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ABSTRACT
Convergent migration allows pairs of planet to become trapped into mean motion
resonances. Once in resonance, the planets’ eccentricities grow to an equilibrium value
that depends on the ratio of migration time scale to the eccentricity damping timescale,
K = τa/τe, with higher values of equilibrium eccentricity for lower values of K. For
low equilibrium eccentricities, eeq ∝ K−1/2. Equilibrium eccentricities also depend on
the distance between the planets. Resonances near the planet have lower equilibrium
eccentricity. The stability of a planet pair depends on eccentricity so the system can
become unstable before it reaches its equilibrium eccentricity.

Using a resonant overlap criterion that takes into account the role of first and
second order resonances and depends on eccentricity, we find a function Kmin(µp, j)
that defines the lowest value for K, as a function of the ratio of total planet mass to
stellar mass (µp) and the period ratio of the resonance defined as P1/P2 = j/(j + k),
that allows two convergently migrating planets to remain stable in resonance at their
equilibrium eccentricities. We scaled the functions Kmin for each resonance of the
same order into a single function Kc. The function Kc for planet pairs in first order
resonances is linear with increasing planet mass and quadratic for pairs in second order
resonances with a coefficient depending on the relative migration rate and strongly on
the planet to planet mass ratio. The linear relation continues until the mass approaches
a critical mass defined by the 2/7 resonance overlap instability law and Kc → ∞.

We compared our analytic boundary with an observed sample of resonant two
planet systems. All but one of the first order resonant planet pair systems found by
radial velocity measurements are well inside the stability region estimated by this
model. The one system in the instability region is well below Kc but is also in the 4:3
resonance which is not explained well with smooth migration (Rein et al. 2012). We
calculated Kc for Kepler systems without well-constrained eccentricities and found
only weak constraints on K. The Kepler systems have all have lower bounds less than
K = 10 with most systems with Kmin < 1.

1 INTRODUCTION

There are now more than 700 confirmed exoplanets, and
the Kepler mission (Borucki et al. 2010) has found more
than 3000 more candidates (Batalha et al. 2013). About a
third of these exoplanets are in multiple planet systems that
are in a variety of dynamical configurations. Of the multiple
planet systems, there is an excess of planet pairs with period
ratios in or near low order mean motion resonances (MMR),
particularly for first order resonances (Lissauer et al. 2011).

Planet migration is a natural outcome of the interac-
tion of a planet with the proto-planetary disk that it forms
in (Kley 2000). Capture into a mean motion resonance is
possible if two planets migrate so that they slowly approach
one-another. After two planets capture into resonance, but
continue to migrate, the planet eccentricities increase. If the
system remains stable, the eccentricities increase until they
reach equilibrium values that depend on the extent of ec-
centricity damping or the ratio of the eccentricity damp-
ing timescale to the migration timescale (Lee & Peale 2002;

Murray et al. 2002). Kley et al. (2004) pointed out that as
the planet eccentricities increase, the system can become
unstable before it reaches equilibrium.

The stability of a two planet system can be estimated
using a resonant overlap criterion (Wisdom 1980). The
boundary of the resonance overlap zone is estimated by com-
paring the width of resonances and the distance between two
neighboring resonances. Wisdom (1980) estimated the width
of the zone for the restricted three body problem,(
δa

a

)
chaos

≈ 1.3µ2/7 (1)

where δa is the width of the resonance overlap zone (mea-
sured in semi-major axis) from the planet’s semi-major axis,
a is the semi-major axis of the planet, µ = mpl/m? the mass
ratio of the planet to the central star. The 2/7-law is only a
good approximation in the limit of low eccentricity, ∼ 0.01,
and migration in resonance can force a planets eccentricity
to high values (Murray et al. 2002). Mean motion resonance
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2 Bodman & Quillen

width depends on eccentricity. Using an eccentricity depen-
dent resonant overlap criterion, Mustill & Wyatt (2012) es-
timate a the chaotic zone width(
δa

a

)
chaos

≈ 1.8e1/5µ1/5 (2)

where e is the eccentricity of the outer particle. The 1/5th
law applies when the eccentricity is above e ≈ 0.21µ3/7 and
is a good approximation up to about e ≈ 0.1.

In this paper, we investigate the resonant overlap stabil-
ity boundary for migrating planets as the planets are reach-
ing their equilibrium eccentricities which are often above the
e ≈ 0.1 limit of the 1/5 law. We include the effects of second
order resonances in the resonance overlap stability criterion.
Using the stability criterion, we relate the ratio of the eccen-
tricity damping timescale to the planet migration timescale,
K = τa/τe, to mass ratio, µ. Then in section 3, we compare
our analytical boundary to a sample of two planet radial ve-
locity systems and find approximate minimum K for which
the system is stable to resonance overlap on a sample of con-
firmed two planet Kepler systems with period ratio that put
them near resonance.

2 RESONANCE OVERLAP STABILITY
BOUNDARY

We consider two planets in a proto-planetary disk migrating
in converging coplanar orbits. Once trapped in resonance,
the eccentricities of both planets grow. Following Dermott
et al. (1988), the rate of change in eccentricity, ė, and semi-
major axis, ȧ, for a planet pair interacting in resonance can
be calculated from Lagrange’s planetary equations for mean
motion and eccentricity. The mean motion and eccentricity
of each planet

dnres

dt
= − 3

a2
∂R

∂λ
(3)

deres
dt

=

√
1− e2
na2e

(1−
√

1− e2)
∂R

∂λ
−
√

1− e2
na2e

∂R

∂$
(4)

where R is the disturbing function, λ and ω̄ are the planet’s
mean longitude and longitude of periapse and n is its mean
motion.

