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1/m Corrections for Orbitally Excited Heavy Mesons and the 1/2 — 3/2 Puzzle
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We re-investigate the effects of the 1/m. corrections on the spectrum of the lowest orbitally excited
D-meson states. We argue that one should expect the 1/m. corrections to induce a significant mixing
between the two lowest lying 17 states. We discuss the implications of this mixing and compute its
effect on the semileptonic decays B — D**{U and the strong D** decays.

I. INTRODUCTION

The spectroscopy of excited hadrons containing a
heavy quark is determined to a large extend by the fact
that the spin of the heavy quark decouples from the light
degrees of freedom [1]. To this end, the rotations of the
heavy quark spin become a symmetry that is not present
for light hadrons. As a consequence, all heavy hadrons
(with a single heavy quark) fall into spin-symmetry dou-
blets, the members of which are related by a rotation of
the heavy quark spin.

For the mesonic ground states, the spin symmetry dou-
blets consist of the 0~ pseudo scalar meson and the 1~
vector meson, such as (D,D*) and (B,B*). For the
mesons with one additional unit of angular momentum
of the light degrees of freedom two further spin symme-
try doublets appear. These correspond to a total an-
gular momentum j = 1/2 and j = 3/2 of the light de-
grees of freedom, respectively. Coupling it to the heavy
quark spin and taking into account the factor (—1)**! for
the parity, we end up with a doublet with the quantum
numbers (0%,17) for j = 1/2 and one with (11,27) for
j=3/2.

The same systematics continues for higher orbital ex-
citations, i.e. for arbitrary ¢ [1]. The doublets which
emerge have the quantum numbers

(0= 1) DT g j=0—1/2,

and

)£+1

(VT e )Y for j=041/2.

The decoupling of the heavy quark also has interest-
ing consequences for the strong decays of excited heavy
hadrons, since these are then governed by the light de-
grees of freedom only. In this way one may predict the
partial waves involved in the strong decays and thus one
may predict a specific pattern of angular-momentum sup-
pressions in the strong decays [1, 2].
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In the heavy mass limit the members of the doublets
are mass-degenerate, and the splittings between the mul-
tiplets are mass independent. Nevertheless, these split-
tings are of the order of Aqcp, since they are related to
excitations of the light degrees of freedom.

The 1/m, corrections couple the heavy quark spin to
the light degrees of freedom, leading also to a splitting
within the doublets. However, in particular for the D
mesons, the splitting between the multiplets and the
(1/m induced) splittings within each of the multiplets
are numerically of the same order. Thus a significant
mixing of the two D states belonging to the two
different multiplets must be expected.

Previous analyses of the 1/m, corrections also noticed
the possibility of this mixing [2-6]. However, some of
the analyses assumed that this effect is small, based on
the observation that the two 17 states should have dif-
ferent widths, since the strong decays of the 1T state
with j = 3/2 correspond to p-wave transitions. Since the
data indicate that the observed widths indeed follow this
pattern, the mixing was assumed to be small.

In the present paper we re-consider this effect and try
to estimate the size of the corresponding mixing angle,
which can be extracted from the data on the basis of
a few model assumptions. Based on this, we extract a
mixing angle that is larger than what has been discussed
before, and consider the implications in particular for
semileptonic B decays into orbitally excited D mesons.

II. ORBITALLY EXCITED STATES AND THE
EFFECT OF MIXING

The orbitally excited states fall into two spin-
symmetry doublets, classified by their angular momen-
tum of the light degrees of freedom j. We shall use the
notation

) “h i —
>> with j=1/2,
A
(|D*(2+)>> with j =3/2.

In the limit m. — oo the members within each of the
spin symmetry doublet are degenerate:

M(D(07)) = M(D(1%)) = me + Ay 2,
M(D*(17)) = M(D*(2")) = me + Az 2,

(1)

(2)



where /_Xj is the binding energy of the mesons in the limit
me — 00.

