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ON A SPECTRAL FLOW FORMULA FOR THE HOMOLOGICAL

INDEX

ALAN CAREY, HARALD GROSSE, AND JENS KAAD

Abstract. Consider a selfadjoint unbounded operator D on a Hilbert space H

and a one parameter norm continuous family of selfadjoint bounded operators
{A(t) | t ∈ R} that converges in norm to asymptotes A± at ±∞. Then un-
der certain conditions [RoSa95] that include the assumption that the operators
{D(t) = D + A(t), t ∈ R} all have discrete spectrum then the spectral flow along
the path {D(t)} can be shown to be equal to the index of ∂t+D(t) when the latter
is an unbounded Fredholm operator on L2(R, H). In [GLM+11] an investigation
of the index=spectral flow question when the operators in the path may have
some essential spectrum was started but under restrictive assumptions that rule
out differential operators in general. In [CGP+13] the question of what happens
when the Fredholm condition is dropped altogether was investigated. In these
circumstances the Fredholm index is replaced by the Witten index.

In this paper we take the investigation begun in [CGP+13] much further. We
show how to generalise a formula known from the setting of the L2 index theorem
to the non-Fredholm setting. Restricting back to the case of selfadjoint Fredholm
operators our formula extends the result of [RoSa95] in the sense of relaxing the
discrete spectrum condition. It also generalises some other Fredholm operator
results of [Pus08, GLM+11, CGP+13] that permit essential spectrum for the
operators in the path. Our result may also apply however when the operators
{D(t)} have essential spectrum equal to the whole real line.

Our main theorem gives a trace formula relating the homological index of
[CaKa14] to an integral formula that is known, for a path of selfadjoint Fred-
holms with compact resolvent and with unitarily equivalent endpoints, to compute
spectral flow. Our formula however, applies to paths of selfadjoint non-Fredholm
operators. We interpret this as indicating there is a generalisation of spectral flow
to the non-Fredholm setting.
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1. Introduction

1.1. Motivation. The issue of the relationship between spectral flow and the Fred-
holm index was first raised in [APS76] and settled in the most definitive fash-
ion for certain families of selfadjoint unbounded operators with compact resolvent
in [RoSa95]. For differential operators on noncompact manifolds it is typically
the case that they possess some essential spectrum. An extension of the result of
[RoSa95] to this situation and its relationship to scattering theory was initiated in
[GLM+11] following [Pus08]. However the key assumption in [GLM+11] is that
they consider spectral flow between selfadjoint operators that differ by a relatively
trace class perturbation. This latter assumption is violated in general for differ-
ential operators (although not for pseudodifferential operators). Indeed, there is
comparatively little work available in the way of index formulas for operators with
essential spectrum except for [BGG+87], [BMS88] and previous work by the au-
thors and their collaborators. This history is referenced in [CGP+13] which also
contains results on an index theory for certain non-Fredholm operators using the
model operator formalism of [GLM+11].
More generally, the model operators of [RoSa95] provide prototypes for various

applications such as those arising in connection with the Maslov index, Morse the-
ory, Floer homology, Sturm oscillation theory, etc. The principle aim in [Pus08]
and [GLM+11] was to extend the results in [RoSa95] (albeit subject to a relatively
trace class perturbation condition), in a fashion permitting essential spectra. This
work has motivated the current investigation where we provide evidence that the
relationship between the Fredholm index and spectral flow is a special case of an
operator trace identity that holds without any Fredholm assumptions. The fun-
damental trace formula of [GLM+11] fits into the general form of the identity we
prove here.
The prototype of our formula also appears implicitly in [BCP+06] where it is

proved in the context of an L2 index theorem for covering spaces. To simplify
the discussion and to explain the formula we now describe only the special case of
[BCP+06] that applies to compact manifolds.
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1.2. The index=spectral flow formula. We use the notation of [BCP+06] as
the setting differs from that considered in this current paper. Assume that we have
an odd dimensional closed manifold M .
The analysis of spectral flow of a path of Dirac-type operators on sections of

bundles over M traditionally proceeds by replacing M by M × S1 or M × [0, 1] and
considering the Dirac operator on this even dimensional manifold.
The argument in [BCP+06] uses an adiabatic limiting process, which leads to the

formula for the leading term in the expansion of the (difference of) heat kernels. In
this paper we also use an analogous adiabatic limiting process to establish our main
result.
Let B : C∞(M ;S) → C∞(M ;S) denote a Dirac-type operator acting on sections

of a bundle of Clifford modules S over a closed, odd-dimensional manifold M as
in [BBWo93]. Introduce an auxiliary hermitian vector bundle E with hermitian
connection ∇, and the operator B0 = B ⊗∇ IdE. Let g : E → E denote a unitary
bundle automorphism, then we can introduce the operator

B1 = gB0g
−1 = (Id⊗ g)(B ⊗∇ IdE)(Id⊗ g−1)

The difference C = B1 − B0 = [g, B]g−1 is a bundle endomorphism and we want to
present a formula for the spectral flow along a path joining B0 and B1.
Spectral flow is a homotopy invariant and the space of bounded perturbations of

B0 is affine. So in this example we may restrict ourselves to the study of the spectral
flow of a smooth family of selfadjoint operators parametrised by S1. We introduce
a smooth cut-off function α : R → R, such that

α(s) =

{
0 if s ≤ 1/4

1 if 3/4 ≤ s

We also assume that there exists a positive constant c, such that

∣∣∣∣ dkα
dsk

∣∣∣∣≤ c·s for

0 ≤ s ≤ 1 , k = 0, 1, 2. Now we consider the family

{Bs = B0 + α(s)C} (1.1)

which in an obvious way provides us with a family of operators on S1. We may also
consider the corresponding operator D = ∂s + Bs on the closed manifold S1 × M
where Bs is given by the formula (1.1). The operator D acts on sections of the
bundle [0, 1]× S ⊗E/∼=, where the identification is given by

(1, y; g(y)w) ∼= (0, y;w) where w ∈ Sy ⊗ Ey

By rescaling the variable s → s/δ in the part of the Schwartz kernel for the heat
operators that arises from ∂s and taking the (adiabatic) limit δ → 0, [BCP+06]
establishes that the following formula holds,

index D = TrM×S1(e−ǫD∗D − e−ǫDD∗

) = sf{Bs} =

√
ǫ

π

∫ 1

0

TrM(Ḃse
−ǫB2

s ) ds (1.2)

where as usual Ḃs =
dB
ds
.

As we remarked above the equality index=spectral flow in (1.2) goes back to the
original Atiyah-Patodi-Singer paper [APS76]. They also proved a formula sf{Bs} =
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∫ 1

0
ηsds, where ηs denotes the η-invariant of the operator Bs. The equality

sf{Bs} =

√
ǫ

π

∫ 1

0

TrM Ḃse
−ǫB2

s ds

and more was proved by Wojciechowski around 1991 and published in one of his
IUPUI preprints [Woj91]. The formal paper never appeared but the result eventu-
ally resurfaced in the paper by Getzler [Get93]. Getzler’s paper motivated a careful
investigation of such spectral flow formulas in [CaPh98, CaPh04]. Note that to
our knowledge the first mathematically precise formulation of the adiabatic limit is
in [Che87].
Using a Laplace transform argument of the kind employed in [CaPh04] we now

see that for r > 0
∫ ∞

0

ǫre−ǫ(e−ǫD∗D − e−ǫDD∗

) dǫ = Γ(r)((1 +D∗D)−r − (1 +DD∗)−r)

while, inserting the same function of ǫ and integrating on the RHS we obtain:
∫ ∞

0

ǫr+1/2e−ǫπ−1/2

∫
dB(s)

ds
e−ǫB(s)2 dsdǫ

and because it is permissable to interchange the order of integration (as in
[CaPh04]) we obtain

Γ(r + 1/2)π−1/2

∫
dB(s)

ds
(1 +B(s)2)−(r+1/2) ds

Under the assumptions made here we may apply traces to these expressions and
then interchange the trace and integral (as in [CaPh04]) to obtain for r sufficiently
large:

TrM×S1((1 +D∗D)−r − (1 +DD∗)−r) = Cr+1/2

∫
TrM(

dB(s)

ds
(1 +B(s)2)−(r+1/2)) ds

(1.3)
where Cr+1/2 = Γ(r + 1/2)π−1/2Γ(r)−1. We refer to this last equation as the integral
trace formula.
The objective of this paper is to show that this integral trace formula holds when we

relax the condition that we are working on a compact manifold M . In this paper we
will replace the manifold situation by an abstract approach. This is possible because
we introduce and exploit resolvent techniques that are not available in the heat kernel
method. Our abstract approach includes examples on noncompact manifolds and
makes no reference to the Fredholm property. The resolvent methods and ‘adiabatic
approximation’ we employ may also have wider application.
In the notation above this means that while the individual operators

(1 +D∗D)−r, (1 +DD∗)−r, (1 +B(s)2)−(r+1/2)

are no longer trace class for any r, the particular combinations of operators that ap-
pear under the trace in the trace formula remain trace class and the formula will be
proved to hold. What this result supports is our contention that the index=spectral
flow theorem is a special case of an operator trace identity (the integral trace for-
mula) that holds in great generality.
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1.3. Relation to earlier work. The LHS of the integral trace formula (1.3) was
shown in [CaKa14] to have a (co)-homological interpretation. In [CaKa14] we
studied the algebra generated by a pair T, T ∗ satisfying

Tr[(1− TT ∗)n − (1− T ∗T )n] < ∞ (1.4)

for some positive integer n. Then we showed that the real number (called the
homological index there), Tr[(1 − TT ∗)n − (1 − T ∗T )n], computes the pairing of a
certain element of a homology group of the algebra generated by the operators T, T ∗

with an element of the dual cohomology group.
The relationship of this general result for pairs T, T ∗ satisfying (1.4) to the in-

tegral trace formula arises via the mapping that sends unbounded operators D to
TD = D(1 + D∗D)−1/2. We show later that for the operators D studied in this
paper the corresponding operators TD satisfy (1.4). Thus the integral trace formula
expresses the homological index in terms of an integral formula that in the case of
Fredholm operators with purely discrete spectrum is computing spectral flow. This
suggests that when we do not impose Fredholm or discrete spectrum conditions on
the operators in the path then the RHS of the integral trace formula is a generalisa-
tion of spectral flow. Most importantly it allows the operators in the path to have
essential spectrum.
We note that previous evidence has been gathered that supports this view. In

[GLM+11, CGP+13] versions of the integral trace formula are proved. Under very
different hypotheses (which are too restrictive to support the analysis described
here) in [GLM+11] the r = 1 case is studied when the operators on both sides
of the integral trace formula are Fredholm operators. There it is shown that the
homological index satisfies

Tr[(1− TDT
∗
D)− (1− T ∗

DTD)] = Tr[(1 +D∗D)−1 − (1 +DD∗)−1]

while the scaling limit limλ→0Tr[(1 + λ−1D∗D)−1 − (1 + λ−1DD∗)−1] is equal to the
Fredholm index of D. From the version of the integral trace formula in [GLM+11] it
is established by an indirect argument that the RHS is related to spectral flow. In the
non-Fredholm case as studied in [CGP+13], again under hypotheses that are far too
restrictive for our purposes, the limit limλ→0Tr[(1 + λ−1D∗D)−1 − (1 + λ−1DD∗)−1]
is shown to compute the so-called Witten index1 while the RHS of the integral trace
formula is linked to Krein’s spectral shift function for the pair of operators given
by taking the endpoints of the path. It is not known at this time how to interpret
this spectral shift function as giving a generalisation of spectral flow to the situation
where the path does not consist of Fredholm operators. Work is in progress on low
dimensional examples to investigate this.

1.4. The setting and main result. For brevity we will write H1 = L2(R), H2

denotes a separable Hilbert space and sometimes we use the Hilbert space tensor
product H = H1⊗̂H2 which is identified with L2(R, H2). Throughout this text
D2 : D(D2) → H2 will be a selfadjoint unbounded operator acting on H2. We will
apply the notation ∆2 := D2

2 : D(D2
2) → H2 for the square of D2 : D(D2) → H2.

This unbounded operator is then both selfadjoint and positive.

1For a full discussion of the Witten index, spectral shift functions and their relation to the
Fredholm index see [CGP+13].
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We define the dense subspace

H∞
2 ⊆ H2 H∞

2 := ∩∞
k=0D(∆

k/2
2 )

and notice that H∞
2 is a core for each of the positive unbounded operators ∆

k/2
2 :

D(∆
k/2
2 ) → H2, k ∈ N0. For each bounded operator T : H2 → H2 such that

T
(
H∞

2

)
⊆ H∞

2 we denote the kth iterated commutator with ∆
1/2
2 by

δk2(T ) : H
∞
2 → H2 k ∈ N0

Thus, for example δ22(T ) = ∆2T + T∆2 − 2 ·∆1/2
2 T∆

1/2
2 : H∞

2 → H2.
For each q ∈ [1,∞), we let L q(H2) denote the qth Schatten ideal in the bounded

operators L (H2). Let us fix a selfadjoint bounded operator A : H2 → H2. The
following assumption will be in effect throughout this text:

Assumption 1.1. (1) A is a pseudodifferential operator of order 0 with respect
to ∆2 : D(∆2) → H2. This means, A(H∞

2 ) ⊆ H∞
2 and the iterated com-

mutator δk2 (A) : H∞
2 → H2 extends to a bounded operator on H2 for all

k ∈ N0.
(2) There exists a p0 ∈ (0,∞) such that

(1 + ∆2)
−r/2A(1 + ∆2)

−s/2 ∈ L
q(H2)

for all r, s ∈ [0,∞) with r + s > 0 and all q ∈ [1,∞) ∩
(
p0/(r + s),∞

)
.

