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91405 Orsay Cedex, France,
2Laboratoire Astroparticule et Cosmologie (APC), UMR 7164-CNRS, Université Denis
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Abstract. We examine the covariant properties of generalized models of two-field inflation,
with non-canonical kinetic terms and a possibly non-trivial field metric. We demonstrate
that kinetic-term derivatives and covariant field derivatives do commute in a proper covariant
framework, which was not realized before in the literature. We also define a set of generalized
slow-roll parameters, using a unified notation. Within this framework, we study the most
general class of models that allows for well-defined adiabatic and entropic sound speeds, which
we identify as the models with parallel momentum and field velocity vectors. For these models
we write the exact cubic action in terms of the adiabatic and isocurvature perturbations. We
thus provide the tool to calculate the exact non-Gaussianity beyond slow-roll and at any
scale for these generalized models. We illustrate our general results by considering their
long-wavelength limit, as well as with the example of two-field DBI inflation.
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1 Introduction

Inflation is widely believed to be the most likely explanation for the origin of temperature
fluctuations of the Cosmic Microwave Background (CMB) [1–4] (see e.g. [5, 6] for reviews).
The prediction that the primordial density perturbations generated during inflation are nearly
scale-invariant and almost Gaussian is strongly supported by recent Planck observations [7, 8].
However, due to the limited information available in the power spectrum of the primordial
density perturbations, it is still difficult to determine the most consistent inflation model
among a very large number of models.

Therefore, in order to distinguish otherwise degenerate models, additional observables
are necessary. In particular, the non-Gaussianity of the primordial density perturbations
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has become an increasingly popular observable [9]. It has been shown to be suppressed by a
slow-roll parameter in the simplest single-field inflation models [10]. Hence any observation of
primordial non-Gaussianity would be an indication of a more complicated model. Although
it was reported recently by Planck [11] that no primordial non-Gaussianity of the standard
local, equilateral, and orthogonal shapes has been detected, the higher precision of the Planck
constraints means that it is now more important than ever that each inflation model should
pass this test. Hence the development of methods to compute non-Gaussianity and a bet-
ter understanding of the correspondence between theoretical inflation models and the type
and magnitude of the non-Gaussianity of the CMB remain very important (see [12, 13] for
reviews).

There are a number of distinct mechanisms to produce non-Gaussianity during inflation.
One of these occurs in multiple-field inflation where not only adiabatic perturbations but also
entropy perturbations are produced. It is well known that since the entropy perturbations
can be converted into adiabatic ones during1 multiple-field inflation, the gauge-invariant
curvature perturbation ζ originally defined in [18] can evolve on super-horizon scales [19–
21]. This conversion is associated with a turn of the inflaton trajectory and can produce
non-Gaussianity of the so-called local type.

On the other hand, if the inflaton possesses non-canonical kinetic terms like k-inflation
[22, 23] or DBI inflation [24, 25], another type of non-Gaussianity is produced during horizon
crossing by the derivative interactions of the field, even in single-field models [26]. This non-
Gaussianity is of the so-called equilateral type [27].2 Studying multiple-field models with
non-canonical terms is therefore very interesting: one can in principle produce both local
and equilateral non-Gaussianity [29].

The first study of the third-order action in multiple-field inflation was done in [30] for
models with canonical kinetic terms. However, since the action of [30] is written in terms
of the scalar fields, the authors had to use the δN formalism [31–36] to compute the non-
Gaussianity of the adiabatic perturbation ζ that is directly related to the non-Gaussianity of
the CMB. The standard δN formalism requires that the slow-roll approximation is imposed
at horizon crossing in order to be able to neglect spatial gradients outside the horizon [37]
(for generalizations of the δN formalism see [38, 39]). In [40], two of us succeeded in con-
structing the exact third-order action directly for the gauge-invariant second-order adiabatic
and isocurvature perturbations (instead of the fields), which is valid beyond any slow-roll
or super-horizon approximations. This included deriving a proper definition of the second-
order gauge-invariant isocurvature perturbation and resolving several issues regarding gauge
invariance at second order. (For discussions on the gauge-invariant curvature perturbation at
second order, see also [41–48].) The analysis of [40] is based on the the covariant3 approach
[50–54] developed by Rigopoulos, Shellard and Van Tent, hereafter referred to as RSvT. (For
related works on non-Gaussianity in multiple-field inflation models with canonical kinetic
terms, see [55–80].)

In this paper we extend the work of [40] to the case of two-field models with general
kinetic terms and a possibly non-trivial field metric. This is motivated from the point of view

1The non-linearities can also develop through the conversion of the entropy perturbations into adiabatic
perturbations after inflation as in the curvaton mechanism [14, 15] and modulated reheating [16, 17].

2Sometimes so-called orthogonal-type [28] non-Gaussianity is produced instead or in addition.
3Strictly speaking, it is the formalism proposed by [47] that is called the “covariant formalism”. But since

the formalism developed by RSvT is based on the covariant approach [49] and it is in principle equivalent
to the covariant formalism after choosing a coordinate system and expanding to the given order in spatial
gradients, we simply refer to the formalism developed by RSvT as “covariant approach” here.
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of inflation models based on high-energy theories like supergravity or string theory, where
the inflaton fields are identified as Kähler fields or represent the position of a brane in an
internal space. In such models a non-trivial field-space metric GAB , with A and B being
generic field-space indices, is naturally introduced (see for example [6] for a review). It is
known [81, 82] that the non-Gaussianity of a multiple-field extension of DBI inflation where
a probe D-brane moves in a multi-dimensional throat can be studied using a metric GAB in
combination with general kinetic terms of the form that we will define in the next section
(for related works, see [29, 83–96]).4 These models are more general than the ones considered
in for example [102–106] that depend on X only (defined in the next section). But again,
since the analysis of [81, 82] is based on the third-order action in terms of the fields like that
of [30], to compute the non-Gaussianity of ζ the δN formalism is necessary, with its implied
slow-roll approximation. Here we go beyond that restriction.

In this paper we will derive the full exact third-order action for what we call the diagonal
class of models. This is a very general class of models with generalized kinetic terms as
mentioned above and defined in the next section, with the sole restriction being that the
kinetic term is only coupled to tensors that are diagonal in the adiabatic-entropic field-space
basis. This action is valid beyond any slow-roll or long-wavelength approximations. Our
expressions are all written in a manifestly covariant way. We also address the issue of the
commutation of covariant field derivatives and derivatives with respect to the kinetic term,
showing that in a proper covariant framework they do actually commute, which was not
realized before in the literature. We define a new hierarchy of slow-roll-like parameters, that
describe all types of derivatives of the Langrangian in a unified way. While most of these
parameters will be small in the slow-roll approximation, no such approximation is made in
this paper, all expressions are exact.

The paper is organized as follows. In Sec. 2 we introduce the basic elements of our
formalism and discuss the issue of covariance. In Sec. 3 we introduce the diagonal class of
models that describes the most general type of Lagrangians (within our starting assumptions)
that allows for well-defined adiabatic and entropic sound speeds, and we introduce the new
hierarchy of parameters. For this diagonal class of models we provide the second-order
and third-order action for the adiabatic and isocurvature perturbations in Sec. 4 and 5,
respectively. Next, in Sec. 6, we apply our general results to the long-wavelength limit and
to two-field DBI inflation. Finally, we conclude in Sec. 7, followed by two appendices with
additional details about some of the longer calculations in the paper.

2 Formalism

In this section we introduce the basic elements of our formalism, which consist of the quan-
tities we use to describe the generalized inflationary background as well as the cosmological
perturbations on it. We will extend the results of [40] to accommodate the new properties of
generalized models of inflation.

4It is worth noting that there is another type of multiple-field extension of DBI inflation where multiple
branes move in different throats [97–101]. In this type of model, there is no natural field-space metric, and
depending on their specific Lagrangians and field trajectories they might not be of the type studied in this
paper, as explained later on.
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2.1 Background

We start here by defining our generalized background and exploring its properties. In such a
background one encounters two types of derivatives: derivatives with respect to the kinetic
terms and covariant derivatives with respect to the fields. Hence it is crucial to examine
and understand their commutation. Furthermore, we study two different field bases that are
relevant to our models and are induced by the dynamics of the system. Finally, we start
building a hierarchy of slow-roll parameters, a procedure that will be completed in section 3.

2.1.1 Background dynamics

We will consider an inflationary universe dominated by two scalar fields, which in the back-
ground are homogeneous and will be denoted there by φA, with A = 1, 2. A generalization to
any number of fields is straightforward although calculations can be a lot more cumbersome.
The matter Lagrangian P [XAB , GAB(φ), φ

C ] is a general function of the kinetic term of the
fields XAB , the field metric GAB , which is taken to be an arbitrary function of the fields
only, and the fields themselves. The action that describes the physical system of space-time
and matter is

S =
1

2

∫
d4x

√−g
[
κ−2R+ 2P

]
, (2.1)

where κ2 ≡ 8πG and XAB in the background reduces to

XAB =
1

2

φ̇A

N

φ̇B

N
. (2.2)

It should be noted that, while quite general, P does not describe all possible types of kinetic
terms: we do not consider higher derivative terms (e.g. terms of the type φ�φ are not covered
by this definition). For the canonical case P = X −W , where

X = GABX
AB =

1

2

φ̇2

N2
(2.3)

andW is the field potential. We denote the length of φ̇A by φ̇, defining the length of a vector
as its norm:

A ≡ |AB | ≡
√
ABAB . (2.4)

Field indices are lowered and raised using the field metric GAB in the usual way:

AB = GBCA
C . (2.5)

Furthermore, in (2.1) R is the Ricci scalar and g is the determinant of the Friedmann-
Robertson-Walker metric,

gµν = −N2dt2 + hijdx
idxj, (2.6)

where hij is the metric of the spatial hypersurfaces that is assumed to be a2 times the identity
matrix, i.e. a flat universe. The rate of change of the scale factor a is the Hubble parameter,

H =
1

N

ȧ

a
, (2.7)

a measure of the expansion rate of the universe. Here we have not made a choice of time
coordinate. N = 1 corresponds to the usual cosmic time, N = a to the conformal time, while
N = 1/H corresponds to a time variable that coincides with the number of e-foldings.
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The canonical conjugate momentum ΠA of the fields will turn out to be an important
quantity for our formalism. It is at the basis of the definition of the slow-roll parameters and
the basis vectors in field-space, as explained later on. It is given by

ΠA ≡ N
∂P

∂φ̇A
= P〈AB〉

φ̇B

N
, (2.8)

where we have introduced the short-hand notation

P〈AB〉 ≡
∂P

∂XAB
. (2.9)

The angular brackets are used to distinguish XAB derivatives from field derivatives, as well
as to denote the symmetric properties of the derivative, following the notation of [81]. Notice
that the field momentum is not necessarily parallel to the velocity of the fields, defined as

Π̃A ≡ φ̇A

N
. (2.10)

Within this framework, the background field equation is given by

DtΠ
A + 3NHΠA −NP ,A = 0. (2.11)

Here we first encounter the covariant time derivative, which we define in (2.21) in the next
subsection. This derivative reduces simply to Π̇A in the canonical case, and hence the field
equation acquires its canonical form, found for example in [54]. Note that it is due to the
use of the conjugate momentum and the covariant derivative that the form of this equation
remains simple and reminiscent of the canonical case equation. We will further investigate the
properties of covariant derivatives in the next subsection 2.1.2, as well as their commutation
with kinetic-term derivatives. Finally, the Einstein equations are

H2 =
κ2

3

(
ΠAΠ̃

A − P
)
≡ κ2

3
ρ and Ḣ = −κ

2

2
NΠAΠ̃

A. (2.12)

2.1.2 Covariant derivatives

As mentioned above, in this paper we treat the case of two-field inflation, where the two
fields φA are considered the coordinates of a field manifold with a possibly non-trivial field
metric GAB(φ). We define the covariant field derivative (denoted by a semicolon, as opposed
to the normal derivative, which is denoted by a comma) on this manifold in the usual way
(ΓA

BC is the Christoffel symbol defined from the field metric GAB in the usual way):

AAB...
CD...;E = AAB...

CD...,E +ΓA
EFA

FB...
CD... +ΓB

EFA
AF ...
CD... + . . .− ΓF

CEA
AB...
FD... − ΓF

DEA
AB...
CF ... − . . . . (2.13)

Its purpose is to ensure that, when computing the derivative, the quantity A is not just
transported in field space by δϕE , but transported in a parallel way (otherwise there is no
physical meaning of the derivative). Hence the covariant derivative is the natural derivative
on curved field spaces.

We express everything in a fully covariant way with respect to the field manifold. This
has several advantages. In the first place, the explicitly covariant equations are manifestly
invariant under changes of field coordinates. Secondly, the explicitly covariant equations are
in general shorter and easier to understand. Finally, the fact that the covariant derivative
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of the field metric is zero by construction means that the action of raising and lowering field
indices commutes with taking covariant derivatives. That simplifies several manipulations.
For example, the quantity AA(φ)A

A(φ) is a scalar and hence the normal derivative and
covariant derivative are equal: (AAA

A);C = (AAA
A),C . However, only with the covariant

derivative can this be simplified to 2AAA
A
;C , it is not equal to 2AAA

A
,C .

Working within the Lagrangian formulation of the theory in curved field space, the
covariant derivative of the generalised velocity of the fields is zero, Π̃A;B = 0, since the
generalised coordinates and velocities are independent. This means that

XAB;C = 0. (2.14)

As we will show, this is an important relation for making sense of covariant derivatives in the
presence of derivatives with respect to both φA and XAB . In the only previous work that
used a covariant framework to describe the third-order action in inflation with generalized
kinetic terms, [90], the authors implicitly assumed the non-covariant condition XAB,C = 0
even in a covariant framework on a curved field manifold, but that led to several issues with
in particular mixed covariant derivatives. In a covariant framework the relation (2.14) is the
natural way to express the independence of the generalised coordinates and velocities that
live in a curved field space.

The Lagrangian P we are considering is a function of the fields φA and the field veloci-
ties as encoded in XAB . (The field metric GAB is a function of the fields and does not need
to be considered separately for this argument.) Hence in our calculations we will typically
encounter derivatives with respect to φA, which should be covariant derivatives in our co-
variant formalism, and derivatives with respect to XAB , which are ordinary derivatives since
XAB is a tensor living in the tangent space. The question now is whether these two types
of derivatives can be exchanged in a mixed derivative, i.e. whether they commute. In [90],
assuming implicitly that XAB,C = 0, the authors came to the conclusion that they do not
commute. Here, however, we show that with the relation (2.14) they do commute.

To show this, we rewrite the Lagrangian P as a function of some number of contractions
zi of functions f

λ
i of φA and functions gi λ of XAB :

P (XAB , φC) = P (zi) ≡ P (fλi (φ)gi λ(X)). (2.15)

Here λ stands for any number of upper and lower indices A.5 Since P is a scalar, P,C = P;C ,
and with the relation (2.14) we find P;C =

∑
i(∂P/∂zi)f

λ
i ;Cgi λ and hence

P;C〈AB〉 =
∑

j

∑

i

∂2P

∂zi∂zj
f λ̃j gj λ̃ 〈AB〉f

λ
i ;Cgi λ +

∑

i

∂P

∂zi
fλi ;Cgi λ 〈AB〉. (2.17)

Similarly, P〈AB〉 =
∑

i(∂P/∂zi)f
λ
i gi λ 〈AB〉, so that P〈AB〉;C is also equal to the right-hand side

of (2.17). In the end this means that the covariant derivative with respect to φA and the
derivative with respect to XAB commute:

P;C〈AB〉 = P〈AB〉;C . (2.18)

5 As a random example, one could have the Lagrangian

P = AABX
BCXCDXDA exp[GEFX

EF /(AGHAGH +XGHXGH )], (2.16)

where AAB is some function of the φA only. In that case P would be the function P (z1, z2, z3, z4) =
z1 exp[z2/(z3 + z4)] of 4 contraction variables of the above type, with f1AB = AAB , gAB

1 = XBCXCDXDA,
f2AB = GAB , gAB

2 = XAB , f3 = AABA
AB, g3 = 1, f4 = 1, and g4 = XABXAB .
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Note that the fact that P is a scalar does not matter, one can easily see that the argument can
be generalized to non-scalar quantities, e.g. P〈AB〉;C〈DE〉 = P〈AB〉〈DE〉;C . For completeness’

sake we add here that derivatives with respect to XAB also commute with each other, since
they are normal derivatives,

P〈AB〉〈CD〉 ≡
1

2

(
∂P〈AB〉

∂XCD
+
∂P〈AB〉

∂XDC

)
= P〈CD〉〈AB〉 , (2.19)

and that as usual two covariant derivatives with respect to φA do not commute, but give
terms proportional to the Riemann tensor:

AA...
B...;CD −AA...