Note that the splitting ]\3/2 - K1/2 between the two
doublets does not scale with the heavy quark mass. How-
ever, it is related to the binding of the light quark within
the chromoelectric field of the heavy quark and hence
it is of the order of Aqcp. In fact, for the D mesons,
the current data yield a value of about 20 MeV for this
splitting.

Power corrections of order 1/m. are induced by the
kinetic and the chromomagnetic operator, leading to a
Hamiltonian density of the form

1 . Js _.. =
Him = QmCC(ZDL)QC-i- o é(@- B)e. (3)

In particular, the second term couples the heavy quark
spin to the light degrees of freedom, which breaks the spin
symmetry; however, the angular momentum of the light
degrees of freedom j is still a good quantum number.

We are going to consider the effects of H;,/,, on the
two spin symmetry doublets shown in eq. (1). First of
all, the kinetic energy contribution only leads to a shift
of the masses, which we shall absorb into the values of
the masses

Mj:mc 2(j)7 (4)

where p2(j) is the kinetic-energy parameter for the or-
bitally excited meson. The second term in eq. (3), how-
ever, leads to the effects, which we shall discuss in some
detail. It is related to the chromomagnetic field induced
by the light degrees of freedom at the location of the
heavy quark spin. Clearly not much is known about this
from first principles, so one has to make some assump-
tions here to arrive at quantitative estimates.

The chromomagnetic field at the location of the heavy
quark is generated by the angular momenta of the light
degrees of freedom, which is the orbital angular momen-
tum L and the spin of the light quark &, the sum of which
constitutes the angular momentum of the light degrees of
freedom J. The complete angular momentum K is

K=J+3=L+53+3. (5)
The key assumption we shall make is that the orbital
angular momentum and the light quark spin have differ-
ent gyro-chromomagnetic factors o’ and 8, such that the
chromomagnetic field seen by the heavy quark is not pro-
portional to the total angular momentum J of the light
degrees of freedom:

Br~dL+p'5=al+p5. (6)

To this end, the second term in eq. (3) can be written as

Hl/m:/dgq 9 7(

2me

B)e=Pi(J-3)+P,(5-5), (7)

where the operators P; and P, act only on the radial
wave functions of the light degrees of freedom.

We note that the |[D*(2%)) and the |[D(0T)) states are
eigenstates of the Hamiltonian, even once the above 1/m,
corrections are included

i) = (M + S04 10 ) 107, @)
HIDOY) = (Myyz = Jo+ 10 ) 10O, (©)

where the mass values M, /o and M3/, are the masses de-
fined in eq. (4). Furthermore, the constants g and ¢’ are
obtained from the radial wave functions, i.e. the matrix
elements g ~ (P;) and ¢’ ~ (Ps); here we assume for sim-
plicity that g and ¢’ are identical for the two doublets.
The relevant coefficients are obtained from the spin wave
functions discussed in the appendix.

For the two 17 states, the second term of eq. (7) in-
duces a mixing, since we have

HID(1)) = <M1/2 +ig- L
2

) D(1")
(10)

g'|D*(17)),

Jr
+ 5 *(1+

1D (1 (Ms/z - S0 53 ) 1"

f (11)
+ ¢ [D(17)),
where we have — once more — assumed that the relevant
matrix elements of P; and P, are identified with the pa-
rameters g and ¢’. Again, the relevant coefficients in front
of g and ¢’ follow from the spin wave functions given in
the appendix.

Clearly this analysis is drastically simplified, but an
improvement would need the reference to some model
for the binding dynamics of the orbitally excited mesons.
Nevertheless, from this simplified analysis we can infer
some information on the mixing angle from the data.
First of all — looking at the data summarized in table I
and schematically shown in figure 1 — we note that the
broader 17 state has a larger mass than the narrower 1
state. From heavy-quark symmetries we infer that the
broader states decay through an S wave transition which
is possible only for the j = 1/2 states. The j = 3/2
states can decay (strongly) only through a D wave tran-
sition which is suppressed by angular momentum, ren-
dering these states narrow [1]. For this reason we make
the assignments shown in table I.