Remark 1.2. We are working within the framework of the Connes-Moscovici pseudo-
differential calculus [CoMo95]. However we make no use of the notion of spectral
triple and indeed contrary to the case of non-unital spectral triples as expounded
in [CGRS14], we will never assume that the commutator [D2, A] : D(D2) → H2

extends to a bounded operator on H2.

Throughout this text we let p0 ∈ (0,∞) be fixed and chosen to satisfy the second
condition in the above assumption. Next we introduce a smooth function h : R → R

with the property that there exists a K ∈ N with

h(t) = h(K) and h(−t) = h(−K) for all t ≥ K (1.5)

We let h+ := h(K) and h− := h(−K).
Define the selfadjoint bounded operator

h · A : L2(R, H2) → L2(R, H2)

by (h · A)(ξ)(t) = h(t) · A(ξ(t)) for all ξ ∈ Cc(R, H2) and all t ∈ R. Here L2(R, H2)
denotes the Hilbert space of (equivalence classes) of square integrable functions
from R to H2 and Cc(R, H2) ⊆ L2(R, H2) denotes the dense subspace of continuous
compactly supported functions from R to H2.
Let us also define the unbounded operator /D+ : D( /D+) → L2(R, H2) as the

closure of
d

dt
⊗ 1 + 1⊗D2 : C

∞
c (R)⊗ D(D2) → L2(R, H2)

Then /D+ is normal with adjoint /D− : D( /D−) → L2(R, H2) given by the closure of

− d

dt
⊗ 1 + 1⊗D2 : C

∞
c (R)⊗ D(D2) → L2(R, H2)



ON A SPECTRAL FLOW FORMULA FOR THE HOMOLOGICAL INDEX 7

We apply the notation /∆ := /D− /D+ = /D+ /D− and notice that /∆ agrees with the
closure of

−
( d
dt

)2 ⊗ 1 + 1⊗∆2 : C
∞
c (R)⊗ D(∆2) → L2(R, H2)

We form the closed unbounded operator

D+ := /D+ + h ·A : D( /D+) → L2(R, H2)

and note that the adjoint is given by

D∗
+ := D− := /D− + h · A : D( /D−) → L2(R, H2)

To state the main theorem we introduce the notation

A+ := h+ · A = h(∞) · A A− := h− · A = h(−∞) · A
Our main result is the following:

Theorem 1.1. Let m ∈ N with m > p0/2 be given. Then

Tr
(
(λ+D−D+)

−m − (λ+D+D−)
−m

)

= Cm+1/2 ·
∫ 1

0

Tr
(
A+(λ+ (D2 + r · A+)

2)−m−1/2

− A−(λ+ (D2 + r · A−)
2)−m−1/2

)
dr

for all λ > 0 where the constant Cm+1/2 > 0 is given above and by

Cm+1/2 :=
m

π
·
∫ ∞

−∞

(1 + η2)−m−1 dη

Remark 1.3. We note an intriguing corollary of our result. Notice that the endpoints
of the operators in the path on the right hand side may have a kernel in which case
D+ is not Fredholm [CGP+13]. In this instance the scaling limit as λ → 0 on the
LHS computes the Witten index [CGP+13]. When the operators in the path on
the RHS have compact resolvent and the endpoints are unitarily equivalent then the
RHS computes spectral flow [ACS07] (independently of the value of λ). Thus, in
these circumstances, the homological index is constant in λ and integral.

2. Preliminaries

We begin by explaining some simple results that justify some later computations.
The following result is standard and will be stated without a proof. The interested
reader may consult the following references for details, [CoMo95, Appendix B],
[Hig04, Chapter 3].

Proposition 2.1. Let g : R → R be a smooth function such that the derivative dkg
dt

:
R → R is bounded for all k ∈ N0. Then the product g · A : L2(R, H2) → L2(R, H2)
is a pseudodifferential operator of order 0 with respect to /∆ : D( /∆) → L2(R, H2).

There is a summability condition (in the sense of spectral triples) in Assumption
1.1 that is not standard in the literature, and we therefore give a careful proof of
the following proposition.
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Proposition 2.2. Let g : R → R be a smooth compactly supported function. Then

( /∆+ 1)−r/2g · A( /∆+ 1)−s/2 ∈ L
q
(
L2(R, H2)

)

for all r, s ∈ [0,∞) with r + s > 0 and all q ∈ [1,∞) ∩
(
(p0 + 1)/(s+ r),∞

)
.

Proof. Let ∆1 : D(∆1) → L2(R) denote the closure of the Laplacian −d2

dt
: C∞

c (R) →
L2(R). Let s ∈ (0,∞) and let us show that

g(1 + ∆1)
−s/2 ∈ L

q(L2(R)) (2.1)

for all q ∈ [1,∞) ∩
(
1/s,∞

)
. By an application of the Hölder inequality this will

imply that

(1 + ∆1)
−r/2g(1 + ∆1)

−s/2 ∈ L
q(L2(R))

for all r, s ∈ [0,∞) with r + s > 0 and all q ∈ [1,∞) ∩
(
1/(s+ r),∞

)
.

Suppose first that s ∈ (0, 1/2]. In this situation we have that

g(1 + ∆1)
−s/2 ∈ L

q(L2(R))

for all q ∈ (1/s,∞) by an application of [Sim05, Theorem 4.1].
Suppose now that s ∈ (1/2,∞) and let q ∈ [1,∞) ∩ (1/s,∞) be given. Since

L q0(L2(R)) ⊆ L q1(L2(R)) for 1 ≤ q0 ≤ q1 we may suppose that q ∈ [1, 2]∩ (1/s, 2].
By [Sim05, Theorem 4.5] we can conclude that g(1+∆1)

−s/2 ∈ L q(L2(R)) provided
that

∑

n∈Z

( ∫ n+1/2

n−1/2

(1 + t2)−s dt
)q/2

< ∞

But this follows from the estimates
∞∑

n=2

( ∫ n+1/2

n−1/2

(1 + t2)−s dt
)q/2 ≤

∞∑

n=2

(1 + (n− 1)2)−sq/2 ≤
∞∑

n=1

n−sq < ∞

where the last sum converges since q > 1/s.
Let now r, s ∈ [0,∞) with r + s > 0 be given and let q ∈ [1,∞) ∩

(
(p0 + 1)/(s+

r),∞
)
. We need to show that

( /∆+ 1)−r/2gA( /∆+ 1)−s/2 ∈ L
q
(
L2(R, H2)

)

In what follows, we will suppress tensor products with the identity operator from
the notation. Thus, we will write ∆1 and ∆2 for the closures of

∆1 ⊗ 1 : D(∆1)⊗H2 → L2(R, H2) and 1⊗∆2 : H2 ⊗ D(∆2) → L2(R, H2)

respectively. We remark that the operators

G2 := (1 + ∆2)( /∆+ 1)−1 and G1 := (1 + ∆1)( /∆+ 1)−1 : L2(R, H2) → L2(R, H2)

are bounded and positive. We remark also that these operators commute and that
they also both commute with ( /∆ + 1)−1, (1 + ∆2)

−1 and (1 + ∆1)
−1. We finally

notice the relations

G2 · (1 + ∆2)
−1 = ( /∆+ 1)−1 = G1 · (1 + ∆1)

−1

Let now

s1 := s/(1+ p0) s2 := (sp0)/(1+ p0) r1 := r/(1+ p0) r2 := (rp0)/(1+ p0)
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Since s1 + s2 = s and r1 + r2 = r we obtain that

( /∆+ 1)−r/2gA( /∆+ 1)−s/2 = G
r1/2
1 G

r2/2
2 · (1 + ∆2)

−r2/2A(1 + ∆2)
−s2/2

· (1 + ∆1)
−r1/2g(1 + ∆1)

−s1/2 ·Gs2/2
2 G

s1/2
1

Recall next that L q
(
L2(R)

)
⊗L q(H2) ⊆ L q

(
L2(R, H2)

)
. It therefore suffices to

show that

(1 + ∆2)
−r2/2A(1 + ∆2)

−s2/2 ∈ L
q(H2) and

(1 + ∆1)
−r1/2g(1 + ∆1)

−s1/2 ∈ L
q
(
L2(R)

)

But this follows from the above since p0/(s2+r2) = (p0+1)/(s+r) = 1/(s1+r1) �

3. Existence of the homological index

Throughout this Section, the assumptions and the notation of Section 1.4 will
remain in effect.
The following proposition shows that we have a well-defined homological index:

H-Indm
λ (D+) := λm · Tr

(
(λ+D−D+)

−m − (λ+D+D−)
−m

)

for all λ > 0 and all m ∈ N with m > (p0 − 1)/2. The main purpose of this paper
is to compute this homological index in terms of an integral of a path of operators
acting on the ‘inner’ Hilbert space H2.

Proposition 3.1. Let λ > 0 and m ∈ N with m > (p0 − 1)/2 be given. Then the
difference

(λ+D−D+)
−m − (λ+D+D−)

−m

is of trace class.

Proof. We are interested in applying [CGK13, Theorem 3.1]. We recall that this
theorem shows that the difference (λ+D−D+)

−m − (λ+D+D−)
−m is of trace class

provided that the following conditions are satisfied:

(1) /D+ : D( /D+) → L2(R, H2) is a normal unbounded operator.
(2) The bounded operator hA : L2(R, H2) → L2(R, H2) is a pseudodifferential

operator of order 0 with respect to /∆ := /D− /D+.
(3) The sum of commutators

[ /D+, h · A] + [h · A, /D−] : D( /D+) → L2(R, H2)

extends to a bounded operator F : L2(R, H2) → L2(R, H2).
(4) The bounded operator

( /∆+ 1)−j−1F ( /∆+ 1)−m+j

is of trace class for all j ∈ {0, . . . , m− 1}.
We already remarked in Section 1.4 that /D+ : D( /D+) → L2(R, H2) is a normal

unbounded operator. Furthermore, it is implied by Proposition 2.1 that condition
(2) is satisfied as well. We now notice that the sum of commutators

[ /D+, h · A] + [h · A, /D−] : D( /D+) → L2(R, H2)

extends to the bounded operator

F := 2
dh

dt
· A : L2(R, H2) → L2(R, H2)
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The fact that condition (4) is satisfied is now a consequence of Proposition 2.2.
Notice here that dh

dt
: R → R has compact support since h : R → R has constant

asymptotics, see (1.5). �

4. Rescaling of the flow parameter

In this Section we begin the ‘adiabatic limit’ process and throughout we will apply
the notation and the assumptions stated in Section 1.4. For each ε > 0 we define
the function

hε : R → R hε : t 7→ h(ε · t)
We may then introduce the alternative closed unbounded operator

D+(ε) = /D+ + hε · A : D( /D+) → L2(R, H2)

which has the adjoint

D+(ε)
∗ := D−(ε) := /D− + hε · A : D( /D−) → L2(R, H2)

Since hε : R → R is smooth and has a compactly supported derivative dhε

dt
: R → R

we then have an alternative homological index:

H-Indm
λ

(
D+(ε)

)
= H-Indm

λ

(
/D+ + hε ·A

)

whenever λ > 0 and m ∈ N with m > (p0 − 1)/2, see Proposition 3.1.
The aim of this Section is to prove, for m ∈ N with m > p0/2, the identity

H-Indm
λ

(
D+(ε)

)
= H-Indm

λ (D+).

This will rely on the topological invariance result for the homological index which
was obtained in [CaKa14, Theorem 8.1].

In order to apply our invariance result, we define the selfadjoint bounded operator

Bε :=

(
0 (hε − h)A

(hε − h)A 0

)
: L2(R, H2)

2 → L2(R, H2)
2

and the selfadjoint unbounded operators

Dt :=

(
0 D−

D+ 0

)
+ tBε : D( /D+)

2 → L2(R, H2)
2 t ∈ [0, 1]

Thus D0 =

(
0 D−

D+ 0

)
and D1 =

(
0 D−(ε)

D+(ε) 0

)
.

We emphasize that the difference hε−h : R → R is a smooth compactly supported

function. Recall the notation H := L2(R, H2) and write H∞ := ∩∞
k=0D( /∆

k/2
) ⊆ H .

Theorem 4.1. Let m ∈ N with m > p0/2. Then

H-Indm
λ (D+(ε)) = H-Indm

λ (D+)

for all ε > 0 and all λ > 0. In particular, we have that

H-Indm
λ (D+) = lim

εց0
H-Indm

λ (D+(ε))

for all λ > 0.