We use subscripts 1 and 2 to refer to the inner and
outer planets respectively, with m1,m2 the masses, a1, a2
the semi-majors axes and e1, e2 the eccentricities. Only res-
onant terms of the disturbing function are kept and secular
terms are ignored. In this paper we focus on only the lowest
order terms in the expansion of the disturbing function. For
the inner body, R is replaced by R1 in Lagrange’s equations
(equations 4) and similarly R is replaced by R2 for the outer
body with resonant terms

R1 =
Gm2

a2
ek1
1 e2

k2fd(α) cosφ

R2 =
Gm1

a2
ek1
1 e2

k2fd(α) cosφ. (5)

Here G is the gravitational constant, α = a1/a2, and fd(α)
is a function of Laplace coefficients that depends on the
resonant angle and can be found in the appendix of Murray
& Dermott (1999). For the j : j + k commensurability, the
resonant argument

φ = jλ1 − (j + k)λ2 + k1$1 + k2$2 (6)

where k1 + k2 = k and j, k, k1, and k2 are integers.
Dermott et al. (1988) defines a variable for change in

the mean motions of satellites due to tidal interaction with
a planet to find an equation for the total change in mean
motions (their equations A18, A19). Using the same method
but with planet migration instead of planet tidal forces, we
define mean motion changes due to tidal interaction with a
disk, ṅ1,m and ṅ2,m. The total rate of change in the mean
motions, ṅ1, ṅ2, due to both the resonant interactions de-
fined by Lagrange’s equations and the change due to migra-
tion from disk interactions is

dn1

dt
= − 3

a21

∂R1

∂λ1
+ ṅ1,m

=
3Gm2

a21
jC sinφ+ ṅ1,m (7)

dn2

dt
= − 3

a22

∂R2

∂λ2
+ ṅ2,m

= −3Gm1

a22
(j + k)C sinφ+ ṅ2,m, (8)

where

C = ek1
1 e2

k2fd(α)/a2. (9)

Ignoring contribution from $̇i, the second derivative of
the resonant angle is φ̈ = jṅ1−(j+k)ṅ2. Once in resonance,
the resonant angle librates so

〈
φ̈
〉

= 0 and using the above
expressions for ṅ1, ṅ2, we find

〈C sinφ〉 =
jn1(ȧ1,m/a1)− (j + k)n2(ȧ2,m/a2)

2(Gm2(j/a1)2 +Gm1((j + k)/a2)2)
(10)

where we have used ṅi,m = −3/2ni(ȧi,m/ai). Combining
equations (4, 5, 10), the average rate of change in eccentricity
due to resonant interactions,〈
de1
dt

〉
res

=
m2

√
1− e21

2n1a21e1

[
k1 + j(1−

√
1− e21)

]
× jn1(ȧ1,m/a1)− (j + k)n2(ȧ2,m/a2)

m2(j/a1)2 +m1((j + k)/a2)2
(11)〈

de2
dt

〉
res

=
m1

√
1− e22

2n2a22e2

[
k2 − (j + k)(1−

√
1− e22)

]
× jn1(ȧ1,m/a1)− (j + k)n2(ȧ2,m/a2)

m2(j/a1)2 +m1((j + k)/a2)2
. (12)

The above equations (12) are equivalent to A25 and A26
by Dermott et al. (1988). Since these equations are time
averaged, librations in the eccentricity and semi-major axis
that occur while in resonance are ignored.

We switch our focus to the eccentricity damping effects
from interactions with the disk. To model smooth planet
migration through a disk, we assume the planets’ semi-major
axes change or migration rate is governed by a timescale τa
(following Lee & Peale 2002)∣∣∣ ȧm
a

∣∣∣ =
1

τa
(13)

We assume the outer planet to be migrating inwards,
ȧ2/a2 < 0, but allow inner planet to migrate inwards or
outwards. For converging orbits necessary for resonance cap-
ture, we require the migration rates to satisfy

ȧ1,m
ȧ2,m

< 1. (14)
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Figure 1. The first and second order exterior resonances for a
total planet mass of µp = (µ1 +µ2) = 0.001 are plotted and filled

with different colors for clarity. Light and dark blue regions are
the second order resonances and red and orange regions are first

order. The shaded region marks the region of complete resonant

overlap. For the equilibrium eccentricity values, a planet to planet
mass ratio of one was used and e1 << 1. The down, left, up, and

right pointing triangles mark K = 1, 5, 10, 50, respectively. There

is no resonance overlap for the 2 : 1 resonance at this mass but
instability from multiple resonances overlap the 3 : 2 resonance

at moderate eccentricities.

We adopt the simple eccentricity damping model by Lee
& Peale (2002),

ėm
e

= − 1

τe
= −K

∣∣∣ ȧ
a

∣∣∣ (15)

where K = (τa/τe) is constant and the eccentricity damping
rate, τe, is chosen such that K is the same for both planets.
This form of eccentricity damping allows for the eccentricity
to reach an equilibrium after capture into resonance (Lee &
Peale 2002).

The parameter K depends on the properties of the disk
driving the migration and is not yet constrained from obser-
vations. The value of K from disk simulations varies from
order unity in studies of resonant systems (eg., Kley et al.
2004) up to ∼ 100 for radiative disk models (Bitsch & Kley
2010). We consider the range 1 to 100 for K.

The migrating two planet system reaches eccentricity
equilibrium when 〈ė〉total = 〈ė〉res + ėm = 0. Using equa-
tion 15, the condition for eccentricity equilibrium becomes
〈ė〉i,res/ei = K |ȧi,m/ai|. Using equation 12 for 〈ė〉res and
the relation between mean motions in resonance, n2/n1 =
α3/2 ≈ j/(j + k), we find

K

∣∣∣ ȧ1,m
a1

∣∣∣ =

√
1− e21
2je21

(ȧ/a)rel
1 + 1/(να)

D1 (16)

K

∣∣∣ ȧ2,m
a2

∣∣∣ =

√
1− e22

2(j + k)e22

(ȧ/a)rel
να+ 1

D2. (17)

Here, the planet to planet mass ratio is ν = m2/m1 and

D1 = k1 + j(1−
√

1− e21), D2 = k2− (j + k)(1−
√

1− e22).
The relative migration rate is (ȧ/a)rel = ȧ1,m/a1− ȧ2,m/a2.

