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Abstract: We compute the two-loop master integrals for non-leptonic heavy-to-heavy

decays analytically in a recently-proposed canonical basis. For this genuine two-loop,

two-scale problem we first derive a basis for the master integrals that disentangles the

kinematics from the space-time dimension in the differential equations, and subsequently

solve the latter in terms of iterated integrals up to weight four. The solution constitutes

another valuable example of the finding of a canonical basis for two-loop master integrals

that have two different internal masses, and assumes a form that is ideally suited for a sub-

sequent convolution with the light-cone distribution amplitude in the framework of QCD

factorisation.
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1. Introduction

Non-leptonic B-decays are interesting for a number of phenomenological applications like

the extraction of CKM elements and the study of CP asymmetries. Their study has

already entered the area of precision physics, both on the experimental [1] and on the the-

oretical side. However, their theoretical description is complicated by the purely hadronic

environment, entailing QCD effects from many widely separated scales. The two main

approaches to non-leptonic B-decays are flavour symmetries of the light quarks [2] and

factorisation frameworks such as pQCD [3] and QCD factorisation (QCDF) [4–6]. In the

latter framework, next-to-leading order (NLO) corrections to both, heavy-to-heavy [5] and

heavy-to-light [4,7] transitions have been known since more than a decade. More recently,
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also next-to-next-to-leading order (NNLO) results for heavy-to-light decays have become

available [8–12]. In the present article, we consider NNLO corrections also to the heavy-to-

heavy decays such as B → Dπ in the framework of QCDF [13]. In the heavy-quark limit,

the decay amplitude for B̄0 → D+π− is given by [5]

〈D+π−|Oi|B̄0〉 =
∑
j

FB→Dj (m2
π)

∫ 1

0
duTij(u)Φπ(u) , (1.1)

where Oi are the operators from the effective Hamiltonian that describe the underly-

ing weak decay. The FB→Dj form factors and the pion light-cone distribution amplitude

(LCDA) Φπ(u), with momentum fractions u and 1−u shared among the pion constituents,

are the non-perturbative inputs. The hard-scattering kernels Tij(u), on the other hand,

can be evaluated in a perturbative expansion in the strong coupling, and are known in

QCD to NLO accuracy [5]. Yet it is interesting to go beyond NLO in B → Dπ transitions:

Since the contribution at NLO is colour suppressed and appears alongside small Wilson

coefficients, the NNLO corrections may be significant in size. Moreover, since there is

neither a colour-suppressed tree amplitude nor penguin contributions, and spectator scat-

tering and weak annihilation are power-suppressed [5], we have only the vertex kernels to

the colour-allowed tree amplitude. A precise theory prediction of this single contribution,

together with comparison to experimental data, might give a reliable estimate of the size

of power corrections in the QCDF framework.

The evaluation of Feynman diagrams that contribute to the NNLO hard-scattering

kernel amounts to the computation of ∼ 70 two-loop diagrams. By using contemporary

techniques to evaluate multi-loop integrals, the two-loop Feynman diagrams are reduced

to a small set of a few dozens of master integrals. A powerful method to evaluate the

latter analytically are differential equations [14–16]. This method was recently refined by

Henn [17]. Considering that the basis of master integrals is not unique, Henn discovered

that in a suitably chosen basis – denoted as canonical basis – the differential equations

can be cast into a form that factorises the dependence on the kinematic variables from

that on the number of space-time dimensions D. In this case, the solution is expressed in

terms of iterated integrals. This method was recently applied to a number of problems for

loop [11,18–26] and phase-space [27,28] integrals.

To the present day, the construction of the canonical basis is mostly based on experience

or experimentation, rather than on a systematic procedure, although developments in this

direction have recently become available [21,29,30]. In the future it would be most desirable

to have a general algorithm for finding a canonical basis for arbitrary external kinematics

and numbers of loops, legs, scales, and space-time dimensions. Therefore, every non-trivial

example of a canonical basis is most valuable, and our results contribute towards finding a

general algorithm for constructing the canonical basis.

Last but not least, if the master integrals that enter the hard-scattering kernels Tij(u)

are written in terms of iterated integrals, the convolution with the pion LCDA in (1.1)

simplifies to a large extent. Our results therefore catalyse the steps necessary to obtain the

decay amplitudes considerably, and constitute an important step towards the phenomenol-

ogy of B → Dπ decays at NNLO in QCDF.
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This paper is organized as follows. In section 2 we introduce the kinematics of the

two-body decay and present the generic form of the differential equations with respect to

the kinematic variables. We proceed by defining Goncharov polylogarithm in section 3,

which are a class of iterated integrals suited to describe the solutions to the differential

equations. In section 4 the canonical basis is defined and the expressions for the master

integrals in this basis are presented. We also elaborate on strategies to find a canonical

basis. The boundary conditions for the integrals are discussed in section 5 and the results

are presented in section 6. In section 7 we comment on the performed cross-checks before

concluding in section 8. In appendix A we collect the matrices that contain all relevant

information on the differential equations. The analytic results of all master integrals are

also available electronically [31].

2. Kinematics

We consider the kinematics of the decay B̄0 → D+π−, which emerges from the underlying

weak transition b → cūd. A sample of Feynman diagrams contributing to the two-loop

hard-scattering kernels is given in figure 1. The complete set of diagrams consists of those

shown in figures 15 and 16 of [5], supplemented by gluon self-energy insertions in one-loop

diagrams. All external momenta are taken to be incoming throughout this work. q4 and q3

denote the external momenta of the b and the c quark, respectively, which fulfill the on-shell

constraints q2
4,3 = m2

b,c. The constituents of the pion share the momentum q with q1 = uq

and q2 = (1−u)q ≡ ūq, where u ∈ [0, 1] is the momentum fraction of the quarks inside the

pion entering eq. (1.1) in a convolution of the hard-scattering kernel with the pion LCDA.

We consider the pion to be massless, i.e. q2 = q2
1,2 = 0. Due to the linear dependence of

the momenta, q1 + q2 = q = −q3 − q4, the kinematics is completely determined by two of

the on-shell conditions and one additional kinematic invariant, for instance

q2
4 = m2

b , q2
3 = m2

c , q3q4 = −1

2
(m2

b +m2
c) . (2.1)

We apply commonly used multi-loop techniques which include integration-by-parts identi-

ties [32,33] and the Laporta algorithm [34], and reduce the two-loop Feynman diagrams to

master integrals [35, 36]. Furthermore, we construct the differential equation of the latter

with respect to kinematic variables. In the derivation of eq. (1.1) the charm quark was as-

sumed to be heavy. Hence, the ratio mc/mb remains fixed in the heavy-quark limit and our

master integrals depend on two scales: the momentum fraction u and the ratio of the heavy

quark masses z ≡ m2
c/m

2
b . They are further functions of the kinematic invariants (2.1)

C(u, z) = C(u, q2
3(z), (q4q3)(z), q2

4(z), z) . (2.2)

Thus, the total derivative of a generic master integral C with respect to u is given by

dC

du
=
∂C

∂u
, (2.3)

whereas the one in z reads

dC

dz
=
∂C

∂z
+
∂C

∂q2
3

dq2
3

dz
+

∂C

∂(q3q4)

d(q3q4)

dz
+
∂C

∂q2
4

dq2
4

dz
. (2.4)
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q4 q3

q1 q2

Figure 1: Sample of Feynman diagrams: q4 and q3 are the momenta of the quark lines with masses

mb and mc, respectively. q1 = uq and q2 = ūq are the momenta of the light quark and anti-quark,

respectively. q = q1 + q2 is the momentum of the pion. All momenta are incoming. The black

square denotes an operator insertion from the weak effective Hamiltonian.

The computation of ∂C/∂z is straightforward. The partial derivatives of C with respect

to the kinematics on the r.h.s. of eq. (2.4) can be expressed in terms of partial derivatives

with respect to the momenta q3,µ and q4,µ [37], which can be easily carried out. Note that

the last term on the r.h.s. vanishes since dq2
4/dz = 0. We finally obtain

dC

dz
=
∂C

∂z
− 1

1− z

(
q3,µ

∂C

∂q3,µ
+ q4,µ

∂C

∂q3,µ

)
. (2.5)

This is the differential equation with respect to z valid for a generic master integral C(u, z).