Proof. Let ε > 0 be given. According to the conditions of [CaKa14, Theorem 8.1]
we need to show that
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(1) The map t 7→ Tt := Dt(1 + Dt)
−1/2; [0, 1] → L (H ⊕ H) is continuously

differentiable in operator norm.
(2) The bounded operator

(1 +D2
0)

−jBε(1 +D2
0)

−k−1/2 : H ⊕H → H ⊕H

lies in the Schatten ideal L m/(j+k)(H ⊕ H) for all j, k ∈ {0, . . . , m} with
j + k ∈ {1, . . . , m}.

(3) There exists a δ ∈ (0, 1/2) such that

Bε(1 +D2
0)

−m−1/2+δ ∈ L
1(H ⊕H)

The first of these conditions is a consequence of [CaPh98, Appendix A, Theorem
8]. To verify the second and the third condition we notice that we may apply
[CGP+14, Lemma 2.6] and Proposition 2.1 to conclude that the following holds for
each s ∈ [0,∞):

(1) The bounded operator (1+D2
0)

−s : H⊕H → H⊕H has the dense subspace
H∞ ⊕H∞ ⊆ H ⊕H as an invariant subspace.

(2) The unbounded operator
(

( /∆+ 1)s 0
0 ( /∆+ 1)s

)
(1 +D2

0)
−s : H∞ ⊕H∞ → H ⊕H

extends to a bounded operator on H ⊕H .

Let now j, k ∈ {0, . . . , m} be given with j + k ∈ {1, . . . , m}. In view of the above
observation it now suffices to show that

diag
(
( /∆+ 1)−j

)
· Bε · diag(( /∆+ 1)−k−1/2) ∈ L

m/(j+k)(H ⊕H)

and furthermore that

Bε · diag
(
( /∆+ 1)−m−1/2+δ

)
∈ L

1(H ⊕H)

for some δ ∈ (0, 1/2). Here diag(( /∆+ 1)−j) is notation for the two by two diagonal
matrix with ( /∆+ 1)−j in both of the diagonal entries.
The above conditions are however an immediate consequence of Proposition 2.2

since h− hε : R → R is a smooth compactly supported function. �

5. First approximation of the homological index

Let us recall that H := L2(R, H2) and H∞ := ∩∞
k=0D( /∆

k/2
). In general, we

will from now on freely use the terminology and results on holomorphic families of
pseudodifferential operators which are contained in Appendix A. Furthermore, we
will not distinguish in notation between the selfadjoint unbounded operators

D1 := cl(i
d

dt
) : D(D1) → L2(R) and D2 : D(D2) → H2

and their analogues cl(D1⊗1) and cl(1⊗D2) on H which are defined as the closures
of

D1 ⊗ 1 : D(D1)⊗H2 → H and 1⊗D2 : L
2(R)⊗ D(D2) → H

respectively.
For each ε ∈ (0, 1], we define the first order pseudodifferential operator, with

respect to /∆ : D( /∆) → H , T1(ε) : D(T1(ε)) → L2(R, H2) as the closure of

T1(ε)
∣∣
H∞

:= D2hεA + hεAD2 : H
∞ → H (5.1)
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Furthermore we define the pseudodifferential operators of order 0,

T+(ε) := h2
ε ·A2 +

dhε

dt
·A T−(ε) := h2

ε ·A2 − dhε

dt
·A T0(ε) := h2

ε ·A2 (5.2)

all of them with respect to /∆ : D( /∆) → L2(R, H2). Finally, we let

α+(ε) := T1(ε) + T+(ε) α−(ε) := T1(ε) + T−(ε) α0(ε) := T1(ε) + T0(ε)

denote the associated sums of pseudodifferential operators, which have the common
domain D(T1(ε)) ⊆ L2(R, H2).
For each ε ∈ (0, 1], we define the selfadjoint bounded operator

F (ε) := 2
dhε

dt
· A : L2(R, H2) → L2(R, H2)

The reason for introducing the above pseudodifferential operators is the following
two basic identities:

D−(ε)D+(ε) = /∆+ α−(ε) : D( /∆) → H and

D+(ε)D−(ε) = /∆+ α+(ε) : D( /∆) → H
(5.3)

In this Section we will provide the first application of our rescaling result for the
homological index (Theorem 4.1). To be more precise we shall prove the following
theorem, which shows that we may ignore the derivative d

dt
(hε) when we compute in

the adiabatic limit.

Theorem 5.1. Let m ∈ N0 with m > p0/2 be given. Then there exists a constant
C > 0 such that, for all λ ≥ C,

H-Indm
λ (D+) = lim

εց0
Tr

(
m · λm · F (ε) ·

(
/∆+ α0(ε) + λ

)−m−1
)
.

We start by providing a couple of estimates which will turn out to be useful later
on. The reader should here pay particular attention to Lemma 5.2.
We let σ : OP0( /∆) → OP0( /∆) denote the algebra automorphism defined by

σ : T 7→ ( /∆+ 1)T ( /∆+ 1)−1

Lemma 5.1. Let k, l ∈ N0 be given. Then

sup
ε∈(0,1]

∥∥σk(
dlhε

dt
)
∥∥ < ∞

Proof. The proof runs by induction on k ∈ N0. For k = 0 we note that

dlhε

dt
(t0) = εl · d

lh

dt
(ε · t0) (5.4)

for all t0 ∈ R and all l ∈ N0. Since dlh
dt

is smooth and bounded this proves the
statement in this case.
Suppose thus that the statement of the lemma holds for some k ∈ N0. A basic

computation then shows that

σk+1
(dlhε

dt

)
− σk

(dlhε

dt

)

= −σk
(dl+2hε

dt

)
( /∆+ 1)−1 − 2σk

(dl+1hε

dt

) d
dt

· ( /∆+ 1)−1

(5.5)

for all l ∈ N0. This computation proves the induction step. �
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Lemma 5.2. Let k ∈ N0 and let l ∈ N. Then

lim
εց0

∥∥σk(
dlhε

dt
)
∥∥ = 0

Proof. The proof is again by induction on k ∈ N0. The induction start follows by
the identity in (5.4) since l ≥ 1. The induction step then follows by the identities
in (5.5). �

Lemma 5.3. Let k ∈ N0. Then

sup
ε∈(0,1]

∥∥σk
(
[ /∆, α+(ε)]( /∆+ 1)−1

)∥∥ < ∞

The same result holds when α+(ε) is replaced by α−(ε) or by α0(ε).

Proof. We will focus on the case of α+(ε) since the proof is similar in the two
remaining cases.
We start by noticing that

[ /∆, α+(ε)]( /∆+ 1)−1 =
(
[ /∆, hεA]D2 +D2[ /∆, hεA]

+ [ /∆,
dhε

dt
· A] + [ /∆, h2

εA
2]
)
( /∆+ 1)−1

Since A ∈ OP0( /∆) is independent of ε ∈ (0, 1] it therefore suffices to show that

sup
ε∈(0,1]

∥∥σk([ /∆, hε]( /∆+ 1)−1/2)
∥∥ < ∞ , sup

ε∈(0,1]

∥∥σk(hε)
∥∥ < ∞ ,

sup
ε∈(0,1]

∥∥σk(
dhε

dt
)
∥∥ < ∞ , sup

ε∈(0,1]

∥∥σk
(
[ /∆,

dhε

dt
]( /∆+ 1)−1/2

)∥∥ < ∞

for each k ∈ N0. But this follows easily from Lemma 5.1. �

With these basic estimates in hand we start estimating resolvents of pseudodif-
ferential operators.

Proposition 5.4. There exists a constant C > 0 such that

sup
ε∈(0,1]

∥∥σk
(
( /∆+ 1)( /∆+ α+(ε) + λ)−1

)∥∥ < ∞

for all k ∈ N0 and all λ ≥ C.
A similar estimate holds when α+(ε) is replaced by α−(ε) or by α0(ε).

Proof. We will again focus exclusively on the case of α+(ε) since the proof will carry
through with only minor changes in the remaining cases.
Remark first that

sup
ε∈(0,1]

∥∥α+(ε)( /∆+ 1)−1/2
∥∥ ≤ sup

ε∈(0,1]

(
‖hεA ·D2( /∆+ 1)−1/2‖+ ‖hεD2A( /∆+ 1)−1/2‖

)

+ sup
ε∈(0,1]

(
‖h2

εA
2‖+ ‖dhε

dt
· A‖

)

< ∞
We may thus choose a constant C ≥ 1 such that

√
C/2 > sup

ε∈(0,1]

∥∥α+(ε)( /∆+ 1)−1/2
∥∥
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Let now λ ≥ C be fixed. As in the proof of Proposition A.5 we then obtain that

( /∆+ 1)( /∆+ α+(ε) + λ)−1 = ( /∆+ 1)( /∆+ λ)−1 · (1 + α+(ε)( /∆+ λ)−1)−1

for all ε ∈ (0, 1] and all λ ≥ C. It is therefore sufficient to show that

sup
ε∈(0,1]

∥∥σk
(
(1 + α+(ε)( /∆+ λ)−1)−1

)∥∥ < ∞ (5.6)

for all k ∈ N0. This will follow by induction on k ∈ N0.
For k = 0 we may compute as follows,

∥∥(1 + α+(ε)( /∆+ λ)−1)−1
∥∥ ≤

∞∑

j=0

‖α+(ε)( /∆+ λ)−1‖j

≤
∞∑

j=0

‖α+(ε)( /∆+ 1)−1/2‖j · λ−j/2 ≤
∞∑

j=0

(C/λ)j/2 · (1/2)j ≤ 2

regardless of ε ∈ (0, 1]. This computation thus proves the induction start.
Suppose now that the estimate in (5.6) holds for some k ∈ N0. We then compute

as follows,

σk+1
(
(1 + α+(ε)( /∆+ λ)−1)−1

)
− σk

(
(1 + α+(ε)( /∆+ λ)−1)−1

)

= σk
([

/∆,
(
1 + α+(ε)( /∆+ λ)−1

)−1]
( /∆+ 1)−1

)

= −σk
((

1 + α+(ε)( /∆+ λ)−1
)−1

)
· σk

(
[ /∆, α+(ε)]( /∆+ λ)−1

)

· σk
((

1 + α+(ε)( /∆+ λ)−1
)−1

)
· ( /∆+ 1)−1

for all ε ∈ (0, 1]. This computation proves the induction step by an appeal to Lemma
5.3. �

In the next result we investigate what happens to certain differences of resolvents
when computing in the adiabatic limit where the rescaling parameter ε ∈ (0, 1] tends
to zero.

Proposition 5.5. There exists a constant C > 0 such that

lim
εց0

∥∥σk
(
( /∆+ 1)( /∆+ α+(ε) + λ)−1 − ( /∆+ 1)( /∆+ α0(ε) + λ)−1

)∥∥ = 0

whenever k ∈ N0 and λ ≥ C. The same result holds with α−(ε) instead of α+(ε).

Proof. As usual we will focus on the case of α+(ε) leaving the other case to the
reader. Let us choose the constant C > 0 such that Proposition 5.4 holds for both
α+(ε) and α0(ε).
Let λ ≥ C be fixed. The resolvent identity then yields that

( /∆+ 1)
(
( /∆+ α+(ε) + λ)−1 − ( /∆+ α0(ε) + λ)−1

)

= −( /∆+ 1)( /∆+ α+(ε) + λ)−1 · (T+(ε)− T0(ε)) · ( /∆+ α0(ε) + λ)−1

= −( /∆+ 1)( /∆+ α+(ε) + λ)−1 · dhε

dt
· A( /∆+ α0(ε) + λ)−1

An application of Proposition 5.4 then shows that we can restrict ourselves to proving
that

lim
εց0

∥∥σk
(dhε

dt

)∥∥ = 0
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for all k ∈ N0. But this is a consequence of Lemma 5.2. �

The last result, which we need in order to supply a proof of Theorem 5.1, provides
a trace norm estimate on the product of a resolvent and a compactly supported
operator valued map.

Proposition 5.6. Let m ∈ N with m > p0/2 be given. Then

sup
ε∈(0,1]

∥∥F (ε) · ( /∆+ 1)−m−1
∥∥
1
< ∞

Proof. As in the proof of Proposition 2.2 we compute that

F (ε) · ( /∆+ 1)−m−1 = 2A(1 + ∆2)
−

(m+1)p0
p0+1 · dhε

dt
(1 + ∆1)

− m+1
p0+1 ·G

m+1
p0+1

1 G
(m+1)p0

p0+1

2

for all ε ∈ (0, 1], where G1 = (1 + ∆1)( /∆+ 1)−1 and G2 = (1 + ∆2)( /∆+ 1)−1.
It therefore suffices to prove that

sup
ε∈(0,1]

∥∥dhε

dt
· (1 + ∆1)

−q
∥∥
1
< ∞

for a fixed real number q > 1/2, where ‖ · ‖1 : L 1(L2(R)) → [0,∞) denotes the
trace norm associated with the Hilbert space L2(R).
Let ε ∈ (0, 1] be fixed and recall from (1.5) that there exists a K ∈ N such that

supp(
dh

dt
) ⊆ [−K,K]

where supp(·) takes the support of a function. It follows that the derivative of the
rescaled function hε : R → R satisfies

supp(
dhε

dt
) ⊆ [−K/ε,K/ε]

for all ε ∈ (0, 1].
It is therefore a consequence of [Sim05, Theorem 4.5] that there exists a constant

C > 0, which is independent of ε ∈ (0, 1], such that

∥∥dhε

dt
· (1 + ∆1)

−q
∥∥
1
≤ C · sup

t0∈R

∣∣dhε

dt
(t0)

∣∣ · 2(K/ε+ 1)

To continue, we note that

sup
t0∈R

∣∣dhε

dt
(t0)

∣∣ = ε · sup
t0∈R

∣∣dh
dt

(t0)
∣∣

We therefore obtain that
∥∥dhε

dt
· (1 + ∆1)

−q
∥∥
1
≤ C · sup

t0∈R

∣∣dh
dt

(t0)
∣∣ · 2(K + ε)

This estimate proves the lemma. �

We are now ready to prove the main result of this Section. It provides a good
first approximation to the homological index and shows how our invariance result
in the rescaling parameter ε > 0 plays an important role. We restate the result here
for the convenience of the reader:
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Theorem 5.2. Let m ∈ N with m > p0/2 be given. There exists a constant C > 0
such that

H-Indm
λ (D+) = lim

εց0
Tr

(
m · λm · F (ε) ·

(
/∆+ α0(ε) + λ

)−m−1
)

for all λ ≥ C.