B...;DC = −RA
ECDA

E...
B... − . . . +RE

BCDA
A...
E... + . . . (2.20)

Finally, we define the covariant space-time derivative Dµ:

DµQ...
... = Q...

...;C∂µφ
C +Q...

...〈CD〉DµX
CD. (2.21)

This is a derivative with respect to the space-time coordinates xµ, but it is covariant with
respect to the field manifold. In fact, the quantity Q...

... is a scalar with respect to space-time
but can carry any number of field indices and derivatives with respect to φA and XAB . Note
that the relation XAB;C = 0 is used in this definition.

As an example we can consider the covariant time derivative of P〈AB〉, which according
to the definition above is given by

DtP〈AB〉 = P〈AB〉;C φ̇
C + P〈AB〉〈CD〉DtX

CD. (2.22)

One might worry that this expression is not compatible with the standard definition of the
covariant time derivative,

DtP〈AB〉 = Ṗ〈AB〉 − ΓD
ACP〈DB〉φ̇

C − ΓD
BCP〈AD〉φ̇

C

= P〈AB〉,C φ̇
C + P〈AB〉〈CD〉Ẋ

CD − ΓC
ADP〈CB〉φ̇

D − ΓC
BDP〈AC〉φ̇

D, (2.23)

since one does not seem to have enough Γ terms to make both P〈AB〉,C and ẊCD covariant,

and in particular one appears to end up with a covariant P〈AB〉;C but a non-covariant ẊCD.
However, this is just a consequence of not keeping proper track of the free indices in P〈AB〉.
Working with an explicit example, e.g. P〈AB〉 = f(φ)XAB , one sees that there is no need
to ‘use’ the Γ terms for f(φ), since it is a scalar with all indices internally contracted, but
that on the other hand the Γ terms are exactly what is needed to construct the covariant
DtXAB . Completely generally, P〈AB〉 has by construction only two free indices, and the two Γ
terms will be used to make the corresponding quantity covariant (be it an XAB or something
depending on φA), while all other quantities have their indices internally contracted and do
not need additional Γ terms to be written in a covariant way. Of course this argument holds
for quantities with any number of free indices, since there is always one Γ term per free index.

In order to work out (2.21) further, one needs to have an expression for DµX
AB . It

turns out that this is not trivial. Examining equation (2.11) one can see why it is not
straightforward to compute DtX

AB : (2.11) is given in terms of the momentum of the fields
and not their velocity. These two are related as

ΠA = P〈AB〉Π̃
B . (2.24)

In general, this relation cannot be solved explicitly for Π̃A.
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2.1.3 Orthonormal basis

Since we are studying two-field inflation, the field space is two-dimensional and we need to
define a basis. It will turn out to be very useful to define a basis induced by the momentum
vector ΠA, with the unit vectors

eA1 ≡ ΠA

Π
, eA2 ≡ DtΠ

A − eA1 e1BDtΠ
B

|DtΠA − eA1 e1BDtΠB | , (2.25)

the first one parallel to the field momentum and the second one parallel to the component
of the rate of change of the field momentum perpendicular to the momentum itself. As
will be explained in more detail in section 2.2.2, this choice is motivated by the two types
of scalar perturbations present in the system: the adiabatic perturbation, which is a linear
combination of the curvature and the energy density perturbation and corresponds to the
e1 direction, and the isocurvature or entropic perturbation, which is defined through the
non-adiabatic pressure perturbation and which on super-horizon scales becomes orthogonal
to the adiabatic one.

One could in principle just as well choose to work with a field basis defined through the
velocity of the fields Π̃A instead of the momentum:

ẽA1 =
Π̃A

Π̃
. (2.26)

In the case of canonical kinetic terms these two bases coincide, since then there is no distinc-
tion between the momentum and velocity vectors, but this is no longer the case in general
with generalized kinetic terms. The energy density ρ, along the perturbation of which we
define the adiabatic direction in the flat gauge, depends by definition both on the velocity
of the field Π̃A and on its momentum ΠA (see equation (2.12)), so the choice seems to be
ambiguous. However, the reason for and more discussion about our particular choice of basis
and the implications thereof follow in subsections 2.2.2 and 3.1.

The vectors of the orthonormal basis obey

GABe
A
me

B
n = δmn, (2.27)

which implies
GAB = e1Ae1B + e2Ae2B , (2.28)

where the indices m,n can take the values 1 or 2 and shall from now on denote adiabatic and
isocurvature component, respectively (sometimes also denoted as ‖ and ⊥, respectively).

2.1.4 Slow-roll parameters

We start constructing the background slow-roll parameters by considering the ǫ parameter,

ǫ = − Ḣ

NH2
=
κ2P〈AB〉X

AB

H2
=
κ2ΠAΠ̃

A

2H2
=

κ2Π2

2ΞH2
. (2.29)

In the last equation we have defined the parameter Ξ that is equal to the ratio of the
momentum to the velocity of the fields:

Ξ ≡ Π2

ΠAΠ̃A
=

Π2

2P〈AB〉XAB
=
GACP〈AB〉P〈CD〉X

BD

P〈AB〉XAB
. (2.30)
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In addition to ǫ, we construct a hierarchy of η slow-roll parameters:

η
(n)
A ≡ 1

Hn−1Π

(
1

N
Dt

)n−1

ΠA, (2.31)

i.e. considering derivatives of the field equation (2.11). η
(1)
A is just e1A. For η

(2)
A we will use

the short-hand notation ηA. We find

ηA =
DtΠ

A

NHΠ
= −3eA1 +

1

HΠ
P ,A,

η‖ ≡ ηAe1A = −3 +
1

HΠ
e1AP

,A, η⊥ ≡ ηAe2A =
1

HΠ
e2AP

,A. (2.32)

These equations are identical to the definitions of η‖ and η⊥ for the canonical kinetic term
case. This is due to expressing the field equation in terms of the conjugate momentum ΠA

as well as choosing to define the field basis through the same quantity. For the second order
slow-roll parameters we find

ξA ≡ η
(3)
A =

1

NH2Π
Dt

(DtΠA

N

)
= 3 (ǫe1A − ηA) +

1

NH2Π
DtP,A,

ξ‖ = 3(ǫ− η‖) +
1

NH2Π
DtP,Ae

A
1 , ξ⊥ = −3η⊥ +

1

NH2Π
DtP,Ae

A
2 , (2.33)

and so on.
For the time derivatives of the slow-roll parameters and basis vectors it is straightforward

to find

ǫ̇ = 2NHǫ

(
ǫ+ η‖ +

Ξ̇

2NHΞ

)
Dte

A
1 = NHη⊥eA2 , Dte

A
2 = −NHη⊥eA1

Dtη
A = NH(ξA + ǫηA − η‖ηA)

η̇‖ = NH
(
ξ‖ + ǫη‖ + (η⊥)2 − (η‖)2

)
, η̇⊥ = NH

(
ξ⊥ + ǫη⊥ − 2η‖η⊥

)
(2.34)

Dtξ
A = NH

(
η(4)A + (2ǫ− η‖)ξA

)

ξ̇‖ = NH
(
η(4)‖ + (2ǫ− η‖)ξ‖ + η⊥ξ⊥

)
, ξ̇⊥ = NH

(
η(4)⊥ + (2ǫ− η‖)ξ⊥ − η⊥ξ‖

)
.

All these expressions, except for ǫ̇, are identical to the ones with canonical kinetic terms.
Although we defined the slow-roll parameters in terms of ΠA, one could in principle also

define slow-roll parameters through the velocity of the fields Π̃A:

η̃
(n)
A ≡ 1

Hn−1Π̃

(
1

N
Dt

)n−1

Π̃A. (2.35)

For some expressions later on it will be useful to have also defined these η̃ quantities. Note
again that for canonical kinetic terms there is no difference between η and η̃.

Under the normal assumption that the derivatives of slow-roll parameters should be one
order higher in slow roll, we find from the equation for ǫ̇ that in the non-canonical case there
exists an additional slow-roll parameter, namely Ξ̇/(NHΞ). One can rewrite it as follows:

Ξ̇

ΞNH
= 2η‖ − 1

NHP〈AB〉XAB

[(
P〈AB〉〈CD〉DtX

CD + P〈AB〉;E φ̇
E
)
XAB + P〈AB〉DtX

AB

]
.

(2.36)

– 9 –



We cannot further simplify this expression for the time being, since we do not have an
expression for DtX

AB . We shall do so in section 3.

2.2 Perturbations

In this subsection we introduce the tools to study perturbations on the generalized back-
ground. We start by reviewing the ADM formalism. Next we define the adiabatic and
isocurvature perturbations using the field-space basis (2.25), generalizing the work of [40].
We finally study the sound speeds relevant in generalized models of inflation.

2.2.1 ADM setup

In order to study perturbations on the background described in subsection 2.1, we will work
in the context of the ADM formalism and write the fully non-linear metric ḡµν as

ds2 = −N̄2dt2 + h̄ij(dx
i +N idt)(dxj +N jdt), (2.37)

where N̄ is the lapse function and N i the shift. From now on barred quantities will denote the
fully non-linear quantity, as opposed to their non-barred version that denotes the background
part. For quantities that do not have a background part, as for example N i, there is no need
to introduce the bar and in general we will not write it to lighten the notation. Note that for
the field the fully nonlinear version is distinguished by the use of the symbol ϕA, with the
the background field being denoted φA as in the previous section. The action takes the form

S̄ =
1

2

∫
d4x
√
h̄N̄

(
κ−2R̄(3) + 2P̄ (X̄AB , ḠAB , ϕ

I)
)
+

1

2

∫
d4x
√
h̄N̄−1κ−2

(
ĒijĒ

ij − Ē2
)
,

(2.38)
where h̄ is the determinant of the space metric h̄ij . For the purposes of this paper, we will
consider a spatial metric of the form

h̄ij = a2e2αδij , (2.39)

where α is the curvature perturbation. R̄(3) is the intrinsic 3-curvature, and the tensor Ēij

(proportional to the extrinsic curvature K̄ij = −N̄−1Ēij) is

Ēij =
1

2

(
˙̄hij −DiNj −DjNi

)
. (2.40)

Di is the covariant space-time derivative on the space hypersurface, being just ∂i when acting
on space scalars. Indices i, j, k will denote space coordinates.

The fully non-linear form of the kinetic term reads

X̄AB = −1

2
ḡµν∂µϕ

A∂νϕ
B =

1

2

[ 1

N̄2

(
ϕ̇A −N j∂jϕ

A
) (
ϕ̇B −N j∂jϕ

B
)
− h̄ij∂iϕ

A∂jϕ
B
]
,

(2.41)
while the canonical momentum of the fields is generalised to

Π̄A ≡ N̄
∂P̄

∂ϕ̇A
= P̄〈AB〉

ϕ̇B −N j∂jϕ
B

N̄
. (2.42)

Minimising the action with respect to the metric elements gives two constraint equations for
the system: the Ni momentum constraint,

Dj

[ 1
N̄

(Ēj
i − Ēδji )

]
= κ2Π̄A∂iϕ

A, (2.43)

and the N̄ energy constraint,

κ−2R̄(3) + 2P̄ − 2P̄〈AB〉

(
2X̄AB + h̄ij∂iϕ

A∂jϕ
B
)
− N̄−2κ−2

(
ĒijĒ

ij − Ē2
)
= 0. (2.44)
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2.2.2 Gauge-invariant perturbations

Any fully non-linear quantity can be expanded as an infinite series of perturbations as

Q̄ = Q+Q(1) +
1

2
Q(2) + · · · (2.45)

We choose the adiabatic perturbation at first order to be in the direction of the energy density
perturbation in the flat gauge (see e.g. [40]). Its general form is

ζ1 ≡ α(1) −
NH

ρ̇
ρ(1). (2.46)

From (2.12) we find that for the background

ρ̇ = −3HΠAφ̇
A = −6NHP〈AB〉X

AB . (2.47)

By expanding to first order the momentum constraint (2.43), we find that

H(1) ≡
κ2

6H
ρ(1) = −κ

2

2
ΠAϕ

A
(1). (2.48)

Hence we finally get

ζ1 = α(1) −H
NΠA

ΠBφ̇B
ϕA
(1) = α(1) −

HΞ

Π

ΠA

Π
ϕA
(1) = α(1) − κ

√
Ξ

2ǫ
e1Aϕ

A
(1). (2.49)

The vector coupled to the perturbation of the field is the momentum ΠA and hence it is indeed
the momentum that we have to use in order to define the proper field basis to discriminate
between adiabatic and isocurvature effects.

The orthogonal combination, which is proportional to the isocurvature perturbation
outside the horizon,6 takes the form

ζ2 = −HΞ

Π
e2Aϕ

A
(1) = −κ

√
Ξ

2ǫ
e2Aϕ

A
(1). (2.50)

Hence, we have expressed the adiabatic and isocurvature perturbations in terms of the field
perturbations, in agreement with our previous work [40].

2.2.3 Defining sound speeds

We shall finish this section by considering the implications of a non-trivial kinetic term
on the kinematics of the perturbations. This results in a non-trivial sound speed for the
perturbations, manifesting itself as a ratio of the gradient to the time derivative of the
perturbations different from unity. We will define the adiabatic and entropic sound speed in
terms of the kinetic term and gradient term of the second order action of the field perturbation

6Even though strictly speaking inside the horizon the isocurvature perturbation as defined through the
pressure and energy density perturbations, p(1)− (ṗ/ρ̇)ρ(1), see [34], is not proportional to just ζ2 but also has

a term proportional to ζ̇1 (the latter being proportional to ζ2 on super-horizon scales), we will still refer to
this orthogonal combination as the isocurvature perturbation on all scales. For a related study of these gauge-
invariant quantities in terms of the energy density and pressure perturbations within generalized inflationary
models, see [107].
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in the flat gauge. It can be found by perturbing the action (2.38) to second order, keeping
here only the time and space derivative terms (indicated by the label (k-g)):

S
(k-g)
(2) =

1

2

∫
dtd3x a3

[
(P〈AB〉 + 2P〈AC〉〈BD〉X

CD)Dtϕ
ADtϕ

B − P〈AB〉h
ijDiϕ

ADjϕ
B
]
.(2.51)

Here ϕA denotes the first order perturbation of the fields, we have suppressed the subscript
(1) in order to keep notation light.

In order to study the properties of these perturbations, we decompose them into adia-
batic and entropy components with the help of the basis defined in (2.25),

ϕA = ϕme
A
m . (2.52)

In terms of the decomposed fields, (2.51) can be rewritten as

S
(k-g)
(2) =

1

2

∫
dtd3x a3

[
Kmnϕ̇mϕ̇n − Gmnh

ij∂iϕm∂jϕn

]
, (2.53)

where

Kmn ≡ (P〈AB〉 + 2P〈AC〉〈BD〉X
CD))eAme

B
n , (2.54)

Gmn ≡ P〈AB〉e
A
me

B
n . (2.55)

Note that the covariant derivatives have become ordinary ones, since ϕm is a scalar in field
space.

In order to define an adiabatic and entropic sound speed, the matrices Kmn and Gmn

should be diagonal. Then one takes the ratio of the coefficients of the time derivative and
the gradient terms:

1

c2ad
≡ K11

G11
and

1

c2en
≡ K22

G22
. (2.56)

While one could in principle define sound speeds even if the matrices are not diagonal in
this basis (for example in a similar way as one determines the eigenfrequencies of a system
of coupled harmonic oscillators), these would then not be the adiabatic and entropic sound
speeds. We restrict ourselves in the rest of the paper to those models where K and G
are diagonal in the adiabatic-entropic basis, so that the sound speeds are the adiabatic and
entropic ones. In the next section we will investigate the conditions for this to be the case, and
find that the resulting class of models allows for important simplifications in the calculations.