3. Iterated integrals and Goncharov polylogarithms

The classical example of iterated integrals is given by the harmonic polylogarithms (HPLs)

[38]. They generalise the ordinary polylogarithms and are defined by

Ha1,a2,...,an(x) =

∫ x

0
dt fa1(t)Ha2,...,an(t) , (3.1)

where the parameters ai can be 0 or ±1, and n is the weight of the HPL. The integral (3.1)

diverges for HPLs with trailing zeroes. In order to handle HPLs in such cases, one defines

H~0n(x) = 1
n! lnn(x). The weight functions fai(x) are simply

f1(x) =
1

1− x
, f0(x) =

1

x
, f−1(x) =

1

1 + x
. (3.2)

The HPLs fulfil a Hopf algebra according to

H~a(x)H~b(x) =
∑
~c∈~a]~b

H~c(x) , (3.3)

where ~a ]~b are all possibilities of arranging the elements of ~a and ~b such that the internal

order of the elements of ~a and ~b is preserved individually (cf. also [39]). Hence the product

of two HPLs of weights w1 and w2 has weight w1 +w2. The Hopf algebra can also be used

to extract singular behaviour near x = 0 or x = 1. Due to the relation

H0,...,0,1(1) = ζk (3.4)
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with k − 1 zeroes and k > 1, one also assigns the weight k to numbers like ζk and πk.

A generalisation of the HPLs are the Goncharov polylogarithms [40], whose definition

reads

Ga1,a2,...,an(x) =

∫ x

0

dt

t− a1
Ga2,...,an(t) (3.5)

and G~0n(x) = H~0n(x). They fulfil a Hopf algebra that has the same structure as (3.3), and

allow for more general weights ai than just 0 or ±1. In particular, in multi-scale problems

the argument x can be represented by one scale, and the remaining scales are comprised in

the weights ai. In our problem at hand, it is most convenient to choose u as the argument

of the Goncharov polylogarithm whenever there is a dependence on this scale, bearing in

mind that this choice simplifies a subsequent convolution with the light-cone distribution

amplitude, which in a Gegenbauer expansion is a u-dependent polynomial. In this case the

weights are either integer (0,±1) or one of the following six z-dependent weights1,

a1 =
1

1− z
, a3 =

1

1−
√
z
, a5 =

√
z√

z − 1
,

a2 =
z

z − 1
, a4 =

1

1 +
√
z
, a6 =

√
z√

z + 1
. (3.6)

Goncharov polylogarithms that do not depend on u are written in terms of integer weights

and argument z or
√
z. Products of Goncharov polylogarithms of the same argument are

expanded by means of the Hopf algebra.

4. The canonical basis

We work in dimensional regularisation with D = 4−2ε and evaluate the two-loop, two-scale

master integrals by applying the method proposed by Henn [17]. Considering a specific

power in the ε-expansion of a master integral, the associated function is called uniform if

each summand has the same weight. Moreover, a uniform function is called pure, if its

derivative with respect to any one of its arguments yields a uniform function whose weight

is lowered by one unit.

The proposal in [17] now states that a basis ~C of master integrals can be found such

that the system of differential equations in the kinematic variables xj is given by

di ~C(xj , ε) = εAi(xj)~C(xj , ε) , (4.1)

where di ≡ d/dxi. The ~C(xj , ε) denote the N master integrals and Ai(xj) are N × N

matrices which are independent of ε. It turns out that eq. (4.1) can be expressed in a

compact form

d~C(xj , ε) = ε
(
d Ã(xj)

)
~C(xj , ε) , (4.2)

1The analytic results in section 6 contain only a1 − a4. The results of the “mass-flipped” integrals (see

section 6 and [31]) contain also a5 and a6.
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with the function Ã determined by the differential diÃ = Ai. We note that Ã, together

with the boundary conditions, completely determines the solution to a master integral.

The master integrals in such a basis have in turn several pleasant features: First, the

solution decouples order-by-order in the ε-expansion. Second, it is given by pure functions

to all orders in ε. Consequently, assigning a weight −1 to each power of the expansion

parameter ε and multiplying each master integral by an appropriate power of ε renders

the total weight of the master integral to be zero to all orders. Third, the solution can be

expressed in terms of iterated integrals. If the coefficients Ai(xj) are rational functions of

the xj , the Goncharov polylogarithms discussed above represent a suitable class of iterated

integrals to describe the master integrals. We will refer to such a basis as a canonical basis.

In the absence of a completely general algorithm for the systematic construction of

the canonical basis, the procedure of finding such a basis requires a certain amount of

experience and experimentation. In our case, we start from a “traditional” basis that

consists of undotted and singly-dotted integrals, and compute them up to terms that involve

functions of weight two. For this task, alternative approaches like Feynman parameters

or Mellin-Barnes representations [41, 42] have to be used. Afterwards one plugs these

expressions into seemingly more complicated integrals like the ones in figures 2 and 3 and

investigates if the resulting expressions are uniform or even pure. This method is mostly

based on trial and error, but has proven to be successful as we show below.

In the case at hand, many master integrals can be adopted from several B → ππ

calculations [8–10,43]. In order to describe the yet unknown ones in the canonical basis, a

set of 39 integrals is needed. We obtain the following expressions for the canonical master

integrals C1−39 in terms of the integrals I1−42, which are defined in figures 2 and 3 (x̄ =

1− x).

C1(u, z) = ε3 uz̄ I1(u, z) , (4.3)

C2(u, z) = ε3 u(z − 1)z I2(u, z) , (4.4)

C3(u, z) = ε3 ūz̄ I3(u, z) , (4.5)

C4(u, z) = ε3 ūz̄ I4(u, z) , (4.6)

C5(u, z) = ε3 ū(z − 1) I5(u, z) , (4.7)

C6(u, z) = ε3 ū(z − 1) I6(u, z) , (4.8)

C7(z) = ε (1− ε)z̄ I7(z) , (4.9)

C8(u, z) = ε2 (ū+ uz) I8(u, z) , (4.10)

C9(u, z) = ε2 uz̄
(
I9(u, z) + 2I8(u, z)

)
, (4.11)

C10(u, z) = ε2 (u+ ūz) I10(u, z) , (4.12)

C11(u, z) = ε2 u(z − 1)
(
I11(u, z) + 2I10(u, z)

)
, (4.13)

C12(z) = ε2 I12(z) , (4.14)
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3

1 2

4

3

1 2

4

4

2 1 + 3

4

2 1 + 3

I1(u, z) I2(u, z) I3(u, z) I4(u, z)

3

2 1 + 4

3

2 1 + 4 2 1 + 4

I5(u, z) I6(u, z) I7(z) I8(u, z)

1 + 4 1 + 3 1 + 3

I9(u, z) I10(u, z) I11(u, z) I12(z)

3

4 2

1

3

1 + 2 4 4

1 + 4

2 3

I13(u, z) I14(z) I15 I16(u, z)

1 + 4

2 3

1 + 4

2 3 3 3

I17(u, z) I18(u, z) I19(z) I20(z)

1 + 4

1 + 4

2 3

1 + 4

2 3

I21(u, z) I22 I23(u, z) I24(u, z)

Figure 2: Part I of the basic integrals needed in the construction of the canonical basis: 1, . . . , 4

denote the incoming momenta q1, . . . , q4. The double/curly/dashed line represents a propagator

with mass mb/mc/0. The dot on a line indicates a squared propagator.
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1 + 4

2 3 1 + 4 3

1 + 4

3 2

I25(u, z) I26(u, z) I27(z) I28(u, z)

1 + 4

3 2

1 + 4

3 2

1 + 4

3 2 3

I29(u, z) I30(u, z) I31(u, z) I32(z)

3

4

3 1 + 2

4

3 1 + 2

1 + 4

3 2

I33(z) I34(z) I35(z) I36(u, z)

1 + 4 1 + 4

2 + 3

4 1

2 + 3

4 1

I37(u, z) I38(u, z) I39(u, z) I40(u, z)

4 4

I41(z) I42(z)

Figure 3: Part II of the basic integrals needed in the construction of the canonical basis. All

symbols have the same meaning as in figure 2.