Following section A4 of Papaloizou & Szuszkiewicz
(2005), we note that e1 can be considered as a function
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Figure 2. Similar to figure 1 but with lower mass planets,
µp = 0.0001. Both the eccentricity and semi-major axis ranges

are smaller since the resonance widths are smaller. The colored
regions indicate the same order resonances and overlap region

as figure 1, the different values of K are marked with the same

triangles and the same assumptions were used to calculate the
eccentricities. Second order resonances contribute significantly to

resonance overlap at smaller mass and eccentricities as seen in

the 4 : 3 resonance.

of e2 (their equation A21). Taking the ratio of 〈ė〉1,total to
〈ė〉2,total, we find the relation

de1
de2

=
−Ke1

∣∣∣ ȧ1,ma1 ∣∣∣+

√
1− e21(ȧ/a)rel

2je1(1 + 1/να)
D1

−Ke2
∣∣∣ ȧ2,ma2 ∣∣∣+

√
1− e22(ȧ/a)rel

2(j + k)e2(1 + να)
D2

. (18)

Using this relation, we find a single condition for the equi-
librium eccentricities,

K
(
e2

∣∣∣ ȧ2,m
a2

∣∣∣+ e1

∣∣∣ ȧ1,m
a1

∣∣∣ (Λ− 1)
de2
de1

)
=

√
1− e22(ȧ/a)rel

e2(j + k)(1 + να)
Γ(19)

where

Γ =
1

2

[
k − (j + k)(1−

√
1− e22) + j(1−

√
1− e21)

]
(20)

and

Λ = 1 +
e1
ναe2

(
j

j + k

) √
1− e22√
1− e21

de1
de2

. (21)

Equation 19 for first order resonances is equivalent to eccen-
tricity relation found by Papaloizou & Szuszkiewicz (2005).
In the limit e2 → 0, equation 19 reduces to equation 16 and
as e1 → 0, equation 19 reduces to 17. When a planet is more
massive, its eccentricity will be smaller than the other planet
so equation 17 (16) is a good approximation when the mass
ratio is small (large) enough, respectively.

The equilibrium eccentricity depends strongly on the
damping rate, see Figures 1 and 2. For K = 1, the eccentric-
ity reaches moderate values where second order resonances
are strong and important to resonant overlap stability. In-
creasing K to 5 decreases the eccentricity by about a half
but second order resonant effects are still important. For
K & 10, the system is in the low eccentricity regime where
second order resonance can be reasonably neglected. The
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4 Bodman & Quillen

strong dependence of equilibrium eccentricity on K agrees
with N-body simulations by Lee & Peale (2002).

To define a resonance overlap criterion, we use a sim-
ple function for resonance width. Since resonance width is
a weak function of planet to planet mass ratio (Deck et al.
2013), we take the test particle limit while keeping the to-
tal planet mass of the system, µp = µ1 + µ2, constant for
simplicity. For second order resonances, we use

δai
ai

= ±
[

16

3
e2iFd

]1/2
(22)

(Veras & Armitage 2004), where δa is half of the width mea-
sured from exact resonance and Fd = µpαf45 for interior
resonances and Fd = µpf53 for exterior resonances. For first
order resonances, we used

δai
ai

= ±
(

16

3
Fdei

)1/2
(

1 +
Fd

27jie3i

)1/2

− 2Fd

9jiei
(23)

where Fd = µpαf27 for interior resonances and Fd = µpf31
for exterior resonances (Murray & Dermott 1999). The func-
tions f45, f53, f27,and f31 are fd(α) from the disturbing func-
tion for their respective commensurabilities. This modified
version of the resonance width was used in order to regain
the 2/7 law for very low eccentricity. However, the width
becomes infinite at e = 0 and does cannot be applied for
e . 0.02. In this regime, the 2/7 law is directly applied to
estimate the instability region.

As shown in figure 1, the 2:1 resonance does not overlap
with the next first order resonance for a total planet mass ra-
tio of µ = 0.001. For eccentricities of order 0.5 to be unstable
to first order resonance overlap, the total planet mass would
need to be about eight times larger. The nearest second or-
der resonance, 5:3, overlaps the center of the 2:1 resonance
at eccentricities over ∼ 0.5 at µ = 0.001. We found that the
inclusion of third order resonances changed the planet mass
necessary for overlap by less than a factor of couple and can
be neglected. The eccentricity increases to a moderate equi-
librium value in the second order resonance overlap range
when the relative migration rate is significantly larger than
the damping rate. As j : j + k → 1, the equilibrium ec-
centricity decreases but for low values of K, second order
resonances are still the primary cause of resonance overlap
instability.

The 3:1 resonance is far its neighboring first and second
order resonances, the 2:1 and 5:3 resonances. Resonant over-
lap at very high eccentricities, ∼ 0.9, does not occur until
µ ≈ 0.014 and the overlap is with the much wider 5:3 reso-
nance instead of the closer 2:1 resonance. The 2:1 resonance
overlap begins at µ ≈ 0.023 and e ≈ 0.7. The instability
region extends down to e ≈ 0.5, 0.3 for µ ≈ 0.031, 0.043. In-
cluding the 5:2 resonance does not reduce the mass needed
for overlap with the 3:1 significantly. Resonance overlap in-
stabilities at moderate eccentricities may arise from overlap-
ping with high order resonances which we have neglected in
this paper.