3 The diagonal class of models

In this section we introduce the most general class of models that allows for well-defined
adiabatic and entropic sound speeds. After demonstrating the necessary conditions to achieve
that, we reexamine the sound speeds as well as the slow-roll parameters. We complete our
study by defining generalized slow-roll parameters with mixed kinetic-term and covariant-
field derivatives.
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3.1 Kinetic-term derivatives

In order to define the adiabatic and entropic sound speeds and hence in order to study when
the matrices Kmn and Gmn are diagonal, we need to examine the properties of the derivatives
of the Lagrangian with respect to the kinetic term. We start with a general Lagrangian P̄ of
the form P̄ = P̄ (X̄AB , ḠAB , ϕA), where we remind the reader that the bar is used to indicate
fully non-linear quantities, while ϕA is also the fully non-linear field, its background version
being denoted φA. The derivative P̄〈AB〉 can be decomposed in the directions of an arbitrary
orthonormal basis of unit vectors in the two-field space {¯̃e1, ¯̃e2} as

P̄〈AB〉 = P̄11
¯̃e1A ¯̃e1B + P̄12 (¯̃e1A ¯̃e2B + ¯̃e2A ¯̃e1B) + P̄22

¯̃e2A ¯̃e2B , (3.1)

where we keep in mind that P̄〈AB〉 is by construction symmetric. Let us now set the tilded
orthonormal basis {¯̃e1, ¯̃e2} through the relation

X̄AB = X̄ ¯̃eA1 ¯̃e
B
1 + X̄ ′ ¯̃eA2 ¯̃e

B
2 , (3.2)

i.e. the basis that diagonalizes the non-linear kinetic term (which can always be done since
X̄AB is symmetric), with X̄ and X̄ ′ its eigenvalues. Now one can rewrite the derivative of
the Lagrangian with respect to the kinetic term as

P̄〈AB〉 = P̄X̄X̄AB + P̄12 (¯̃e1A ¯̃e2B + ¯̃e2A ¯̃e1B) + P̄ḠḠAB , (3.3)

with P̄X̄ and P̄Ḡ defined by the relations P̄11 = P̄X̄X̄ + P̄Ḡ and P̄22 = P̄X̄X̄
′ + P̄Ḡ. The

determinant of X̄AB is in general non-zero. However, the determinant of the background
XAB is zero, meaning that one of the eigenvalues goes to zero in the background limit. From
the definition (2.2) of the background XAB ,

XAB ≡ 1

2

φ̇A

N

φ̇B

N
= XẽA1 ẽ

B
1 , (3.4)

we see that in the background the basis {¯̃e1, ¯̃e2} reduces to the velocity basis (2.26) so that
our notation using the tilde is consistent. Moreover, X̄ becomes X, while X̄ ′ goes to zero in
the background.

In the background the momentum vector (2.24) can be decomposed in the tilded basis
as

ΠA =
φ̇

N
(P11ẽ1A + P12ẽ2A) . (3.5)

It is clear that in the general case the momentum and the velocity vectors are not parallel
and hence the definition of the most convenient and physical field-space basis is ambiguous.
This can be resolved by setting P12 = 0. In that case the momentum and velocity vectors
are parallel and the background momentum basis {e1, e2} and velocity basis {ẽ1, ẽ2} are
identical and can be used interchangeably. We will in fact impose the same condition on the
fully non-linear Lagrangian: P̄12 = 0. Then

P̄〈AB〉 = P̄11
¯̃e1A ¯̃e1B + P̄22

¯̃e2A ¯̃e2B = P̄X̄X̄AB + P̄ḠḠAB , (3.6)

where P̄11, P̄22, P̄X̄ , and P̄Ḡ are functions of the fields ϕA and their derivatives X̄AB .
Demanding P̄12 = 0 is equivalent to studying models where X̄AB is only contracted with
tensors of the form

ĀAB = Ā11
¯̃e1A ¯̃e1B + Ā22

¯̃e2A ¯̃e2B , (3.7)
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i.e. tensors ĀAB that are diagonal in the {¯̃e1, ¯̃e2} basis. Although restricted, this class of
models encompasses a very wide range of Lagrangians. On the other hand, terms of the form
ϕAϕB coupling to the kinetic term are excluded, since we would end up with additional mixed
terms ¯̃e1A ¯̃e2B as soon as the field trajectory makes a turn in field space. The above arguments
remain true for higher-order kinetic-term derivatives: as long as X̄AB is only contracted with
diagonal tensors, no mixed terms can appear. We show in the next section that the condition
P̄12 = 0 is sufficient to have K12 = G12 = 0. It also significantly simplifies calculations.

Finally, since the two bases emA and ẽmA coincide in the background, we find that for
these models

Ξ = P0̄ = PXX + PG. (3.8)

In order to lighten the notation, we introduced here barred indices, which from now on shall
denote kinetic-term derivatives contracted with basis vectors, in the following way:

P〈AB〉e
A
1 e

B
1 = P0̄

P〈AB〉e
A
1 e

B
2 = P1̄

P〈AB〉e
A
2 e

B
2 = P2̄. (3.9)

Note that although P1̄ = 0 for the diagonal models, the 1̄ notation is still required since
second-order mixed derivatives, like P1̄1̄, are not necessarily zero (remember that all deriva-
tives with respect to XAB are taken first, before the contraction with the basis vectors, and
that those two operations do not commute).

3.2 Sound speed revisited

For the class of models described in the previous section the matrices Kmn and Gmn are
diagonal. In order to see that, we compute the second derivative (2.19)

P̄〈AB〉〈CD〉 =
P̄X̄

2

(
ḠACḠBD + ḠADḠBC

)
+ P̄X̄X̄X̄ABX̄CD + P̄ḠḠḠABḠCD

+
P̄X̄Ḡ

2

(
ḠABX̄CD + X̄ABḠCD

)
, (3.10)

by differentiating (3.6) with respect to X̄CD. It now becomes clear why we chose to express
P̄〈AB〉 in terms of X̄AB and ḠAB and not ¯̃emA

¯̃emB : the form of equation (3.6) allows us to

easily compute the second-order derivative with respect to X̄CD. The first term in (3.10)
comes from the derivative of X̄AB, while the rest of the terms are related to the derivatives
of P̄X̄ and P̄Ḡ:

P̄X̄〈CD〉 = P̄X̄X̄X̄CD +
1

2
P̄X̄ḠḠCD

P̄Ḡ〈CD〉 =
1

2
P̄X̄ḠX̄CD + P̄ḠḠḠCD. (3.11)

The equations (3.11) just express the general fact that any quantity with indices CD can be
expressed in the basis ¯̃e1C ¯̃e1D, ¯̃e1C ¯̃e2D, ¯̃e2C ¯̃e1D, ¯̃e2C ¯̃e2D and that the terms proportional to
¯̃e1C ¯̃e1D and ¯̃e2C ¯̃e2D can be replaced by terms proportional to X̄CD and ḠCD like in (3.3). The
quantities P̄X̄X̄ , P̄X̄Ḡ, P̄ḠḠ are defined by these equations as the coefficients of the X̄CD and
ḠCD components. The absence of the cross terms ¯̃e1C ¯̃e2D and ¯̃e2C ¯̃e1D in (3.11) is due to the
symmetry P̄〈AB〉〈CD〉 = P̄〈CD〉〈AB〉, and the same symmetry also imposes that P̄ḠX̄ = P̄X̄Ḡ.
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From the background version of (3.10) we now find that P〈AC〉〈BD〉X
CDeA1 e

B
2 = 0 using

the orthogonality of the basis as well as (2.28) and (3.4), which now reads XAB = XeA1 e
B
1 .

Since P1̄ = 0 we conclude from (2.54) and (2.55) that K12 = G12 = 0, so that these matrices
are indeed diagonal as claimed. The background values of Kmn and Gmn take the form

Kmn = diag
[
P0̄ + 2XP0̄0̄, P2̄ + 2XP1̄1̄

]
= diag

[
Ξ + 2XP0̄0̄,Ξ

]
(3.12)

and
Gmn = diag

[
P0̄, P2̄

]
= diag

[
Ξ, P2̄

]
. (3.13)

To find the second equality in (3.12) we used (3.10) to get P1̄1̄ = PX/2, as well as (3.8).
Using (2.56), this translates into an adiabatic and entropic sound speed

1

c2ad
= 1 +

2XP0̄0̄

Ξ
and

1

c2en
=

Ξ

P2̄
. (3.14)

3.3 Slow-roll parameters revisited

The fact that the background momentum and field-velocity field-space bases coincide in the
diagonal class of models allows for major computational simplifications. Within these models
we can compute DtX

AB (and hence further simplify expressions like (2.36)) as

DtX
AB = ẊeA1 e

B
1 + 2NHXη⊥(eA2 e

B
1 + eA1 e

B
2 ), (3.15)

where we used (2.34) for the derivatives of the unit vectors. Furthermore, the complicated
relation between Ξ and XAB (2.36) is now replaced by the far more simple (3.8). The time
derivative of X itself is calculated a little further down in this section, in (3.21). The rest of
this section is devoted to exploring the consequences of this simplification for the background
quantities.

Now that we have set emA = ẽmA, we can also introduce a hierarchy of new parameters
that incorporates all types of derivatives on P :

Λ
A1···Ap

m̄1···m̄q
=

3sgn(p)

Ξ

(2X)
p
2
+q−1

(3H)p
P

;A1;··· ;Ap

〈B1B̃1〉···〈BqB̃q〉
eB1
m1
eB̃1
m̃1

· · · eBq
mqe

B̃q

m̃q
, (3.16)

where sgn(p) is the sign function, i.e. sgn(0) = 0 and sgn(p) = 1 for p > 0. While definition
(3.16) might appear complicated, it is actually a very convenient unified description of the
possible derivatives on P . Whenever a quantity like ΛAB

0̄1̄2̄
appears in an expression, the

reader will know that it means 2 covariant field derivatives on P (upper indices) and 3
kinetic derivatives with respect to XAB (lower indices), the latter being respectively of pure
adiabatic (0̄ = 11), mixed (1̄ = 12), and pure isocurvature (2̄ = 22) type. Of course, in
practice the upper indices will also often be contracted with basis vectors. We remind the
reader that first-order field derivatives (p = 1) contracted with e1A are denoted by ‖ and
contracted with e2A by ⊥. The prefactor of (3.16) is there just for dimensional reasons
and because the derivatives in the equations always occur with these factors. Note that the
Λ
A1···Ap

m̄1···m̄q
parameters are invariant under permutations of the lower indices. On the other hand,

they are not invariant under permutations of the upper indices, since covariant derivatives
do not commute (see (2.20)). This is strictly true for three or more upper indices; in the
case of two field derivatives, the upper indices do commute, since one of them is a normal
derivative.
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The ordinary slow-roll parameters (2.31) are related to the new generalized parameters
(3.16). For example, for p = 1 and p = 2 one can write

ηA = −3eA1 + ΛA,

ξA = 3
(
ǫeA1 − ηA + Λ1A

)
+ η̃‖ΛA

0̄ , (3.17)

and so on. However, for these previously defined normal slow-roll parameters we shall keep
the standard notation η(n)A. In addition, the Λ22 component is related to the first-order χ
parameter, already known from the canonical case,

χ ≡ −Λ22 +
ǫ̇

2NHǫ
. (3.18)

Notice that χ is not necessarily small during a slow-roll period, so in that sense it is not
really a slow-roll parameter. It is worth mentioning that the sound speeds are also related
to the parameters (3.16), the ones with p = 0 (pure kinetic derivatives):

1

c2ad
= 1 + Λ0̄0̄ and

1

c2en
=

1

Λ2̄

. (3.19)

Differentiating (3.8) we get

Ξ̇

NHΞ
= η‖(1− c2ad) + Λ

‖

0̄
c2ad (3.20)

and hence7

η̃‖ =
Ẋ

2NHX
= c2ad(η

‖ − Λ
‖
0̄
) and η̃⊥ = η⊥, (3.21)

indicating that the non-canonical character of the kinetic terms affects only the adiabatic
direction in the background. Although we prefer showing our expressions in terms of the
new generalized Λ parameters, the combination η̃‖ seems to be a characteristic quantity for
general inflation models and hence from now on we will use this short-hand notation when
this combination appears. For the derivative of ǫ (2.36) one finds

ǫ̇ = 2NHǫ

(
ǫ+

η‖ + η̃‖

2

)
. (3.22)

Notice that since for the diagonal class of models ΠA and Π̃A are parallel vectors, we can
rewrite ǫ in terms of the magnitude of these vectors as

ǫ =
κ2ΠΠ̃

2H2
. (3.23)

Finally, we also give here the derivatives of the sound speeds:

ċad
NHcad

= −c
2
ad

2

{
Λ
‖

0̄
+ Λ

‖

0̄0̄
+ η̃‖

(
4

c2ad
− 3 + Λ0̄0̄0̄

)
− η‖

c2ad

}
,

ċen
NHcen

=
1

2c2en

{
Λ
‖

2̄
+ η̃‖

(
c2en + Λ2̄0̄

)
− η‖c2en

}
. (3.24)

7 It is important to note that even though we now have em = ẽm, this is caused by the fact that ΠA and
Π̃A have the same direction, not the same magnitude. Hence there is no reason why η̃‖, defined from Π̃A, and
η‖, defined from ΠA should be the same, and indeed they are not in general as this equation shows.
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The time derivatives of the sound speeds are considered as slow-roll parameters in the
literature, in the sense that one can set

ċad
NHcad

≪ 1 and
ċen

NHcen
≪ 1, (3.25)

assuming slow-roll. Furthermore, within the slow-roll approximation all time derivatives of
slow-roll parameters are one order smaller as compared to the slow-roll parameters them-
selves. Keeping these statements in mind, one should assume that the Λ

A1···Ap

m̄1···m̄q
with p 6= 0

behave as ordinary slow-roll parameters, in the sense that the higher is the number of field
derivatives (i.e. p), the higher is the order of the slow-roll parameter. This is not strictly true
for the pure isocurvature field-derivative components, as is already known for the case of χ
(which is not necessarily small during slow-roll evolution). On the other hand, the p = 0
parameters (the pure kinetic derivatives) are not necessarily small assuming slow roll. For
example, no condition on the order of the p = 0 parameters occurs from demanding the
left-hand side of (3.24) to be small, since the Λ0̄0̄0̄ and Λ2̄0̄ terms within the parentheses are
already multiplied by the slow-roll parameter η̃‖. On the other hand, the same relation shows
that they should be at most of order O(1), in order not to make (3.24) large after all.

After this discussion of the behaviour of these parameters in the slow-roll approximation,
it should be emphasized that no such approximation is made in this paper. All expressions
here are exact and the slow-roll parameters can be large. Finally, we would like to remind
the reader that no explicit expressions for the slow-roll parameters (both the normal and the
new ones) would be possible (i.e. being able to replace time derivatives Dt by derivatives with
respect to the fields and kinetic term) unless the momentum and velocity bases were coin-
ciding. Hence, we can now continue studying perturbations on this background, restricting
ourselves to the diagonal class of models.

4 Second-order action

Having set the framework of the diagonal class of models, we are now ready to study pertur-
bations in these models. We shall work in the flat gauge α(r) = 0, where r is the perturbation
order, and hence the adiabatic and isocurvature perturbations defined respectively in (2.49)
and (2.50) take the form (see also [40])

ζm = −H
Π̃
emAϕ

A = −HΞ

Π
emAϕ

A = −κ
√

Ξ

2ǫ
emAϕ

A. (4.1)

In order to study first-order perturbations one needs to calculate the second-order action.
To that end, one needs to perturb the ADM action (2.38) to second order and rewrite the
field contributions in terms of the gauge-invariant combinations (4.1). Afterwards one can
replace the Dtϕ

A terms occurring in the action by the expression

Żm ≡ −κ
√

Ξ

2ǫ
emADtϕ

A, (4.2)

where by differentiating (4.1), one can find that

Ż1 = ζ̇1 +
Ξ

2ǫ

d

dt

( ǫ
Ξ

)
ζ1 − η⊥NHζ2 = ζ̇1 +

(
ǫ+ η̃‖

)
NHζ1 − η⊥NHζ2

Ż2 = ζ̇2 +
Ξ

2ǫ

d

dt

( ǫ
Ξ

)
ζ2 + η⊥NHζ1 = ζ̇2 +

(
ǫ+ η̃‖

)
NHζ2 + η⊥NHζ1.
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Finally, one needs to use the first-order momentum constraint (2.43), which for the flat gauge
takes the form

N(1) = −ǫNζ1. (4.3)

Putting all these steps together, we find the second-order action to be

S2=

∫
d4x

a3ǫ

κ2

{
1

c2ad

1

N
Ż2
1 +

1

N
Ż2
2 +NH2

[(
ξ‖ + 3η‖ +

(
2ǫ

c2ad
− Λ

‖

0̄

)
η̃‖ +

ǫ2

c2ad

)
ζ21

+

(
2ǫR̂1221 − 3

(
χ− ǫ̇

2ǫNH

))
ζ22 + 2

(
ξ⊥ + 3η⊥ − Λ⊥

0̄ η̃
‖ + ǫ(η⊥ − Λ⊥

0̄ )
)
ζ1ζ2

]

+2HŻ1

[(
Λ
‖

0̄
− ǫ

c2ad

)
ζ1 + Λ⊥

0̄ ζ2

]
− N

a2

(
(∂iζ1)

2 + c2en (∂iζ2)
2
)}

, (4.4)

where R̂klmn = Rklmn/(κ
2Ξ). This is the second-order action governing the evolution of the

first-order adiabatic and isocurvature perturbations. In order to compare with the canonical
case, studied in [40], we perform three integrations by parts and use (4.3) to rewrite the
action in the form

S2=

∫
d4x

a3ǫ

Nκ2

{
ζ̇21
c2ad

+ ζ̇22 +
(
2χ+ η̃‖ − η‖

)
NHζ̇2ζ2 − 2NH

(
η⊥ + (η⊥ − Λ⊥

0̄ )c
2
ad

) ζ̇1
c2ad

ζ2 (4.5)

+

[
2ǫR̂1221 − 3Λ221 − 2ǫ2 + η̃‖

(
2χ− η‖ − Λ22

0̄

)
+
η⊥

c2ad

(
η⊥ + 2(η⊥ − Λ⊥

0̄ )c
2
ad

)

+
2

3
η⊥
(
ξ⊥ − η̃‖Λ⊥

0̄

)
− 3ǫ

(
η̃‖ + η‖

2
− χ

)]
ζ22(NH)2 −N2

a2

(
(∂iζ1)

2 + c2en (∂iζ2)
2
)}
.