Starting from the heavy quark limit, the splitting
within the two doublets is induced by 1/m, effects. Ig-
noring their mixing for the moment, the two 1 states
will cross when we switch on the 1/m,. terms, leading to
the “level inversion” observed in the spectrum depicted
in figure 1.} Switching on the mixing leads to the well

1 In fact, from the current data shown in table I only the central
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Figure 1. Schematic of the mass hierarchy for the orbitally
excited D mesons.

| State |Mass [MeV]|Width [MeV]| j |
D(O%)| 2318+29 | 267+40 |1/2
D(1%) | 2427 +£40 | 3844120 |1/2
D*(11)|2421.44+0.6| 27.4+25 |3/2
D*(2%)|2462.6 £0.6| 494+1.3 [3/2

Table I. Averages of the existing mass and width measure-
ments for the D** states according to the PDG [7]. Our
choice of the j assignment follows from total decay widths.

known “level repulsion”, which is shown in figure 2 for the
parameter values obtained from the fit discussed below.
For the 17 states this implies a mixing, which is maximal
at the crossing point |f] = 45°. In order to explain the
assumed “level inversion”, we must have 45° < |6] < 90°;
i.e., mixing beyond the crossing point.

For a quantitative analysis, we use our simple assump-
tions and encode the mixing of the two 17 states in the
2 x 2 sub matrix of the Hamiltonian

M a
= , 12
a M* ] (12)
and we define

1 1
MEM1/2+19— 59/7 (13)

. 5 5
M* = Mgy — 19 E9/7 (14)

* 3 1
A=M *M:M3/2*M1/2*§9**9/a (15)

3
2y, (16)

a

values indicate a level inversion. Within their uncertainties, the
masses for the two 17 states may also allow the naively-expected
mass hierarchy. Nevertheless, the two states are at least very
close in mass.
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Figure 2. The orbitally excited states in the j = 1/2 and
the j = 3/2 doublets are degenerate in the infinite mass limit
me = 0o, corresponding to g = g’ = 0. For a finite mass
m. we find a splitting of the states. We plot the masses of
the orbitally excited states D(0") (light-blue, long-dashed),
D(1") (green, short-dashed), D*(1%) (red, solid) and D*(2")
(dark blue, dotted) as a function of the parameter g. The
parameter ¢’ is fixed by the condition ¢’ = —g. The verti-
cal lines indicate the best fit value g* for g and the zero of

Alg, g’ = —9).

For vanishing ¢’ the Hamiltonian becomes diagonal,
but in this case the splitting in the D*(JT) doublet is
twice as large as the one in the D(J1). We note that the
splittings within each of the doublets is equal if g = —¢’,
which we consider as a benchmark point. This point
is interesting to consider in terms of our simple model:
Assuming that all overlap integrals are equal, we obtain
from eq. (6)

Brgl+g8=g(J -8 =gL, (17)

which would mean that the spectrum is roughly driven
by the orbital angular momentum L of the light degrees
of freedom. As a result, the spectrum is independent of
the orientation of the light quark spin. However, this
could as well be an artifact of our simple assumptions.

To this end, the eigenstates of H (i.e., the physical 17
states) are thus linear combinations of the states defined
in the heavy-mass limit

|IDL(1%)) = cos@|D(1T)) +sinf|D*(11)),  (18)
|IDp(17)) = —sin® |[D(11)) + cos @ |D*(17)),  (19)

where Dy, (Dp) is the state with the lower (higher) eigen-
value. The mixing angle 6 satisfies

2a —4v/2¢'

tan20 = ——— = , 20
A 6(Ms)o — M /o) — 9g + 29’ (20)

and the corresponding eigenvalues are given by

1
My, = 5 [(M+M*)i A2+4a2} . (1)
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Figure 3. The mixing angle 6 as a function of ¢’ and with
g = —g'. The vertical line indicates the best fit point. The
horizontal line indicates the maximum-mixing angle of § =
45°.