We define an eccentricity to be unstable when the width
of the neighboring first or second order resonance is equal to
distance between the exact resonances at that eccentricity,
δaneighbor = |aresonance − aneighbor| = ∆a. Using equations
22 and 23, we find a maximum stable eccentricity as func-
tion of total planet mass. Inserting the maximum eccentric-
ity into equation 19, we calculate the boundary of resonance

10-5 10-4 10-3 10-2100

101

102

K
=
τ a
/τ

e

10-5 10-4 10-3 10-2

Total Planet Mass Ratio µp =µ1 +µ2

100

101

102

K
=
τ a
/τ

e

Figure 3. Plot of logKmin(µp) for different first order resonances

on top and second order resonances below. The two planets have
the same mass (ν = 1) and (ȧ/a)rel = ȧ2,m/a2. From left to right,

the resonances are 7:6, 6:5, 5:4, 4:3 3:2 amd 2:1 in the top plot

and 13:11, 11:9, 9:7, 7:5, 5:3, and 3:1 in the bottome plot. Top
plot shows Kmin including the second order resonance overlap

with the solid lines and only first order overlap with the dotted
lines. The dashed lines marks the 2/7 law instability region. In the

high µp limit, the instability boundary steepens rapidly reaching

a maximum planetary mass in agreement with the 2/7 law. In
low µp limit, the boundary is approximately linear. A planet pair

is unstable due to resonance overlap when below and to the right

of the line for its resonance. Lowering K increases the equilibrium
eccentricity, putting the planet into the resonance overlap region.

Increasing the mass of the inner planet increases the width of

the resonances and higher K values become unstable. Bottom
plot shows the boundary for resonance overlap for second order
resonances due to neighboring first order resonances. In the high

µp limit the boundary curves up as it approaches a maximum
stable mass and in the low µp limit the boundary is approximately

quadratic.

overlap stability, Kmin, as a function of the total planetary
mass for a particular resonance, see figure 3. The plot shows
the minimum value of K which is stable to second order
resonance overlap for first and second order resonance. The
region above and to the left of Kmin is the stability region
for that resonance. On the plot, dashed lines mark the reso-
nance overlap instability boundary according to the 2/7 law
which defines a maximum total planet mass, µ2/7, for each

c© 0000 RAS, MNRAS 000, 000–000
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Table 1. Best Fit Parameters Kmin = Cµb

First Order Second Order

j C b j C b

1 331 1.04419

2 3,153 1.03241 3 1.84720× 106 2.12414
3 11,763 1.00421 5 6.33544× 107 2.12641

4 36,124 1.00188 7 7.44876× 108 2.12848
5 90,252 1.00109 9 5.13909× 109 2.12560

6 195,528 1.00075 11 2.61895× 1010 2.12692

Best fits for figure 3. Note that b ≈ 1 for first order resonances
and b ≈ 2 for second order resonances.

first order resonance. As µp → µ2/7, Kmin → ∞ and equa-
tion 23 is no longer a good approximation of resonant width.
Because the resonance width is a minimum at non-zero ec-
centricity, there is a maximum total planet mass, µmax, for
each resonance associated with a finite maximum Kmin. The
maximum mass is in good agreement with the predicted µ2/7

except for the 2 : 1 resonance.
At µp << µmax for first order resonances, the nearest

second order resonance is the primary source or resonant
overlap. In this regime, there is a simple power law rela-
tion between Kmin and µp. A simple power relation exists
also for second order resonances in the same mass limit. We
found the χ2 best fit curves for the low µp regime to be ap-
proximately linear for first order resonances and K ∝ µ2

p for
second order resonances except for the 3:1 resonance. The
parameters of the best fit curves for the plotted Kmin are
listed in table 1. For first order resonances, the curve was
fitted from Kmin = 1 to the discontinuity in Kmin from
the width of the nearest first order resonances surpassing
the nearest second order resonance. The discontinuity of
the stability boundary of first order resonances occurs at
K ≈ 3.2j1.14. This transition can be seen in the 4 : 3 res-
onance at K = 10 in figure 1 and the 7 : 6 resonance, also
at K = 10, in figure 2. After the sharp transition to first
order resonance stability criterion, the 1/5 law applies and
then the 2/7 law when µp ≈ µ2/7. The curves for the second
order resonance are fitted for µp < µmax/2 except for 3:1
resonance. For the 3:1 resonance, Kmin(µmax/2) is less than
1 and is not well described by a power law at low values.

The reason for the linear relation in Kmin for small µp

and first order resonances can be seen by studying the low
eccentricity limit of equation 17 for K,

Kmin ≈
[
k((ȧ1,m/ |ȧ2,m|)(1/α) + 1)

2(j + 1)(να+ 1)

]
1

e2max
(24)

With equation 22, the maximum eccentricity is a function of
the total planet mass and the distance between resonances,
∆a. Inserting the equation for emax, the low eccentricity
formula for Kmin becomes

Kmin ≈ µp

(
16kf53a

2

3(∆a)2

)[
(ȧ1,m/ |ȧ2,m|)(1/α) + 1

2(j + 1)(να+ 1)

]
. (25)

The linear approximation is more accurate in the high j
limit since the maximum stable eccentricity decreases with
increasing j. A similar argument using the e1/2 term in equa-
tion 23 explains K ∝ µ2 for second order resonances. The

Table 2. Scaling Parameters For First Order Resonance
Boundary

1st Order 2nd Order

j K′ µmax j K′ µmax

1 1.97064 0.01589081
2 4.52002 0.00353647 3 2.14539 0.00320877

3 7.39575 0.00129630 5 4.98767 0.00091106

4 10.6401 0.00059806 7 8.33534 0.00036707
5 14.4338 0.00032288 9 12.9117 0.00017948

6 18.5141 0.00019068 11 18.4719 0.00009933

Scaling used in figure 4.

low eccentricity limit is not a good approximation for the
3:1 as emax is large.