C13(u, z) = ε4 uz̄ I13(u, z) , (4.15)

C14(z) = ε3 z̄ I14(z) , (4.16)

C15 = ε2 I15 , (4.17)

C16(u, z) = ε3 ūz̄ I16(u, z) , (4.18)

C17(u, z) = ε3 ūz̄ I17(u, z) , (4.19)
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C18(u, z) = ε2 (1− ūz̄)
(
I18(u, z) +

ε

m2
b

I17(u, z) +
2ε

m2
b

I16(u, z)

)
, (4.20)

C19(z) = ε2 z I19(z) , (4.21)

C20(z) = ε2 z̄
(
I20(z) + 2I19(z)

)
, (4.22)

C21(u, z) = ε2 (1− uz̄) I21(u, z) , (4.23)

C22 = ε2 I22 , (4.24)

C23(u, z) = ε3 ūz̄ I23(u, z) , (4.25)

C24(u, z) = ε3 ūz̄ I24(u, z) , (4.26)

C25(u, z) = ε2 (1− ūz̄)
(
I25(u, z) +

ε

m2
b

I24(u, z) +
2ε

m2
b

I23(u, z)

)
, (4.27)

C26(u, z) = ε2 (1− uz̄) I26(u, z) , (4.28)

C27(z) = ε2 z I27(z) , (4.29)

C28(u, z) = ε3 ūz̄ I28(u, z) , (4.30)

C29(u, z) = ε3 ūz̄ I29(u, z) , (4.31)

C30(u, z) =
1

2
ε2 uūz̄2

(
I31(u, z) + I30(u, z)− 1− ε

ε

1

m2
buz̄

I7(z)

)
, (4.32)

C31(z) = ε2 z I32(z) , (4.33)

C32(z) = ε2
√
z
(
I33(z) + 2I32(z)

)
, (4.34)

C33(z) = ε3 z̄ I34(z) , (4.35)

C34(z) = ε3 z̄ I35(z) , (4.36)

C35(u, z) = ε3 ūz̄ I36(u, z) , (4.37)

C36(u, z) = ε2 (1− uz̄)2 I37(u, z) , (4.38)

C37(u, z) = ε2 (1− uz̄) I38(u, z) , (4.39)

C38(u, z) = ε3 uz̄ I39(u, z) , (4.40)

C39(u, z) = ε2
{
uz̄ [1− (1− uz̄)p] I40(u, z)

− 1

m2
b

(√
z − 1− (1− uz̄)p

2

)(
I41(z) + 2I42(z)

)}
, (4.41)

with

p =
1−

√
(2− uz̄)2 − 4z̄(1− uz̄)

1− uz̄
. (4.42)

Note that the master integrals have to be evaluated to O(ε4) since the two-loop amplitude

contains poles up to 1/ε4 stemming from the infrared and ultraviolet regions. A few
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exceptions are C26,38 and C39 which only enter the hard-scattering kernel to order O(ε3)

and O(ε2), respectively.

5. Boundary conditions

Before we present the differential equations, we specify the boundary conditions that are

used to completely fix the solution. In the simplest cases, the master integrals vanish in

a specific kinematic point. This is the case for C13,38,39, which vanish in u = 0, whereas

C3,4,5,6,16,17,23,24,28,29,30,35 vanish in u = 1. Moreover, C19,31,32 vanish in z = 0, whereas

C7,14,33,34 vanish in z = 1. In other cases we find special relations between integrals,

that hold either in general, or in certain kinematic points, and can be used as boundary

conditions. Examples are the relation C26 = z−εC21, or the following relations that hold

in u = 1,

C8
u→1−→ C19 , C10

u→1−→ C↔19 ,

C9
u→1−→ C20 , C11

u→1−→ C↔20 , (5.1)

where the symbol “↔” is used for the corresponding “mass-flipped” integral, in which

mc ↔ mb and q3 ↔ q4, see section 6 for more details. Hence, the integrals C↔19,20 can be

easily obtained from C19,20 or from [31]. Relations that have a similar structure than (5.1)

hold in z = 1 for

C12
z→1−→ C22 , C27

z→1−→ C15 . (5.2)

For the remaining integrals we either use that they assume simple, closed forms that are

valid to all orders in the ε-expansion, or asymptotic forms as u → 0 or z → 0. Examples

of the former type are (see below in section 6 for the precise definition of C̃i)

C̃15 = −Γ4(1− ε)Γ(1− 4ε)Γ(1 + ε)Γ(1 + 2ε)

4Γ(1− 3ε)Γ(1− 2ε)
,

C̃22 = Γ2(1− ε)Γ2(1 + ε) ,

C̃36 =

[
−ε (1− uz̄)

(1− ε)
Γ(1− ε) Γ(1 + ε) 2F1 (1, 1 + ε ; 2− ε ; ū+ uz)

]
×
[
−ε z

−ε (1− uz̄)
(1− ε)z

Γ(1− ε) Γ(1 + ε) 2F1

(
1, 1 + ε ; 2− ε ; u+

ū

z

)]
, (5.3)

where for C36 we give the result for each loop separately, such that also the boundary

conditions for C21,37 can be read off. Asymptotic expansions as u → 0 or z → 0 were

derived by means of MBasymptotics.m [44] for

C̃20
z→0
= − 1− 2π2

3
ε2 + 2ζ3 ε

3 − 5π4

18
ε4 +O(ε5, z) ,

C̃1
u→0
=

1

24
+ ε [−1

6
ln(u) +

1

8
G0(z)− 1

6
G1(z) +

1

4
iπ]

+ε2 [
1

3
ln2(u) + (

2

3
G1(z)− 1

2
G0(z)− iπ) ln(u) +

3

4
iπ G0(z)− iπ G1(z) +

3

8
G0,0(z)
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−1

2
G0,1(z)− 1

2
G1,0(z) +

2

3
G1,1(z)− 37π2

72
]

+ε3 [−4

9
ln3(u) + (G0(z)− 4

3
G1(z) + 2 iπ) ln2(u) + (4 iπ G1(z)− 3 iπ G0(z)

−3

2
G0,0(z) + 2G0,1(z) + 2G1,0(z)− 8

3
G1,1(z) +

37π2

18
) ln(u)− 37π2

24
G0(z)

+
37π2

18
G1(z) +

5

4
iπ G0,0(z)− 3 iπ G0,1(z)− 2 iπ G1,0(z) + 4 iπ G1,1(z) +

1

8
G0,0,0(z)

−3

2
G0,0,1(z)− 3

2
G0,1,0(z) + 2G0,1,1(z)− 1

2
G1,0,0(z) + 2G1,0,1(z) + 2G1,1,0(z)

−8

3
G1,1,1(z)− 17

6
ζ3 −

7

12
iπ3]

+ε4 [
4

9
ln4(u) + (

16

9
G1(z)− 4

3
G0(z)− 8

3
iπ) ln3(u) + (6 iπ G0(z)− 8 iπ G1(z)

+3G0,0(z)− 4G0,1(z)− 4G1,0(z) +
16

3
G1,1(z)− 37π2

9
) ln2(u) + (

37π2

6
G0(z)

−74π2

9
G1(z)− 5 iπ G0,0(z) + 12 iπ G0,1(z) + 8 iπ G1,0(z)− 16 iπ G1,1(z) +

34

3
ζ3

−1

2
G0,0,0(z) + 6G0,0,1(z) + 6G0,1,0(z)− 8G0,1,1(z) + 2G1,0,0(z)− 8G1,0,1(z)

−8G1,1,0(z) +
32

3
G1,1,1(z) +

7

3
iπ3) ln(u)− 17

12
iπ3G0(z) + 2 iπ3G1(z)− 8G1,0,1,1(z)

−35π2

24
G0,0(z) +

37π2

6
G0,1(z) + 3π2G1,0(z)− 74π2

9
G1,1(z) +

3

4
iπ G0,0,0(z)

−5 iπ G0,0,1(z)− 4 iπ G0,1,0(z) + 12 iπ G0,1,1(z)− 2 iπ G1,0,0(z) + 8 iπ G1,0,1(z)