Note that we have always My > My, reflecting the
“level repulsion” of the 2 x 2 system. The situation of
minimal splitting My — M|, corresponds to A = 0, which
yields |#| = 45°. This means that the contribution of
the j = 3/2 state in the eigenvector |Dp(17)) starts to
become dominant, in accordance to the observed level
sequence. This is shown in figure 3, where the mixing
angle 0 is plotted as a function of ¢’, with the constraints
g = —¢g’. There, the vertical line corresponds to the best-
fit value of ¢’ of the fit discussed below, where we find a
mixing angle of about 60°.

In previous analyses (e.g. in reference [4]), a value
for 6 of the order of ten degrees has been considered.
However, this is not in contradiction to our discussion,
since an interchange of the two 1% states corresponds to
a replacement 8 — 90 — 6. Nevertheless, we advocate
that the magnitude of 6 is larger than considered in
previous analyses.

The experimental results for the masses and widths of
the orbitally excited D mesons are presently unsettled.
The individual results for the masses, for instance, do not
agree well with their respective PDG averages [7]. This
is evidenced by the application of scale factors to the
error on the average values. Nevertheless, we attempt to
confront our simple model with the present data.

In a first step, we assume g’ = —g, thereby reducing
the number of model parameters to three: M 5, M3/,
and ¢g. This assumption stems from the fact, that the
mass splitting of the doublets is equal for ¢ = —¢’, as
argued above. We then fit the three parameters to the
four PDG averages of the measurements as listed in table
I. Note, that we impose the additional constraint A < 0,
based on the mass hierarchy shown in figure 1. This
fit has one degree of freedom (d.o.f.). We reject the fit,
since we obtain x? = 8.48 and a p-value of 0.36%, which
is smaller than our a-priori threshold of 3%. While the

’Mass [MeV] ‘Pull [o] |Reference‘

D(0™)
2297 +£8 |—13.75|[8] x
2308 +36 | —2.75 | [9]
2407 + 41 | —0.00 |[10]
Dr(1h)

2423.1 + 1.8 4+1.24 [[1
2420.1 + 0.8 —0.95 |[1
2426.0 + 3.2| +1.61 |[13]

Dr(17)
2427436 | —0.62 | [9]
2477 +40 | +0.69 ([14] T

D*(2")

2462.5 +2.7| 40.01 |[11]
2462.2 4+ 0.8| —0.34 |[12]
2464.5 & 2.2| 40.92 |[10]

Table II. Masses for the various D** measurements. We use
up to three of the most precise mass measurements, if avail-
able. We also list the pull values at the best-fit point eq.
23. Measurements with a X mark are not included in the fit,
see text. Uncertainties of Measurements with a t mark have
been doubled, due to lack of estimates for the systematic un-
certainty.

masses of the two 1T eigenstates and the 27 state are
modelled very well, we find a large pull of slightly less
than 30 for the 07 mass. The best-fit point and the
parameter intervals at 68% confidence level (CL) read

To = (2425 £2)MeV, Mj), = (2451 +5)MeV,

g* = (23+6)MeV.

(22)
In a second step, we wish to find out which of the indi-
vidual measurements do not agree well with our model.
For this purpose, we use the 11 most precise individual
measurements, with up to three measurements per D**
state. These measurements also enter the PDG averages,
and they are listed in table II. Given the larger number of
measurements, we can now lift the previous assumption
and fit all four model parameters. We again impose the
theory constraint A < 0. We reject this fit as well, since
for seven d.o.f. we obtain x? = 177, corresponding to a
p-value of less than 10710, However, we observe that the
X2 is driven by two measurements: the measurements
of the 07 mass as carried out by the BaBar and Belle
collaborations, respectively. It is therefore interesting to
repeat this second fit without the BaBar and Belle mea-
surements of 0 masses, which we do. We find for this

new fit the best-fit point and the 68% CL intervals

T2 = (2433 £ )MeV
g" = (26 £5)MeV,

52 = (2450 & 5)MeV

g = (=27 +21)MeV .
(23)