Since the stability boundaries of the different reso-
nances are parallel to those of the same order, the func-
tion Kmin(µp, j) for each resonance can be rescaled to form
two boundaries, Kc,1 ∝ µp and Kc,2 ∝ µ2

p, independent of
the resonant period ratio. The planet mass is scaled by the
maximum planetary mass µmax, listed in table 2. The scal-
ing factor for K does not have an straight forward optimal
choice. We used the value of Kmin at half of µmax for the
scaling factor, K′(j), also listed in table 2. At this mass, all
of the resonances have a Kmin larger than 1 resonance and
is in the power law regime of the resonance overlap stabil-
ity boundary except for the 3:1. We did not include the 3:1
resonance in the scaling since it is not parallel to the other
second order resonances. The best fit lines for the new scaled
functions are

Kc,1 =
Kmin

K′
= 2.00168

(
µp

µmax

)
(26)

Kc,2 =
Kmin

K′
= 3.92031

(
µp

µmax

)2

. (27)

The new functions and the scaled boundaries for the first
and second order resonances are plotted in figure 4. The
scaled boundaries depart slightly from the power law fit in
the very low mass limit since the low eccentricity limit neces-
sary for the power law approximation is no longer valid. For
the first order resonances, the transition from second order
to first order resonance overlap occurs at µp/µmax ≈ 0.8 but
depends slightly on the period ratio of the resonance. The
difference between the 2 : 1 and the 7 : 6 resonances is about
10%.

2.1 Sensitivity to Relative Planet Migration Rate

The migration rates of planet pairs in a disk depend on
the geometry and thermodynamical properties of the proto-
planetary disk as well as the masses of the planets. Planets
less than a few Earth masses typically migrate quickly em-
bedded in the disk through Type I migration (Papaloizou
& Terquem 2006). Since the migration rates depend on
the local conditions of the disk (eg., Paardekooper et al.
2010), planets embedded in the disk migrate at different
rates that can lead to converging orbits and then reso-
nance capture. Under certain thermodynamical conditions,
a planet can migrate outwards while in that region of the

c© 0000 RAS, MNRAS 000, 000–000
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Figure 4. Plots of the scaled stability boundaries for first order

resonances on top and for second order resonance on bottom with

corresponding best fit curves. The black line is the best fit for the
µp/µmax << 1 regime and the colored lines mark the boundaries

for the different resonances. The scaling constants, K′ and µmax,
depend on the resonance and are listed in table 2. The colored

lines end when Kmin = 1. As in figure 3, the region above and

to the left of the line is the stable region. The boundaries of the
different resonances diverge a small amount from the power law

in the low mass limit.

disk (Paardekooper et al. 2010). For planets more massive
than ∼ 1MJupiter, the planets undergo Type II migration
after the planets open a gap in the disk around them (eg.,
Kley 2000). Type II migration is typically slower than Type
I. The outer planet migrates inward when undergoing Type
II migration while the inner planet migrates outward due to
interactions with the disk inside its orbit. Migration halts
when the disk material dissipates which can occur for the
inner planet before the outer planet since the inner planet
only interacts with the inner disk (Kley 2000). After dis-
sipation, the inner planet only migrates through resonant
interactions with the other planet.

The equilibrium eccentricities do not depend on the
migration rates for each planet individually but on the
ratio of the two rates, τa,2/τa,1 = |ȧ1,m/(ȧ2,mα)|. This
form of dependence is due to the model of the eccentricity
used, τe ∝ τa. A more general model of eccentricity damp-

10-4 10-3

Total Planet Mass Ratio µp

100

101

102

K

Figure 5. Plot of the Kmin values for the 4:3 resonance with
various ratios of |ȧ1,m/(ȧ2,mα)| and ν = 1. The black solid line is

when the inner planet not migrating and the same as 4:3 bound-
ary in figure 3. The dotted lines are when the inner planet in

migrating outwards. From the boundary closest to the black line,

the migration rate ratios are 0.25, 0.5, 1, 3 and 5. The dashed
lines are ratios where the inner planet is migrating inwards. The

migration rates, starting closest to the black line, are 0.25, 0.5

and 0.9. Only a small portion of Kmin for 0.9 is larger the 1. For
both cases the outer planet is migrating inwards.

ing would result in dependence on two time scale ratios,
τa,rel/τe,2 and τe,1/τe,2. With the simple model described
in equation 15, the dependence of Kmin on the eccentricity
damping timescales becomes a dependence on the migration
rates. The migration ratio used in our study is the migra-
tion timescale of the outer planet divided by the migration
timescale of the inner planet.

The value of Kmin varies significantly with the migra-
tion rate ratio as seen in figure 5. In figure 5, we varied
the migration rate ratio of a planet pair in a 4:3 resonance
while the planetary mass and mass ratio was held constant.
The migration rate ratio dependence for other resonances
is within a factor of two. As expected from the 2/7 law,
µmax does not change with the migration rate. The largest
value of Kmin occurs when the inner planet is not migrat-
ing, ȧ1,m/(ȧ2,mα) = 0, as shown by the black line in figure
5. If the inner planet is not migrating then its eccentricity is
not being damped by the proto-planetary disk and only the
outer planet’s eccentricity has damping. Stronger damping
is necessary to keep both planets stable.

In the case of both planets migrating inwards, Kmin de-
creases rapidly with increasing inner planet migration rate
until the planets’ migration rates are the same. If the inner
planet migrates faster than the outer planet then the condi-
tion of converging orbits for resonance capture is no longer
satisfied. The stability boundary is lower for both planets
migrating inwards because the rate eccentricity growth is
proportional to the relative migration rate which is small
under these conditions. Hence, only a small amount of ec-
centricity damping is required to achieve the maximum sta-
ble equilibrium eccentricity. Increasing the migration rate
rate to 0.25 decreases Kmin by almost a factor of two and

c© 0000 RAS, MNRAS 000, 000–000



Stability Boundaries 7

doubling the ratio about doubles the decrease in Kmin. For
the migration rate ratio 0.9, only a small part of the Kmin

boundary is larger than one and the 2/7 law is a good ap-
proximation of the stability region.

In the case where the inner planet is migrating out-
wards, Kmin decreases to a minimum with increasing inner
planet migration. For this situation, the dependence of Kmin

on the migration rate ratio is weak. A migration ratio of 100
decreases the stability boundary to three quarters of the case
with no inner planet damping. The weak dependence is from
the migration rate ratio appearing on both sides of equation
19. As the ratio grows large, both sides increase by the same
amount so the value of K does not change. The eccentricity
damping of the inner planet increases but the strength of
the resonant eccentricity growth increase by about the same
rate so neither the increased damping or increased growth
dominates.