Note that although the term ζ̇2ζ2 can be recast as ζ22 by integration by parts, we choose to
keep it in this form in order to make contact with the canonical action computed in [40],
as well as to visually separate the dominant terms (the coefficients of ζ̇2ζ2 and ζ̇1ζ2) for
the equations of motion in the long-wavelength limit, discussed in subsection 6.1, from the
higher-order slow-roll terms in the coefficient of ζ22 . As expected the time derivative of the
adiabatic perturbation is always accompanied by the inverse of its sound speed. On the other
hand, the entropic sound speed appears only in the spatial gradient term of the isocurvature
perturbation (compare with our definition of the sound speeds (2.56)). In the limit where
c2ad = c2en = 1 and Λm

0̄
= Λmn

0̄
= R̂1221 = 0 (and hence η‖ = η̃‖) we recover the action of the

canonical kinetic term models with trivial field metric.

Interestingly enough, the first order perpendicular slow-roll parameters η⊥ and Λ⊥
0̄ also

appear in a combination equivalent to the one of η̃‖. Although this combination does not
occur naturally from the derivative of one of the background quantities (as opposed to η̃‖

which is the time derivative of X given by (3.21)), we will use from now on the unifying
short-hand notation

η̂A = (ηA − ΛA
0̄ )c

2
ad, (4.6)

and hence for the parallel component one can use interchangeably η̃‖ or η̂‖.

Using the second-order action we can derive the equations of motion for the first-order
adiabatic and isocurvature perturbations, which we will denote by δL/δζm, where L is the
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second-order Lagrangian density:

δL
δζ1

= −2a3ǫ

N

{
ζ̈1
c2ad

+
NH

c2ad

(
3 + 2ǫ+ η‖ + η̂‖ − 2ċad

cadNH
− Ṅ

NH2

)
ζ̇1 −

NH

c2ad
(η⊥ + η̂⊥)ζ̇2

−(NH)2

[(
1

c2ad
+ 1

)(
ξ⊥ + η⊥(3 + 2ǫ+ η̂‖ − η‖)

)
− 3Λ12

0̄ − (3 + 2ǫ+ 3η̂‖)Λ⊥
0̄

−η̂‖Λ⊥
0̄0̄ + η⊥Λ

‖

0̄
− 2ċad
NHc3ad

η⊥

]
ζ2

}
+ 2aǫN∂2ζ1

=
d

dt

(
−2a3

∂2λ

N

)
+ 2aǫN∂2ζ1 = 0, ∂2λ =

ǫ

c2ad

(
ζ̇1 −NH(η⊥ + η̂⊥)ζ2

)
(4.7)

δL
δζ2

= −2a3ǫ

N

{
ζ̈2 +NH

(
3 + 2ǫ+ η‖ + η̂‖ − Ṅ

NH2

)
ζ̇2 +NH(η⊥ + η̂⊥)

ζ̇1
c2ad

+(NH)2

[
2ǫ2 +

1

2
(1 + c2ad)ξ

‖ + 3χ+ ǫ(3η‖ + η̂‖) +
1

2
(−1 + c2ad)ξ

⊥

−2ǫR̂1221 + (η̂‖ + η̂⊥)
ċad

cadNH
+

1

2
η̂‖
(
η‖(1− 2c2ad) + η̂‖

)

+
1

2
η⊥(η‖ − η̂‖) +

1

2

(
3 + 2ǫ+ η̂‖ + η⊥

(
1 +

2

c2ad

))
(η⊥ − η̂⊥)

+c2ad

(
η̂‖(Λ

‖

0̄0̄
+ Λ⊥

0̄0̄) + 3(Λ11
0̄ +Λ12

0̄ )
)
+ Λ⊥

0̄ (3η
⊥ − c2adη̂

‖)

]
ζ2

}

+2aǫNc2en∂
2ζ2 = 0, (4.8)

where ∂2 ≡ ∂i∂
i. The combination λ is defined by the first-order energy constraint equation

(2.44), which in the flat gauge takes the form

∂iN
(1)
i = ∂2λ. (4.9)

Its importance will become clear in subsection 6.1. One can easily verify that both equations
reduce to the related canonical expressions in [40] (where a specific choice of time coordinate
was made: the number of e-folds, which means NH = 1 and hence Ṅ/N = ǫ), assuming
c2ad = c2en = 1 and Λm

0̄
= Λmn

0̄
= R̂1221 = 0 and η̂A = η̃A = ηA .

5 Third-order action

Next, we perturb the action (2.38) to third order, in order to find the cubic interactions of the
gauge-invariant cosmological perturbations needed to calculate the related non-Gaussianity
for the diagonal class of models. We work again in the flat gauge. After a long but straight-
forward computation (similar to the one in [40] for the canonical case) we find the final
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result

S3(1) =

∫
d4x

a3ǫ

κ2N

{
− 1

NH

(
K1

3
ζ̇21 +K2ζ̇

2
2

)
ζ̇1 −Mm

1 ζmζ̇
2
1 − 2K2E

mζmζ̇1ζ̇2 −Mm
2 ζmζ̇

2
2

−NH
[(

K2E
mEnζmζn +

(
2Mm

1 ζm +K1(η̂
‖ζ1 − η⊥ζ2)

)
(η̂‖ζ1 − η⊥ζ2) + 3Λmn

0̄ ζmζn

− ǫ

c2ad

(
(2ǫ+ η‖)ζ1 + 2η⊥ζ2

)
ζ1 +

2ǫ

3

(
3

c2ad
+ 1

)
R̂1221ζ

2
2

)
ζ̇1

+

(
−2EnMm

2 ζmζn − 8ǫ

3
R̂1221ζ1ζ2

)
ζ̇2

]

−(NH)2

{
EkEmMn

2 ζkζmζn + (η̂‖ζ1 − η⊥ζ2)
2Mm

1 ζm +
2

3
K1(η̂

‖ζ1 − η⊥ζ2)
3

−3(η̂‖ζ1 − η⊥ζ2)Λ
mn
0̄ ζmζn +

[
ǫ

(
3η‖ − η̂‖

(
η‖ − η̂‖

c2ad

)
+ ξ‖

)
+ 3Λ111

]
ζ31

−ǫ
[
η⊥

(
2η̂‖ − η‖

c2ad
− 6

)
− η̂⊥(η‖ + 2η̂‖)

c2ad
− 2ǫ(η⊥ + η̂⊥)

c2ad
− 2ξ⊥

+2η⊥R̂1221 − 9
Λ211

ǫ

]
ζ21ζ2 +

[
3Λ222 − ǫη⊥

2

3

(
3

c2ad
+ 1

)
R̂1221

]
ζ32

−ǫ
[
3

(
χ− η‖ + η̂‖

2
− ǫ

)
+ 2

(
ǫ− η̂‖(

1

c2ad
− 1) +

2

3
(η‖ + 3)

)
R̂1221

−2η⊥(η⊥ + η̂⊥)

c2ad
− 9

Λ221

ǫ

]
ζ22ζ1 +

2ǫ

3

[
1

κ

√
2ǫ

Ξ
R̂;m

1221 + 4R̂1221Λ
m
0̄

]
ζ22ζm

}

+
1

a2

[
− 2∂iλ

(
ζ̇1
c2ad

∂iζ1 + ζ̇2∂iζ2

)

+(c2en − 1)

(
N2
(
(ǫ+ η̂‖)ζ22∂

2ζ1 + η⊥ζ21∂
2ζ2

)
− 2N

H
∂iζ2∂iζ1ζ̇2

)

+2NH
η⊥ + η̂⊥

c2ad
ζ2∂iλ∂

iζ1 − 2NH(ǫ+ η̂‖)ζ2∂iλ∂
iζ2 +

1

2
ζ1
(
(∂i∂jλ)

2 − (∂2λ)2
)

+(∂ζ1)
2

(
N2

(
(ǫ+ η‖ − η̂‖)ζ1 +

(2c2ad − 1)η⊥ − η̂⊥

c2ad
ζ2

)
+
N

H

(
1

c2ad
− 1

)
ζ̇1

)

+(∂ζ2)
2

(
N2
(
(c2enǫ+ Λ

‖

2̄
+Λ2̄0̄η̂

‖)ζ1 + (Λ⊥
2̄ − Λ2̄0̄η

⊥)ζ2

)
+
N

H
Λ2̄0̄ζ̇1

)]}
. (5.1)

Here we defined the combinations

K1 = Λ0̄0̄0̄ + 3

(
1

c2ad
− 1

)
, K2 = 2

(
1− c2en

)
+ Λ1̄1̄0̄ + Λ2̄0̄, EA = η⊥eA1 + (ǫ+ η̃‖)eA2 ,(5.2)

MA
1 = ΛA

0̄0̄ + ΛA
0̄ +K1η̃

A − ǫ

c2ad
eA1 − 2K1η

⊥eA2 , MA
2 = ΛA

1̄1̄ + ΛA
2̄ +K2η̃

A − ǫeA1 − 2K2η
⊥eA2 .
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Notice that in the above definitions (5.2) only η̃A occurs, not η̂A. On the contrary, in the
action (5.1) only η̂A occurs explicitly. We remind the reader that η̃A and η̂A are defined
respectively in (3.21) and (4.6) and that η̃⊥ = η⊥, while η̂‖ = η̃‖.

As was explained in [40], the cubic part of the action S3(1) is not gauge-invariant on
its own, one needs to add the contributions of the second-order fields, S3(2), which we will
do next. The canonical case study in [40] taught us that these extra terms can be rewritten
after a few redefinitions as quadratic terms of the gauge-invariant perturbations, multiplying
the second-order equations of motion δL/δζm. Performing a redefinition of the perturbations
these can finally be removed, since they cancel with the new contributions arising from the
second-order action. However, this redefinition is important since it contributes to in principle

observable quantities and notably to f
(4)
NL, the parameter of non-Gaussianity due to products

of two power spectra. See [40] for details and the end of subsection 6.1 for an example.

The aforementioned redefinition accounts for the extra quadratic terms of first-order
perturbations, needed to construct the second-order gauge-invariant perturbations from the
second-order non gauge-invariant fields. Hence, one can calculate them either by performing
integrations by parts in the action or by finding the second-order gauge transformation. The
former calculation being a rather complicated procedure, we choose to find the second-order
gauge transformation of the energy density perturbation and rewrite it in terms of the field
perturbations as was done in [40]. In the rest of this section we will focus on these terms
needed to complete the third-order study.

The first and second-order gauge transformations for any scalar quantity A read

Ã(1) = A(1) + ȦT(1)

Ã(2) = A(2) + ȦT(2) + T(1)

(
2Ȧ(1) + ȦṪ(1) + ÄT(1)

)
, (5.3)

where T(r) is the change of the time coordinate when doing a gauge transformation to the
tilded gauge. More details on gauge transformations can be found in appendix A. Notice
that in order to lighten the notation we shall not include the (1) subscripts for the first-order
perturbations in the rest of the paper. Applying the above transformation to the energy
density perturbation at second order and setting the tilded gauge to be the uniform energy
density gauge ρ̃(r) = 0 we can find the second-order time shift T(2). Rewriting it in terms of
the first-order gauge-invariant quantities, it takes the form

T(2) = −
ρ(2)

ρ̇
+
ζ1 − α

NH

(
ζ̇1 − α̇

NH
+ (ζ1 − α)

(
η‖ + η̃‖

))
. (5.4)

This second-order time shift is needed to construct the second-order gauge-invariant adia-
batic perturbation, which in the uniform energy density gauge coincides with the curvature
perturbation:

1

2
ζ1(2) ≡

1

2
α̃(2) =

1

2
α(2) +

1

2
T(2)NH +

1

2
(ζ1 − α)

ζ̇1 + α̇

NH
+ ∂2B. (5.5)

In the above equation the ∂2B terms account for spatial gradient terms that vanish outside
the horizon. Their explicit form is given in appendix A. We want to rewrite T(2) in terms of
the field perturbations, since these are more appropriate during an inflationary period. To
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that end, one needs to use the second-order 0i Einstein equation,

−ǫNH
[
Q1(2) +NH

ρ(2)

ρ̇
+ (ǫ− η‖) (ζ1 − α)2 − (ǫ+ η̃‖)ζ22 − 2η⊥ζ2 (ζ1 − α)

− 2

NH
∂−2∂i

(
ζ̇2∂iζ2

) ]
+ ∂2A = 0, (5.6)

where ∂2A are terms involving spatial gradients and hence they can be ignored on super-
horizon scales. Their form can be found in appendix A. We also defined the short-hand
notation

Qm(r) = −H
Π̃
emAϕ

A
(r). (5.7)

Putting everything together we find

1

2
ζ1(2) =

1

2
α(2) +

1

2
Q1(2) + f1,

f1 =
ǫ+ η̃‖

2

[
(ζ1 − α)2 − ζ22

]
+ (ζ1 − α)

(
ζ̇1
NH

− η⊥ζ2

)
− 1

NH
∂−2∂i

(
ζ̇2∂iζ2

)

− 1

2NHǫ
∂2A+ ∂2B. (5.8)

This is the gauge transformation of the second-order adiabatic perturbation for an arbitrary
gauge. In the flat gauge, where α = 0, one recovers the gauge transformation found in [40],
taking into account that in the canonical case η̃‖ = η‖. Notice that the only evidence of the
non-canonical kinetic terms in the above expression is actually η̃‖, since the definition of the
gauge-invariant perturbations depends only on (5.3) and the gauge transformation of α (see
appendix A).

We can repeat this procedure for the second-order isocurvature perturbation. After
performing the second-order gauge transformation for the relevant field quantity Q2(r), we
get

1

2
Q̃2(2) =

1

2
Q2(2) + (ζ1 − α)

[
(ǫ+ η̃‖)ζ2 +

1

HN
ζ̇2 +

η⊥

2
(ζ1 − α)

]
. (5.9)

However, this quantity does not correspond to our isocurvature perturbation at second order
(it is not orthogonal to the adiabatic perturbation). It turns out that one needs to consider the
gradient of the fully non-linear quantity in order to properly define the correct combination
(for details see [40]):

1

2
ζ2(2) ≡

1

2
Q̃2(2) −

η⊥

2
ζ22 +

1

NH
∂−2∂j

(
ζ̇1∂jζ2

)
(5.10)

and hence find the second-order gauge transformation for the isocurvature perturbation

1

2
ζ2(2) =

1

2
Q2(2) + f2, (5.11)

f2 =
η⊥

2

[
(ζ1 − α)2 − ζ22

]
+ (ǫ+ η̃‖) (ζ1 − α) ζ2 +

1

NH
ζ̇2 (ζ1 − α) +

1

NH
∂−2∂j

(
ζ̇1∂jζ2

)
.

Setting α = 0 and η̃‖ = η‖ one recovers the flat gauge expression for the isocurvature
perturbation found in [40].
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Having found the gauge transformations for the cosmological perturbations, the second-
order field contributions in the action take the form

S(3)2 =

∫
d4x

δL2

δζm
fm|α=0, (5.12)

where δL/δζm are the equations of motion for the first-order perturbations (4.7–4.8). The
total third-order action, which is gauge-invariant, is then S3(1)+S3(2) with S3(1) given in (5.1).
One can compute the relevant redefinition of the adiabatic and isocurvature perturbation in
the action as (see [40])

ζm +
1

2
ζm(2) = ζmc + fm

∣∣∣
α=0

, (5.13)

where ζmc are the redefined perturbations.

With this discussion, we close the study of the third-order action and second-order
perturbations. We have found the cubic interactions of the gauge-invariant perturbations,
as well as the quadratic redefinition of the perturbations. With these tools in hand, one can
compute the related second-order measurable quantities using the in-in formalism, i.e. the
third-order correlation function for the adiabatic and isocurvature perturbations. We leave
these computations for a future paper.