+6 iπ G1,1,0(z)− 16 iπ G1,1,1(z) +
3

8
G0,0,0,0(z)− 1

2
G0,0,0,1(z)− 3

2
G0,0,1,0(z)

+6G0,0,1,1(z) +
1

2
G0,1,0,0(z) + 6G0,1,0,1(z) + 6G0,1,1,0(z)− 8G0,1,1,1(z) +

82π4

135

−1

2
G1,0,0,0(z) + 2G1,0,0,1(z) + 3G1,0,1,0(z)− 8G1,1,0,1(z)− 8G1,1,1,0(z)

+
32

3
G1,1,1,1(z)− 17

2
G0(z)ζ3 +

34

3
G1(z)ζ3 − 12 iπζ3] +O(ε5, u) , (5.4)

C̃2
u→0
=

1

24
+ ε [−1

6
ln(u)− 1

24
G0(z)− 1

6
G1(z)− 1

12
iπ]

+ε2 [
1

3
ln2(u) + (

1

6
G0(z) +

2

3
G1(z) +

1

3
iπ) ln(u) +

1

12
iπ G0(z) +

1

3
iπ G1(z)

+
1

24
G0,0(z) +

1

6
G0,1(z) +

1

6
G1,0(z) +

2

3
G1,1(z) +

11π2

72
]

+ε3 [−4

9
ln3(u) + (−1

3
G0(z)− 4

3
G1(z)− 2

3
iπ) ln2(u) + (−1

3
iπ G0(z)− 4

3
iπ G1(z)

−1

6
G0,0(z)− 2

3
G0,1(z)− 2

3
G1,0(z)− 8

3
G1,1(z)− 11π2

18
) ln(u)− 11π2

72
G0(z)

−11π2

18
G1(z)− 1

12
iπ G0,0(z)− 1

3
iπ G0,1(z) +

2

3
iπ G1,0(z)− 4

3
iπ G1,1(z)
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− 1

24
G0,0,0(z)− 1

6
G0,0,1(z)− 1

6
G0,1,0(z)− 2

3
G0,1,1(z) +

5

6
G1,0,0(z)− 2

3
G1,0,1(z)

−2

3
G1,1,0(z)− 8

3
G1,1,1(z)− 17

6
ζ3 −

1

4
iπ3]

+ε4 [
4

9
ln4(u) + (

4

9
G0(z) +

16

9
G1(z) +

8

9
iπ) ln3(u) + (

2

3
iπ G0(z) +

8

3
iπ G1(z)

+
1

3
G0,0(z) +

4

3
G0,1(z) +

4

3
G1,0(z) +

16

3
G1,1(z) +

11π2

9
) ln2(u) + (

11π2

18
G0(z)

+
22π2

9
G1(z) +

1

3
iπ G0,0(z) +

4

3
iπ G0,1(z)− 8

3
iπ G1,0(z) +

16

3
iπ G1,1(z)

+
1

6
G0,0,0(z) +

2

3
G0,0,1(z) +

2

3
G0,1,0(z) +

8

3
G0,1,1(z)− 10

3
G1,0,0(z) +

8

3
G1,0,1(z)

+
8

3
G1,1,0(z) +

32

3
G1,1,1(z) +

34

3
ζ3 + iπ3) ln(u) +

1

4
iπ3G0(z) +

2

3
iπ3G1(z)

+
11π2

72
G0,0(z) +

11π2

18
G0,1(z)− 5π2

9
G1,0(z) +

22π2

9
G1,1(z) +

1

12
iπ G0,0,0(z)

+
1

3
iπ G0,0,1(z)− 2

3
iπ G0,1,0(z) +

4

3
iπ G0,1,1(z) +

10

3
iπ G1,0,0(z)− 8

3
iπ G1,0,1(z)

−14

3
iπ G1,1,0(z) +

16

3
iπ G1,1,1(z) +

1

24
G0,0,0,0(z) +

1

6
G0,0,0,1(z) +

1

6
G0,0,1,0(z)

+
2

3
G0,0,1,1(z)− 5

6
G0,1,0,0(z) +

2

3
G0,1,0,1(z) +

2

3
G0,1,1,0(z) +

8

3
G0,1,1,1(z)− 4

3
iπ ζ3

+
19

6
G1,0,0,0(z)− 10

3
G1,0,0,1(z)− 7

3
G1,0,1,0(z) +

8

3
G1,0,1,1(z)− 16

3
G1,1,0,0(z) +

49π4

135

+
8

3
G1,1,0,1(z) +

8

3
G1,1,1,0(z) +

32

3
G1,1,1,1(z) +

17

6
G0(z) ζ3 +

34

3
G1(z) ζ3] +O(ε5, u) ,

(5.5)

C̃18
u→0
= ε2 [G1(z) ln(u)−G0,1(z) +G1,1(z)]

+ε3 [(G0,1(z)− 6G1,1(z)) ln(u)−G1(z) ln2(u) +
π2

6
G1(z) + 5G0,1,1(z)− 6G1,1,1(z)]

+ε4 [
2

3
ln3(u)G1(z) + (6G1,1(z)− G0,1(z)) ln2(u) + (

2π2

3
G1(z) +G0,0,1(z)

−6G0,1,1(z)− 4G1,0,1(z) + 28G1,1,1(z)) ln(u) + 5 ζ3G1(z)− 5π2

6
G0,1(z)

+
π2

3
G1,1(z)− G0,0,0,1(z) + G0,0,1,1(z) + 4G0,1,0,1(z)− 22G0,1,1,1(z) + 4G1,0,0,1(z)

−4G1,0,1,1(z) + 2G1,1,0,1(z) + 28G1,1,1,1(z)] +O(ε5, u) , (5.6)

C̃25
u→0
= ε2 [

ln2(u)

2
+ (G1(z)−G0(z)) ln(u) + G0,0(z)− G0,1(z)− G1,0(z) + G1,1(z) +

π2

2
]

+ε3 [− ln3(u) + (
3

2
G0(z)− 3G1(z)) ln2(u) + (3G0,1(z) + 2G1,0(z)− 6G1,1(z)

−π2) ln(u)− π2

2
G0(z)− 7π2

6
G1(z)− 3G0,0,0(z) + G0,1,0(z) + 3G0,1,1(z)
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+2G1,0,1(z) + 2G1,1,0(z)− 6G1,1,1(z)]

+ε4 [
7

6
ln4(u) + (

14

3
G1(z)− 5

3
G0(z)) ln3(u) + (

1

2
G0,0(z)− 5G0,1(z)− 3G1,0(z)

+14G1,1(z) +
7π2

3
) ln2(u) + (5π2G1(z)− 5π2

3
G0(z)− G0,0,0(z) + G0,0,1(z)

−10G0,1,1(z) + 2G1,0,0(z)− 6G1,0,1(z)− 4G1,1,0(z) + 28G1,1,1(z) + 6 ζ3) ln(u)

−6 ζ3G0(z) + 3 ζ3G1(z) +
19π2

6
G0,0(z)− 3π2

2
G0,1(z)− 5π2

3
G1,0(z) +

16π2

3
G1,1(z)

+10G0,0,0,0(z)− G0,0,0,1(z)− 3G0,0,1,0(z) + G0,0,1,1(z)− 2G0,1,0,0(z)− 2G0,1,1,0(z)

−10G0,1,1,1(z)− 2G1,0,0,0(z) + 2G1,0,0,1(z) + 2G1,0,1,0(z)− 6G1,0,1,1(z)

+2G1,1,0,0(z)− 4G1,1,0,1(z)− 4G1,1,1,0(z) + 28G1,1,1,1(z) +
16π4

15
]+O(ε5, u). (5.7)

6. Results

In order to facilitate the presentation of the results we write the master integrals as

C = − S2
Γ

(
m2
b

)D−n
C̃ , (6.1)

with an integer n that denotes the sum of all propagator powers, such that the integral C̃ is

dimensionless. Our integration measure is
∫
dDk/(2π)D per loop and we use the pre-factor

SΓ =
1

(4π)D/2 Γ(1− ε)
. (6.2)

Besides the integrals defined in section 4, the QCD amplitude also contains the same set of

integrals but with mc ↔ mb and q3 ↔ q4. We will refer to these as “mass-flipped” integrals

and denote them as C↔, see section 5. However, we note here that in order to define C̃↔

we factor out an appropriate power of mb, rather than mc.