’ H7'1/2(1)‘P%/Q‘Tsm(l)‘ﬁ’gm‘
GI [15] 0.22 ]0.83| 0.54 |1.50
VD [16] 0.13 |0.57| 0.43 |1.39

CCCN [17, 18]|| 0.06 [0.73| 0.51 |1.45

ISGW [19] 0.34 |1.08| 0.59 |1.76

Table III. Results of the fit of eq. (31) to four different model
calculations for the two form factors. (numbers taken from
[20]).

We also compute the goodness of fit for this reduced data
set. We find a good fit for five d.o.f. and x? = 6.86,
which corresponds to a p-value of 0.23. The individual
pull values at the best-fit point, defined via

Mi - Mi(Mf/27M§/279*7g,*)

g;

pull, = (24)

for every measurement ¢, are listed in table II. Based
on the results of this fit, eq. (23), we find approximately
A~ —13 MeV, as well as ¢’ ~ —g < 0. This indicates a
large mixing, with § = (+59721)° at 68% CL.

Our findings can be summarized as follows: Neither
the averages, nor the three most precise measurements
of each of the D** masses are fitted well by our simple
assumptions. Removing two of the individual measure-
ments of the 0T mass from our analysis yields a good fit.
In addition, most of the measurements are not in good
agreement with each other [7]. On the basis of the current
experimental data, the situation remains inconclusive. In
our opinion, a simultaneous determination of the masses
and widths of all orbitally excited states needs to be un-
dertaken before a definite answer to mixing of the 17
states can be given. Within such an analysis, the mixing
effects of the decay widths could be taken into account
as well.

J

III. EFFECTS ON SEMILEPTONIC DECAYS

Exclusive semileptonic b — ¢ decays are governed by
heavy quark symmetry for both the bottom and the
charm quark. The decays of B mesons into orbitally
excited D mesons have been investigated in the context
of heavy quark symmetry in [5], including also the 1/m,
corrections. As stated above and in contrast to [5], we
study a scenario where the mixing is the leading 1/m,
effect.

In the infinite mass limit, the hadronic weak transition
currents can be described by a single Isgur Wise function
for each multiplet. Using the spin representations for the
states involved

Blv) = /Mpys | (25)

2
1+
D(1";v,¢) = \/Mp 3 7[575;& (26)
1
D3(1%;0,€) = /Mp- g ;L - (27)

e g#0n -]

one defines for some current defined by a Dirac matrix I'
the two Isgur-Wise functions as [5]

(B(v)|pLc|D(17;5 0", €))
=271 /2(v0")Tr [B(v)LD(17;0,€)] ,  (28)

(B(v)ble| D™ (1750, )
= V373200 ) 0" Tx [B(v)L'D; (1450, €)] . (29)

In the above the convention for the two Isgur-Wise func-
tions is the same as in [5] and [21].

The mixing induced by 1/m, effects yields for the hadronic currents

(B|bTe|Dy) =

cos (B[bl'c|D(11)) + sin 0(B|bI'c| D*(17)),

: RO ' (30)
(B|bLc| D) = —sin 0(B|bI'c|D(17)) + cos O(B|bI'c|D*(17)),
which can be expressed in terms of the form factors 71 /2(w) and 73/2(w).
[
The two form factors are parametrized [20] via [22]; in particular we have
9 72 2 pd < 9eisolmi (D)7, 32
@ =nm 2] imvzes=y @y et =0asemel) )

which is expected to be a reasonable approximation, since
the kinematic region turns out to be quite limited: 1 <
w < 1.3,

