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ABSTRACT

When magnetic energy density is much larger than that of matter, as in pulsar/black hole magne-
tospheres, the medium becomes force-free and we need relativity to describe it. As in non-relativistic
magnetohydrodynamics (MHD), Alfvénic MHD turbulence in the relativistic limit can be described by
interactions of counter-traveling wave packets. In this paper we numerically study strong imbalanced
MHD turbulence in such environments. Here, imbalanced turbulence means the waves traveling in one
direction (dominant waves) have higher amplitudes than the opposite-traveling waves (sub-dominant
waves). We find that (1) spectrum of the dominant waves is steeper than that of sub-dominant waves,
(2) the anisotropy of the dominant waves is weaker than that of sub-dominant waves, and (3) the
dependence of the ratio of magnetic energy densities of dominant and sub-dominant waves on the ratio
of energy injection rates is steeper than quadratic (i.e., b2+/b

2
− ∝ (ǫ+/ǫ−)

n with n > 2). These results
are consistent with those obtained for imbalanced non-relativistic Alfvénic turbulence. This corre-
sponds well to the earlier reported similarity of the relativistic and non-relativistic balanced magnetic
turbulence.
Subject headings: MHD - relativity - turbulence

1. INTRODUCTION

Alfvén waves play important roles in strongly magne-
tized media. They propagate along magnetic field lines
with the Alfvén speed VA ≡ B0/

√
4πρ, where B0 is the

strength of the mean magnetic field and ρ is density.
Alfvén waves moving in opposite directions can inter-
act and result in Alfvénic magnetohydrodynamic (MHD)
turbulence.
Alfvénic MHD turbulence in the non-relativistic limit

has been studied for many decades and the best
available MHD turbulence model is, in spite of all
existing controversies (see Maron & Goldreich 2001;
Müller et al. 2003; Boldyrev 2005; Beresnyak & Lazarian
2006; Matthaeus et al. 2008; Cho 2010; Beresnyak 2011),
the one by Goldreich & Srdihar (1995; henceforth GS95)
which was first numerically tested by Cho & Vishniac
(2000). The GS95 model predicts a Kolmogorov spec-
trum (E(k) ∼ k−5/3) and scale-dependent anisotropy

(k‖ ∝ k
2/3
⊥ ), where k‖ and k⊥ are wave-numbers along

and perpendicular to the local mean magnetic field di-

rections, respectively, and k =
√

k2⊥ + k2‖.

When B0 goes to infinity and/or ρ goes to zero,
Alfvén speed approaches the speed of light and a new
regime of turbulence emerges. More precisely, when the
magnetic energy density is so large that the inertia of
the charge carriers can be neglected, the medium can
be described by relativistic force-free MHD equations
(Goldreich & Julian 1969; Blandford & Znajek 1977;
Thompson & Blaes 1998). Cho (2005) numerically stud-
ied three-dimensional MHD turbulence in this extreme
relativistic limit and found the following results. First,
the energy spectrum is consistent with a Kolmogorov
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spectrum: E(k) ∼ k−5/3. Second, turbulence shows the

Goldreich-Sridhar type anisotropy: k‖ ∝ k
2/3
⊥ . These

scaling relations are in agreement with earlier theoreti-
cal predictions by Thompson & Blaes (1998).
The similarity between non-relativistic Alfvénic MHD

turbulence and relativistic force-free MHD turbulence
leads us to the question: to what extent are relativis-
tic and non-relativistic Alfvénic turbulence similar? In
this paper, we try to answer this question. Strong imbal-
anced Alfvénic turbulence is an ideal problem for that
purpose because interactions between eddies are very
complicated in strong imbalanced Alfvénic turbulence.
In imbalanced Alfvénic turbulence, the waves traveling
in one direction (dominant waves) have higher ampli-
tudes than the opposite-traveling waves (sub-dominant
waves). By ‘strong’ imbalanced turbulence, we mean the
dominant waves satisfy the condition of critical balance,
bk⊥/(B0k‖) ∼ 1, at the energy injection scale, where b is
the strength of the fluctuating magnetic field.
Many studies exist for strong imbalanced Alfvénic

turbulence in the non-relativistic limit (Lithwick et al.
2007; Beresnyak & Lazarian 2008; Chandran 2008;
Beresnyak & Lazarian 2009; Perez & Boldyrev 2009;
Podesta & Bhattacharjee 2010; Perez et al. 2012;
Mason et al. 2012), but no study is available yet for
its relativistic counterpart. In this paper, we compare
our relativistic simulations with non-relativistic ones.
Our study can have many astrophysical implications.
So far, we do not fully understand turbulence processes
in extremely relativistic environments, such as black
hole/pulsar magnetospheres, or gamma-ray bursts.
If we can verify close similarities between extremely
relativistic and Newtonian Alfvénic turbulence, we can
better understand physical processes, e.g. reconnection,
particle acceleration, etc., in such media.
We describe the numerical methods in Section 2 and

we present our results in Section 3. We give discussions
and summary in Section 4.
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2. NUMERICAL METHODS