As stated earlier the QCD amplitude requires terms of order O(ε4) for most of the

integrals. However, in order to keep the paper at a reasonable length, we only give terms

up to order O(ε3) explicitly below. If desired, terms of weight four can be derived from

the Ã and the boundary condition, which we actually give to weight four. Moreover, we

refrain from presenting the “mass-flipped” integrals explicitly. They can be obtained by

letting z → 1/z, keeping in mind that analytic continuation is done via z → z − iη, with

infinitesimal η > 0. We provide the results to all integrals, including the “mass-flipped”

ones, to order O(ε4) in electonic form in [31].

Last but not least, instead of dealing with one large 39 × 39 system of equations, we

solve each topology separately and therefore deal with several, smaller matrices Ãi which

we collect in appendix A. This finally puts us in the position to present the analytic results

to the C1−39.
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6.1 C1 – C12

We start right away with the largest topology, which contains twelve integrals,

~C =
{
C̃1, C̃2, C̃3, C̃4, C̃5, C̃6, C̃7, C̃8, C̃9, C̃10, C̃11, C̃12

}
. (6.3)

The corresponding matrix is Ã1−12. Taking into account the boundary conditions specified

in the previous section, the solution to the twelve integrals reads

C̃1 =
1

24
+ ε [−1

6
G0(u) +

1

8
G0(z)− 1

6
G1(z) +

1

4
iπ]

+ε2 [−1

2
G0(z)G0(u) +

2

3
G1(z)G0(u)− iπ G0(u) +

3

4
iπ G0(z)− iπ G1(z)

+
1

2
G0(z)Ga2(u)− 1

2
G1(z)Ga2(u) +

1

2
iπ Ga2(u) +

2

3
G0,0(u) +

3

8
G0,0(z)− 1

2
G0,1(z)

−1

2
G1,0(z) +

2

3
G1,1(z)− 1

2
Ga2,0(u)− 37π2

72
]

+ε3 [−3 iπ G0(z)G0(u) + 4 iπ G1(z)G0(u)− 3

2
G0,0(z)G0(u) + 2G0,1(z)G0(u)

+2G1,0(z)G0(u)− 8

3
G1,1(z)G0(u) +

37π2

18
G0(u)− 37π2

24
G0(z) + iπ G0(z)G1(u)

+
37π2

18
G1(z) +

1

2
iπ G0(z)Ga2(u)− 2 iπ G1(z)Ga2(u)− 13π2

12
Ga2(u) + 2G0(z)G0,0(u)

−8

3
G1(z)G0,0(u) + 4 iπ G0,0(u) +G1(u)G0,0(z)−Ga2(u)G0,0(z) +

5

4
iπ G0,0(z)

−1

2
Ga2(u)G0,1(z)− 3 iπ G0,1(z)− 2G0(z)G0,a2(u) + 2G1(z)G0,a2(u)− 2 iπ G0,a2(u)

−1

2
Ga2(u)G1,0(z)− 2 iπ G1,0(z) + 2Ga2(u)G1,1(z) + 4 iπ G1,1(z)−G1(z)G1,a1(u)

+G0(z)G1,a2(u)−G1(z)G1,a2(u) + iπ G1,a2(u)− 1

2
G0(z)Ga2,0(u) + 2G1(z)Ga2,0(u)

−2 iπ Ga2,0(u)− 1

2
G0(z)Ga2,a2(u) +

1

2
G1(z)Ga2,a2(u)− 1

2
iπ Ga2,a2(u)− 8

3
G0,0,0(u)

+
1

8
G0,0,0(z)− 3

2
G0,0,1(z)− 3

2
G0,1,0(z) + 2G0,1,1(z) + 2G0,a2,0(u)− 1

2
G1,0,0(z)

+2G1,0,1(z) + 2G1,1,0(z)− 8

3
G1,1,1(z)−G1,a1,0(u)−G1,a2,0(u) + 2Ga2,0,0(u)

+
1

2
Ga2,a2,0(u)− 17

6
ζ3 −

7

12
iπ3] +O(ε4) , (6.4)

C̃2 =
1

24
+ ε [−1

6
G0(u)− 1

24
G0(z)− 1

6
G1(z)− 1

12
iπ]

+ε2 [
1

6
G0(z)G0(u) +

2

3
G1(z)G0(u) +

1

3
iπ G0(u) +

1

12
iπ G0(z) +

1

3
iπ G1(z)

−1

2
G1(z)Ga1(u) +

2

3
G0,0(u) +

1

24
G0,0(z) +

1

6
G0,1(z) +

1

6
G1,0(z) +

2

3
G1,1(z)

−1

2
Ga1,0(u) +

11π2

72
]

+ε3 [−1

3
iπ G0(z)G0(u)− 4

3
iπ G1(z)G0(u)− 1

6
G0,0(z)G0(u)− 2

3
G0,1(z)G0(u)

– 14 –



−2

3
G1,0(z)G0(u)− 8

3
G1,1(z)G0(u)− 11π2

18
G0(u)− 11π2

72
G0(z) + iπ G0(z)G1(u)

−11π2

18
G1(z)− π2

12
Ga1(u)− 2

3
G0(z)G0,0(u)− 8

3
G1(z)G0,0(u)− 4

3
iπ G0,0(u)

+G1(u)G0,0(z)− 1

12
iπ G0,0(z)− 1

2
Ga1(u)G0,1(z)− 1

3
iπ G0,1(z) + 2G1(z)G0,a1(u)

−1

2
Ga1(u)G1,0(z) +

2

3
iπ G1,0(z) + 2Ga1(u)G1,1(z)− 4

3
iπ G1,1(z)−G1(z)G1,a1(u)

+G0(z)G1,a2(u)−G1(z)G1,a2(u) + iπ G1,a2(u)− 1

2
G0(z)Ga1,0(u) + 2G1(z)Ga1,0(u)

+
1

2
G1(z)Ga1,a1(u)− 8

3
G0,0,0(u)− 1

24
G0,0,0(z)− 1

6
G0,0,1(z)− 1

6
G0,1,0(z)

−2

3
G0,1,1(z) + 2G0,a1,0(u) +

5

6
G1,0,0(z)− 2

3
G1,0,1(z)− 2

3
G1,1,0(z)− 8

3
G1,1,1(z)

−G1,a1,0(u)−G1,a2,0(u) + 2Ga1,0,0(u) +
1

2
Ga1,a1,0(u)− 17

6
ζ3 −

1

4
iπ3] +O(ε4) ,

(6.5)

C̃3 =ε3 [iπ Ga2(u)G0(z)−Ga2,0(u)G0(z) + 2Ga2,a2(u)G0(z) +
π2

2
G0(z) +

π2

3
Ga2(u)

+2Ga2(u)G0,0(z)−Ga2(u)G0,1(z)−Ga2(u)G1,0(z)− 2G1(z)Ga2,a2(u)

+2 iπ Ga2,a2(u) +G0,0,0(z)−G0,1,0(z)− 2Ga2,a2,0(u) + 2 ζ3] +O(ε4) , (6.6)

C̃4 =ε2 [G0(u)G0(z)−Ga2(u)G0(z)− iπ G0(z) +G1(z)Ga2(u)− iπ Ga2(u)−G0,0(z)

+G0,1(z) +Ga2,0(u) +
π2

6
]

+ε3 [4 iπ G0(z)G0(u) + 3G0,0(z)G0(u)− 4G0,1(z)G0(u)− 2G1,0(z)G0(u)

−π
2

3
G0(u) +

3π2

2
G0(z)− 2 iπ G0(z)G1(u) +

π2

3
G1(u)− π2

3
G1(z)

−3 iπ G0(z)Ga2(u) + 4 iπ G1(z)Ga2(u) +
3π2

2
Ga2(u)− 4G0(z)G0,0(u)

−2G1(u)G0,0(z)− 2Ga2(u)G0,0(z)− 3 iπ G0,0(z) + 2G1(u)G0,1(z)