2.2 Sensitivity to Planet-Planet Mass Ratio

The function Kmin depends strongly on planet to planet
mass ratio. How Kmin depends on the mass ratio changes
on whether one or both the planets are migrating. For the
case where only the outer planet migrates, varying the mass
ratio from 1 to 10−4 increases the value of Kmin by about a
factor of 2. Here, the outer planet is less massive and experi-
ences stronger resonant eccentricity growth and so stronger
damping is required. For mass ratio less than ∼ 0.01, Kmin

increases slowly towards a maximum at the outer test parti-
cle limit. Increasing the mass ratio from one to ten decrease
Kmin by about a factor of five and increasing the ratio to
100 puts the stability boundary entirely below K = 1. The
resonant eccentricity growth decreases so less damping is
necessary.

The behavior of Kmin with varying planet to planet
mass ratio is different when both planets are migrating and
both planets’ eccentricities are being damped by the disk.
Increasing or decreasing the mass ratio by a factor of ten
decreases Kmin by about a factor of three and a factor of
100 puts the boundaries mostly below K = 1. Increasing the
mass ratio has a less of an effect on Kmin but the difference
between increasing and decreasing the mass ratio is less than
a factor of two. Changing the mass ratio to a higher or lower
value decreases the combined strength of eccentricity growth
on both planets such that less damping is necessary.

The instability region in eccentricity and semi-major
axis parameter space is approximately independent of planet
mass ratio (Deck et al. 2013). The dependence of Kmin on
the planet to planet ratio is from the equilibrium eccentric-
ities equation. Neglecting the effects of mass ratio in the
resonance width equations changes Kmin very little com-
npared to the planet-planet mass ratio dependency of the
equilibrium eccentricity equation.

3 PLANETARY SYSTEMS

Exosolar planetary systems have been discovered by various
methods including radial velocity (e.g. Correia et al. 2009)
and transits (e.g. Steffen et al. 2013). We have compiled a
sample of two planet systems near resonant period ratios
found by radial velocity and transits in table 3. Planet pairs

10-4 10-3100

101

102

K

10-4 10-3

Total Planet Mass Ratio µp

100

101

102

K

Figure 6. Plot of Kmin for the 4:3 resonance with various

planet to planet mass ratios. The top plot uses the assumption

ȧ1,m/(ȧ2,mα) = 0 and the bottom uses ȧ1,m/(ȧ2,mα) = −1.
Dashed lines mark planet to planet ratios of 10−1 in red, 10−2 in

orange, 10−3 in yellow, 10−4in green. The dotted lines mark 10

in red and 100 in orange. The solid black line is 1. The behavior
of decreasing the planet to planet mass ratio changes significantly

with the two different migration rate ratios. With only the outer

planet migrating, decreasing the mass ratio increases the bound-
ary while increasing the ratio decreases the boundary. When both

planets are migrationg, increasing or decreasing the mass ratio

decreases the boundary.

in or near the 3:1 resonance were not included since the
planet mass required for instability is much larger than any
of the masses in our sample.

The systems in our sample found by radial velocity
have well constrained eccentricities and masses so we used
the first seven systems listed in table 3 to test the analyt-
ical model. Kepler systems 36 and 46 also have contrained
masses and eccentricities and were included in testing the
analytic model. Using the systems’ measured eccentricities
as the equilibrium values, we calculated K for each system
using equation 19. For Kepler-36, we used the upper limit of
the eccentricities for the equilibrium values. The migration
rate ratio of the planets is a free parameter in the equilib-
rium equation. We used ȧ1,m/(ȧ2,mα) = 0 and compared
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8 Bodman & Quillen

Table 3. Systems in or Near Resonant Configurations

System µ1 µ2 e1 e2 P2/P1

24 Sex3 8.69× 10−4 7.18× 10−4 0.184 0.412 1.999
HD 1283111 1.68× 10−3 3.74× 10−3 0.345 0.23 2.034

HD 1553582 8.50× 10−4 8.37× 10−4 0.17 0.16 2.017

HD 2009643 1.22× 10−3 5.92× 10−4 0.04 0.181 1.344
HD 453644 2.18× 10−4 7.66× 10−4 0.1684 0.0974 1.511

HD 735265 2.52× 10−3 2.14× 10−3 0.19 0.14 2.006

HD 829436 1.65× 10−3 1.44× 10−3 0.359 0.219 2.010
Kepler-237,a < 3.98× 10−5 < 14.8× 10−5 1.511

Kepler-247,a < 8.28× 10−5 < 14.7× 10−5 1.514

Kepler-258,a < 1.75× 10−5 < 3.22× 10−5 2.039
Kepler-268 < 5.58× 10−4 < 5.51× 10−4 1.405

Kepler-278 < 1.34× 10−2 < 2.03× 10−2 2.043

Kepler-288,a < 5.93× 10−5 < 9.17× 10−5 1.520
Kepler-299 < 2.48× 10−5 < 1.62× 10−5 1.286

Kepler-319 < 3.47× 10−4 < 3.00× 10−4 2.044

Kepler-3610 1.25× 10−5 2.27× 10−5 < 0.033 < 0.036 1.173
Kepler-4611 < 63.6× 10−4 3.99× 10−4 0.01 0.0146 1.697

Kepler-4812 < 5.79× 10−5 < 3.43× 10−5 2.025

Kepler-4912 < 1.70× 10−3 < 1.25× 10−3 1.515
Kepler-5012 < 1.86× 10−5 < 1.71× 10−5 1.200

Kepler-5212 < 4.94× 10−4 < 2.09× 10−4 2.080

Kepler-5312 < 25.3× 10−5 < 7.40× 10−5 2.068
Kepler-5412 < 17.2× 10−4 < 6.92× 10−4 1.507