Proof. Let us choose the constant C > 0 such that Proposition 5.4 holds for α+(ε),
α−(ε) and α0(ε) and furthermore such that Proposition 5.5 holds for α+(ε) and
α−(ε).
Let λ ≥ C. By the definition of the homological index, by Theorem 4.1, and by

the basic identities in (5.3) we have that

H-Indm
λ (D+)

= λm · lim
εց0

Tr
(
(λ+D−(ε)D+(ε))

−m − (λ+D+(ε)D−(ε))
−m

)

= λm · lim
εց0

( m∑

j=1

Tr
(
( /∆+ α−(ε) + λ)−jF (ε)( /∆+ α+(ε) + λ)−m+j−1

))

= λm · lim
εց0

( m∑

j=1

Tr
(
F (ε) · ( /∆+ α+(ε) + λ)−m+j−1 · ( /∆+ α−(ε) + λ)−j

))

Let thus j ∈ {1, . . . , m} be fixed. It then suffices to show that

0 = lim
εց0

∥∥F (ε) · ( /∆+ α+(ε) + λ)−m+j−1 · ( /∆+ α−(ε) + λ)−j

− F (ε) · ( /∆+ α0(ε) + λ)−m−1
∥∥
1

But this is now a consequence of Proposition 5.4, Proposition 5.5, and Proposition
5.6. �

6. Resolvent expansions of the homological index

The starting point for this Section is the formula for the homological index:

H-Indm
λ (D+) = m · λm · lim

εց0
Tr

(
F (ε) ·

(
/∆+ α0(ε) + λ

)−m−1)
(6.1)

which we obtained in Section 5. For a given ε ∈ (0, 1], it is now our aim to find an
explicit power-series expansion of the integrand

F (ε) ·
(
/∆+ α0(ε) + λ

)−m−1

The preliminary form of this expansion will mainly rely on the results in Appendix
A and Appendix B. In the next subsection we shall then give the more explicit form
of the individual terms in our expansion.
We recall from (5.1) and (5.2) that

α0(ε) = T1(ε) + T0(ε) : D(T1(ε)) → H

where T0(ε) := h2
εA

2 and T1(ε) : D(T1(ε)) → L2(R, H2) is the closure of the anti-
commutator

D2hεA+ hεAD2 : H
∞ → H

In order to compute the integrand in (6.1) we now introduce an extra parameter.
Thus, for each z ∈ C and each ε ∈ (0, 1] we define

α0(ε, z) := z · T1(ε) + z2 · T0(ε) : D(T1(ε)) → L2(R, H2)
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and it follows immediately that α0(ε, ·) : C → OP1( /∆) defines a holomorphic family
in the sense of Definition A.2 (the compact Hausdorff space X is here just a point).
Furthermore, since m > p0/2 we know that

F (ε) · ( /∆+ 1)−m−1 ∈ L
1(L2(R, H2))

Finally, we clearly have that

sup
ε∈(0,1] , z∈B2(0)

‖α0(ε, z)( /∆+ 1)−1/2‖ < ∞

We may thus apply Proposition B.2 to obtain the following result:

Proposition 6.1. Let m ∈ N with m > p0/2 be given and let λ ≥ 1 be a constant
with √

λ > sup
ε∈(0,1] , z∈B2(0)

‖α0(ε, z)( /∆+ 1)−1/2‖

Then, for each ε ∈ (0, 1], we have that

F (ε) ·
(
/∆+ α0(ε) + λ

)−m−1
=

∞∑

l=0

1

l!
F (ε) · d

l

dz

(
/∆+ α0(ε, ·) + λ

)−m−1∣∣
z=0

where the sum converges absolutely in trace norm.

In the next subsection we will derive a more tangible expression for the derivatives

dl

dz

(
/∆+ α0(ε, ·) + λ

)−m−1∣∣
z=0

which appear in our resolvent expansion. We will derive this expression in a more
abstract context since the more general result may be useful elsewhere.

6.1. Higher derivatives of resolvents. Throughout this Section we let H be a
separable Hilbert space and ∆ : D(∆) → H be a positive unbounded operator. On
top of this data, we will consider two pseudodifferential operators T1 ∈ OP1(∆) and
T0 ∈ OP0(∆). Finally, we let U ⊆ C be a bounded open neighborhood of 0 ∈ C.
We define the holomorphic map

α : U → OP1(∆) α(z) := zT1 + z2T0 : D(T1) → H (6.2)

and we fix a λ > 0 such that the resolvent

Rλ := (∆ + α + λ)−1 : U → OP−2(∆)

is well-defined and holomorphic, see Lemma A.4.
Let us also define the derivatives

dα

dz

∣∣
z
:= T1 + 2zT0 and

d2α

dz

∣∣
z
:= 2T0

for all z ∈ U . All the higher derivatives are trivial.
In this Section we are interested in computing the higher derivatives of an arbitrary
power of the resolvent, thus the holomorphic map

dl

dz
Rm+1

λ : U → L (H)

for each m ∈ N0 and each l ∈ N.
For each j ∈ N we let C[Nj ] denote the vector space with a standard basis vector

δK for each K ∈ Nj . For j = 0 we define C[N0] := Cδ∅ := C.
We start with a convenient definition:
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Definition 6.2. For each j ∈ N and each K ∈ Nj we define the holomorphic
operator valued map

〈Rm+1
λ ; δK〉 :=

∑

M∈Nj+1, |M |=m+1+j

(−1)j · Rm1
λ · d

k1α

dz
Rm2

λ · . . . · d
kjα

dz
R

mj+1

λ

: U → L (H)

For j = 0, define 〈Rm+1
λ ; δ∅〉 := Rm+1

λ . By linearity we obtain a holomorphic operator
valued map 〈Rm+1

λ ,Θ〉 : U → L (H) for each j ∈ N0 and each Θ ∈ C[Nj].

Let us now compute the first derivative of the map defined above. We introduce
the operations

s : C[Nj ] → C[Nj+1] s : δK 7→
j+1∑

i=1

δ(k1,...,1,ki,...,kj) and

e : C[Nj] → C[Nj ] e : δK 7→
j∑

i=1

δ(k1,...,ki+1,...,kj)

(6.3)

In particular we note that s(δ∅) := δ1 and e(δ∅) := 0.

Lemma 6.3. Let j ∈ N0 and Θ ∈ C[Nj] be given. Then

d

dz
〈Rm+1

λ ; Θ〉 = 〈Rm+1
λ ; (s+ e)(Θ)〉

Proof. Suppose first that j = 0. Then

d

dz
Rm+1

λ =
m∑

k=0

Rk
λ ·

dRλ

dz
· Rm−k

λ

= −
m∑

k=0

Rk+1
λ · dα

dz
· Rm−k+1

λ = 〈Rm+1
λ ; δ1〉

For general j ∈ N and K ∈ C[Nj], the Leibniz rule then yields the desired formula

d

dz
〈Rm+1

λ ; δK〉 =
j+1∑

i=1

〈Rm+1
λ ; δ(k1,...,1,ki,...,kj)〉

+

j∑

i=1

〈Rm+1
λ ; δ(k1,...,ki+1,...,kj)〉

.

�

The desired explicit formula for the higher derivatives of powers of resolvents now
follows immediately by Lemma 6.3 and an induction argument.

Proposition 6.4. Let l, m ∈ N0 be given. Then dl

dz
Rm+1

λ = 〈Rm+1
λ ; (s+ e)l(δ∅)〉.
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7. Isolation of the interpolating function

In this Section we will continue our investigation of the derivatives appearing in
the resolvent expansion of Proposition 6.1. We are thus interested in the bounded
operators of the form

dl

dz

(
/∆+ α0(ε, ·) + λ

)−m−1∣∣
z=0

l, m ∈ N0 (7.1)

where we recall that the holomorphic map

αε := α0(ε, ·) : C → OP1( /∆)

is defined by putting αε(z) equal to the closure of

z · (D2hεA+ AhεD2) + z2 · h2
εA

2 : H∞ → H

for all z ∈ C and all ε ∈ (0, 1]. More precisely we will compare the derivative in
(7.1) to the derivative

hl
ε ·

dl

dz

(
/∆+ β + λ

)−m−1∣∣
z=0

where the holomorphic map
β : C → OP1( /∆)

is defined by letting β(z) equal the closure of

z · (D2A + AD2) + z2 · A2 : H∞ → H

for all z ∈ C. This comparison will take place in the adiabatic limit where ε tends
to zero from above and will rely on the explicit formula for derivatives of powers
of resolvents obtained in Proposition 6.4. The result of this Section can thus be
interpreted as a noncommutative analogue of the chain rule in calculus. Indeed,
instead of a real parameter µ ∈ R we have rescaled the map β by the real valued
function hε and we are then investigating the higher derivatives.
Let us once and for all fix a constant λ0 ≥ 1 such that the resolvents

R(ε) : B2(0) → OP−2( /∆) R(ε) : z 7→ ( /∆+ αε(z) + λ0)
−1 and

S : B2(0) → OP−2( /∆) S : z 7→ ( /∆+ β(z) + λ0)
−1

are well-defined and holomorphic for all ε ∈ (0, 1]. We remark that even though
R(ε) and S depends on λ0 we have surpressed this dependence from the notation.
The main goal of this Section is then to prove the following theorem:

Theorem 7.1. Let l ∈ N0 and m ∈ N0 be given. We then have the convergence
result:

lim
εց0

∥∥( /∆+ 1)m+1
( dl
dz

Rm+1(ε)
∣∣
z=0

− hl
ε ·

dl

dz
Sm+1

∣∣
z=0

)∥∥ = 0

In words the content of the above theorem is that it is possible to isolate the
interpolating function hε in the adiabatic limit. More precisely, we observe that in

the expression for the derivative dl

dz
R(ε)

∣∣
z=0

, the interpolating function hε appears

in a complicated combination with resolvents of /∆ and the operator A. On the

contrary, in the expression hl
ε · d

l

dz
Sm+1

∣∣
z=0

, the interpolating function hε only appears
at the very front. The result of Theorem 7.1 therefore provides a key step in our
computation of the homological index.

Let us begin the proof of the above theorem by making a basic observation:
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Lemma 7.1.

dαε

dz
(0) = hε ·

dβ

dz
(0) and

d2αε

dz
(0) = h2

ε ·
d2β

dz
(0)

We continue by introducing some convenient notation:

Definition 7.2. Let m ∈ N0. For each j ∈ N and y1, . . . , yj ∈ OP2( /∆) we define
the pseudodifferential operator of order −2m− 2,

〈y1, . . . , yj〉 := (−1)j
∑

M∈Nj+1, |M |=m+j+1

( /∆+λ0)
−m1y1·. . .·( /∆+λ0)

−mjyj ·( /∆+λ0)
−mj+1

For j = 0, we put 〈y1, . . . , yj〉 := ( /∆+ λ0)
−m−1.