+3Ga2(u)G0,1(z) + 4 iπ G0,1(z) + 4G0(z)G0,a2(u)− 4G1(z)G0,a2(u) + 4 iπ G0,a2(u)

+2G0(z)G1,0(u) + 3Ga2(u)G1,0(z) + 2 iπ G1,0(z)− 4Ga2(u)G1,1(z) + 2G1,0,0(z)

−2G0(z)G1,a2(u) + 2G1(z)G1,a2(u)− 2 iπ G1,a2(u) + 3G0(z)Ga2,0(u)

−4G1(z)Ga2,0(u) + 4 iπ Ga2,0(u)− 3G0(z)Ga2,a2(u) + 3G1(z)Ga2,a2(u)

−3 iπ Ga2,a2(u)− 2G0,0,0(z) + 3G0,0,1(z) + 3G0,1,0(z)− 4G0,1,1(z)− 4G0,a2,0(u)

−2G1,0,1(z) + 2G1,a2,0(u)− 4Ga2,0,0(u) + 3Ga2,a2,0(u)− ζ3 +
1

3
iπ3] +O(ε4) , (6.7)

C̃5 =ε3 [Ga1,0(u)G0(z)− π2

6
G0(z) +

π2

3
Ga1(u) +Ga1(u)G0,1(z) +Ga1(u)G1,0(z)

−2G1(z)Ga1,a1(u)−G0,1,0(z)− 2Ga1,a1,0(u) + 2 ζ3] +O(ε4) , (6.8)
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C̃6 =ε2 [−G0(u)G0(z) +G1(z)Ga1(u)−G0,1(z) +Ga1,0(u)− π2

6
]

+ε3 [G0,0(z)G0(u) + 4G0,1(z)G0(u) + 2G1,0(z)G0(u) +
π2

3
G0(u) +

π2

2
G0(z)

−π
2

3
G1(u) +

π2

3
G1(z)− π2

2
Ga1(u) + 4G0(z)G0,0(u)− 2G1(u)G0,1(z)

−Ga1(u)G0,1(z)− 4G1(z)G0,a1(u)− 2G0(z)G1,0(u)−Ga1(u)G1,0(z)

−4Ga1(u)G1,1(z) + 2G1(z)G1,a1(u)−G0(z)Ga1,0(u)− 4G1(z)Ga1,0(u)

+3G1(z)Ga1,a1(u) +G0,0,1(z) +G0,1,0(z) + 4G0,1,1(z)− 4G0,a1,0(u) + 2G1,0,1(z)

+2G1,a1,0(u)− 4Ga1,0,0(u) + 3Ga1,a1,0(u)− ζ3] +O(ε4) , (6.9)

C̃7 =εG0(z) + ε2 [−G0,0(z)− 2G1,0(z) +
π2

3
]

+ε3 [
π2

3
G0(z)− 2π2

3
G1(z) +G0,0,0(z) + 2G1,0,0(z) + 4G1,1,0(z)− 2ζ3] +O(ε4) ,

(6.10)

C̃8 =ε [−G0(u)−G1(z)]

+ε2 [4G0(u)G1(z)−Ga1(u)G1(z) + 4G0,0(u) + 4G1,1(z)−Ga1,0(u) +
π2

6
]

+ε3 [−16G1,1(z)G0(u)− 5π2

3
G0(u)− 5π2

3
G1(z) +

π2

6
Ga1(u)− 16G1(z)G0,0(u)

+6G1(z)G0,a1(u) + 4Ga1(u)G1,1(z) + 4G1(z)Ga1,0(u)−G1(z)Ga1,a1(u)− 7 ζ3

−16G0,0,0(u) + 6G0,a1,0(u)− 16G1,1,1(z) + 4Ga1,0,0(u)−Ga1,a1,0(u)] +O(ε4) ,

(6.11)

C̃9 =− 1 + ε [4G0(u) + 4G1(z)]

+ε2 [−16G0(u)G1(z) + 6Ga1(u)G1(z)− 16G0,0(u)− 16G1,1(z) + 6Ga1,0(u)− 5π2

3
]

+ε3 [64G1,1(z)G0(u) +
20π2

3
G0(u) +

20π2

3
G1(z)− π2Ga1(u) + 64G1(z)G0,0(u)

−24G1(z)G0,a1(u)− 24Ga1(u)G1,1(z)− 24G1(z)Ga1,0(u) + 6G1(z)Ga1,a1(u) + 20 ζ3

+64G0,0,0(u)− 24G0,a1,0(u) + 64G1,1,1(z)− 24Ga1,0,0(u) + 6Ga1,a1,0(u)] +O(ε4) ,

(6.12)

C̃10 =ε [−G0(u) +G0(z)−G1(z) + iπ]

+ε2 [−2G0(z)G0(u) + 4G1(z)G0(u)− 4 iπ G0(u) + 2 iπ G0(z)− 4 iπ G1(z)

+G0(z)Ga2(u)−G1(z)Ga2(u) + iπ Ga2(u) + 4G0,0(u)− 2G0,1(z)− 2G1,0(z)

+4G1,1(z)−Ga2,0(u)− 11π2

6
]

– 16 –



+ε3 [−8 iπ G0(z)G0(u) + 16 iπ G1(z)G0(u)− 4G0,0(z)G0(u) + 8G0,1(z)G0(u)

+8G1,0(z)G0(u)− 16G1,1(z)G0(u) +
19π2

3
G0(u)− 8

3
π2G0(z) +

19π2

3
G1(z)

+2 iπ G0(z)Ga2(u)− 4 iπ G1(z)Ga2(u)− 11π2

6
Ga2(u) + 8G0(z)G0,0(u)

−16G1(z)G0,0(u) + 16 iπ G0,0(u) + 4 iπ G0,0(z)− 2Ga2(u)G0,1(z)− 8 iπ G0,1(z)

−6G0(z)G0,a2(u) + 6G1(z)G0,a2(u)− 6 iπ G0,a2(u)− 2Ga2(u)G1,0(z)− 8 iπ G1,0(z)

+4Ga2(u)G1,1(z) + 16 iπ G1,1(z)− 2G0(z)Ga2,0(u) + 4G1(z)Ga2,0(u) + 4G0,0,0(z)

−4 iπ Ga2,0(u) +G0(z)Ga2,a2(u)−G1(z)Ga2,a2(u) + iπ Ga2,a2(u)− 16G0,0,0(u)

−4G0,0,1(z)− 4G0,1,0(z) + 8G0,1,1(z) + 6G0,a2,0(u)− 4G1,0,0(z) + 8G1,0,1(z)

+8G1,1,0(z)− 16G1,1,1(z) + 4Ga2,0,0(u)−Ga2,a2,0(u)− 7 ζ3 − iπ3] +O(ε4) , (6.13)

C̃11 =− 1 + ε [4G0(u)− 2G0(z) + 4G1(z)− 4 iπ]

+ε2 [8G0(z)G0(u)− 16G1(z)G0(u) + 16 iπ G0(u)− 8 iπ G0(z) + 16 iπ G1(z)

−6G0(z)Ga2(u) + 6G1(z)Ga2(u)− 6 iπ Ga2(u)− 16G0,0(u)− 4G0,0(z) + 8G0,1(z)

+8G1,0(z)− 16G1,1(z) + 6Ga2,0(u) +
19π2

3
]

+ε3 [32 iπ G0(z)G0(u)− 64 iπ G1(z)G0(u) + 16G0,0(z)G0(u)− 32G0,1(z)G0(u)

−32G1,0(z)G0(u) + 64G1,1(z)G0(u)− 76π2

3
G0(u) +

38π2

3
G0(z)− 76π2

3
G1(z)

−12 iπ G0(z)Ga2(u) + 24 iπ G1(z)Ga2(u) + 11π2Ga2(u)− 32G0(z)G0,0(u)

+64G1(z)G0,0(u)− 64 iπ G0,0(u)− 16 iπ G0,0(z) + 12Ga2(u)G0,1(z) + 32 iπ G0,1(z)

+24G0(z)G0,a2(u)− 24G1(z)G0,a2(u) + 24 iπ G0,a2(u) + 12Ga2(u)G1,0(z)