6 Applications

In this section, we will illustrate our general results with some concrete examples. In particu-
lar, we will study the consequences of our results in the long-wavelength limit, i.e. outside the
cosmological horizon, as well as for the symmetrized and well-studied case of DBI inflation.

6.1 Long-wavelength limit

We shall first consider the long-wavelength limit. By this term we mean keeping only zeroth
order terms in a spatial gradient expansion and hence ignoring any spatial gradient terms.
This assumption follows logically from the fact that outside the horizon the wavelength of
the perturbation k, related to gradient terms, is much smaller than the Hubble length scale
H, related to time derivative terms.

Applying this hypothesis at second order, we find for the equation of motion for the
adiabatic perturbation

ζ̇1 = NH(η⊥ + η̂⊥)ζ2 (6.1)

and hence outside the horizon the adiabatic perturbation is only sourced by the isocurvature
one, as in the canonical case. However, the sourcing also depends on the adiabatic sound
speed, as well as on the contribution of Λ⊥

0̄ , given that η̂⊥ = (η⊥ − Λ⊥
0̄ )c

2
ad. In the limit

c2ad → 0 the sourcing of the adiabatic perturbation by the isocurvature one is only half of
what it is in the canonical case. Notice that in the super-horizon regime, as in the canonical
case, the equation for the adiabatic mode (4.7) coincides with the first-order momentum
constraint equation

∂2λ = 0. (6.2)

For the isocurvature equation one needs to assume slow roll in addition to the long-
wavelength approximation in order to further simplify the evolution equation. By the slow-
roll assumption we also mean here that ċad ≪ NHcad. Applying these approximations to
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(4.8) we find

ζ̇2 =

(
2

3
ǫR̂1221 − χ− η̃‖ − η‖

2

)
NHζ2. (6.3)

As in the canonical case the isocurvature component evolves independently from the adiabatic
one. Its evolution depends on the generalized slow-roll parameters and the adiabatic sound

speed, since η̃‖ = (η‖ − Λ
‖
0̄
)c2ad, as well as on the curvature of the field space R̂1221. On the

contrary, the adiabatic perturbation is not affected by the field curvature. Notice finally that
the entropic sound speed does not appear in these equations and hence plays no role in the
super-horizon evolution of the perturbations.

Given a specific model of inflation, these equations can be perturbed to second order
and in principle can be solved using Green’s functions within the long-wavelength formalism.
This would allow not only for the study of the super-horizon evolution of the perturbations,
but also of the scale-dependence of the related super-horizon non-Gaussianity. Since this
is beyond the scope of this paper, we only give here the super-horizon parameter of non-

Gaussianity directly after horizon crossing, f
(4)
NL∗. It can be found from the redefinition of

the adiabatic perturbation (5.8) and the rule (5.13). This redefinition will contribute to the
horizon-crossing third-order correlation function as

〈ζ1(2)ζ1ζ1〉 = (ǫ∗ + η̃
‖
∗)〈ζ1ζ1〉〈ζ1ζ1〉, (6.4)

where we used the slow-roll result that right outside the horizon 〈ζ1ζ2〉 = 0. Hence one can

find for f
(4)
NL at horizon crossing

− 6

5
f
(4)
NL∗ = ǫ∗ + η̃

‖
∗ = ǫ∗ + c2ad

(
η
‖
∗ − Λ

‖

0̄∗

)
. (6.5)

The star indicates that quantities are evaluated at horizon crossing.

6.2 DBI model

Here we consider DBI inflation [24, 25], which is motivated by string theory and known to be
able to give large equilateral-type non-Gaussianity. In DBI inflation, the inflaton is identified
with the position of a moving D3 brane whose dynamics are described by the DBI action.
Since the position of the brane in each compact direction is described by a scalar field, DBI
inflation is naturally a multiple-field model [108]. In the two-field DBI model, the Lagrangian
is given by

P̄ (Ȳ , ϕ) = − 1

f̄(ϕ)

(√
1− 2f̄(ϕ)Ȳ − 1

)
−W (ϕ) ,

Ȳ ≡ X̄ − f̄(ϕ)
(
X̄2 − S̄

)
, S̄ ≡ GACGBDX̄

ABX̄CD , (6.6)

where W is the potential and f is a function of the scalar fields that reflects the information
of the geometry of the compactified internal space. Here, we do not need to specify the form
of these functions, our results are valid for arbitrary W and f . It is worth mentioning that
Ȳ is equal to X when evaluated at the background level, which we write as

Ȳ → X . (6.7)

In this model, the variable γ̄ defined by

γ̄ ≡
√

1− 2f̄(ϕ)Ȳ , (6.8)
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with the background behaviour

γ̄ → γ ≡
√

1− 2f(φ)X , (6.9)

plays an important role. Actually, based on the definition of the sound speed given in
Eq. (3.14), we can show that

γ = cad = cen ≡ cs . (6.10)

In general, Λ parameters with a different number of kinetic derivatives with respect to XAB

are not related through a common function. But as we will show, in the DBI model, these
Λ parameters are related through cs as long as the number of covariant field derivatives is
the same. Then in addition to the field curvature, which always appears when we consider
non-flat field spaces, the new physical ingredients in DBI inflation compared to a canonical
two-field inflationary model are only the sound speed and the derivatives of the function f .

We briefly summarize the quantities appearing in the action in the DBI model. For the
intermediate steps to obtain these, see Appendix B. The ǫ parameter is given by

ǫ = cs
κ2Π2

2H2
. (6.11)

For the linear terms in the expansion of P , we find that

P0̄ =
1

cs
= Ξ , P2̄ = c2sP0̄ , ηA = −3eA1 +

1

HΠ

(
(1− cs)

2

2f2cs
f ;A −W ;A

)
, (6.12)

while P1̄ = 0 as expected (required for the adiabatic and entropic sound speeds to be well-
defined). For the quadratic terms in the expansion of P , we find that

Λ0̄0̄ =
1− c2s
c2s

, Λ1̄1̄ = c2sΛ0̄0̄ , Λ2̄0̄ = −c2sΛ0̄0̄ , Λ2̄2̄ = c4sΛ0̄0̄ , (6.13)

ΛA
0̄ =

f ;A(1− c2s)
2

2f2HΠc3s
, ΛA

2̄ = −c2sΛA
0̄ , ΛAB =

cs
3H2

P ;AB , (6.14)

while Λ1̄0̄ = Λ2̄1̄ = ΛA
1̄
= 0. The η̂A parameter is given by

η̂A = c2s

[
−3eA1 − 1

HΠ

(
(1− cs)

2(1 + 2cs)

2f2c3s
f ;A +W ;A

)]
. (6.15)

Notice that while η̂‖ = η̃‖, η̂⊥ 6= η̃⊥(= η⊥). Similarly, for the cubic terms in the expansion
of P , we find that

Λ0̄0̄0̄ =
3(1 − c2s)

2

c4s
, Λ1̄1̄0̄ =

c2s
3
Λ0̄0̄0̄ , Λ2̄0̄0̄ = −c

2
s

3
Λ0̄0̄0̄ , (6.16)

Λ2̄2̄0̄ = −c
4
s

3
Λ0̄0̄0̄ , Λ2̄1̄1̄ =

c4s
3
Λ0̄0̄0̄ , Λ2̄2̄2̄ = c6sΛ0̄0̄0̄ , (6.17)

ΛA
0̄0̄ =

(
3

c2s
− 1

)
ΛA
0̄ , ΛA

1̄1̄ = (1 + c2s)Λ
A
0̄ , ΛA

2̄0̄ = −(1 + c2s)Λ
A
0̄ , (6.18)

ΛA
2̄2̄ = −c2s(1− 3c2s)Λ

A
0̄ , ΛAB

0̄ =
(1− c2s)

2

12f3H2c4s

[
2fc2sf

;AB + 3(1− c2s)f
;Af ;B

]
, (6.19)

ΛAB
2̄ = − (1− c2s)

2

12f3H2c2s

[
2fc2sf

;AB + (1− c2s)f
;Af ;B

]
, ΛABC =

1− c2s
9fH3Π

P ;ABC , (6.20)
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while Λ1̄0̄0̄ = Λ1̄1̄1̄ = Λ2̄1̄0̄ = Λ2̄2̄1̄ = ΛA
1̄0̄

= ΛA
2̄1̄

= ΛAB
1̄

= 0. The quantities K1, K2, M
A
1 , MA

2

defined in (5.2) are simplified as

K1 =
3

c2s
K2 =

3(1− c2s)

c4s
,

MA
1 =

3

c2s
MA

2 +
2

c2s
ǫeA1 =

3

c2s
(ηA − η̂A)− 1

c2s
ǫeA1 +

3

c2s

(
1− 1

c2s

)
(η⊥ + η̂⊥)eA2 . (6.21)

Finally, the time derivative of cs is given by

ċs
NHcs

= η̃‖ − η‖ , (6.22)

where we can see that for the canonical case with cs = 1, when η̃‖ = η‖, it becomes trivial.
Although we do not give the explicit form of ξA and χ as they are long and not so interesting,
they can also be expressed in terms of the Λ parameters above.

Inserting all the above expressions into the general third-order action (5.1), we find
the complete action for the DBI model. An alternative expression is given in (B.19). As a
consistency check, if we take the small sound speed limit cs ≪ 1 together with keeping only
the leading-order quantities in the slow-roll approximation, we obtain

S3(1) =

∫
d4x

a3ǫ

κ2N

{
− ζ̇1
NHc2s

[
ζ̇21
c2s

+ ζ̇22

]

+
N

H

[
1

c2s
ζ̇1h

ij∂iζ1∂jζ1 − ζ̇1h
ij∂iζ2∂jζ2 + 2ζ̇2h

ij∂iζ1∂jζ2

]}
, (6.23)

which was first obtained in [83]. Here it is also assumed that R̂1221 is not too large, so
that when multiplied with a slow-roll parameter it can be neglected. Currently, the study
of the non-Gaussianity in multiple-field DBI inflation is limited to the case where the above
conditions are satisfied (for example, see [93]). In that case, based on (6.23) and the δN
formalism, the amplitude of the equilateral-type bispectrum is given by [81]

f
(3)
NL = − 35

105c2s

1

1 + T 2
σs

, (6.24)

where Tσs denotes the transfer between adiabatic and entropic modes after horizon crossing.

However, observational results by Planck show that f
(3)
NL is small, which suggests that cs

cannot be much smaller than one, hence invalidating the assumptions of (6.23), unless Tσs is
sufficiently large. On the other hand, the action (5.1) or (B.19) we obtained here can be used
directly with the in-in formalism in order to calculate the exact non-Gaussianity in more
general set-ups: beyond the slow-roll or small sound speed limit. We leave that computation
for a future paper.

7 Conclusions

In this paper we addressed several issues concerning generalized models of two-field inflation.
Such models are for example related to extra-dimensional physical theories, after these have
been compactified and hence new scalar degrees of freedom have appeared. The scalar degrees
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of freedom usually come along with non-trivial kinetic terms and field metrics. The related
literature is very rich since such models offer specific signatures that can distinguish them
from the canonical models, especially concerning their predictions about non-Gaussianity.

Generalized kinetic terms induce a new type of derivative, namely the derivative of the
Lagrangian with respect to the kinetic terms XAB , while non-trivial field metrics introduce
the necessity to consider covariant field derivatives respecting parallel displacement of vectors
in the curved field space. We first considered the background properties of such models. It
is clear that when studying the dynamics and deriving equations of motion, mixed covari-
ant field and kinetic-term derivatives appear. Hence the issue of whether these derivatives
commute becomes important. It turns out that they do, contrary to what was assumed in
the literature so far. One only needs to take into account the appropriate covariant relation
XAB;C = 0 for the generalized coordinates, which is natural in the context of a Lagrangian
formulation in curved field space.

However, the next problem one has to confront is whether one should consider the
generalized momentum ΠA of the fields or their velocity Π̃A to define the field-space basis
and hence the parallel and perpendicular components of quantities that live in field space. We
dealt with this problem by considering a restricted but still very general class of models, the
diagonal class of models, where the two vectors are parallel. This is equivalent to saying that
we considered models for which the kinetic terms are only contracted with tensors that are
diagonal in the adiabatic-entropic basis (for example, this would exclude terms of the form
ϕAϕBX

AB in a model with a turning field trajectory). As a consequence, as we showed, this
class of models is also defined by having a well-defined adiabatic and entropic sound speed.

We next built a new hierarchy of slow-roll parameters Λ (3.16) that involve mixed
derivatives of fields and kinetic terms. The pure kinetic-term derivatives are related to sound
speeds, naturally appearing in all models with higher-order kinetic terms. Pure field and
mixed derivatives of the Lagrangian, on the other hand, are effectively dynamical slow-roll
parameters that characterize the inflationary background. We emphasize that while we call
these quantities slow-roll parameters, we do not use any slow-roll approximation in this paper,
all expressions are completely exact and the parameters can be large.

We derived the exact second and third-order action of the gauge-invariant adiabatic and
isocurvature perturbations in terms of the covariant slow-roll parameters for the diagonal class
of models. At third order, we not only computed the cubic action of the first-order fields, we
also considered the second-order contributions of the fields, which leads to a redefinition of the
perturbations that contributes to the three-point correlation function. From this redefinition

we computed the horizon-crossing part of f
(4)
NL, the fNL parameter related to products of two

power spectra.

As an illustration, we considered the DBI model, a highly symmetrised model, in order
to better understand the different quantities involved in the theory. For the DBI model
the adiabatic and entropic sound speeds coincide, and there are only two scalar functions
of the fields: their potential and the function f , a remnant of the geometry of the internal
compactified space. It turns out that the new physical ingredients, as compared to a canonical
two-field inflationary model, are the field curvature, the sound speed and the derivatives of
the function f .

The covariant third-order action we have computed, beyond slow-roll or super-horizon
approximations, will likely prove very useful for future calculations. As it is the exact action
in terms of the gauge-invariant perturbations (as opposed to the fields) one does not need to
use the δN formalism, and hence assume slow-roll at horizon crossing, in order to calculate
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the related non-Gaussianity. We leave the explicit computation of the bispectrum and its
fNL parameters for a future paper.
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A Gauge issues

In this appendix we present some intermediate steps of the calculation of the gauge transfor-
mations used in section 5 and of the perturbed 0i Einstein equation (5.6).

A.1 Gauge transformations

In the context of perturbation theory around an homogeneous background any quantity Ā
that has a non-zero background value can be decomposed into an homogeneous part A(t)
and an infinite series of perturbations as

Ā(t,x) = A(t) +A(1)(t,x) +
1

2
A(2)(t,x) + · · · , (A.1)

where the subscripts in the parentheses denote the order of the perturbation.
We decompose the spatial part of the ADM metric as

h̄ij = a(t)2 exp
[
2αδij + 2χij

]
, (A.2)

where χij is traceless and α is the scalar curvature perturbation. As any tensor, the spatial
metric can be split into a scalar, a vector and a tensor part as

χij = DijF + F(i|j) + γij, (A.3)

where | or Di is the covariant derivative on the space hypersurface, i.e. relative to the spatial
metric h̄ij (being just ∂i when acting on space scalars) and indices enclosed in parentheses
are to be symmetrized. We have also introduced the operator

Dij ≡ DiDj −
1

3
δijDkD

k. (A.4)

The vector Fi is divergence-free, while the pure tensor part γij, that represents gravity waves,
is transverse, i.e. traceless and divergence-free:

F i
|i = 0, γki|k = 0 and γii = 0. (A.5)

Finally, the shift function N i can be split up again in a scalar part and a divergence-free
vector:

N i = ∂iψ +N i
⊥ with N i

⊥|i = 0. (A.6)

Next we will consider arbitrary coordinate transformations that up to second order take
the form [41, 44]

x̃µ = xµ+βµ(1)+
1

2

(
βµ(1)|νβ

ν
(1) + βµ(2)

)
with β0 = T and βi = ∂iβ+βi⊥, (A.7)
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where again we split the space part of the coordinate transformation in a derivative of a
scalar and a divergence-free vector. Note that the tilde in this appendix corresponds to an
arbitrary gauge, it is not necessarily the uniform energy density gauge as in section 5. Under
such coordinate transformations the perturbations of a tensor transform as [41]

Ã(1) = A(1) + Lβ(1)
A,

Ã(2) = A(2) + Lβ(2)
A+ L2

β(1)
A+ 2Lβ(1)

A(1), (A.8)

where Lβ is the Lie derivative along the vector β

(LβA)
µ1µ2...
ν1ν2...

= βκ∂κA
µ1µ2...
ν1ν2...

− ∂κβ
µ1Aκµ2...