Kepler-5512 < 2.29× 10−3 < 1.71× 10−3 1.508
Kepler-5612 < 3.57× 10−3 < 8.48× 10−3 2.038

Kepler-5712 < 36.2× 10−5 < 1.95× 10−5 2.026

Kepler-5812 < 8.66× 10−5 < 13.1× 10−5 1.524
Kepler-5912 < 1.88× 10−3 < 1.26× 10−3 1.515

KOI-123613 < 1.41× 10−4 < 1.11× 10−4 1.522

KOI-156313 < 3.02× 10−5 < 2.59× 10−5 1.511
KOI-203813 < 4.67× 10−5 < 5.97× 10−5 1.506

KOI-267213 < 28.6× 10−5 < 6.11× 10−5 2.059

List of planetary properties of a sample of two planet systems in resonance or near resonance.

a-Planet masses are from Lithwick et al. (2012) instead of numbered reference.
References: 1- Wittenmyer et al. (2009), 2- Robertson et al. (2012), 3- Johnson et al. (2011), 4- Correia et al. (2009), 5- Tinney et al.

(2006), 6- Lee et al. (2006), 7- Ford et al. (2012), 8- Steffen et al. (2012), 9- Fabrycky et al. (2012), 10- Carter et al. (2012), 11-

Nesvorný et al. (2012), 12- Steffen et al. (2013), 13-Ming et al. (2013)

the sample to Kmin using the same migration assumption
and ν = 1. Our results are scaled using the factors from
table 2 and plotted in figure 7 as squares with Kc marking
the stability boundary.

All of the planetary systems are in the predicted stabil-
ity region expect for one system in the 4:3 resonance, HD
200964. The planet pairs in the stability region are all clus-
tered in the same region of parameter space. The systems
in the 2:1 and 3:2 resonances have K values with a factor
of a few which indicates formation of the resonance in sim-
ilar proto-planetary disk environments. Kepler-36 is in the
same region of scaled parameter space as the 2:1 ans 3:2 reso-
nances but the system’s unscaled K is about ten times larger
which suggests a different mechanism for formation such as
scattering with embryos (Quillen et al. 2013). Kepler-46 has
a scaled K so high that it is not on the plot in figure 7. How-
ever, if the inner planet is allowed to migrate inwards like
in simulations by Baruteau & Papaloizou (2013), K can be
much smaller as the strength of resonant eccentricity growth
is weaker and less damping is required to reach the measured
equilibrium eccentricities. For a migration rate ratio of 0.5,
K ≈ 50 and for a ratio of 0.8, K ≈ 13.

For long term stability, HD 200964 is required to be in
the 4:3 resonance where there is a small island of stability
surrounded by a highly unstable region (Wittenmyer et al.
2012). However, HD 200964 is well inside its instability re-
gion indicating that the model of smooth planet migration
used does not explain well how that system was trapped into
the 4:3 resonance. Rein et al. (2012) concluded smooth mi-
gration of large mass planets cannot adequately explain how
planets are captured into the 4:3 resonance and proposed a
combination of scattering and damping as a possible mech-
anism for capture and survival of the 4:3 resonance.

The Kepler systems have an upper limit on their plan-
etary masses and no eccentricity constraints, except for
Kepler-36 and Kepler-46. For the systems without eccen-
tricity limits, we calculated Kmin for the maximum total
planetary mass. If the true mass of the system is less, then
lower values of K are stable. We chose the planet-planet
mass ratio to be one for calculating Kmin since most sys-
tems’ planet mass upper limits for the inner and outer plan-
ets are less than an order of magnitude different. The total
planetary masses for the Kepler systems vary from several
Jupiter masses down to a few Earth masses. We assumed
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|ȧ1/ȧ2| = 0. The minimum K of the Kepler systems are
plotted the figure 7 with circles and the same instability
boundary as used previously.

The Kepler systems are modeled using transit timing
variations (TTVs). An analytic formulae developed by Lith-
wick et al. (2012) that uses TTV amplitudes constrains the
masses of resonant planets more than the stability condi-
tion by an order of magnitude but the formlulae only apply
when the free eccentricity (eccentricity from non-resonant
interactions) is zero and cannot be applied to systems with
non-negligible free eccentricity. Free eccnetricity creates de-
generacy in the model. The authors note that free eccentric-
ity decreases the planet’s mass so the calculated masses are
upper limits but argue the limits are close to the true masses
within a factor of a few for negligible free eccentricity. Four-
teen of the 25 Kepler systems in our sample have masses
calculated by this method, Kepler-23, 24, 25, 28, 48, 50, 52,
53, 57, and 58 and KOI-1236, 1563, 2038, 2672. For the sys-
tems to which this method does not apply, the maximum
mass is found by constraints of dynamical orbital stability
(e.g. Ford et al. 2012). Eccentricities can be calculated from
the phase of the TTVs with the analytic model but the phase
depends on the unknown orientation of the system, allowing
for only statistical analysis of a sample (Hadden & Lithwick
2013).

There are six systems whose resonance overlap stability
is estimated by the 2/7 law, Kepler-26, 27, 49, 54, 55 and
59. Three of these systems, Kepler-26, 27 and 55, are in the
predicted instability region. These systems have planet mass
upper limits constrained by dynamical stability and their
true masses may be an order of magnitudes smaller. The
other systems whose masses are constrained by dynamical
stability have upper limits small enough to be in the linear
stability boundary regime along with the system with ana-
lytically estimated masses but these upper limits may also
be much larger than the systems’ true masses. Low mass
planets in the 2:1 and 3:2 resonances are stable at any value
of K. These planets are unlikely be on the unstable side of
the boundary once their eccentricities have been measured
and most likely will agree with the smooth migration model.
The planet pair in the 6:5 requires K > 3 to be stable and
the 9:7 requires K > 1.7. Measurements of the eccentricities
of Kepler-29 (9:7) and 50 (6:5) could require an unstable
K if they are large. If the eccentricities of the planets put
the system in the unstable region or require large K like
Kepler-36, then the observations would suggest a different
mechanism for migration.