+32 iπ G1,0(z)− 24Ga2(u)G1,1(z)− 64 iπ G1,1(z) + 12G0(z)Ga2,0(u) + 64G0,0,0(u)

−24G1(z)Ga2,0(u) + 24 iπ Ga2,0(u)− 6G0(z)Ga2,a2(u) + 6G1(z)Ga2,a2(u)

−6 iπ Ga2,a2(u)− 8G0,0,0(z) + 16G0,0,1(z) + 16G0,1,0(z)− 32G0,1,1(z)

−24G0,a2,0(u) + 16G1,0,0(z)− 32G1,0,1(z)− 32G1,1,0(z) + 64G1,1,1(z)

−24Ga2,0,0(u) + 6Ga2,a2,0(u) + 20 ζ3 + 4 iπ3] +O(ε4) , (6.14)

C̃12 =1− εG0(z) + ε2 [G0,0(z) +
π2

3
] + ε3 [−π

2

3
G0(z)−G0,0,0(z)] +O(ε4) . (6.15)

6.2 C13 – C15

The new integrals in this topology are C13 – C15. However, in order to close the system of

differential equations nine integrals are needed which we order as follows,

~C =
{
C̃13, C̃5, C̃6, C̃7, C̃14, C̃8, C̃9, C̃15, C̃12

}
. (6.16)
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The corresponding matrix is Ã13−15. The solution to the C13 – C15 reads

C̃13 =ε3 [G1(z)G1,a1(u) +G1,a1,0(u)−G0,1(z)G1(u)− π2

6
G1(u)−G0(z)G1,0(u)] +O(ε4) ,

(6.17)

C̃14 =ε3 [
π2

6
G0(z) +G0,1,0(z)− 2 ζ3] +O(ε4) , (6.18)

C̃15 =− 1

4
− ε2 π

2

4
− ε3 2 ζ3 +O(ε4) . (6.19)

6.3 C16 – C22

This topology has seven integrals, none of which has appeared in previous subsections.

They are ordered according to

~C =
{
C̃16, C̃17, C̃18, C̃19, C̃20, C̃21, C̃22

}
. (6.20)

The corresponding matrix is Ã16−22. The solution reads

C̃16 =ε3 [Ga1(u)G0,1(z)−Ga2(u)G0,1(z) +Ga1(u)G1,1(z) +Ga2(u)G1,1(z)

+G1(z)Ga1,0(u)−G1(z)Ga1,a1(u) +G1(z)Ga2,0(u)− 2G0,0,1(z) +Ga1,1,0(u)

−Ga1,a1,0(u) +Ga2,1,0(u)− 2 ζ3] +O(ε4) , (6.21)

C̃17 =ε2 [−G1(z)Ga1(u) +G0,1(z)−Ga1,0(u) +
π2

6
]

+ε3 [−2G0,1(z)G1(u)− π2

3
G1(u)− π2

3
G1(z) +

π2

6
Ga1(u) +Ga1(u)G0,1(z)

+Ga2(u)G0,1(z) + 3Ga1(u)G1,1(z)−Ga2(u)G1,1(z) + 2G1(z)G1,a1(u)−Ga2,1,0(u)

+3G1(z)Ga1,0(u)− 2G1(z)Ga1,a1(u)−G1(z)Ga2,0(u) + 3G0,0,1(z)− 4G0,1,1(z)

−2G1,0,1(z) + 2G1,a1,0(u) + 2Ga1,0,0(u) +Ga1,1,0(u)− 2Ga1,a1,0(u) + 3 ζ3] +O(ε4) ,

(6.22)

C̃18 =ε2 [G0(u)G1(z)−G0,1(z) +G1,0(u) +G1,1(z)]

+ε3 [−G0,1(z)G1(u) +
π2

6
G1(u) +

π2

6
G1(z)− 2G1(z)G0,0(u) +G0(u)G0,1(z)

+G1(z)G0,a1(u)− 4G1(z)G1,0(u)− 6G0(u)G1,1(z) +G1(z)G1,a1(u)− 2G0,1,0(u)

+5G0,1,1(z) +G0,a1,0(u)− 2G1,0,0(u)− 2G1,1,0(u)− 6G1,1,1(z) +G1,a1,0(u)] +O(ε4) ,

(6.23)

C̃19 =− εG1(z) + ε2 [4G1,1(z)−G0,1(z)]
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+ε3 [−2π2

3
G1(z)−G0,0,1(z) + 4G0,1,1(z) + 6G1,0,1(z)− 16G1,1,1(z)] +O(ε4) , (6.24)

C̃20 =− 1 + ε 4G1(z) + ε2 [6G0,1(z)− 16G1,1(z)− 2π2

3
]

+ε3 [
8π2

3
G1(z) + 6G0,0,1(z)− 24G0,1,1(z)− 24G1,0,1(z) + 64G1,1,1(z) + 2 ζ3] +O(ε4) ,

(6.25)

C̃21 =ε [G0(u) +G1(z)]

+ε2 [−2G0(u)G1(z) +Ga1(u)G1(z)− 2G0,0(u)− 2G1,1(z) +Ga1,0(u)− π2

6
]

+ε3 [4G1,1(z)G0(u) +
2π2

3
G0(u) +

2π2

3
G1(z)− π2

6
Ga1(u) + 4G1(z)G0,0(u)

−2G1(z)G0,a1(u)− 2Ga1(u)G1,1(z)− 2G1(z)Ga1,0(u) +G1(z)Ga1,a1(u)

+4G0,0,0(u)− 2G0,a1,0(u) + 4G1,1,1(z)− 2Ga1,0,0(u) +Ga1,a1,0(u) + ζ3] +O(ε4) ,

(6.26)

C̃22 =1 + ε2
π2

3
+O(ε4) . (6.27)

6.4 C23 – C27

This topology has also seven integrals, of which C23 – C27 are new. The entire topology

reads

~C =
{
C̃23, C̃24, C̃25, C̃7, C̃26, C̃27, C̃12

}
. (6.28)

The corresponding matrix is Ã23−27. The solution reads

C̃23 =ε3 [−Ga2,0(u)G0(z) +
π2

2
G0(z) +

π2

6
Ga1(u) +

π2

2
Ga2(u) +Ga2(u)G0,0(z)

−Ga2(u)G0,1(z)−Ga2(u)G1,0(z) +Ga1(u)G1,1(z) +Ga2(u)G1,1(z) +G1(z)Ga1,0(u)

−G1(z)Ga1,a1(u) +G1(z)Ga2,0(u) +G0,0,0(z)−G0,1,0(z) +Ga1,0,0(u)−Ga1,a1,0(u)

+Ga2,0,0(u) + 2 ζ3] +O(ε4) , (6.29)

C̃24 =ε2 [G0(u)G0(z)−G1(z)Ga1(u) +G0,1(z)−Ga1,0(u) +
π2

6
]

+ε3 [−G0,0(z)G0(u)− 4G0,1(z)G0(u)− 2G1,0(z)G0(u)− π2

3
G0(u)− π2G0(z)

+
π2

3
G1(u)− π2

3
G1(z) +

π2

3
Ga1(u)− π2

2
Ga2(u)− 4G0(z)G0,0(u)−Ga2(u)G0,0(z)

+2G1(u)G0,1(z) +Ga1(u)G0,1(z) +Ga2(u)G0,1(z) + 4G1(z)G0,a1(u)− 2Ga1,a1,0(u)
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+2G0(z)G1,0(u) +Ga1(u)G1,0(z) +Ga2(u)G1,0(z) + 3Ga1(u)G1,1(z)−Ga2,0,0(u)

−Ga2(u)G1,1(z)− 2G1(z)G1,a1(u) +G0(z)Ga1,0(u) + 3G1(z)Ga1,0(u) + 3Ga1,0,0(u)

−2G1(z)Ga1,a1(u) +G0(z)Ga2,0(u)−G1(z)Ga2,0(u)−G0,0,0(z)−G0,0,1(z)

−4G0,1,1(z) + 4G0,a1,0(u)− 2G1,0,1(z)− 2G1,a1,0(u)− ζ3] +O(ε4) , (6.30)