ν1ν2...
− · · ·+ ∂ν1β

κAµ1µ2...
κν2...

+ . . . . (A.9)

Using the gauge transformation (A.8) for gij one can find to second order

α̃(2)δij + χ̃ij(2) = α(2)δij + χij(2) +NHT(2)δij + β2(i,j) + ∂(iTNj) + ∂(iTÑj)

+T
[ (
α̇+ ˙̃α

)
δij + χ̇ij + ˙̃χij

]
+ βk∂k

[
(α+ α̃) δij + χij + χ̃ij

]

+
1

2

(
βk,iβk,j − βi,kβ

,k
j

)
+ χkj

(
βK,i − β,ki

)
+ χki

(
βk,j − β,kj

)
, (A.10)

where we have suppressed the (1) index for first-order quantities, in order to lighten the
notation. Taking the trace of the above equation we find

α̃(2) = α(2) +NHT(2) +
1

3
∂2β(2) + T

(
α̇+ ˙̃α

)
+

1

3
∂i
(
T (Ni + Ñi)

)
+ βk∂k

(
α̇+ ˙̃α

)
,(A.11)

while acting with Dij we find the form of ∂2β(2):

1

3
∂2β(2) =

1

3

(
∂2F̃(2) − ∂2F(2)

)
+

1

6
∂iT (Ni + Ñi)−

1

2
∂−2∂i∂j

(
∂(iT (Nj) + Ñj))

)

−1

2
∂−2∂i∂j (βµ∂µ(χij + χ̃ij))−

1

4
∂−2∂i∂j

(
βk,iβk,j − β,ki βj,k

)

−∂−2∂i∂j
(
χk(j(β

k
,i) − β,k

i) )
)
. (A.12)

Combining the above equations we finally find

1

2
α̃(2) =

1

2
α(2) +

1

2
NHT(2) +

1

2
T
(
α̇+ ζ̇

)
+ ∂2B, (A.13)

with

∂2B =
1

2
βk∂k

(
α̇+ ˙̃α

)
+

1

6
T∂2F̃ +

1

4

[
∂iT (Ni + Ñi)− ∂−2∂i∂j

(
∂(iT (Nj) + Ñj))

) ]

−1

4
∂−2∂i∂j (βµ∂µ(χij + χ̃ij))−

1

8
∂−2∂i∂j

(
βk,iβ

k
,j − βi,kβ

,k
j

)

−1

2
∂−2∂i∂j

(
χk(j(βk,i) − βi),k)

)
+

1

6

(
∂2F̃(2) − ∂2F(2)

)
. (A.14)

All the terms in ∂2B vanish on super-horizon scales: spatial gradients can be neglected in
that case, and the divergenceless vectors βi and Ni and the transverse traceless tensor χij

rapidly decay on super-horizon scales (see e.g. [51]).
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A.2 Second-order 0i Einstein equation

In order to simplify calculations we choose to work in a gauge where F(1) = Fi(1) = 0.
Consequently we can set Ni⊥(1) = 0 (see [40]). The second-order 0i Einstein equation takes
the form

1

4
∂2Ni⊥(2) −

1

N
∂kN(1)∂

k∂iψ(1) − 2
a2H

N
∂kψ(1)∂i∂

kψ(1) − ∂2α(1)∂iψ(1) − 2∂i∂
kα(1)∂kψ(1)

+∂kα(1)∂i∂
kψ(1) − ∂iα(1)∂

2ψ(1) −H∂iN(2) + ∂iα̇(2) + 6
H

N
N(1)∂iN(1) −

2

N
α̇(1)∂iN(1)

− 4

N
N(1)∂iα̇(1) =

ǫNH∂iQ(2) −
2ǫ

c2ad

(
ζ̇1(1) − α̇(1)

)
∂i
(
ζ1(1) − α(1)

)
− ǫ

(
ǫ

c2ad
+ η‖

)
NH∂i

(
ζ1(1) − α(1)

)2

−2ǫHN(1)

(
1

c2ad
+ 1

)
∂i
(
ζ1(1) − α(1)

)
− ǫ
(
ǫ+ η̃‖

)
NH∂iζ

2
2(1) − 2ǫζ̇2(1)∂iζ2(1)

−2ǫη⊥NH(ζ1(1) − α(1))∂iζ2(1) +
2ǫ

c2ad
(η⊥ − Λ⊥c2ad)NHζ2(1)∂i(ζ1(1) − α(1)), (A.15)

where we re-expressed ϕ(1) in terms of the first-order adiabatic and isocurvature perturba-
tions. The first-order ψ(1) and N(1) have the form (see [40])

∂2ψ(1) = − N

Ha2
∂2α(1) + ∂2λ and N(1) =

α̇(1)

H
− ǫN(ζ(1) − α(1)). (A.16)

To eliminate the α(2) and N(2) we perturb NH = ȧ/a to second order,

α̇(2)

H
−N(2) =

N

H
H(2) +

2

H
N(1)H(1). (A.17)

Next we rewrite H(2) in terms of ρ(2) taking into account that H(1) = ǫH
(
ζ(1) − α(1)

)
:

N

H
H(2) = −ǫN2H

ρ(2)

ρ̇
− ǫ2N

(
ζ(1) − α(1)

)2
. (A.18)

Inserting these results into (A.15) we can conclude that

∂2Ni⊥(2) = 0 (A.19)

and

−ǫNH
[
Q1(2) +NH

ρ(2)

ρ̇
+ (ǫ− η‖)

(
ζ1(1) − α(1)

)2 − (ǫ+ η̃‖)ζ22(1) − 2η⊥ζ2(1)
(
ζ1(1) − α(1)

)

− 2

NH
∂−2∂iζ̇2(1)∂iζ2(1)

]
+ ∂2A = 0, (A.20)

where

∂2A = ∂−2∂i

[
2∂2λ∂i

(
ζ1(1) − α(1)

)
− 1

N
∂kN(1)∂k∂iψ(1) − 2

a2H

N
∂kψ(1)∂i∂kψ(1)

−2∂i∂
kα(1)∂kψ(1) + ∂kα(1)∂i∂kψ(1) − ∂iα(1)∂

2ψ(1)

]
. (A.21)

Note that for an arbitrary gauge the only change in expression (A.20) will be the appearance
of additional spatial gradient terms in ∂2A.
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B Details of the computation for DBI inflation and its third-order action

Here we briefly summarize some intermediate steps to obtain the quantities in DBI inflation
considered in subsection 6.2 and also give an alternative expression for the third-order DBI
action.

For Ȳ and γ̄, we can show that

Ȳ〈AB〉 = ḠAB − 2f̄(X̄ḠAB − X̄AB) → γ2GAB + 2fXAB , (B.1)

Ȳ;A = −f̄;A(X̄2 − S̄) → 0 , (B.2)

γ̄〈AB〉 = − f̄
γ̄
Ȳ〈AB〉 → −f

γ
(γ2GAB + 2fXAB) , (B.3)

γ̄;A = − f̄
γ̄
Ȳ;A − (1− γ̄2)

2f γ̄
f̄;A → −(1− γ2)

2fγ
f;A , (B.4)

which gives

P̄〈AB〉 →
1

γ

(
γ2GAB + 2fXAB

)
, P̄;A → (1− γ)2

2f2γ
f;A −W;A . (B.5)

We remind the reader that the arrow indicates the limit of taking the homogeneous back-
ground value.

Similarly, to obtain the quadratic terms in the expansion of P , we can show that

Ȳ〈AB〉〈CD〉 = −2f̄

(
ḠABḠCD − 1

2
ḠACḠBD − 1

2
ḠADḠBC

)

→ −2f

(
GABGCD − 1

2
GACGBD − 1

2
GADGBC

)
, (B.6)

Ȳ〈AB〉;C = −2f̄;C(X̄ḠAB − X̄AB) → −2f;C(XGAB −XAB) , (B.7)

Ȳ;AB = −f̄;AB(X̄
2 − S̄) → 0 , (B.8)

and

γ̄〈AB〉〈CD〉 = − f̄
γ̄

(
−1

γ̄
Ȳ〈AB〉γ̄〈CD〉 + Ȳ〈AB〉〈CD〉

)

→ −f
2

γ

(
1

γ2
(γ2GAB + 2fXAB)(γ

2GCD + 2fXCD)

−2

(
GABGCD − 1

2
GACGBD − 1

2
GADGBC

))
, (B.9)

γ̄〈AB〉;C =

(
− f̄;C
γ̄

+
f̄

γ̄2
γ̄;C

)
Ȳ〈AB〉 −

f̄

γ̄
Ȳ〈AB〉;C

→ −(1 + γ2)f;C
2γ3

(γ2GAB + 2fXAB) +
2ff;C
γ

(XGAB −XAB) , (B.10)

γ̄;AB =

(
− f̄;B
γ̄

+
f̄ γ̄;B
γ̄2

)
Ȳ;A − f̄

γ̄
Ȳ;AB +

1 + γ̄2

2f̄ γ̄2
γ̄;B f̄;A +

1− γ̄2

2f̄2γ̄
f̄;Af̄;B − 1− γ̄2

2f̄ γ̄
f̄;AB

→ −(1− γ2)2f;Af;B
4f2γ3

− (1− γ2)f;AB

2fγ
. (B.11)
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It is worth mentioning that during the calculations above, we must take the background value
only at the last step. If we take this operation before taking derivatives, we would obtain
wrong results. Putting all this together we obtain

P̄〈AB〉〈CD〉 → f

γ

(
1

γ2
(γ2GAB + 2fXAB)(γ

2GCD + 2fXCD)−

2

(
GABGCD − 1

2
GACGBD − 1

2
GADGBC

))
, (B.12)

P̄〈AB〉;C → f;C
γ

(
(1− γ2)

2fγ2
(γ2GAB + 2fXAB)− 2(XGAB −XAB)

)
, (B.13)

P̄;AB → (1− γ)2f;AB

2f2γ
+

(1− γ)3(1 + 3γ)f;Af;B
4f3γ3

−W;AB . (B.14)

In a similar way, we can obtain the cubic terms in the expansion of P as

P̄〈AB〉〈CD〉〈EF 〉 → 3
f2

γ5
(γ2GAB + 2fXAB)(γ

2GCD + 2fXCD)(γ
2GEF + 2fXEF )

−2
f2

γ3
(γ2GAB + 2fXAB)(GCDGEF − 1

2
GCEGDF − 1

2
GCFGDE)

−2
f2

γ3
(γ2GCD + 2fXCD)(GEFGAB − 1

2
GEAGFB − 1

2
GEBGFA)

−2
f2

γ3
(γ2GEF + 2fXEF )(GABGCD − 1

2
GACGBD − 1

2
GADGBC ) ,(B.15)

P̄〈AB〉〈CD〉;E → −f;E
γ

(
1

γ2
(γ2GAB + 2fXAB)(γ

2GCD + 2fXCD)

−2

(
GABGCD − 1

2
GACGBD − 1

2
GADGBC

))

+
f;E
2γ5

(3 + γ2)(γ2GAB + 2fXAB)(γ
2GCD + 2fXCD)

−2ff;E
γ3

(
(XGAB −XAB)(γ

2GCD + 2fXCD)

+(γ2GAB + 2fXAB)(XGCD −XCD)
)

−f;E
γ3

(1 + 3γ2)(GABGCD − 1

2
GACGBD − 1

2
GADGBC) , (B.16)

P̄〈AB〉;CD →
(
(1− γ2)f;CD

2fγ3
+

3(1− γ2)2f;Cf;D
4f2γ5

)
(γ2GAB + 2fXAB)

+

(
−2

γ
f;CD − 2(1− γ2)f;Cf;D

fγ3

)
(XGAB −XAB) , (B.17)

P̄;ABC → (1− γ)2

2f2γ
f;ABC +

(1− γ)3(1 + 3γ)

4f3γ3
(f;ABf;D + f;BCf;A + f;CAf;B)

+
3(1− γ)4(1 + 4γ + 5γ2)

8f4γ5
f;Af;Bf;C −W;ABC . (B.18)

Using the above expressions one can easily recover the DBI quantities given in subsection
6.2.
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We also give here an alternative expression for the third-order DBI action. Perturbing
the ADM action in the flat gauge to third order, replacing field perturbations by adiabatic
and isocurvature perturbations according to (4.1) and using the slow-roll parameter results
from section 6.2 one can find the explicit exact form

S3(1) =

∫
d4x

a3ǫ

κ2N

{
− Ż1

NH

[
Ż2
1

c2s

(
1

c2s
− 1

)
+ Ż2

2

(
1

c2s
− 1

)]

+ Ż2
1

[
ǫ
ζ1
c2s

(
3

c2s
− 2

)
− 3

c2s
Λm
0̄ ζm

]
+ Ż2

2

[
ǫ

c2s
ζ1 − Λm

0̄ ζm

]

− NHŻ1

[
2

3
ǫR̂1221

(
3

c2s
+ 1

)
ζ22 + 3Λmn

0̄ ζmζn + 2ǫζ1

(
ǫ

2

ζ1
c2s

(
3

c2s
− 1

)
− 3

c2s
Λm
0̄ ζm

)]

+
8

3
NHǫR̂1221Ż2ζ1ζ2

+ (NH)2

[
− 2ǫ

3

(
1

κ

√
2ǫ

Ξ
R̂;m

1221 + 4R̂1221Λ
m
0̄

)
ζ22ζm − 3Λlmnζlζmζn − 3ǫ2

c2s
Λm
0̄ ζmζ

2
1

+ǫ

(
3(Λmn

0̄ − Λmn)ζmζn +
2ǫ

c2s
R̂1221ζ

2
2

)
ζ1 +

ǫ3

c4s
ζ31

]

− 2

[
Ż1

c2s
hij∂iζ1∂jλ+ Ż2h

ij∂iζ2∂jλ

]
+ 2NH

[
ǫ

c2s
ζ1h

ij∂iζ1∂jλ− Λm
0̄ ζmh

ij∂iζ1∂jλ

]

+
N

H

[(
1

c2s
− 1

)
Ż1h

ij∂iζ1∂jζ1 − (1− c2s)Ż1h
ij∂iζ2∂jζ2 + 2(1 − c2s)Ż2h

ij∂iζ1∂jζ2

]

+N2

[
ǫ

(
2− 1

c2s

)
ζ1h

ij∂iζ1∂jζ1 + Λm
0̄ ζmh

ij∂iζ1∂jζ1 + ǫζ1h
ij∂iζ2∂jζ2 + Λm

2̄ ζmh
ij∂iζ2∂jζ2

]

+

[
− 3ǫN2H2ζ31 + 2ǫNH(∂2λ)ζ21 +

1

2
(hikhjl∂i∂jλ∂k∂lλ− (∂2λ)2)ζ1

]}
, (B.19)

where we remind the reader that Żm is given in (4.2).

References

[1] A. H. Guth and S. Y. Pi, “Fluctuations in the New Inflationary Universe”,
Phys. Rev. Lett. 49 (1982) 1110–1113.

[2] S. W. Hawking, “The Development of Irregularities in a Single Bubble Inflationary Universe”,
Phys. Lett. B115 (1982) 295.

[3] A. A. Starobinsky, “Dynamics of Phase Transition in the New Inflationary Universe Scenario
and Generation of Perturbations”, Phys. Lett. B117 (1982) 175–178.

[4] J. M. Bardeen, P. J. Steinhardt, and M. S. Turner, “Spontaneous Creation of Almost Scale -
Free Density Perturbations in an Inflationary Universe”, Phys. Rev. D28 (1983) 679.

[5] V. F. Mukhanov, H. A. Feldman, and R. H. Brandenberger, “Theory of cosmological
perturbations”, Phys. Rept. 215 (1992) 203–333.

[6] D. H. Lyth and A. Riotto, “Particle physics models of inflation and the cosmological density
perturbation”, Phys.Rept. 314 (1999) 1–146, arXiv:hep-ph/9807278 [hep-ph].

– 33 –

http://dx.doi.org/10.1103/PhysRevLett.49.1110
http://dx.doi.org/10.1016/0370-2693(82)90373-2
http://dx.doi.org/10.1016/0370-2693(82)90541-X
http://dx.doi.org/10.1103/PhysRevD.28.679
http://dx.doi.org/10.1016/0370-1573(92)90044-Z
http://dx.doi.org/10.1016/S0370-1573(98)00128-8
http://arxiv.org/abs/hep-ph/9807278


[7] Planck Collaboration Collaboration, P. Ade et al., “Planck 2013 results. XVI.
Cosmological parameters”, arXiv:1303.5076 [astro-ph.CO].

[8] Planck Collaboration Collaboration, P. Ade et al., “Planck 2013 results. XXII. Constraints
on inflation”, arXiv:1303.5082 [astro-ph.CO].