The relation between the above notation and the notation introduced in Definition
6.2 is given by the following observation:

〈dk1β
dz

(0), . . . ,
dkjβ

dz
(0)

〉
= 〈Sm+1; δK〉(0) and

〈dk1αε

dz
(0), . . . ,

dkjαε

dz
(0)

〉
= 〈Rm+1(ε); δK〉(0)

for all j ∈ N0 and K = (k1, . . . , kj) ∈ N
j . We now compare the pseudodifferential

operators

〈Rm+1(ε); δK〉(0) and h|K|
ε · 〈Sm+1; δK〉(0)

where |K| := k1 + . . .+ kj :

Lemma 7.3. Let m ∈ N0, j ∈ N, K ∈ Nj and ε ∈ (0, 1] be given. Then

〈Rm+1(ε); δK〉(0)− h|K|
ε · 〈Sm+1; δK〉(0)

=

j∑

p=1

〈dk1αε

dz
(0), . . . ,

dkp−1αε

dz
(0), [ /∆, hkp+...+kj

ε ],
dkpβ

dz
(0), . . . ,

dkjβ

dz
(0)

〉

Proof. We will prove that

〈dk1αε

dz
(0), . . . ,

dkjαε

dz
(0)

〉

=
〈dk1αε

dz
(0), . . . ,

dkl−2αε

dz
(0), hkl−1+...+kj

ε

dkl−1β

dz
(0),

dklβ

dz
(0), . . . ,

dkjβ

dz
(0)

〉

+

j∑

p=l

〈dk1αε

dz
(0), . . . ,

dkp−1αε

dz
(0), [ /∆, hkp+...+kj

ε ],
dkpβ

dz
(0), . . . ,

dkjβ

dz
(0)

〉

(7.2)

for all l ∈ {1, . . . , j + 1}.
The proof runs by induction on l ∈ {1, . . . , j + 1}, starting with l = j + 1 and

moving downwards.
For l = j + 1, the formula reads

〈dk1αε

dz
(0), . . . ,

dkjαε

dz
(0)

〉
=

〈dk1αε

dz
(0), . . . , hkj

ε

dkjβ

dz
(0)

〉
,

but this identity is a consequence of Lemma 7.1.
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Suppose now that the formula in (7.2) holds for some l ∈ {2, . . . , j+1}. It is then
enough to show that

〈dk1αε

dz
(0), . . . ,

dkl−2αε

dz
(0), hkl−1+...+kj

ε

dkl−1β

dz
(0),

dklβ

dz
(0), . . . ,

dkjβ

dz
(0)

〉

=
〈dk1αε

dz
(0), . . . ,

dkl−3αε

dz
(0), hkl−2+...+kj

ε

dkl−2β

dz
(0),

dkl−1β

dz
(0), . . . ,

dkjβ

dz
(0)

〉

+
〈dk1αε

dz
(0), . . . ,

dkl−2αε

dz
(0), [ /∆, hkl−1+...+kj

ε ],
dkl−1β

dz
(0), . . . ,

dkjβ

dz
(0)

〉

(7.3)

To this end, we first notice that

hkl−2+...+kj
ε

dkl−2β

dz
(0)(ξ) =

dkl−2αε

dz
(0)hkl−1+...+kj

ε (ξ)

for all ξ ∈ H∞. Indeed, this follows since β(z)hε(ξ) = hεβ(z)(ξ) for all z ∈ C.
We then let ml−1 ∈ N be given and compute as follows:

( /∆+ λ0)
−ml−1hkl−1+...+kj

ε = hkl−1+...+kj
ε ( /∆+ λ0)

−ml−1 +
[
( /∆+ λ0)

−ml−1 , hkl−1+...+kj
ε

]

= hkl−1+...+kj
ε ( /∆+ λ0)

−ml−1

−
ml−1∑

n=1

( /∆+ λ0)
−n[ /∆, hkl−1+...+kj

ε ]( /∆+ λ0)
−(ml−1+1−n)

These two computations clearly imply the identity in (7.3), and the lemma is
therefore proved. �

It is now our intention to estimate the size of the right-hand side of the identity
in Lemma 7.3. We therefore analyze the general size of the pseudodifferential op-
erators appearing in Definition 7.2. Recall the introduction of the automorphism
σ : OP0( /∆) → OP0( /∆) after Theorem 5.1.

Lemma 7.4. Let m ∈ N0, j ∈ N, and let y1, . . . , yj ∈ OP2( /∆) be given. Then we
have the norm estimate

‖( /∆+ 1)m+1〈y1, . . . , yj〉‖

≤
(
j +m

j

)
· sup
I∈Nj , 1≤ij≤...≤i1≤m+1

(
‖σi1(( /∆+ λ0)

−1y1)‖

· . . . · ‖σij(( /∆+ λ0)
−1yj)‖

)

Proof. Define the bounded operator F := ( /∆+1)( /∆+λ0)
−1 and notice that ‖F‖ ≤ 1

since λ0 ≥ 1 by definition.
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Let ξ ∈ H∞. We may compute as follows:

( /∆+ 1)m+1〈y1, . . . , yj〉(ξ)
=

∑

M∈Nj+1, |M |=m+j+1

(−1)j · ( /∆+ 1)m+1( /∆+ λ0)
−m1y1

· . . . · ( /∆+ λ0)
−mjyj · ( /∆+ λ0)

−mj+1(ξ)

=
∑

M∈Nj+1, |M |=m+j+1

(−1)j · Fm1−1σm+2−m1(( /∆+ λ0)
−1y1)

· . . . · Fmj−1σm+j+1−m1−...−mj (( /∆+ λ0)
−1yj)

· Fmj+1(ξ)

We can thus estimate the operator norm in the following way:

‖( /∆+ 1)m+1〈y1, . . . , yj〉‖
≤

∑

M∈Nj+1, |M |=m+j+1

‖σm+2−m1(( /∆+ λ0)
−1y1)‖

· . . . · ‖σm+j+1−m1−...−mj (( /∆+ λ0)
−1yj)‖

≤
∑

M∈Nj+1, |M |=m+j+1

sup
I∈Nj , 1≤ij≤...≤i1≤m+1

(
‖σi1(( /∆+ λ0)

−1y1)‖

· . . . · ‖σij(( /∆+ λ0)
−1yj)‖

)

=

(
j +m

j

)
sup

I∈Nj , 1≤ij≤...≤i1≤m+1

‖σi1(( /∆+ λ0)
−1y1)‖ · . . . · ‖σij(( /∆+ λ0)

−1yj)‖

This proves the lemma. �

For each ε ∈ (0, 1], we define

Θ(ε) := sup
i∈{1,...,m+1}

∥∥σi
(
( /∆+ 1)−1[ /∆, hε]

)∥∥

Lemma 7.5. Let m ∈ N0. There exists a constant C > 0, which is independent of
λ0 ≥ 1, such that the estimate

∥∥( /∆+ 1)m+1
(
〈Rm+1(ε); δK〉(0)− h|K|

ε · 〈Sm+1; δK〉(0)
)∥∥

≤ λ
−|K|/2
0 · C |K| ·Θ(ε)

holds for all j ∈ N, all K ∈ {1, 2}j and all ε ∈ (0, 1].

Proof. By Lemma 5.1 we may choose a constant C0 ≥ 1 such that

‖σi(hε)‖ ≤ C0 ,
∥∥( /∆+ 1)−1/2σi(

dβ

dz
(0))

∥∥ ≤ C0 ,
∥∥σi(

d2β

dz
(0))

∥∥ ≤ C0

for all i ∈ {0, 1, . . . , m + 1} and all ε ∈ (0, 1]. Let then j ∈ N, K ∈ {1, 2}j, and
ε ∈ (0, 1] be given. By Lemma 7.3, it is enough to estimate the quantity

j∑

p=1

∥∥∥( /∆+ 1)m+1 ·
〈dk1αε

dz
(0), . . . ,

dkp−1αε

dz
(0), [ /∆, hkp+...+kj

ε ],
dkpβ

dz
(0), · . . . · d

kjβ

dz
(0)

〉∥∥∥
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Next,
∥∥σi

(
( /∆+ 1)−1[ /∆, hkp+...+kj

ε ]
)∥∥

≤
kp+...+kj−1∑

r=0

‖σi−1(hε)‖r ·
∥∥σi

(
( /∆+ 1)−1[ /∆, hε]

)∥∥ · ‖σi(hε)‖kp+...+kj−1−r

≤ Θ(ε) · Ckp+...+kj−1
0 · |K|

for all i ∈ {1, . . . , m+1}. Furthermore, since dkβ
dz

is a pseudodifferential operator of
order 2− k, we have that

∥∥σi
(
( /∆+ λ0)

−1d
kαε

dz
(0)

)∥∥ =
∥∥σi

(
( /∆+ λ0)

−1d
kβ

dz
(0)hk

ε

)∥∥ ≤ λ
−k/2
0 · C1+k

0 and

∥∥σi
(
( /∆+ λ0)

−1d
kβ

dz
(0)

)∥∥ ≤ λ
−k/2
0 · C0

for all k ∈ {1, 2}, all i ∈ {1, . . . , m + 1}. An application of Lemma 7.4 therefore
yields that

j∑

p=1

∥∥∥( /∆+ 1)m+1 ·
〈dk1αε

dz
(0), . . . ,

dkp−1αε

dz
(0), [ /∆, hkp+...+kj

ε ],
dkpβ

dz
(0), · . . . · d

kjβ

dz
(0)

〉∥∥∥

≤
j∑

p=1

(
j + 1 +m

j + 1

)
· λ−|K|/2

0 · Cj+|K|−1
0 ·Θ(ε) · |K|

≤ |K|2 · 2|K|+1+m · λ−|K|/2
0 · C2|K|

0 ·Θ(ε)
(7.4)

The estimates in (7.4) prove the present lemma. �

Remark 7.6. With more care it is possible to obtain a better estimate of the left

hand side of Lemma 7.5 in so far that λ
−|K|/2
0 can be replaced by λ

−(|K|+1)/2
0 . This

can be done at the expense of replacing ( /∆ + 1)−1 in the expression for Θ(ε) by
( /∆ + 1)−1/2. We do not present this estimate here, since it is irrelevant for the
developments of the present text.

Proposition 7.7. Let m ∈ N0. There exists a constant C > 0, which is independent
of λ0 ≥ 1, such that the estimate

∥∥∥( /∆+ 1)m+1 d
l

dz

(
Rm+1(ε)− hl

εS
m+1

)
(0)

∥∥∥ ≤ Θ(ε) · l! · C l · λ−l/2
0

holds for all l ∈ N0 and all ε ∈ (0, 1].

Proof. The inequality is true for l = 0 since β(0) = αε(0) = 0 for all ε ∈ (0, 1].
By Proposition 6.4 we have that

( /∆+ 1)m+1 d
l

dz

(
Rm+1(ε)− hl

εS
m+1

)
(0)

= ( /∆+ 1)m+1
(
〈Rm+1(ε); (s+ e)l(δ∅)〉(0)− hl

ε · 〈Sm+1; (s+ e)l(δ∅)〉(0)
)

for all l ∈ N and all ε ∈ (0, 1]. Recall here that the maps s and e are defined in
(6.3).
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For each l ∈ N we now notice that (s + e)l(δ∅) can be written as a finite sum of
basis vectors δK , where each subset K has length |K| = l. Furthermore, there are
clearly less than 2l · l! elements in this sum. Here each δK is chosen to have the
coefficient 1 even though there may of course be many repetitions in the sum we are
looking at.
By Lemma 7.5 and the above observations, we may thus choose a constant C0 > 0,

which is independent of λ0 ≥ 1, such that

∥∥( /∆+ 1)m+1 d
l

dz

(
Rm+1(ε)− hl

εS
m+1

)
(0)

∥∥ ≤ Θ(ε) · λ−l/2
0 · C l

0 · l! · 2l

for all l ∈ N and all ε ∈ (0, 1].
This estimate proves the present proposition. �

We emphasize that the constant C > 0 depends on the fixed nonnegative integer
m ∈ N0. It is however independent of both λ0 ≥ 1, l ∈ N0, and ε ∈ (0, 1].
The result of Lemma 5.2 implies that

Θ(ε) = sup
i∈{1,...,m+1}

∥∥σi
(
( /∆+ 1)−1[ /∆, hε]

)∥∥

becomes zero in the limit where ε tends to zero from above. The main Theorem 7.1
announced in the beginning of this Section is therefore a consequence of the above
Proposition 7.7.

8. Second approximation of the homological index

In this Section we will recollect what we have obtained thus far. Let us therefore
recall that A : H2 → H2 is a pseudodifferential operator of order 0 with respect
to ∆2 := D2

2 : D(∆2) → H2 and that h : R → R is a smooth bounded function
such that dh

dt
: R → R has compact support. Recall furthermore that A satisfies the

relative Schatten class conditions described in Assumption 1.1 with respect to ∆2

and a fixed number p0 ∈ (0,∞). We let D1 : D(D1) → L2(R) denote the closure
of the unbounded operator i d

dt
: C∞

c (R) → L2(R). As usual we will also apply the
notation D1 and D2 for the closures of

D1⊗1 : D(D1)⊗H2 → L2(R, H2) and 1⊗D2 : L
2(R)⊗D(D2) → L2(R, H2)

Let m ∈ N with m > p0/2 be given. The main theorem of this Section expresses
the homological index in degree m of the closed unbounded operator

D+ := −iD1 +D2 + hA : D(D1) ∩ D(D2) → L2(R, H2)

as a power-series expansion. Each term in this expansion is a product where the first
term only contains a multiplication operator in the flow parameter and the second
term only contains operators on the ‘inner’ Hilbert space H2 and differentiation
with respect to the flow parameter (there are no multiplication operators in the flow
parameter in the second term). This will make it possible to compute the trace in
the flow direction which will take the form of an integral over the real line. This
computation will be carried out in the next Section.
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Theorem 8.1. Let m ∈ N with m > p0/2 be given. Then there exists a constant
C > 0 such that

H-Indm
λ (D+) = m · λm · lim

εց0

∞∑

l=0

1

l!
· Tr

(
F (ε) · hl

ε ·
dl

dz
( /∆+ β + λ)−m−1

∣∣
z=0

)

for all λ ≥ C and where the sum converges absolutely for all ε ∈ (0, 1].