2.1. Numerical Setups

We solve the following system of equations in a periodic
box of size 2π:

∂Q

∂t
+

∂F

∂x1
= 0, (1)

where

Q = (S1, S2, S3, B2, B3), (2)

F = (T11, T12, T13,−E3, E2), (3)

Tij = −(EiEj +BiBj) +
δij
2
(E2 +B2), (4)

S = E×B, (5)

E = − 1

B2
S×B. (6)

Here E is the electric field, S the Poynting flux vector,
and we use units such that the speed of light and π do
not appear in the equations (see Komissarov 2002 for
details).
One can derive this system of equations from

∂µ
∗Fµν = 0 (Maxwell’s equation), (7)

∂µF
µν = −Jν (Maxwell’s equation), (8)

∂µT
νµ
(f) = 0 (energy-momentum equation), (9)

Fνµu
µ = 0 (perfect conductivity), (10)

where ∗Fµν is the dual tensor of the electromagnetic
field, uµ the fluid four velocity, and T µν

(f) the stress-energy

tensor of the electromagnetic field

T µν
(f) = Fµ

αF
αν − 1

4
(FαβF

αβ)gµν , (11)

where gµν is the metric tensor and Fαβ is the electro-
magnetic field tensor. We ignore the stress-energy tensor
of matter. We use flat geometry and Greek indices run
from 1 to 4. One can obtain the force-free condition from
Maxwell’s equations and the energy-momentum equation
∂µT

νµ
(f) = −FνµJ

µ = 0. From Equation (10), one can de-

rive

E ·B = 0, (12)

B2 − E2 > 0. (13)

In our simulations, the MHD condition E · B = 0 is
enforced all the time.
We solve Equations (1)-(6) using a Monotone

Upstream-centered Schemes for Conservation Laws
(MUSCL) type scheme with HLL fluxes (Harten, Lax,
van Leer 1983; in fact, in force-free MHD these fluxes re-
duce to Lax-Friedrichs fluxes) and monotonized central
limiter (see Kurganov et al. 2001). The overall scheme
is second-order accurate. After updating the system of
equations along the x1 direction, we repeat similar pro-
cedures for the x2 and x3 directions with appropriate
rotation of indexes. Gammie, McKinney, & Tóth (2003)
used a similar scheme for general relativistic MHD and
Del Zanna, Bucciantini, & Londrillo (2003) used a simi-
lar scheme to construct a higher-order scheme for special
relativistic MHD.
While the magnetic field consists of the uniform back-

ground field and a fluctuating field, B = B0 + b, the

Table 1
Simulations

Run Resolution f
−
/f+a

256-BAL 2563 1
256-R0.75 2563 0.75
256-R0.5 2563 0.5
256-R0.33 2563 0.33
512-R0.33 5123 0.33

a Ratio of amplitudes of forcing. Subscripts ‘+’ and ‘-’ denote
dominant and sub-dominant modes, respectively.

electric field has only a fluctuating one. The strength of
the uniform background field, B0, is set to 1. At t = 0,
no fluctuating fields are present. We isotropically drive
turbulence3 in the wave-number range 4 ≤ k ≤ 6. We
adjust the amplitude of forcing to maintain b2+ ∼ 1 af-
ter saturation, where the subscript ‘+’ denotes dominant
waves. Therefore, we have

χ+ ≡ b+k⊥
B0k‖

∼ 1 (14)

after saturation. Since the energy injection rates for the
sub-dominant waves (ǫ− ≡ f− · b−) are equal to or less
than those of dominant waves (ǫ+ ≡ f+ · b+), where
f ’s are forcing vectors, we have b− . b+ and χ− . 1.
Simulation parameters are listed in Table 1.

2.2. Test of the Code

To check the stability of our code, we perform a sim-
ulation of relativistic Alfvén waves moving in the same
direction. Since Alfvén waves moving in one direction do
not interact each other, their energy spectrum should not
change in time. Indeed Figure 1(a) confirms this: The
initial energy spectrum (the thick solid line) does not
show much change even after t∼63, which corresponds
to ∼10 wave crossing times over the box size.