[9] E. Komatsu, N. Afshordi, N. Bartolo, D. Baumann, J. Bond, et al., “Non-Gaussianity as a
Probe of the Physics of the Primordial Universe and the Astrophysics of the Low Redshift
Universe”, arXiv:0902.4759 [astro-ph.CO].

[10] J. M. Maldacena, “Non-Gaussian features of primordial fluctuations in single field inflationary
models”, JHEP 05 (2003) 013, arXiv:astro-ph/0210603.

[11] Planck Collaboration Collaboration, P. Ade et al., “Planck 2013 Results. XXIV.
Constraints on primordial non-Gaussianity”, arXiv:1303.5084 [astro-ph.CO].

[12] N. Bartolo, E. Komatsu, S. Matarrese, and A. Riotto, “Non-Gaussianity from inflation:
Theory and observations”, Phys.Rept. 402 (2004) 103–266,
arXiv:astro-ph/0406398 [astro-ph].

[13] X. Chen, “Primordial Non-Gaussianities from Inflation Models”,
Adv.Astron. 2010 (2010) 638979, arXiv:1002.1416 [astro-ph.CO].

[14] T. Moroi and T. Takahashi, “Effects of cosmological moduli fields on cosmic microwave
background”, Phys.Lett. B522 (2001) 215–221, arXiv:hep-ph/0110096 [hep-ph].

[15] D. H. Lyth and D. Wands, “Generating the curvature perturbation without an inflaton”,
Phys.Lett. B524 (2002) 5–14, arXiv:hep-ph/0110002 [hep-ph].

[16] L. Kofman, “Probing string theory with modulated cosmological fluctuations”,
arXiv:astro-ph/0303614 [astro-ph].

[17] G. Dvali, A. Gruzinov, and M. Zaldarriaga, “A new mechanism for generating density
perturbations from inflation”, Phys.Rev. D69 (2004) 023505,
arXiv:astro-ph/0303591 [astro-ph].

[18] J. M. Bardeen, “Gauge Invariant Cosmological Perturbations”,
Phys. Rev. D22 (1980) 1882–1905.

[19] A. A. Starobinsky and J. Yokoyama, “Density fluctuations in Brans-Dicke inflation”,
arXiv:gr-qc/9502002 [gr-qc].

[20] C. Gordon, D. Wands, B. A. Bassett, and R. Maartens, “Adiabatic and entropy perturbations
from inflation”, Phys.Rev. D63 (2001) 023506, arXiv:astro-ph/0009131 [astro-ph].

[21] S. Groot Nibbelink and B. J. W. van Tent, “Scalar perturbations during multiple field
slow-roll inflation”, Class. Quant. Grav. 19 (2002) 613–640, arXiv:hep-ph/0107272.

[22] C. Armendariz-Picon, T. Damour, and V. F. Mukhanov, “k - inflation”,
Phys.Lett. B458 (1999) 209–218, arXiv:hep-th/9904075 [hep-th].

[23] J. Garriga and V. F. Mukhanov, “Perturbations in k-inflation”,
Phys.Lett. B458 (1999) 219–225, arXiv:hep-th/9904176 [hep-th].

[24] E. Silverstein and D. Tong, “Scalar Speed Limits and Cosmology: Acceleration from D-
cceleration”, Phys. Rev. D70 (2004) 103505, arXiv:hep-th/0310221.

[25] M. Alishahiha, E. Silverstein, and D. Tong, “DBI in the sky”, Phys.Rev. D70 (2004) 123505,
arXiv:hep-th/0404084 [hep-th].

[26] X. Chen, M. xin Huang, S. Kachru, and G. Shiu, “Observational signatures and
non-Gaussianities of general single field inflation”, JCAP 0701 (2007) 002,
arXiv:hep-th/0605045.

[27] P. Creminelli, A. Nicolis, L. Senatore, M. Tegmark, and M. Zaldarriaga, “Limits on

– 34 –

http://arxiv.org/abs/1303.5076
http://arxiv.org/abs/1303.5082
http://arxiv.org/abs/0902.4759
http://arxiv.org/abs/astro-ph/0210603
http://arxiv.org/abs/1303.5084
http://dx.doi.org/10.1016/j.physrep.2004.08.022
http://arxiv.org/abs/astro-ph/0406398
http://dx.doi.org/10.1155/2010/638979
http://arxiv.org/abs/1002.1416
http://dx.doi.org/10.1016/S0370-2693(01)01295-3
http://arxiv.org/abs/hep-ph/0110096
http://dx.doi.org/10.1016/S0370-2693(01)01366-1
http://arxiv.org/abs/hep-ph/0110002
http://arxiv.org/abs/astro-ph/0303614
http://dx.doi.org/10.1103/PhysRevD.69.023505
http://arxiv.org/abs/astro-ph/0303591
http://dx.doi.org/10.1103/PhysRevD.22.1882
http://arxiv.org/abs/gr-qc/9502002
http://dx.doi.org/10.1103/PhysRevD.63.023506
http://arxiv.org/abs/astro-ph/0009131
http://dx.doi.org/10.1088/0264-9381/19/4/302
http://arxiv.org/abs/hep-ph/0107272
http://dx.doi.org/10.1016/S0370-2693(99)00603-6
http://arxiv.org/abs/hep-th/9904075
http://dx.doi.org/10.1016/S0370-2693(99)00602-4
http://arxiv.org/abs/hep-th/9904176
http://dx.doi.org/10.1103/PhysRevD.70.103505
http://arxiv.org/abs/hep-th/0310221
http://dx.doi.org/10.1103/PhysRevD.70.123505
http://arxiv.org/abs/hep-th/0404084
http://arxiv.org/abs/hep-th/0605045


non-gaussianities from wmap data”, JCAP 0605 (2006) 004,
arXiv:astro-ph/0509029 [astro-ph].

[28] L. Senatore, K. M. Smith, and M. Zaldarriaga, “Non-Gaussianities in Single Field Inflation
and their Optimal Limits from the WMAP 5-year Data”, JCAP 1001 (2010) 028,
arXiv:0905.3746 [astro-ph.CO].

[29] S. Renaux-Petel, “Combined local and equilateral non-Gaussianities from multifield DBI
inflation”, JCAP 0910 (2009) 012, arXiv:0907.2476 [hep-th].

[30] D. Seery and J. E. Lidsey, “Primordial non-gaussianities from multiple-field inflation”,
JCAP 0509 (2005) 011, arXiv:astro-ph/0506056.

[31] A. A. Starobinsky, “Multicomponent de Sitter (Inflationary) Stages and the Generation of
Perturbations”, JETP Lett. 42 (1985) 152–155.

[32] M. Sasaki and E. D. Stewart, “A General analytic formula for the spectral index of the
density perturbations produced during inflation”, Prog. Theor. Phys. 95 (1996) 71–78,
arXiv:astro-ph/9507001.

[33] M. Sasaki and T. Tanaka, “Super-horizon scale dynamics of multi-scalar inflation”,
Prog. Theor. Phys. 99 (1998) 763–782, arXiv:gr-qc/9801017.

[34] D. Wands, K. A. Malik, D. H. Lyth, and A. R. Liddle, “A New approach to the evolution of
cosmological perturbations on large scales”, Phys.Rev. D62 (2000) 043527,
arXiv:astro-ph/0003278 [astro-ph].

[35] D. H. Lyth, K. A. Malik, and M. Sasaki, “A general proof of the conservation of the curvature
perturbation”, JCAP 0505 (2005) 004, arXiv:astro-ph/0411220.

[36] D. H. Lyth and Y. Rodriguez, “The inflationary prediction for primordial non- gaussianity”,
Phys. Rev. Lett. 95 (2005) 121302, arXiv:astro-ph/0504045.

[37] S. M. Leach, M. Sasaki, D. Wands, and A. R. Liddle, “Enhancement of superhorizon scale
inflationary curvature perturbations”, Phys.Rev. D64 (2001) 023512,
arXiv:astro-ph/0101406 [astro-ph].

[38] Y.-i. Takamizu, S. Mukohyama, M. Sasaki, and Y. Tanaka, “Non-Gaussianity of superhorizon
curvature perturbations beyond δ N formalism”, JCAP 1006 (2010) 019,
arXiv:1004.1870 [astro-ph.CO].

[39] H.-C. Lee, M. Sasaki, E. D. Stewart, T. Tanaka, and S. Yokoyama, “A New delta N formalism
for multi-component inflation”, JCAP 0510 (2005) 004,
arXiv:astro-ph/0506262 [astro-ph].

[40] E. Tzavara and B. van Tent, “Gauge-invariant perturbations at second order in two-field
inflation”, JCAP 1208 (2012) 023, arXiv:1111.5838 [astro-ph.CO].

[41] M. Bruni, S. Matarrese, S. Mollerach, and S. Sonego, “Perturbations of space-time: Gauge
transformations and gauge invariance at second order and beyond”,
Class.Quant.Grav. 14 (1997) 2585–2606, arXiv:gr-qc/9609040 [gr-qc].

[42] H. Noh and J.-c. Hwang, “Second-order perturbations of the Friedmann world model”,
arXiv:astro-ph/0305123.

[43] G. I. Rigopoulos and E. P. S. Shellard, “The Separate Universe Approach and the Evolution
of Nonlinear Superhorizon Cosmological Perturbations”, Phys. Rev. D68 (2003) 123518,
arXiv:astro-ph/0306620.

[44] K. A. Malik and D. Wands, “Evolution of second-order cosmological perturbations”, Class.
Quant. Grav. 21 (2004) L65–L72, arXiv:astro-ph/0307055.

[45] D. H. Lyth and Y. Rodriguez, “Non-Gaussianity from the second-order cosmological
perturbation”, Phys.Rev. D71 (2005) 123508, arXiv:astro-ph/0502578 [astro-ph].

– 35 –

http://dx.doi.org/10.1088/1475-7516/2006/05/004
http://arxiv.org/abs/astro-ph/0509029
http://dx.doi.org/10.1088/1475-7516/2010/01/028
http://arxiv.org/abs/0905.3746
http://dx.doi.org/10.1088/1475-7516/2009/10/012
http://arxiv.org/abs/0907.2476
http://dx.doi.org/10.1088/1475-7516/2005/09/011
http://arxiv.org/abs/astro-ph/0506056
http://dx.doi.org/10.1143/PTP.95.71
http://arxiv.org/abs/astro-ph/9507001
http://dx.doi.org/10.1143/PTP.99.763
http://arxiv.org/abs/gr-qc/9801017
http://dx.doi.org/10.1103/PhysRevD.62.043527
http://arxiv.org/abs/astro-ph/0003278
http://dx.doi.org/10.1088/1475-7516/2005/05/004
http://arxiv.org/abs/astro-ph/0411220
http://dx.doi.org/10.1103/PhysRevLett.95.121302
http://arxiv.org/abs/astro-ph/0504045
http://dx.doi.org/10.1103/PhysRevD.64.023512
http://arxiv.org/abs/astro-ph/0101406
http://dx.doi.org/10.1088/1475-7516/2010/06/019
http://arxiv.org/abs/1004.1870
http://dx.doi.org/10.1088/1475-7516/2005/10/004
http://arxiv.org/abs/astro-ph/0506262
http://dx.doi.org/10.1088/1475-7516/2012/08/023
http://arxiv.org/abs/1111.5838
http://dx.doi.org/10.1088/0264-9381/14/9/014
http://arxiv.org/abs/gr-qc/9609040
http://arxiv.org/abs/astro-ph/0305123
http://dx.doi.org/10.1103/PhysRevD.68.123518
http://arxiv.org/abs/astro-ph/0306620
http://arxiv.org/abs/astro-ph/0307055
http://dx.doi.org/10.1103/PhysRevD.71.123508
http://arxiv.org/abs/astro-ph/0502578


[46] K. A. Malik, “Gauge-invariant perturbations at second order: Multiple scalar fields on large
scales”, JCAP 0511 (2005) 005, arXiv:astro-ph/0506532 [astro-ph].

[47] D. Langlois and F. Vernizzi, “Conserved non-linear quantities in cosmology”,
Phys. Rev. D72 (2005) 103501, arXiv:astro-ph/0509078.

[48] K. Nakamura, “Second-order gauge invariant cosmological perturbation theory: Einstein
equations in terms of gauge invariant variables”, Prog.Theor.Phys. 117 (2007) 17–74,
arXiv:gr-qc/0605108 [gr-qc].

[49] G. F. R. Ellis and M. Bruni, “Covariant and gauge invariant approach to cosmological density
flunctuations”, Phys. Rev. D40 (1989) 1804–1818.

[50] G. I. Rigopoulos, E. P. S. Shellard, and B. J. W. van Tent, “A simple route to
non-Gaussianity in inflation”, Phys. Rev. D72 (2005) 083507, arXiv:astro-ph/0410486.

[51] G. I. Rigopoulos, E. P. S. Shellard, and B. J. W. van Tent, “Non-linear perturbations in
multiple-field inflation”, Phys. Rev. D73 (2006) 083521, arXiv:astro-ph/0504508.

[52] G. I. Rigopoulos, E. P. S. Shellard, and B. J. W. van Tent, “Large non-Gaussianity in
multiple-field inflation”, Phys. Rev. D73 (2006) 083522, arXiv:astro-ph/0506704.

[53] G. I. Rigopoulos, E. P. S. Shellard, and B. J. W. van Tent, “Quantitative bispectra from
multifield inflation”, Phys. Rev. D76 (2007) 083512, arXiv:astro-ph/0511041.

[54] E. Tzavara and B. van Tent, “Bispectra from two-field inflation using the long- wavelength
formalism”, JCAP 1106 (2011) 026, arXiv:1012.6027 [astro-ph.CO].

[55] F. Bernardeau and J.-P. Uzan, “NonGaussianity in multifield inflation”,
Phys.Rev. D66 (2002) 103506, arXiv:hep-ph/0207295 [hep-ph].

[56] F. Vernizzi and D. Wands, “Non-gaussianities in two-field inflation”, JCAP 0605 (2006) 019,
arXiv:astro-ph/0603799 [astro-ph].

[57] S. A. Kim and A. R. Liddle, “Nflation: Non-Gaussianity in the horizon-crossing
approximation”, Phys.Rev. D74 (2006) 063522, arXiv:astro-ph/0608186 [astro-ph].

[58] T. Battefeld and R. Easther, “Non-Gaussianities in Multi-field Inflation”,
JCAP 0703 (2007) 020, arXiv:astro-ph/0610296 [astro-ph].

[59] K.-Y. Choi, L. M. Hall, and C. van de Bruck, “Spectral Running and Non-Gaussianity from
Slow-Roll Inflation in Generalised Two-Field Models”, JCAP 0702 (2007) 029,
arXiv:astro-ph/0701247 [astro-ph].

[60] D. Battefeld and T. Battefeld, “Non-Gaussianities in N-flation”, JCAP 0705 (2007) 012,
arXiv:hep-th/0703012 [hep-th].

[61] S. Yokoyama, T. Suyama, and T. Tanaka, “Primordial Non-Gaussianity in Multi-Scalar
Slow-Roll Inflation”, JCAP 0707 (2007) 013, arXiv:0705.3178 [astro-ph].

[62] S. Yokoyama, T. Suyama, and T. Tanaka, “Primordial Non-Gaussianity in Multi-Scalar
Inflation”, Phys.Rev. D77 (2008) 083511, arXiv:0711.2920 [astro-ph].

[63] M. Sasaki, “Multi-brid inflation and non-Gaussianity”, Prog.Theor.Phys. 120 (2008) 159–174,
arXiv:0805.0974 [astro-ph].

[64] H. R. Cogollo, Y. Rodriguez, and C. A. Valenzuela-Toledo, “On the Issue of the zeta Series
Convergence and Loop Corrections in the Generation of Observable Primordial
Non-Gaussianity in Slow-Roll Inflation. Part I: The Bispectrum”, JCAP 0808 (2008) 029,
arXiv:0806.1546 [astro-ph].

[65] A. Naruko and M. Sasaki, “Large non-Gaussianity from multi-brid inflation”,
Prog.Theor.Phys. 121 (2009) 193–210, arXiv:0807.0180 [astro-ph].