Proof. By Theorem 5.1 there exists a constant C0 > 0 such that

H-Indm
λ (D+) = m · λm · lim

εց0
Tr

(
F (ε) · ( /∆+ α0(ε) + λ)−m−1

)

for all λ ≥ C0.
By Proposition 6.1 there exists a constant C1 > 0 such that

m · λm · Tr
(
F (ε) · ( /∆+ α0(ε) + λ)−m−1

)

= m · λm ·
∞∑

l=0

1

l!
· Tr

(
F (ε) · d

l

dz
( /∆+ α0(ε, ·) + λ)−m−1

∣∣
z=0

)

where the sum converges absolutely for all ε ∈ (0, 1] and all λ ≥ C1.
By Proposition 7.7 there exists a constant C2 > 0 such that

∥∥( /∆+ 1)m+1 · d
l

dz

(
( /∆+ α0(ε, ·) + λ)−m−1 − hl

ε · ( /∆+ β + λ)−m−1
)∣∣

z=0

∥∥

≤ Θ(ε) · l! · (1/2)l
(8.1)

for all λ ≥ C2, all l ∈ N0 and all ε ∈ (0, 1], where

Θ(ε) = sup
i∈{1,...,m+1}

‖σi(( /∆+ 1)−1[ /∆, hε])‖

To ease the notation, define the numbers

al(λ, ε) := Tr
(
F (ε) · d

l

dz
( /∆+ α0(ε, ·) + λ)−m−1

∣∣
z=0

)
and

bl(λ, ε) := Tr
(
F (ε) · hl

ε ·
dl

dz
( /∆+ β + λ)−m−1

∣∣
z=0

)

for all λ ≥ C2 and all ε ∈ (0, 1].
It then follows by the estimate in (8.1) that the sum m · λm

∑∞
l=0

1
l!
· (al(λ, ε) −

bl(λ, ε)) converges absolutely, and furthermore that

m · λm ·
∞∑

l=0

1

l!
· |al(λ, ε)− bl(λ, ε)| ≤ m · λm · 2 · ‖F (ε)( /∆+ 1)−m−1‖1 ·Θ(ε)

for all λ ≥ C2 and all ε ∈ (0, 1].
From Lemma 5.2 and Proposition 5.6 we know that

lim
εց0

(
m · λm · 2 · ‖F (ε)( /∆+ 1)−m−1‖1 ·Θ(ε)

)
= 0

Therefore, we may conclude that

m · λm · lim
εց0

( ∞∑

l=0

1

l!

∣∣al(λ, ε)− bl(λ, ε)
∣∣
)
= 0

for all λ ≥ C2.
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Put now C := max{C0, C1, C2} and let λ ≥ C be given. It then clearly follows by
the above computations that

H-Indm
λ (D+) = m · λm · lim

εց0

( ∞∑

l=0

1

l!
· al(λ, ε)

)
= m · λm · lim

εց0

( ∞∑

l=0

1

l!
· bl(λ, ε)

)

This proves the present theorem. �

9. Integration over the flow parameter

As mentioned in the beginning of Section 8, the purpose of this Section is to
integrate the expression for the homological index, which we obtained in Theorem
8.1, over the flow parameter. This will provide us with a new formula for the homo-
logical index which only involves operators on the ‘inner’ Hilbert H2. A particular
feature of this formula is also that it does no longer involve the rescaling parameter
ε ∈ (0, 1].
Recall our notation A+ := h+ · A = h(∞) ·A and A− := h− ·A = h(−∞) · A.

Theorem 9.1. Let m ∈ N with m > p0/2 be given. There exists a constant C > 0
such that

H-Indm
λ (D+) = λm · Cm+1/2 ·

∞∑

l=0

1

(l + 1)!
· Tr

( dl

dr

(
A+ ·

(
λ+ (D2 + r ·A+)

2
)−m−1/2

− A− ·
(
λ+ (D2 + r · A−)

2
)−m−1/2

)∣∣∣
r=0

)

where the sum converges absolutely for all λ ≥ C and the constant is given by
Cm+1/2 :=

m
π
·
∫∞

−∞
(1 + η2)−m−1 dη.

The starting point for proving Theorem 9.1 is the main Theorem 8.1 which we
proved in Section 8. This latter theorem provides a power series expansion of the
homological index where each entry in the sum has the form

1

l!
· Tr

(
F (ε) · hl

ε ·
dl

dr
( /∆+ β + λ)−m−1

∣∣
r=0

)

for l ∈ N0 and ε ∈ (0, 1]. Note that we have replaced the complex parameter
z by a real parameter r. It is therefore now our main interest to compute the
operator trace appearing in the above expression. This computation will rely on the
factorization of the operator trace associated to a tensor product of Hilbert spaces.
This factorization result is described in Appendix C. For the convenience of the
reader we recall that

F (ε) = 2 · dhε

dt
· A : L2(R, H2) → L2(R, H2) for all ε ∈ (0, 1]

and that β(r) is defined as the closure of

r · (D2A + AD2) + r2 ·A2 : L2(R, H2)
∞ → L2(R, H2)

for all r ∈ R. We remark that β(r) is a selfadjoint unbounded operator and further-
more that

β(r) + /∆ = ∆1 + (D2 + rA)2 : D( /∆) → L2(R, H2)
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is a positive unbounded operator for all r ∈ R. Recall here that ∆1 : D(∆1) →
L2(R, H2) is defined as the closure of the Laplacian

−d2

dt
⊗ 1 : C∞

c (R)⊗H2 → L2(R, H2)

Let us also introduce the unbounded selfadjoint operators β+(r) and β−(r) defined
as the closures of

r · (D2A+ + A+D2) + r2A2
+ : H∞

2 → H2 and

r · (D2A− + A−D2) + r2A2
− : H∞

2 → H2

respectively, for all r ∈ R, where we recall that A+ = h+A and A− = h−A.
Notice that the dense subspaces H∞

2 ⊆ H2 and L2(R, H2)
∞ ⊆ L2(R, H2) are

defined by

H∞
2 := ∩∞

k=0D(∆
k/2
2 ) and L2(R, H2)

∞ := ∩∞
k=0D( /∆

k/2
)

respectively.
We will in this Section only consider a fixed m ∈ N with m > p0/2.

Lemma 9.1. Let l ∈ N0, r ∈ R, λ > 0, and ε ∈ (0, 1] be given. Then

F (ε) · hl
ε · ( /∆+ β(r) + λ)−m−1 =

1

m!
·
∫ ∞

0

F (ε) · hl
ε · sm · exp

(
− s( /∆+ β(r) + λ)

)
ds

where the integral converges absolutely in trace norm.

Proof. We start by rewriting the power of the resolvent ( /∆ + β(r) + λ)−m−1 using
the Laplace transform, thus

( /∆+ β(r) + λ)−m−1 =
1

m!
·
∫ ∞

0

sm · exp
(
− s( /∆+ β(r) + λ)

)
ds

Notice now that the operator

F (ε) · hl
ε · ( /∆+ β(r) + λ)−m−1+δ : L2(R, H2) → L2(R, H2)

is of trace class for all δ ∈ (0, 1/2), see Proposition 2.2 and the results of Appendix
A (recall here that m > p0/2). It therefore suffices to show that the integral

∫ ∞

0

sm · ( /∆+ β(r) + λ)m+1−δ · exp
(
− s( /∆+ β(r) + λ)

)
ds

converges absolutely in operator norm for some δ ∈ (0, 1/2). But this follows by an
application of the spectral theorem for selfadjoint unbounded operators. �

Recall that L2(R, H2) may be regarded as L2(R)⊗̂H2. We may thus apply the
bounded operator Tr ⊗ 1 : L 1(L2(R)⊗̂H2) → L 1(H2) to any trace class operator
T : L2(R, H2) → L2(R, H2), see Appendix C. We are particularly interested in the
trace class operator which we analyzed in Lemma 9.1.

Lemma 9.2. Let l ∈ N0, r ∈ R, λ > 0, and ε ∈ (0, 1] be given. Then

(Tr⊗ 1)
(
F (ε) · hl

ε · ( /∆+ β(r) + λ)−m−1
)

=
(hl+1

+ − hl+1
− ) · A

π · (l + 1)
·
∫ ∞

−∞

(λ+ (D2 + rA)2 + ξ2)−m−1 dξ
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Proof. By Lemma 9.1 and Proposition C.2 we have that

(Tr⊗ 1)
(
F (ε) · hl

ε · ( /∆+ β(r) + λ)−m−1
)

=
1

m!
·
∫ ∞

0

sm · (Tr⊗ 1)
(
F (ε) · hl

ε · exp
(
− s( /∆+ β(r) + λ)

))
ds

Let now s ∈ (0,∞) be given. Then

(Tr⊗ 1)
(
F (ε) · hl

ε · exp(−s( /∆+ β(r) + λ))
)

= 2A · exp
(
− s(λ+ (D2 + rA)2)

)
· Tr

(dhε

dt
· hl

ε · exp(−s∆1)
) (9.1)

where we have applied the identity

exp
(
− s( /∆+ β(r) + λ)

)
= exp

(
− s(λ+ (D2 + rA)2)

)
· exp(−s∆1)

But the trace on the right hand side of (9.1) is given by

Tr
(dhε

dt
· hl

ε · exp(−s∆1)
)
=

1

2π
·
∫ ∞

−∞

dhε

dt
· hl

ε dt ·
∫ ∞

−∞

exp(−sξ2)dξ

=
hl+1
+ − hl+1

−

2π · (l + 1)
·
∫ ∞

−∞

exp(−sξ2) dξ

Recollecting the above identities, we obtain that

(Tr⊗ 1)
(
F (ε) · hl

ε · ( /∆+ β(r) + λ)−m−1
)

=
1

m!
·
∫ ∞

0

(
sm · 2A · exp

(
− s(λ+ (D2 + rA)2)

)

· h
l+1
+ − hl+1

−

2π · (l + 1)
·
∫ ∞

−∞

exp(−sξ2) dξ
)
ds

=
hl+1
+ − hl+1

−

π · (l + 1) ·m!
· A ·

∫ ∞

0

∫ ∞

−∞

sm · exp
(
− s(λ+ (D2 + rA)2 + ξ2)

)
dξds

=
hl+1
+ − hl+1

−

π · (l + 1)
·A ·

∫ ∞

−∞

(λ+ (D2 + rA)2 + ξ2)−m−1 dξ

where we notice that the last identity follows by changing the order of integration.
This operation is allowed since the integrals involved converge absolutely in operator
norm.
The lemma is now proved. �

We notice that the quantity in Lemma 9.2 is independent of the given ε ∈ (0, 1].
The next result reduces the computation of the homological index to a computation
on the ‘inner’ Hilbert space H2.

Proposition 9.3. Let l ∈ N0, λ > 0, and ε ∈ (0, 1] be given. Then

(Tr⊗ 1)
(
F (ε) · hl

ε ·
dl

dr
( /∆+ β + λ)−m−1

∣∣
r=0

)

=
1

π · (l + 1)
·
∫ ∞

−∞

(1 + η2)−m−1 dη

· d
l

dr

(
A+(λ+ (D2 + rA+)

2)−m−1/2 −A−(λ+ (D2 + rA−)
2)−m−1/2

)∣∣∣
r=0
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Proof. By Proposition B.1 we obtain that r 7→ F (ε)·
(
/∆+β(r)+λ

)−m−1
is smooth in

trace norm on an open neighborhood of zero. Thus, since Tr⊗1 : L 1(L2(R)⊗̂H2) →
L 1(H2) is a bounded operator (by Proposition C.2) we have that

(Tr⊗ 1)
(
F (ε) · hl

ε ·
dl

dr
( /∆+ β + λ)−m−1

∣∣
r=0

)

=
dl

dr

(
(Tr⊗ 1)

(
F (ε) · hl

ε · ( /∆+ β + λ)−m−1
))∣∣∣

r=0

=
(hl+1

+ − hl+1
− ) ·A

π · (l + 1)
· d

l

dr

(∫ ∞

−∞

(
λ+ (D2 + rA)2 + ξ2

)−m−1
dξ
)∣∣∣

r=0

where the second identity follows by Lemma 9.2.
To prove the proposition it therefore suffices to verify that

hl
± · d

l

dr

(∫ ∞

−∞

(
λ+ (D2 + rA)2 + ξ2

)−m−1
dξ
)∣∣∣

r=0

=

∫ ∞

−∞

(1 + η2)−m−1 dη · d
l

dr

(
λ+ (D2 + rA±)

2
)−m−1/2

∣∣∣
r=0

But this is the content of the next lemma. �

Lemma 9.4. Let l ∈ N0, λ > 0 and µ ∈ R be given. Then we have the identity

µl · d
l

dr

( ∫ ∞

−∞

(
λ+ (D2 + rA)2 + ξ2

)−m−1
dξ
)∣∣∣

r=0

=

∫ ∞

−∞

(1 + η2)−m−1 dη · d
l

dr

(
λ+ (D2 + µrA)2

)−m−1/2
∣∣∣
r=0

Proof. By a change of variables we obtain that
∫ ∞

−∞

(
λ+ (D2 + rA)2 + ξ2

)−m−1
dξ =

∫ ∞

−∞

(1 + η2)−m−1 dη ·
(
λ+ (D2 + rA)2

)−m−1/2

Furthermore, by Lemma A.4 and Proposition B.3 we conclude that the map

f : R → L (H2) f : r 7→ (λ+ (D2 + rA)2)−m−1/2

is smooth in operator norm. It therefore follows by an application of the chain rule
that

µld
lf

dr
=

dlfµ
dr

where the smooth map fµ : R → L (H) is defined by fµ(r) := f(µ · r) for all r ∈ R.
This proves the lemma. �

The main Theorem 9.1 of this Section is now clearly a consequence of Proposition
9.3, Proposition C.2 and Theorem 8.1.