Not much is known about the form factors 7;(w). How-
ever, there are sum rules constraining these form factors

where p, and pg are the kinetic energy and chromo-
magnetic moment parameters, and €/, is the excitation
energy of the j = 1/2 doublet above the ground state
doublet. Numerically, the left-hand side of this relation
is small: p2 — pZ < p2. This motivates the so-called
BPS limit, which leads to p2 — pZ = 0. In this limit we



’Decay mode ‘ B (%) ‘
B(B~ — D(0")v) x B(D(0") — DTn™) 0.29 £ 0.05
B(B™ — D (1M)év) x B(DL(1T) — D**77) | 0.29+0.14
B(B~™ — Dy (1M)tv) x B(Dg(17) — D*t77)| 0.13 £0.04
B(B~ — D*(27)fv) x B(D*(27) — D**x~) {0.078 4 0.008

Table IV. HFAG averages for the products of the production
branching fractions of B~ — D**fv decays with the decay
branching fractions D** — D™ ¥z~ [23]. The uncertainties
arise from the squared sum of the statistical and systematical
uncertainties.

J

would have 71/5(1) = 0 indicating that the theoretical
expectation is that (in the relevant kinematic region)

Tl/g(W) < Tg/Q(&)) . (33)

In the combined infinite mass and BPS limits this leads
to the expectation that the decays into the D(17) are
heavily suppressed compared to the ones into the D*(17).
Current data do not support this, which constitutes the
1/2 — 3/2 puzzle in semileptonic B decays.

Various models and sum rule calculations have been
used to obtain more information on the 7;(w). In Ta-
ble III we list some of the currently used models in this
context; note that all models reflect the relation eq. (33)
in a more or less pronounced way.

The differential decay rates in the infinite mass limit are well known [5]. Including the mixing eq. (30) as the leading

1/m. effect one obtains for B — Dy (v

A0 GLV2M?
PRy eV AC )

{ sin? 0w+ 1)?[2(w —rp)(1 —rpw) — (1 +7% — 27“LW)H7'3/2(°")|2

w? —1

(34)

+2cos? 0[2rL (w® — 1) + (5w — 1) (1 4+ 1} — 2rpw)]|m o (w)[?
4 2v2sinf cos O(w + 1)%[(1 +7r1)? — 47’Lw]R6(71/2(w)7§‘/2(w))} ,

while we get for B — Dy/lv

ar  GZV2M;
il TE (TR

{ cos? O(w + 1)[2(w — i) (1 — rpw) — (L4 1y — 2rgw)]|ms/2(w)|?

w? —1

(35)

+ 2sin? 0[2ry (W? — 1) 4+ (5w — 1)(1 + 7% — 27"Hw)]|71/2(w)|2
—2v2sinfcosf(w + 1)2[(1 +rg)? — 47“HW]R€(71/2(W)T§/2(W))} :

The above rates now depend on both of the form factors 7;(w), as well as on the mixing angle §. By inserting the
expression eq. (31) with the values given in table III and using the nominal fit result cosf ~ 0.51, we calculate the

invidual branching ratios shown in table V.

The first six rows of table V are the values obtained
in the infinite mass limit, where we use the experimental
results for the lifetimes. The last three rows are obtained
for finite m., where we consider mixing effects among the
1T states as the leading 1/m, effect.

Given the large uncertainties on the experimental in-
puts, we wish to emphasize that our analysis is only
meant as a qualitative study; i.e., to answer the ques-
tion: Can mixing between the two 17 states (at least par-
tially) explain the 1/2 — 3/2 puzzle? As a consequence,
we abstain from providing uncertainty estimates on the
quantities in table V. Clearly we find a strong impact of
the mixing, which roughly swaps the roles of the two 17
states. We find that the inclusion of 1/m. mixing effects
redistributes the relative weights of the invidivual decay
channels within the decays B~ — D**/(p.