3. RESULTS

3.1. Energy Densities

Figure 1(b) shows time evolution of the energy densi-
ties of the dominant waves. We have b2+ = b2− = 0 at
t = 0 and we drive the medium for t > 0. The energy
densities of the dominant waves initially rise quickly and
reach saturation states. The values of b2+ during satu-
ration in those runs are between 0.5 and 1.0. Since we
drive turbulence isotropically, critical balance is roughly
satisfied. In general, the larger the imbalance, the slower
the approach to the saturation state. The largest imbal-
anced run (Run 256-R0.33) shows very slow approach to
the saturation state.
Figure 1(c) shows time evolution of energy densities of

the sub-dominant waves. From top to bottom, the degree
of imbalance increases. The top curve corresponds to
the balanced turbulence (Run 256-BAL) and the bottom
curve to the largest imbalance (Run 256-R0.33). Note
that, in Run 256-R0.33, b2− goes up very quickly for 0 <

3 We drive Alfvén waves only. Nevertheless, our simulations
naturally produce small amount of fast modes (see Cho 2005).
We ignore fast modes in this paper because their energy den-
sity is small and they are passively cascaded by Alfvén modes
(Thompson & Blaes 1998).
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Figure 1. Energy densities and spectra. (a) Spectrum of waves moving in the same direction as a function of time. The spectrum does
not change for a long time. (b) Time evolution of dominant modes. The lowest curve corresponds to the balanced turbulence (256-BAL).
Note that b2+ ∼ B2

0
= 1 for dominant waves. (c) Time evolution of sub-dominant modes. From top to bottom, the degree of imbalance

increases. (d) Time evolution of the value b2+/b2
−

. (e) Time evolution of the value ǫ+/ǫ
−
; see the text for details. (f) The relation between

< ǫ+/ǫ
−

> and < b2+/b2
−

>. Runs 256-BAL, 256-R0.75, 256-R0.5, and 256-R0.33 are used. We use the same line convention for panels

(b)-(e).

t < 5 and then gradually goes down, which may be due
to the increase of b+.
Figures 1(d) and (e) show time evolution of the ra-

tio b2+/b
2
− and ǫ+/ǫ−, respectively. Figure 1(d) clearly

shows that the value of b2+/b
2
− increases substantially as

the degree of imbalance increases. For ǫ+/ǫ−, we actu-

ally plot
∫ t

t0
ǫ+(t)dt/

∫ t

t0
ǫ−(t)dt, where t0 = 20. Since

different theories on imbalanced non-relativistic Alfvénic
turbulence predict different relations between b2+/b

2
− and

ǫ+/ǫ−, it will be useful to plot the relation for our
simulations. Figure 1(f) shows the relation between
the two ratios. Roughly speaking, the ratio b2+/b

2
− ex-

hibits a power-law dependence on the ratio < ǫ+/ǫ− >:
b2+/b

2
− ∝ (ǫ+/ǫ−)

n with n > 2.
In Figure 1, all simulations are performed on a grid of

2563 points. The top panel of Figure 2, which compares
results of Runs 512-R0.33 and 512-R0.33, implies that
numerical resolution of 2563 would be enough for our
current study. Note that two runs have identical numer-
ical set-ups except the numerical resolution (2563 versus
5123). The values of b2+ (upper curves) almost coincide,
but the value of b2− for 5123 is slightly higher than that
for 2563 (see lower curves).

3.2. Spectra

The bottom panel of Figure 2 shows energy spectra for
Run 512-R0.33. Although we have only about 1 decade
of inertial range, we can clearly observe that the spec-
tral slopes for dominant and sub-dominant waves are
different. The spectrum of the dominant waves (upper
curve) is slightly steeper than k−5/3, while that of the
sub-dominant ones (lower curve) is a bit shallower than
k−5/3.

3.3. Anisotropy

In the presence of a strong mean magnetic field, struc-
ture of turbulence tends to elongate along the direction
of the mean field. Therefore elongation of structures, or
anisotropy, is an important aspect of MHD turbulence.
Both relativistic force-free and non-relativistic balanced
Alfvénic turbulence are anisotropic.
Imbalanced non-relativistic Alfvénic turbulence is also

anisotropic (e.g., Beresnyak & Lazarian 2008). Since in-
teractions between eddies are very complicated in imbal-
anced Alfvénic turbulence, it will be interesting to study
anisotropy of imbalanced relativistic force-free MHD tur-
bulence.
Figure 3 shows the shapes of eddies. In the figure,

we plot a contour diagram of the second-order structure
function for the magnetic field in a local frame, which is
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Figure 2. Results for 512-R0.33. Top panel: comparison between
256-R0.33 and 512-R0.33. We plot time evolution of energy densi-
ties of dominant (upper curves) and sub-dominant (lower curves)
waves. Bottom panel: energy spectra. The spectrum of the sub-
dominant waves (dashed line) is shallower.