10. The integral trace formula for the homological index

We are now ready to prove the main theorem of this paper. We need to start by
proving a version of the main theorem where we assume that the scaling parameter
λ > 0 is large. It is necessary to apply this assumption to begin with since our
resolvent expansions only exist for large λ > 0. We will then be able to prove
the general version of our theorem by noticing that both sides of the integral trace
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formula have analytic extensions to the open subset C \ (−∞, 0] of the complex
plane.

Proposition 10.1. Let m ∈ N with m > p0/2 be given. There exists a constant
C > 0 such that

H-Indm
λ (D+) = λm · Cm+1/2 ·

∫ 1

0

Tr
(
A+(λ+ (D2 + r · A+)

2)−m−1/2

−A−(λ+ (D2 + r · A−)
2)−m−1/2

)
dr

for all λ ≥ C where the constant in front is given by Cm+1/2 := m
π
·
∫∞

−∞
(1 +

η2)−m−1 dη.

Proof. By Proposition B.1 and Proposition B.3 there exists a constant C0 > 0 such
that the maps

f±(λ, ·) : B2(0) → L
1(H2) f±(λ, z) := A±(λ+ (D2 + zA±)

2)−m−1/2

are holomorphic for all λ ≥ C0. It therefore follows that
∫ 1

0

Tr
(
f±(λ, r)

)
dr =

∞∑

l=0

1

(l + 1)!
Tr

( dl
dz

f±(λ, ·)
∣∣
z=0

)

=

∞∑

l=0

1

(l + 1)!
Tr

( dl
dr

f±(λ, ·)
∣∣
r=0

)

for all λ ≥ C0, where z ∈ B2(0) is a complex parameter and r ∈ (−2, 2) is a real
parameter.
However, by Theorem 9.1 there exists a constant C1 > 0 such that

H-Indm
λ (D+) = λm · Cm+1/2 ·

∞∑

l=0

1

(l + 1)!
Tr

( dl

dr

(
f+(λ, ·)− f−(λ, ·)

)∣∣
r=0

)

for all λ ≥ C1.
Thus, for all λ ≥ max{C0, C1} we obtain that

H-Indm
λ (D+) = λm · Cm+1/2 ·

∫ 1

0

Tr
(
f+(λ, r)− f−(λ, r)

)
dr

This proves the theorem. �

As promised in the beginning of this Section we may remove the constraint on
the scaling parameter λ > 0 present in Proposition 10.1. This leads us to the main
theorem of this paper.

Theorem 10.1. Let m ∈ N with m > p0/2 be given. Then

H-Indm
λ (D+) = λm · Cm+1/2 ·

∫ 1

0

Tr
(
A+(λ+ (D2 + r · A+)

2)−m−1/2

−A−(λ+ (D2 + r · A−)
2)−m−1/2

)
dr

for all λ > 0 where the constant is given by Cm+1/2 :=
m
π
·
∫∞

−∞
(1 + η2)−m−1 dη.
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Proof. By [CGK13, Proposition 3.3] we have that the function

λ 7→ H-Indm
λ (D+) (0,∞) → C

has a holomorphic extension to C \ (−∞, 0].
Furthermore, by Proposition B.1 and Proposition B.3 (with the compact Haus-

dorff space X = [0, 1]) we know that the maps

λ 7→ λm · Cm+1/2

∫ 1

0

A±(λ+ (D2 + r · A±)
2)−m−1/2 dr (0,∞) → L

1(H2)

have extensions to C \ (−∞, 0] which are holomorphic in trace norm. As a conse-
quence we obtain that the functions

λ 7→ λm · Cm+1/2

∫ 1

0

Tr
(
A±(λ+ (D2 + r · A±)

2)−m−1/2
)
dr (0,∞) → C

have holomorphic extensions to C \ (−∞, 0].
By Theorem 10.1 there exists a constant C > 0 such that

H-Indm
λ (D+) = λm · Cm+1/2 ·

∫ 1

0

Tr
(
A+(λ+ (D2 + r · A+)

2)−m−1/2

−A−(λ+ (D2 + r · A−)
2)−m−1/2

)
dr

for all λ ≥ C. The result of the present theorem therefore follows by the uniqueness
of holomorphic extensions. �

Appendix A. Holomorphic families of pseudodifferential operators

In this appendix we are concerned with holomorphic families of abstract pseu-
dodifferential operators. This material will be used throughout this text and we
therefore expose it in a careful way. We will work in the general context where we
have a fixed positive unbounded operator ∆ : D(∆) → H which acts on a separable
Hilbert space H .
Recall the notation H∞ := ∩k∈N0D(∆k/2) of domains of the powers of ∆.

Definition A.1. Let n ∈ Z. A pseudodifferential operator of order n is a closed
unbounded operator T : D(T ) → H such that

(1) H∞ ⊆ D(T );
(2) T (ξ) ∈ H∞ for all ξ ∈ H∞;
(3) (1 + ∆)−n/2δk(T ) : H∞ → H extends to a bounded operator on H for all

k ∈ N0, where δ = [∆1/2, ·].
The set of pseudodifferential operators of order n is denoted by OPn(∆).

The sum of two pseudodifferential operators S ∈ OPn(∆) and T ∈ OPm(∆) is
defined as the closure of the restriction S+T : H∞ → H . The product of S and T is
defined as the closure of ST : H∞ → H . It can then be proved that these algebraic
operations provide the union

OP∞(∆) :=
⋃

n∈Z

OPn(∆)

with the structure of a unital algebra over C. A lot more can be said about the
general structure of pseudodifferential operators, and we refer the interested reader
to the papers, [CoMo95, Hig04, CGRS14].
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In this appendix we are mainly interested in holomorphic families of pseudodif-
ferential operators. To ease the exposition we will fix an open set U ⊆ C and a
compact Hausdorff space X .

Definition A.2. Let n ∈ Z. A map α : U×X → OPn(∆) is said to be holomorphic
in supremum norm when the following holds for each k ∈ N0:

(1) The map

U ×X → L (H) (z, x) 7→ (1 + ∆)−n/2δk(α(z, x))

is continuous in operator norm.
(2) The map

U → C
(
X ;L (H)

)
z 7→ (1 + ∆)−n/2δk(α(z, ·))

is holomorphic with respect to the supremum norm

‖ · ‖∞ : C
(
X ;L (H)

)
→ [0,∞) f 7→ sup

x∈X
‖f(x)‖

We now prove a few lemmas which are concerned with the multiplicative structure
of maps which are holomorphic in supremum norm.

Lemma A.3. Let α : U ×X → OPn(∆) and β : U ×X → OPm(∆) be holomorphic
in supremum norm for some m,n ∈ Z. Then the pointwise product α · β : U ×X →
OPn+m(∆) is holomorphic in supremum norm.

Proof. Let (z, x) ∈ U ×X and k ∈ N0 be given.
Suppose first that m ≤ 0. We then have that

(1 + ∆1/2)−n−mδk
(
α(z, x)β(z, x)

)
(ξ)

=
k∑

i=0

(
k

i

)
(1 + ∆1/2)−n−m · δi(α(z, x)) · δk−i(α(z, x))(ξ)

=

k∑

i=0

m∑

j=0

(
k

i

)(
m

j

)
(1 + ∆1/2)−n · δi+j(α(z, x))

· (1 + ∆1/2)−m−jδk−i(α(z, x))(ξ)

for all ξ ∈ H∞. This computation proves the claim of the lemma in this case.
Suppose then that m ≥ 0. We then have that

(1 + ∆1/2)−n−mδk
(
α(z, x)β(z, x)

)
(ξ)

=
k∑

i=0

(
k

i

)
(1 + ∆1/2)−n−m · δi(α(z, x)) · δk−i(α(z, x))(ξ)

=

k∑

i=0

m∑

j=0

(
k

i

)(
m

j

)
· (−1)j · (1 + ∆1/2)−n−j · δi+j(α(z, x))

· (1 + ∆1/2)−mδk−i(α(z, x))(ξ)

for all ξ ∈ H∞. This ends the proof of the lemma. �
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Lemma A.4. Let α : U×X → OP1(∆) be holomorphic in supremum norm. Suppose
that ∆ + α(z, x) : D(∆) → H is invertible as a closed unbounded operator for each
(z, x) ∈ U ×X. Then the map

(∆ + α)−1 : U ×X → OP−2(∆) (z, x) 7→ (∆ + α(z, x))−1

is holomorphic in supremum norm.

Proof. Remark first of all that D(∆1/2) ⊆ D(α(z, x)) for all (z, x) ∈ U × X . To
see this, let ξ ∈ D(∆1/2) and choose a sequence {ξn} in H∞ with ξn → ξ and
∆1/2ξn → ∆1/2ξ. Then α(z, x)ξn → α(z, x)(ξ). Indeed, this follows since

α(z, x)(ξn) = (1 + ∆1/2)−1(1 + ∆1/2)α(z, x)(ξn)

= (1 + ∆1/2)−1 ·
(
α(z, x) + δ(α(z, x)) + α(z, x)∆1/2

)
(ξn)

The unbounded operator ∆ + α(z, x) : D(∆) → H is thus well-defined for all
(z, x) ∈ U × X . The fact that ∆ + α(z, x) : D(∆) → H is closed is a consequence
of the Kato-Rellich theorem, see [Kat95, Chapther IV, Theorem 1.1].
It is now straightforward to verify that the map

∆ + α : U ×X → OP2(∆) (z, x) 7→ ∆+ α(z, x)

is holomorphic in supremum norm.
Let (z, x) ∈ U×X and let us continue by showing that (∆+α(z, x))−1 ∈ OP−2(∆).

To this end, it is clearly sufficient to prove that

(∆ + 1)(∆ + α(z, x))−1 ∈ OP0(∆).

We therefore notice that the linear map

β(z, x) := (∆ + α(z, x))(∆ + 1)−1 : H → H

is bijective. Furthermore, we have that β(z, x) ∈ OP0(∆). Since OP0(∆) is
closed under holomorphic functional calculus (as a unital subalgebra of L (H)),
see [CGK13, Lemma 2.3], we may conclude that

(∆ + 1)(∆ + α(z, x))−1 =
(
(∆ + α(z, x))(∆ + 1)−1

)−1 ∈ OP0(∆).

To see that

U ×X → OP−2(∆) (z, x) 7→ (∆ + α(z, x))−1

is holomorphic in supremum norm it is now enough to check that the map

β−1 : U ×X → OP0(∆) (z, x) 7→ (∆ + 1)(∆ + α(z, x))−1

is holomorphic in supremum norm. We remark that it follows by Lemma A.3 that
the map

β : U ×X → OP0(∆) (z, x) 7→ (∆ + α(z, x))(∆ + 1)−1

is holomorphic in supremum norm.
We now prove by induction on k ∈ N0 that β−1 satisfies the conditions (1) and

(2) in Definition A.2. For k = 0 this follows from the identity

β(z, x)−1 − β(w, y)−1 = −β(z, x)−1(β(z, x)− β(w, y))β(w, y)−1

which is valid for all (z, x), (w, y) ∈ U ×X .
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To prove the induction step, we let k ∈ N and note that

δk
(
β(z, x)−1

)
(ξ) = −δk−1

(
β(z, x)−1δ(β(z, x))β(z, x)−1

)
(ξ)

= −
k−1∑

i=0

k−1−i∑

j=0

(
k − 1

i

)(
k − 1− i

j

)

· δi
(
β(z, x)−1

)
· δj+1(β(z, x)) · δk−1−i−j

(
β(z, x)−1

)
(ξ)

for all (z, x) ∈ U ×X and all ξ ∈ H∞. �

We end this appendix by providing a useful estimate.