Nevertheless, our results can be confronted with the
experimental data shown in Table IV. Unfortunately,
there are no experimental results yet available on the ab-
solute branching fractions, since the branching fractions
for the subsequent strong decays D** — D®)*7~ have
not yet been measured. However, assuming that these
subsequent decays have roughly the same branching frac-
tions, the measured ratio of the two decays into 1 states
is approximately

B(B_ — DL(1+)£V) -
B(B— — Dy(1+)tw) ~ 22 (36)

The estimates without mixing effects (table V, row 6)
clearly deviate from the measured ratio. On the other
hand, our estimates with mixing effects taken into ac-
count (table V, row 9) are in reasonable agreement with



Channel H GI \ VD \ CCCN \ ISGW
Me — OO
B(B~ — D(0")¢p) ||4.7-107*(1.8-107*|3.7-107°(1.0- 1073
B(B~ — D(1")w) [|6.4-107*(2.5-107%|4.9-107°|1.4- 10~
B(B~ — D*(1")éw) ||4.4-1073]|2.9-107%|4.0-1073|4.7- 1073
B(B~ — D*(2")¢p) ||7.4-107%]4.9-1073|6.7-1073|8.0- 1073
B(B~ — D**{p) 1.3% | 0.82% 1.1% 1.5%
B(B~ — D*(1")¢w
B((Bf —~ D((1+))€17)) 6.9 11 80 3.4
m. finite
B(B~ — Drfr) |[3.0-1072|2.1-1073(3.0-107%|3.2- 1073
B(B™ — Dgfp) ||2.3-107%|1.3-107%(1.3-107%|3.1- 1073
B(B™ — Drlv
—B((Bf - DHM)) 1.3 1.6 2.3 1.0

Table V. Predictions for the branching fractions for the channels B — D**{i within the various models of table III, both with
and without mixing effects among the 11 states. Here B(B~ — D**{D) represents the sum of four branching fractions to the
07T, the two 11 and the 27 states. Note, that for m. — co, we use the doublet masses M, /2 and Ms/, as inputs, while for the

finite m, results, we use the experimentally determined masses.

the measurements.

IV. EFFECTS ON THE WIDTHS OF THE
ORBITALLY EXCITED STATES

In [1] it has been discussed that in the infinite mass
limit one has the relations

A(D*(2") — Dr) \/Eap (37)
A(D*(2") — D*r) o \/> ap (38)
A(D*(17) — D* w)ocaD (39)

A(D*(1") — Dr) = (40)

A(D(11) — D*1) o ag (41)

A(D(Y) = Dn) = (42)
A(D(0") — D7) o ag (43)
A(D(0") — D*r) = (44)

where ap and ag are the amplitudes for the D-wave and
the S-wave decays of the D** states.

We assume that these modes dominate the total
widths, such that

Tt (D**) =T(D*™ — D7) + T'(D*™ — D*m), (45)
so we obtain the predictions in the heavy quark limit
Lua(D' (%) = fapl* = Fun(D* (7)),
Liot(D(01)) = las|? = Tior(D(17)),

where we ignore small phase space differences of the order
of twenty percent. Since we expect the D-wave amplitude

to be suppressed relative to the S-wave amplitude by the
usual angular momentum factors, we arrive at the well
known conclusion that the j = 1/2-doublet states are
broader than the states of the j = 3/2 doublet.

Including the mixing induced by the 1/m,. terms yields
the relations

A(Dr(17) = Drr) =0 = A(Dg(17) — Dx), (47)
A(Dr(17) — D*71) = ag cos + ap siné, (48)
A(Dg(1%) = D*1) = ap cosf — ag sinf. (49)

Within the differential decay width, interference terms
between the S and D wave amplitudes arise. However,
they drop out after integrating over the D*7 helicity an-
gle. Consequently we have

Liot(Dr) =T'L
~T(Dy, — D*r) = |ag|* cos® 6 + |ap|® sin® @, (50)
and
Liot(D) =T
~T(Dy — D*1) = |ap|?® cos? 0 + |ag|* sin?6, (51)

where we again ignore small phase space differences.
The experimental situation on strong decays of the D**
states is shown in table I and is not yet conclusive. Nev-
ertheless, we can get a qualitative picture by assuming
that we can extract |ag| and |ap| from the widths of the
0% and the 2% states, respectively, and insert these into

eq. (50). From this we obtain
T, ~240MeV, Tpy~80MeV,

where we again do not consider the experimental uncer-
tainties, since we only aim at the qualitative picture.