aligned with the local mean magnetic field BL:

SF2(r‖, r⊥) =< |B(x + r)−B(x)|2 >avg. over x, (15)

where r = r‖r̂‖ + r⊥r̂⊥ and r̂‖ and r̂⊥ are unit vec-
tors parallel and perpendicular to the local mean field
BL, respectively; see Cho & Vishniac (2000) and Cho et
al. (2002) for the detailed discussion of the local frame.
The left and middle panels of Figure 3 show shapes of

dominant and sub-dominant eddies, respectively. We can
clearly see that the dominant eddies (left panel) are less
anisotropic than the sub-dominant ones (middle panel).
If we plot the relation between perpendicular sizes of
eddies (or, y intercepts of the contours; ∼ 1/k⊥) and the
parallel ones (or, x intercepts; ∼ 1/k‖), than we can see
that the dominant eddies show anisotropy weaker than

k‖ ∝ k
2/3
⊥ and the sub-dominant ones show anisotropy

stronger than k‖ ∝ k
2/3
⊥ .

3.4. Comparison with Non-Relativistic Theory and
Simulations

Our simulations are consistent with the theory and
simulations of the imbalanced non-relativistic MHD tur-
bulence (Beresnyak & Lazarian 2008, 2009). Indeed, the
latter results are consistent with our finding of the rela-
tion between the ratio of the energy densities of the sub-
dominant and dominant waves, their spectral slopes and
their anisotropy. This is suggestive of a close relation be-
tween the non-relativistic and relativistic turbulence and
implies that the existing theories of non-relativistic tur-
bulence, e.g. theories for magnetic reconnection, particle
acceleration, etc., can be generalized for the relativistic
limit. This has not yet been done and, naturally, more
theoretical/numerical research, especially with high nu-
merical resolutions, for the relativistic case is necessary.

4. DISCUSSION AND SUMMARY

Imbalanced turbulence is a generic incarnation of tur-
bulence in the presence of sources and sinks of turbulent
energy. We know from the studies of non-relativistic im-
balanced turbulence that its slower decay compared to
the balanced one allows the energy transfer over larger
distances and its transfer to the balanced one due to
parametric instabilities or the reflection of waves from
density inhomogeneities can result in local deposition of
energy and momentum which provide many astrophysi-
cally important consequences. The properties of imbal-
anced relativistic turbulence are important for many as-
trophysical settings including the magnetosphere of pul-
sars, environments of gamma ray bursts and relativistic
jets.
In this paper, we have studied imbalanced relativis-

tic force-free MHD turbulence and found the following
results.

1. The magnetic spectrum of dominant waves is
steeper than that of sub-dominant waves.

2. The dominant waves show anisotropy weaker than
and the sub-dominant waves show anisotropy

stronger than k‖ ∝ k
2/3
⊥ .

3. The energy density ratio b2+/b
2
− is roughly propor-

tional to (ǫ+/ǫ−)
n, where ǫ’s are energy injection

rates and n > 2.

All these results are consistent with the theory and simu-
lations in Beresnyak & Lazarian (2008; 2009). Therefore
we can conclude that relativistic force-free MHD turbu-
lence is indeed very similar to its non-relativistic coun-
terpart.
Our results imply that many results in non-relativistic

Alfvénic turbulence can be carried over to relativistic
force-free MHD turbulence. For example, theories on
magnetic reconnection (e.g., Lazarian & Vishniac 1999),
particle acceleration (e.g., Yan & Lazarian 2002) and
thermal diffusion (e.g., Cho et al. 2003) obtained in non-
relativistic Alfvénic turbulence can also be applicable to
relativistic force-free MHD turbulence.
The close similarity between the properties of non-

relativistic and relativistic imbalanced turbulence found
in this paper elucidates the nature of magnetic turbu-
lence that preserves its properties in both regimes irre-
spectively of whether turbulence is balanced or imbal-
anced. From the practical point of numerical studies,
this allows us to test or double-check theories on non-
relativistic Alfvénic turbulence using a completely differ-
ent numerical scheme.
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gram through the National Research Foundation of Ko-
rea (NRF), funded by the Ministry of Education (No.
2011-0012081). A.L. is supported by NSF grant AST
1212096, the Center for Magnetic Self-Organization and
the Vilas Associate Award. We thank the International
Institute of Physics (Natal) for their hospitality.
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Figure 3. Anisotropy. Left panel: eddy shapes of dominant modes. Contours represent eddy shapes. Middle panel: eddy shapes of
sub-dominant modes. Right panel: relation between semi-minor axes and semi-major axes of eddies (or, “x intercepts” and “y intercepts”
of contours) (from 512-R0.33).
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