[66] C. T. Byrnes, K.-Y. Choi, and L. M. Hall, “Conditions for large non-Gaussianity in two-field

– 36 –

http://dx.doi.org/10.1088/1475-7516/2005/11/005
http://arxiv.org/abs/astro-ph/0506532
http://dx.doi.org/10.1103/PhysRevD.72.103501
http://arxiv.org/abs/astro-ph/0509078
http://dx.doi.org/10.1143/PTP.117.17
http://arxiv.org/abs/gr-qc/0605108
http://dx.doi.org/10.1103/PhysRevD.40.1804
http://dx.doi.org/10.1103/PhysRevD.72.083507
http://arxiv.org/abs/astro-ph/0410486
http://dx.doi.org/10.1103/PhysRevD.73.083521
http://arxiv.org/abs/astro-ph/0504508
http://dx.doi.org/10.1103/PhysRevD.73.083522
http://arxiv.org/abs/astro-ph/0506704
http://dx.doi.org/10.1103/PhysRevD.76.083512
http://arxiv.org/abs/astro-ph/0511041
http://dx.doi.org/10.1088/1475-7516/2011/06/026
http://arxiv.org/abs/1012.6027
http://dx.doi.org/10.1103/PhysRevD.66.103506
http://arxiv.org/abs/hep-ph/0207295
http://dx.doi.org/10.1088/1475-7516/2006/05/019
http://arxiv.org/abs/astro-ph/0603799
http://dx.doi.org/10.1103/PhysRevD.74.063522
http://arxiv.org/abs/astro-ph/0608186
http://dx.doi.org/10.1088/1475-7516/2007/03/020
http://arxiv.org/abs/astro-ph/0610296
http://dx.doi.org/10.1088/1475-7516/2007/02/029
http://arxiv.org/abs/astro-ph/0701247
http://dx.doi.org/10.1088/1475-7516/2007/05/012
http://arxiv.org/abs/hep-th/0703012
http://dx.doi.org/10.1088/1475-7516/2007/07/013
http://arxiv.org/abs/0705.3178
http://dx.doi.org/10.1103/PhysRevD.77.083511
http://arxiv.org/abs/0711.2920
http://dx.doi.org/10.1143/PTP.120.159
http://arxiv.org/abs/0805.0974
http://dx.doi.org/10.1088/1475-7516/2008/08/029
http://arxiv.org/abs/0806.1546
http://dx.doi.org/10.1143/PTP.121.193
http://arxiv.org/abs/0807.0180


slow-roll inflation”, JCAP 0810 (2008) 008, arXiv:0807.1101 [astro-ph].

[67] D. Langlois, F. Vernizzi, and D. Wands, “Non-linear isocurvature perturbations and
non-Gaussianities”, JCAP 0812 (2008) 004, arXiv:0809.4646 [astro-ph].

[68] C. T. Byrnes and G. Tasinato, “Non-Gaussianity beyond slow roll in multi-field inflation”,
JCAP 0908 (2009) 016, arXiv:0906.0767 [astro-ph.CO].

[69] D. Battefeld and T. Battefeld, “On Non-Gaussianities in Multi-Field Inflation (N fields): Bi
and Tri-spectra beyond Slow-Roll”, JCAP 0911 (2009) 010, arXiv:0908.4269 [hep-th].

[70] C. T. Byrnes, S. Nurmi, G. Tasinato, and D. Wands, “Scale dependence of local fNL”,
JCAP 1002 (2010) 034, arXiv:0911.2780 [astro-ph.CO].

[71] C. T. Byrnes, M. Gerstenlauer, S. Nurmi, G. Tasinato, and D. Wands, “Scale-dependent
non-Gaussianity probes inflationary physics”, JCAP 1010 (2010) 004,
arXiv:1007.4277 [astro-ph.CO].

[72] T. Wang, “Note on Non-Gaussianities in Two-field Inflation”, Phys.Rev. D82 (2010) 123515,
arXiv:1008.3198 [astro-ph.CO].

[73] J. Meyers and N. Sivanandam, “Non-Gaussianities in Multifield Inflation: Superhorizon
Evolution, Adiabaticity, and the Fate of fnl”, Phys.Rev. D83 (2011) 103517,
arXiv:1011.4934 [astro-ph.CO].

[74] C. M. Peterson and M. Tegmark, “Non-Gaussianity in Two-Field Inflation”,
Phys.Rev. D84 (2011) 023520, arXiv:1011.6675 [astro-ph.CO].

[75] J. Elliston, D. J. Mulryne, D. Seery, and R. Tavakol, “Evolution of fNL to the adiabatic
limit”, JCAP 1111 (2011) 005, arXiv:1106.2153 [astro-ph.CO].

[76] Y. Watanabe, “delta N versus covariant perturbative approach to non-Gaussianity outside the
horizon in multifield inflation”, Phys.Rev. D85 (2012) 103505,
arXiv:1110.2462 [astro-ph.CO].

[77] J. Frazer and A. R. Liddle, “Multi-field inflation with random potentials: field dimension,
feature scale and non-Gaussianity”, JCAP 1202 (2012) 039,
arXiv:1111.6646 [astro-ph.CO].

[78] K.-Y. Choi, S. A. Kim, and B. Kyae, “Primordial curvature perturbation during and at the
end of multi-field inflation”, Nucl.Phys. B861 (2012) 271–289,
arXiv:1202.0089 [astro-ph.CO].

[79] A. Mazumdar and L.-F. Wang, “Separable and non-separable multi-field inflation and large
non-Gaussianity”, JCAP 1209 (2012) 005, arXiv:1203.3558 [astro-ph.CO].

[80] E. Tzavara and B. van Tent, “Momentum dependence of the bispectrum in two-field
inflation”, arXiv:1211.6325 [astro-ph.CO].

[81] D. Langlois, S. Renaux-Petel, D. A. Steer, and T. Tanaka, “Primordial perturbations and
non-Gaussianities in DBI and general multi-field inflation”, Phys.Rev. D78 (2008) 063523,
arXiv:0806.0336 [hep-th].

[82] F. Arroja, S. Mizuno, and K. Koyama, “Non-gaussianity from the bispectrum in general
multiple field inflation”, JCAP 0808 (2008) 015, arXiv:0806.0619 [astro-ph].

[83] D. Langlois, S. Renaux-Petel, D. A. Steer, and T. Tanaka, “Primordial fluctuations and
non-Gaussianities in multi-field DBI inflation”, Phys.Rev.Lett. 101 (2008) 061301,
arXiv:0804.3139 [hep-th].

[84] S. Renaux-Petel and G. Tasinato, “Nonlinear perturbations of cosmological scalar fields with
non-standard kinetic terms”, JCAP 0901 (2009) 012, arXiv:0810.2405 [hep-th].

[85] D. Langlois, S. Renaux-Petel, and D. A. Steer, “Multi-field DBI inflation: Introducing bulk

– 37 –

http://dx.doi.org/10.1088/1475-7516/2008/10/008
http://arxiv.org/abs/0807.1101
http://dx.doi.org/10.1088/1475-7516/2008/12/004
http://arxiv.org/abs/0809.4646
http://dx.doi.org/10.1088/1475-7516/2009/08/016
http://arxiv.org/abs/0906.0767
http://dx.doi.org/10.1088/1475-7516/2009/11/010
http://arxiv.org/abs/0908.4269
http://dx.doi.org/10.1088/1475-7516/2010/02/034
http://arxiv.org/abs/0911.2780
http://dx.doi.org/10.1088/1475-7516/2010/10/004
http://arxiv.org/abs/1007.4277
http://dx.doi.org/10.1103/PhysRevD.82.123515
http://arxiv.org/abs/1008.3198
http://dx.doi.org/10.1103/PhysRevD.83.103517
http://arxiv.org/abs/1011.4934
http://dx.doi.org/10.1103/PhysRevD.84.023520
http://arxiv.org/abs/1011.6675
http://dx.doi.org/10.1088/1475-7516/2011/11/005
http://arxiv.org/abs/1106.2153
http://dx.doi.org/10.1103/PhysRevD.85.103505
http://arxiv.org/abs/1110.2462
http://dx.doi.org/10.1088/1475-7516/2012/02/039
http://arxiv.org/abs/1111.6646
http://dx.doi.org/10.1016/j.nuclphysb.2012.04.004
http://arxiv.org/abs/1202.0089
http://dx.doi.org/10.1088/1475-7516/2012/09/005
http://arxiv.org/abs/1203.3558
http://arxiv.org/abs/1211.6325
http://dx.doi.org/10.1103/PhysRevD.78.063523
http://arxiv.org/abs/0806.0336
http://dx.doi.org/10.1088/1475-7516/2008/08/015
http://arxiv.org/abs/0806.0619
http://dx.doi.org/10.1103/PhysRevLett.101.061301
http://arxiv.org/abs/0804.3139
http://dx.doi.org/10.1088/1475-7516/2009/01/012
http://arxiv.org/abs/0810.2405


forms and revisiting the gravitational wave constraints”, JCAP 0904 (2009) 021,
arXiv:0902.2941 [hep-th].

[86] X. Gao and B. Hu, “Primordial Trispectrum from Entropy Perturbations in Multifield DBI
Model”, JCAP 0908 (2009) 012, arXiv:0903.1920 [astro-ph.CO].

[87] S. Mizuno, F. Arroja, K. Koyama, and T. Tanaka, “Lorentz boost and non-Gaussianity in
multi-field DBI-inflation”, Phys.Rev. D80 (2009) 023530, arXiv:0905.4557 [hep-th].

[88] X. Gao, M. Li, and C. Lin, “Primordial Non-Gaussianities from the Trispectra in Multiple
Field Inflationary Models”, JCAP 0911 (2009) 007, arXiv:0906.1345 [astro-ph.CO].

[89] S. Mizuno, F. Arroja, and K. Koyama, “On the full trispectrum in multi-field DBI inflation”,
Phys.Rev. D80 (2009) 083517, arXiv:0907.2439 [hep-th].

[90] J.-O. Gong and T. Tanaka, “A covariant approach to general field space metric in multi-field
inflation”, JCAP 1103 (2011) 015, arXiv:1101.4809 [astro-ph.CO].

[91] S. Renaux-Petel, S. Mizuno, and K. Koyama, “Primordial fluctuations and non-Gaussianities
from multifield DBI Galileon inflation”, JCAP 1111 (2011) 042,
arXiv:1108.0305 [astro-ph.CO].

[92] L. McAllister, S. Renaux-Petel, and G. Xu, “A Statistical Approach to Multifield Inflation:
Many-field Perturbations Beyond Slow Roll”, JCAP 1210 (2012) 046,
arXiv:1207.0317 [astro-ph.CO].

[93] T. Kidani, K. Koyama, and S. Mizuno, “Non-Gaussianities in multi-field DBI inflation with a
waterfall phase transition”, Phys.Rev. D86 (2012) 083503,
arXiv:1207.4410 [astro-ph.CO].

[94] A. Naruko, Y.-i. Takamizu, and M. Sasaki, “Beyond delta N formalism”,
PTEP 2013 (2013) 043E01, arXiv:1210.6525 [astro-ph.CO].

[95] M. Fasiello, “Trispectrum from Co-dimension 2(n) Galileons”, arXiv:1303.5015 [hep-th].

[96] T. Kobayashi, N. Tanahashi, and M. Yamaguchi, “Multi-field G-inflation”, Phys. Rev. D 88,

083504 (2013) , arXiv:1308.4798 [hep-th].

[97] Y.-F. Cai and W. Xue, “N-flation from multiple DBI type actions”,
Phys.Lett. B680 (2009) 395–398, arXiv:0809.4134 [hep-th].

[98] Y.-F. Cai and H.-Y. Xia, “Inflation with multiple sound speeds: a model of multiple DBI type
actions and non-Gaussianities”, Phys.Lett. B677 (2009) 226–234,
arXiv:0904.0062 [hep-th].

[99] S. Pi and D. Wang, “Cosmological perturbations in inflation with multiple sound speeds”,
Nucl.Phys. B862 (2012) 409–429, arXiv:1107.0813 [hep-th].

[100] J. Emery, G. Tasinato, and D. Wands, “Local non-Gaussianity from rapidly varying sound
speeds”, JCAP 1208 (2012) 005, arXiv:1203.6625 [hep-th].

[101] J. Emery, G. Tasinato, and D. Wands, “Mixed non-Gaussianity in multiple-DBI inflation”,
arXiv:1303.3975 [astro-ph.CO].

[102] D. Langlois and S. Renaux-Petel, “Perturbations in generalized multi-field inflation”,
JCAP 0804 (2008) 017, arXiv:0801.1085 [hep-th].

[103] X. Gao, “Primordial Non-Gaussianities of General Multiple Field Inflation”,
JCAP 0806 (2008) 029, arXiv:0804.1055 [astro-ph].

[104] J. Elliston, D. Seery, and R. Tavakol, “The inflationary bispectrum with curved field-space”,
JCAP 1211 (2012) 060, arXiv:1208.6011 [astro-ph.CO].

[105] D. I. Kaiser, E. A. Mazenc, and E. I. Sfakianakis, “Primordial Bispectrum from Multifield
Inflation with Nonminimal Couplings”, Phys.Rev. D87 (2013) no. 6, 064004,

– 38 –

http://dx.doi.org/10.1088/1475-7516/2009/04/021
http://arxiv.org/abs/0902.2941
http://dx.doi.org/10.1088/1475-7516/2009/08/012
http://arxiv.org/abs/0903.1920
http://dx.doi.org/10.1103/PhysRevD.80.023530
http://arxiv.org/abs/0905.4557
http://dx.doi.org/10.1088/1475-7516/2009/11/007
http://arxiv.org/abs/0906.1345
http://dx.doi.org/10.1103/PhysRevD.80.083517
http://arxiv.org/abs/0907.2439
http://dx.doi.org/10.1088/1475-7516/2012/02/E01, 10.1088/1475-7516/2011/03/015
http://arxiv.org/abs/1101.4809
http://dx.doi.org/10.1088/1475-7516/2011/11/042
http://arxiv.org/abs/1108.0305
http://dx.doi.org/10.1088/1475-7516/2012/10/046
http://arxiv.org/abs/1207.0317
http://dx.doi.org/10.1103/PhysRevD.86.083503
http://arxiv.org/abs/1207.4410
http://dx.doi.org/10.1093/ptep/ptt008
http://arxiv.org/abs/1210.6525
http://arxiv.org/abs/1303.5015
http://arxiv.org/abs/1308.4798
http://dx.doi.org/10.1016/j.physletb.2009.09.043
http://arxiv.org/abs/0809.4134
http://dx.doi.org/10.1016/j.physletb.2009.05.047
http://arxiv.org/abs/0904.0062
http://dx.doi.org/10.1016/j.nuclphysb.2012.04.017
http://arxiv.org/abs/1107.0813
http://dx.doi.org/10.1088/1475-7516/2012/08/005
http://arxiv.org/abs/1203.6625
http://arxiv.org/abs/1303.3975
http://dx.doi.org/10.1088/1475-7516/2008/04/017
http://arxiv.org/abs/0801.1085
http://dx.doi.org/10.1088/1475-7516/2008/06/029
http://arxiv.org/abs/0804.1055
http://dx.doi.org/10.1088/1475-7516/2012/11/060
http://arxiv.org/abs/1208.6011
http://dx.doi.org/10.1103/PhysRevD.87.064004


arXiv:1210.7487 [astro-ph.CO].

[106] J. White, M. Minamitsuji, and M. Sasaki, “Non-linear curvature perturbation in multi-field
inflation models with non-minimal coupling”, JCAP 1309 (2013) 015,
arXiv:1306.6186 [astro-ph.CO].

[107] A. J. Christopherson and K. A. Malik, “The non-adiabatic pressure in general scalar field
systems”, Phys.Lett. B675 (2009) 159–163, arXiv:0809.3518 [astro-ph].

[108] D. A. Easson, R. Gregory, D. F. Mota, G. Tasinato, and I. Zavala, “Spinflation”,
JCAP 0802 (2008) 010, arXiv:0709.2666 [hep-th].

– 39 –

http://arxiv.org/abs/1210.7487
http://dx.doi.org/10.1088/1475-7516/2013/09/015
http://arxiv.org/abs/1306.6186
http://dx.doi.org/10.1016/j.physletb.2009.04.003
http://arxiv.org/abs/0809.3518
http://dx.doi.org/10.1088/1475-7516/2008/02/010
http://arxiv.org/abs/0709.2666

	1 Introduction
	2 Formalism
	2.1 Background
	2.1.1 Background dynamics
	2.1.2 Covariant derivatives
	2.1.3 Orthonormal basis
	2.1.4 Slow-roll parameters

	2.2 Perturbations
	2.2.1 ADM setup
	2.2.2 Gauge-invariant perturbations
	2.2.3 Defining sound speeds


	3 The diagonal class of models
	3.1 Kinetic-term derivatives
	3.2 Sound speed revisited
	3.3 Slow-roll parameters revisited

	4 Second-order action
	5 Third-order action
	6 Applications
	6.1 Long-wavelength limit
	6.2 DBI model

	7 Conclusions
	A Gauge issues
	A.1 Gauge transformations
	A.2 Second-order 0i Einstein equation

	B Details of the computation for DBI inflation and its third-order action