Thus the observed pattern is not in contradiction to
a large mixing of the 17 states, although the observed
factor of about two between the widths of the two narrow
states still remains unexplained.

V. CONCLUSION

We have discussed a scenario where the mixing of
the two 17 states of the first orbitally excited charmed
mesons is assumed to be large. Such a large mixing can
still be accommodated with the data. It is supported by
very simple arguments on the physics origin of such a
mixing and some assumptions on the size of some ma-
trix elements. However, the input for any estimate is the
data on the masses and the widths. The data are not
yet conclusive, at least not for the broader one of the 17
states.

If such a large mixing is indeed present, it will also
have consequences for the view on spectroscopy from the
perspective of the heavy quark limit. At least for the
charm mesons this means that the spin-symmetry dou-
blets will have a significant mixing for the states with the
same quantum numbers, which is induced by interactions
that are formally of subleading order but are numerically
significant.

For the semileptonic decays of B mesons such a mixing
would soften the 1/2 — 3/2 puzzle at least for the the 1+
states, since a mixing with a significant angle will reduce
the difference of the two rates. Nevertheless, in order
to pin down if the mixing is really the solution to this
puzzle, more data on the semileptonic decays as well as
on the masses and the widths of the orbitally excited D
meson states will be required.

|IDAT),M =1) =

ID(1T), M = —1) =

and

D)0 = 1) =3 = /23721~ 120 — [N = 32,121/
D), M = 0) =[5 = 372172 1720~ \ 31 = 572, -1/2)1/2)

- \/EU =3/2,-1/2)| —1/2)y — \/Elj =3/2,-3/2)]1/2)n

|D*(1+)7M -

Combining this with egs. (A1-A6) yields the wave func-

i =1/2,1/2)]1/2)u
1(,. )
[D(17), M = 0) = \/g <J =1/2,1/2)[ =1/2)m + 17 = 1/2, —1/2>|1/2>H>

7 =1/2,-1/2)| =1/2)m
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Appendix A: Spin Wave Functions

In this appendix we give the explicit formulae for the
coupling of the angular momentum L = 1 and the light
quark spin s = 1/2. The spin wave functions for the case
j=1/2read

j=1/2,+1/2) = \/§1>|—1/2>z - \/§|0>|1/2>l (A1)
lj=1/2,-1/2) = \/go>|—1/2>l - \/§|—1>|1/2>1 (A2)

and for j = 3/2 we get

1§ =3/2,43/2) = [+1)[+1/2) (A3)

i =32.41/2 =\ Ai-1/20 2o @)
=3/2,-172) = -1/ S as)

4 =3/2,-3/2) = |-1)|=1/2) (A6)

where the first ket vector is for the angular momentum,
while |-); denotes the spin of the light quark.

The above states have to be combined with the heavy
quark spin in order to obtain the spin wave functions of
the D** mesons. Since we are interested in the mixing of
the 17 states, we concentrate on these states and obtain

(A7)
(A8)

(A9)

(A10)
(A11)

(A12)

(

tions which can be used to discuss the mixing.



The spin-spin coupling can be computed using

1
(5-0)= §(s+a, +s_04)+ s303 (A13)

which yields for any M the result

(5-0)D1T)) = *%ID(1+)> + g\D*(ﬁ)% (A14)
(5-6)D"(17)) = *%ID*(ﬁ)) + ?\D(ﬁ)% (A15)
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