4 CONCLUSION

After capture into resonance, the eccentricities of two plan-
ets will increase if the two planets continue to migrate. They
may become unstable before they achieve an equilibrium
state. In this paper, we have combined an estimate for equi-
librium planet eccentricities for two planets migrating in res-
onance that depends on the parameter K = τa/τe with esti-
mates of stability boundaries from resonance overlap criteria
that depend on eccentricity. For each resonance (defined by
integers j : (j + k)) and sum of planet masses, µp, there
is a critical value of Kmin(µp, j) below which the equilib-
rium eccentricity is unstable. The function at µp << µcrit

10-2 10-1 100

10-1

100

101

K
/K
′

10-2 10-1 100

Scaled Total Planet Mass Ratio µp /µmax

10-1

100

101

K
/K
′

Figure 7. The black dashed line plot Kc for ȧ1,mig = 0 and ν =

1. The top plot has the planets in first order resonances and the
bottom plot has the second order resonant planet pairs. Squares

marked the radial velocity planets along with Kepler-36 and 46.

These planet have well constrained eccentricities which are used
to calculate K and test the stability boundary. The circles mark

the rest of the Kepler systems in our sample which do not have

well constrained eccentricities. The markers’ colors indicate which
resonance the planet pair reside in: red for 2:1, orange for 3:2 and

5:3, yellow for 4:3 and 7:5, green for 5:4 and 9:7, blue for 6:5,
and purple for 7:6. The Kepler systems’ masses are the maximum

masses given in table 3 and the systems are plotted at Kc stable
for their maximum mass. The radial velocity system in the 4:3
resonance, HD 200964, is in the instability region as µp/µcrit > 1.

Three Kepler systems also have masses larger than µcrit. Kepler-

46 has a K higher than the range of the bottom plot.

can be approximated by power law functions using the low
eccentricity form of the equilibrium eccentricities estimate.
For first order resonances, the relation between Kmin and
µp is linear and for second order resonances, the relation is
quadratic. As µp → µcrit, Kmin departs rapidly from the
power law. The stability boundary increases rapidly in good
agreement with the 2/7 law when e = 0 and all values of K
are unstable.

We find that how strongly our function Kmin depends
on the difference between the migration rate of each planet
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10 Bodman & Quillen

changes with the direction the inner planet is migrating.
The stability boundary is at its highest value when the in-
ner planet is not migrating. If the inner planet is not mi-
grating, then it also does not have eccentricity damping.
This can occur if the proto-planetary disk surrounding the
inner planet has dissipated such that the inner planet no
longer strongly interacts with it. If the inner planet is mi-
grating inwards, the dependence of Kmin on the inner to
outer planet migration rate is strong. If the inner planet mi-
grates at one quarter of the rate of the outer planet, the
stability boundary decreases nearly in half and at one half
of the rate, the boundary decreases to almost a quarter of
the no inner migration boundary. When the inner planet is
migrating outwards, Kmin decreases but the dependency of
Kmin on the migration rate ratio is much weaker. A migrat-
ing rate ratio of 100 decreases the stability boundary to 70%
of its maximum.

We also find that our function Kmin depends strongly
on the ratio of the planet masses. The function Kmin is
highest for ν = 1. Increasing or decreasing the planet-planet
mass ratio decreases the stability boundary by nearly the
same amount if both planets are migrating. A mass ratio
of 10 or 0.1 decreases the boundary by a factor of three.
If the inner planet is not migrating, decreasing the mass
ratio increases Kmin to a maximum about two times higher.
Increasing the mass ratio by an order of magnitude decreases
Kmin by a almost a factor of five.

From the literature, we have compiled a list of resonant
planet pairs. From the pairs with measured eccentricities,
we estimate K assuming that the system is currently near
the eccentricity it was left after migration. We scale the sys-
tems’ K and µp and compare them to a function Kc which is
single scaled stability boundary for any resonance. We find
that all lie well in the stability region excepting the one in
the 4:3 resonance. The system in the 4:3 resonance is HD
200964 and previous work suggests smooth migration does
not adequately explain how the planet pair was placed in
their current configuration (Rein et al. 2012). We applied
the function Kc to a sample of Kepler systems without
constrained eccentricities. The Kepler systems either have
masses close to µcrit such that the instablilty boundary is
well approximated by the 2/7 law or small enough that only
small constraints on K can be made.

The role of secular term have been neglected and the
libration of the eccentricities ignored. This is a good approx-
imation for small librations such that the eccentricity does
not vary much from the equilibrium value. However for large
librations, the planet is likely to become unstable at lower a
equilibrium eccentricity so our stability boundary estimate
is likely to be conservative. Large librations of a planet’s ec-
centricity can put the planet into the resonance overlap in-
stability region during part of the libration when otherwise
the total planet mass is not large enough for the equilibrium
value to be unstable. This effect would increase Kmin. Gol-
dreich & Schlichting (2013) found a criterion for overstable
librations for first order resonances which relates the equilib-
rium eccentricity to planet mass, eeq . µ1/3. If libration is
overstable then the planet pair falls out of resonance as mi-
gration continues. The overstable libration stability criterion
is a stricter condition than our resonance overlap criterion.

Secular effects are also important after the planet pair
has stop migrating. Our estimates for equilibrium eccen-

tricities apply to the system as the migration stage ends
so observed eccentricities may evolved significantly from
that stage. Using evolved eccentiricities produces K values
that do not necessarily reflect the properties of the proto-
planetary disk.

We have estimated equilibrium eccentricities and the
widths of the resonances using low order expansions and
have neglected the role of third order resonances. For low val-
ues of K, the associated equilibrium eccentricities are large
for low eccentricity expansions. We have not checked stabil-
ity boundaries numerically. Likely our lower limit function
for K is conservative and instability will arise at higher K
values.
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