Proposition A.5. Let α : U ×X → OP1(∆) be holomorphic in supremum norm.
Suppose that, for each k ∈ N0, we have

sup
(z,x)∈U×X

∥∥δk
(
α(z, x)

)
(1 + ∆)−1/2

∥∥ < ∞ (A.1)

Then, for each k ∈ N0 and ε > 0, there exists a constant Ck,ε > 0 such that

sup
(z,x)∈U×X

∥∥(∆ + 1)p · δk
(
(∆ + α(z, x) + λ)−1

)∥∥ ≤ Ck,ε · λ−1+p

for all p ∈ [0, 1] and all λ ≥ 1 with
√
λ ≥ sup

(z,x)∈U×X

‖α(z, x)(∆ + 1)−1/2‖+ ε

Proof. Notice first that δk
(
α(z, x)

)
(∆ + 1)−1/2 : H∞ → H extends to a bounded

operator for all (z, x) ∈ U × X and all k ∈ N0. The operator norm appearing in
(A.1) therefore makes sense.
Notice next that the closed unbounded operator

∆ + α(z, x) + λ : D(∆) → H

is invertible for all (z, x) ∈ U ×X and all λ ≥ 1 with

sup
(z,x)∈U×X

‖α(z, x)(∆ + 1)−1/2‖ <
√
λ (A.2)

Indeed, in this case the inverse is given by

(∆ + α(z, x) + λ)−1 = (∆ + λ)−1
(
1 + α(z, x)(∆ + λ)−1

)−1
(A.3)

Remark here that
∥∥α(z, x)(∆ + λ)−1

∥∥ ≤ λ−1/2 · ‖α(z, x)(∆ + 1)−1/2‖ < 1

for all (z, x) ∈ U ×X , where the first inequality follows since λ ≥ 1 and the second
follows by (A.2).
To ease the notation, let now

L := sup
(z,x)∈U

‖α(z, x)(∆ + 1)−1/2‖

Let ε > 0, p ∈ [0, 1] and λ ≥ 1 with
√
λ ≥ L + ε be given. Using the explicit form

of the inverse in (A.3) we obtain that

(∆ + 1)p(∆ + α(z, x) + λ)−1 = (∆ + 1)p(∆ + λ)−1 ·
(
1 + α(z, x)(∆ + λ)−1

)−1
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for all (z, x) ∈ U ×X . And it therefore follows that
∥∥(∆ + 1)p(∆ + α(z, x) + λ)−1

∥∥ ≤
∥∥(∆ + λ)−1+p

∥∥ ·
∥∥(1 + α(z, x)(∆ + λ)−1)−1

∥∥

≤ λ−1+p ·
(
1− ‖α(z, x)(∆ + λ)−1‖

)−1

≤ λ−1+p ·
(
1− L(L+ ε)−1

)−1

where the second inequality is a consequence of the series expansion for (1 +
α(z, x)(∆ + λ)−1)−1 and the third inequality follows since

‖α(z, x)(∆ + λ)−1‖ ≤ λ−1/2 · L ≤ L(L+ ε)−1

for all (z, x) ∈ U ×X . These considerations prove the proposition in the case where
k = 0.
The general case now follows by induction on k ∈ N0 because of the identity

δk
(
(∆ + α + λ)−1

)
= −

k−1∑

i=0

k−1−i∑

j=0

(
k − 1

i

)(
k − 1− i

j

)

· δi
(
(∆ + α + λ)−1

)
· δj+1(α) · δk−1−i−j

(
(∆ + α + λ)−1

)

which was derived in the proof of Lemma A.4. �

Appendix B. Trace norm holomorphy

In this appendix we will draw some consequences of the investigations on holo-
morphic families of abstract pseudodifferential operators which we carried out in
Appendix A. We will here mainly be concerned with holomorphic maps with values
in the trace class operators. The general context will be as follows:
Throughout this appendix we let T : H → H be a bounded operator and ∆ :

D(∆) → H be a selfadjoint positive unbounded operator on the separable Hilbert
space H . We will suppose that there exists an m ∈ N0 such that

T · (1 + ∆)−m ∈ L
1(H)

We will also fix an open set U ⊆ C and a compact Hausdorff space X .
The next result follows from Lemma A.4 and Lemma A.3 together with the basic

inequality ‖R ·S‖1 ≤ ‖R‖1 ·‖S‖ which is valid for all R ∈ L 1(H) and all S ∈ L (H),
where ‖ · ‖1 : L 1(H) → [0,∞) denotes the trace norm.

Proposition B.1. Let α : U × X → OP1(∆) be a map which is holomorphic in
supremum norm. Suppose that

∆+ α(z, x) : D(∆) → H

is invertible (as a closed unbounded operator) for all (z, x) ∈ U ×X. Then the map

U ×X → L
1(H) (z, x) 7→ T · (∆ + α(z, x))−m

is continuous in trace norm. Furthermore, the map

U → C
(
X ;L 1(H)

)
z 7→ T · (∆ + α(z, ·))−m

is holomorphic with respect to the norm

‖ · ‖∞,1 : C
(
X ;L 1(H)

)
→ [0,∞) f 7→ sup

x∈X
‖f(x)‖1 (B.1)
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For each r > 0, let Br(0) := {z ∈ C
∣∣ |z| < r} denote the open ball of radius r > 0

and center 0 ∈ C. As a consequence of Proposition B.1 and standard results about
holomorphic Banach space valued maps we obtain the following:

Proposition B.2. Let δ > 0 and let α : B1+2δ(0) × X → OP1(∆) be holomorphic
in supremum norm. Suppose that

∆+ α(z, x) : D(∆) → H

be invertible (as a closed unbounded operator) for all (z, x) ∈ U × X. Then there
exists a sequence {aj}∞j=0 in C(X ;L 1(H)) such that the identity

T · (∆ + α(z, ·))−m =
∞∑

j=0

zj · aj

holds for all z ∈ B1+δ(0) and the sum converges absolutely in the norm on
C(X ;L 1(H)) described in (B.1).

Under the conditions of the above proposition we may express the coefficients
aj ∈ C

(
X ;L 1(H)

)
as

aj(x) =
T

j!
· d

j

dz
(∆ + α(·, x))−m

∣∣
z=0

∀x ∈ X

where the derivatives are taken with respect to the operator norm.
The next result allows us to improve the statement of Proposition B.1 by including

non-integer exponents:

Proposition B.3. Let α : U × X → OP1(∆) be holomorphic in supremum norm.
Suppose that

Sp
(
∆+ α(z, x)

)
⊆ C \ (−∞, 0]

for all (z, x) ∈ U ×X, where Sp
(
∆+ α(z, x)

)
denotes the spectrum of ∆+ α(z, x) :

D(∆) → H as a closed unbounded operator. Suppose furthermore that

∆+ α(t, x) : D(∆) → H

is selfadjoint and positive for all (t, x) ∈ U ∩ R×X. Let q ∈ (0, 1). Then the map

U ∩ R×X → L (H) (t, x) 7→ (∆ + α(t, x))−q

has a continuous extension β : U ×X → L (H) such that

U → C(X ;L (H)) z 7→ β(z, ·)
is holomorphic in the C∗-norm on C(X ;L (H)).

Proof. To ease the notation, we define

R(z, x, µ) := (∆ + α(z, x) + µ)−1 for all (z, x, µ) ∈ U ×X × [0,∞)

We notice that it follows by Lemma A.4 that the map

U ×X × [0,∞) → L (H) (z, x, µ) 7→ (∆ + 1)pR(z, x, µ)

is continuous in operator norm for all p ∈ [0, 1].
Let us now recall the integral formula

(∆ + α(t, x))−q =
sin(qπ)

π
·
∫ ∞

0

µ−q · R(t, x, µ) dµ
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which is valid for all (t, x) ∈ U ∩ R×X . We therefore define the map

β : U ×X → L (H) (z, x) 7→ sin(qπ)

π
·
∫ ∞

0

µ−q ·R(z, x, µ) dµ

Consider now a fixed element (z0, x0) ∈ U × X and choose an open set V ⊆ U
such that z0 ∈ V and such that the closure V is compact and contained in U .
By Lemma A.4 and Proposition A.5 we may then find a constant C > 0 such that

‖R(z, x, µ)‖ ≤ C ·(1+µ)−1 and ‖(∆+1)1/2R(z, x, µ)‖ ≤ C ·(1+µ)−1/2 (B.2)

for all (z, x, µ) ∈ V ×X × [0,∞).
The estimates in (B.2) clearly imply that the integral

∫ ∞

0

µ−qR(z0, x0, µ) dµ

converges absolutely in operator norm. The map β : U × X → L (H) is therefore
well-defined.
To see that β : U × X → L (H) is continuous in operator norm we apply the

resolvent identity together with the estimates in (B.2) to obtain that
∫ ∞

0

µ−q‖R(z, x, µ)−R(z0, x0, µ)‖ dµ

≤ ‖
(
α(z, x)− α(z0, x0)

)
(∆ + 1)−1/2‖ ·

∫ ∞

0

µ−q · (1 + µ)−3/2 · C2 dµ

for all (z, x) ∈ V ×X .
To see that the map

U → C(X ;L (H)) z 7→ β(z, ·)

is holomorphic in the norm ‖ · ‖∞ : f 7→ supx∈X ‖f(x)‖ we define the bounded
operator

γ(z0, x) :=
d
(
α(·, x)(∆ + 1)−1/2

)

dz

∣∣
z=z0

for all x ∈ X . Another application of the resolvent identity and the estimates in
(B.2) then shows that
∫ ∞

0

µ−q ·
∥∥R(z, x, µ)− R(z0, x, µ)

z − z0

+R(z0, x, µ) · γ(z0, x) · (∆ + 1)1/2R(z0, x, µ)
∥∥ dµ

≤
∥∥α(z, x)− α(z0, x)

z − z0
· (∆ + 1)−1/2 − γ(z0, x)

∥∥ ·
∫ ∞

0

µ−q · (1 + µ)−3/2 · C2 dµ

+ ‖γ(z0, x)‖ · ‖(α(z, x)− α(z0, x))(∆ + 1)−1/2‖

·
∫ ∞

0

µ−q · (1 + µ)−2 · C3 dµ

for all (z, x) ∈ V ×X with z 6= z0. This proves the present proposition. �
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Appendix C. Factorization of operator traces

Throughout this appendix we let H1 and H2 be separable Hilbert spaces. We
denote their Hilbert space tensor product by H1⊗̂H2.
We remark that the algebraic tensor product of trace ideals L 1(H1)⊗L 1(H2) is

dense in the trace ideal L 1(H1⊗̂H2) with respect to the trace norm. Furthermore,
we may compute the restriction of the operator trace Tr : L 1(H1)⊗ L 1(H2) → C

as the composition

Tr : L 1(H1)⊗ L 1(H2)
Tr⊗1−−−→ L 1(H2)

Tr−−−→ C

The aim of this appendix is to show that Tr⊗ 1 : L 1(H1)⊗ L 1(H2) → L 1(H2)
extends by continuity to a bounded (contractive) operator Tr ⊗ 1 : L 1(H1⊗̂H2) →
L 1(H2).
We believe that this result is well-known by the experts, but for lack of a reference

and because of the importance of this result for the present work, we have decided
to supply a full proof.
Let us fix an orthonormal basis {en}∞n=1 for the Hilbert space H1. For each n ∈ N,

we let Pn : H1 → H1 denote the orthogonal projection with image Cen ⊆ H1. For
each N ∈ N, we define QN :=

∑N
n=1 Pn : H1 → H1.

Lemma C.1. For each N ∈ N and each R =
∑k

j=1 Tj ⊗ Sj ∈ L 1(H1) ⊗ L 1(H2)
we have the inequality of trace norms:

‖(Tr⊗ 1)(R(QN ⊗ 1))‖1 ≤ ‖
N∑

n=1

(Pn ⊗ 1)R(Pn ⊗ 1)‖1

Proof. For each j ∈ {1, . . . , k} and each n ∈ {1, . . . , N}, define the complex number

λn
j := 〈en, Tjen〉

It follows that

Tr(TjQN ) =
N∑

n=1

λn
j and PnTjPn = λn

jPn

for all j ∈ {1, . . . , k} and all n ∈ {1, . . . , N}.
This observation implies that

‖(Tr⊗ 1)(R(QN ⊗ 1))‖1 = ‖
k∑

j=1

N∑

n=1

λn
j · Sj‖1 ≤

N∑

n=1

‖
k∑

j=1

λn
j · Sj‖1

= Tr
( N∑

n=1

Pn ⊗
∣∣

k∑

j=1

λn
j · Sj

∣∣) = Tr
(∣∣

N∑

n=1

Pn ⊗
k∑

j=1

λn
j · Sj

∣∣)

= ‖
k∑

j=1

N∑

n=1

PnTjPn ⊗ Sj‖1

The lemma is proved. �

Proposition C.2. The linear map

Tr⊗ 1 : L
1(H1)⊗ L

1(H2) → L
1(H2)
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extends to a bounded contractive operator

Tr⊗ 1 : L
1(H1⊗̂H2) → L

1(H2)

Furthermore, the operator trace on L 1(H1⊗̂H2) can be rewritten as

Tr = Tr ◦ (Tr⊗ 1) : L
1(H1⊗̂H2) → C

Proof. By the observations in the beginning of this appendix, it is enough to show
that

‖(Tr⊗ 1)(R)‖1 ≤ ‖R‖1
for all R ∈ L 1(H1)⊗ L 1(H2).
Thus, let R ∈ L 1(H1)⊗ L 1(H2) be given. By [GoKr69, Chapter III, Theorem

4.2] we have the inequality

‖
N∑

n=1

(Pn ⊗ 1)R(Pn ⊗ 1)‖1 ≤ ‖R‖1

for all N ∈ N. Thus, by Lemma C.1 we obtain that

‖(Tr⊗ 1)(R(QN ⊗ 1))‖1 ≤ ‖R‖1
for all N ∈ N. But this proves the present proposition since the sequence {(Tr ⊗
1)(R(QN ⊗ 1))}∞N=1 converges in trace norm to (Tr ⊗ 1)(R) by normality of the
operator trace. �
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