = κ̂ρµ∞.
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