C̃25 =ε2 [G0(u) (G1(z)−G0(z)) +G0,0(u) +G0,0(z)−G0,1(z)−G1,0(z) +G1,1(z) +
π2

2
]

+ε3 [3G0,1(z)G0(u) + 2G1,0(z)G0(u)− 6G1,1(z)G0(u)− π2G0(u)− π2

2
G0(z)

−π
2

6
G1(u)− 7π2

6
G1(z) + 3G0(z)G0,0(u)− 6G1(z)G0,0(u)−G1(u)G0,1(z)

+G1(z)G0,a1(u)−G0(z)G1,0(u) +G1(z)G1,a1(u)− 6G0,0,0(u)− 3G0,0,0(z)

+G0,1,0(z) + 3G0,1,1(z) +G0,a1,0(u) + 2G1,0,1(z) + 2G1,1,0(z)− 6G1,1,1(z)

+G1,a1,0(u)] +O(ε4) , (6.31)

C̃26 =ε [G0(u) +G1(z)]

+ε2 [−G0(u)G0(z)− 2G0(u)G1(z) +G1(z)Ga1(u)− 2G0,0(u)−G0,1(z)−G1,0(z)

−2G1,1(z) +Ga1,0(u)− π2

6
]

+ε3 [G0,0(z)G0(u) + 2G0,1(z)G0(u) + 2G1,0(z)G0(u) + 4G1,1(z)G0(u) +
2π2

3
G0(u)

+
π2

6
G0(z) +

2π2

3
G1(z)− π2

6
Ga1(u) + 2G0(z)G0,0(u) + 4G1(z)G0,0(u) +G1,0,0(z)

−Ga1(u)G0,1(z)− 2G1(z)G0,a1(u)−Ga1(u)G1,0(z)− 2Ga1(u)G1,1(z) + 2G1,0,1(z)

−G0(z)Ga1,0(u)− 2G1(z)Ga1,0(u) +G1(z)Ga1,a1(u) + 4G0,0,0(u) +G0,0,1(z)

+G0,1,0(z) + 2G0,1,1(z)− 2G0,a1,0(u) + 2G1,1,0(z) + 4G1,1,1(z)− 2Ga1,0,0(u)

+Ga1,a1,0(u) + ζ3] +O(ε4) , (6.32)

C̃27 =− 1

4
+ ε

1

2
G0(z) + ε2 [−G0,0(z)− π2

4
] + ε3 [

π2

2
G0(z) + 2G0,0,0(z)− 2 ζ3] +O(ε4) .

(6.33)

6.5 C28 – C32

This topology has ten integrals, of which the five integrals C28 – C32 are new. They are

embedded in the topology as follows

~C =
{
C̃28, C̃29, C̃30, C̃7, C̃26, C̃21, C̃22, C̃31, C̃32, C̃12

}
. (6.34)

The corresponding matrix is Ã28−32. The solution reads

C̃28 =ε3 [−G1,0(u)G0(z) +
π2

6
G0(z)− π2

6
G1(u)− π2

6
Ga1(u)−G1(u)G0,1(z)
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−G1(z)G0,a1(u) +G1(z)G1,a1(u) +G1(z)Ga1,a1(u)−G0,a1,0(u) +G1,a1,0(u)

+Ga1,a1,0(u)] +O(ε4) , (6.35)

C̃29 =ε3 [G0,1(z)G1(u) +
π2

6
G1(u)− π2

6
Ga1(u)−Ga1(u)G0,1(z) +G1(z)G0,a1(u)

+G0(z)G1,0(u)−Ga1(u)G1,0(z)−G1(z)G1,a1(u)−G0(z)Ga1,0(u) +G1(z)Ga1,a1(u)

+G0,1,0(z) +G0,a1,0(u)−G1,a1,0(u) +Ga1,a1,0(u)− 2 ζ3] +O(ε4) , (6.36)

C̃30 =ε2 [−G0(u)G0(z) +G1(z)Ga1(u)−G0,1(z) +Ga1,0(u)− π2

6
]

+ε3 [2G0,0(u)G0(z)− 3G1,0(u)G0(z)− 2Ga1,0(u)G0(z) + 2Ga3,0(u)G0(z)

+2Ga4,0(u)G0(z) +
π2

6
G0(z)− π2

2
G1(u) +

π2

3
G1(z)− 2π2

3
Ga1(u) +

2π2

3
Ga3(u)

+
2π2

3
Ga4(u)− 2Ga3(u)G−1,0(

√
z) + 2Ga4(u)G−1,0(

√
z) +G0(u)G0,0(z)−G0,a1,0(u)

+2G0(u)G0,1(z)− 3G1(u)G0,1(z)− 2Ga1(u)G0,1(z) + 2Ga3(u)G0,1(z) +G0,1,0(z)

+2Ga4(u)G0,1(z)−G1(z)G0,a1(u) + 2Ga3(u)G1,0(
√
z)− 2Ga4(u)G1,0(

√
z)

+2G0(u)G1,0(z)− 2Ga1(u)G1,0(z) +Ga3(u)G1,0(z) +Ga4(u)G1,0(z) +G0,0,1(z)

−2Ga1(u)G1,1(z) + 3G1(z)G1,a1(u)− 2G1(z)Ga1,0(u) + 4G1(z)Ga1,a1(u) + ζ3

−4G1(z)Ga3,a1(u)− 4G1(z)Ga4,a1(u) + 2G0,1,1(z) + 2G1,0,1(z)− 4Ga4,a1,0(u)

+3G1,a1,0(u)− 2Ga1,0,0(u) + 4Ga1,a1,0(u)− 4Ga3,a1,0(u)] +O(ε4) , (6.37)

C̃31 =− ε2 1

2
G1,0(z) + ε3 [−G−1,−1,0(

√
z) +G−1,1,0(

√
z)− 1

2
G0,1,0(z) +G1,−1,0(

√
z)

+
1

2
G1,0,0(z)−G1,1,0(

√
z) +

3

2
G1,1,0(z)] +O(ε4) , (6.38)

C̃32 =ε2 [G−1,0(
√
z)−G1,0(

√
z)]

+ε3 [−2G−1,−1,0(
√
z)− 2G−1,0,0(

√
z)− 4G−1,1,0(

√
z)− 2G0,−1,0(

√
z)

+2G0,1,0(
√
z) + 4G1,−1,0(

√
z) + 2G1,0,0(

√
z) + 2G1,1,0(

√
z)] +O(ε4) . (6.39)

6.6 C33 and C34

This topology has seven integrals, of which only C33 – C34 have not yet appeared in the

previous topologies. The integrals are ordered as

~C =
{
C̃33, C̃34, C̃7, C̃22, C̃31, C̃32, C̃12

}
. (6.40)

The corresponding matrix is Ã33,34. The solution to O(ε3) is very short

C̃33 =ε3 [G0,1,0(z)− 2 ζ3] +O(ε4) , (6.41)
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C̃34 =ε3
π2

6
G0(z) +O(ε4) . (6.42)

At order O(ε4) the solution requires also Goncharov polylogarithms of argument
√
z.

6.7 C35

This topology has three integrals, and only C35 is new. The integrals are ordered as

~C =
{
C̃35, C̃19, C̃20

}
. (6.43)

The corresponding matrix is Ã35. The solution reads

C̃35 =ε
1

2
G0(u) + ε2 [−2G0(u)G1(z) +Ga1(u)G1(z)− 3

2
G0,0(u)−G0,1(z)− 1

2
G1,0(u)

+Ga1,0(u)− π2

12
]

+ε3 [8G1,1(z)G0(u) +
7π2

12
G0(u) +

π2

12
G1(u) +

π2

3
G1(z)− π2

6
Ga1(u) +

9

2
G0,0,0(u)

+6G1(z)G0,0(u) +G1(u)G0,1(z)−Ga1(u)G0,1(z)− 3G1(z)G0,a1(u)− 3G0,a1,0(u)

+2G1(z)G1,0(u)− 4Ga1(u)G1,1(z)−G1(z)G1,a1(u)− 4G1(z)Ga1,0(u) + 4G1,0,1(z)

+2G1(z)Ga1,a1(u)−G0,0,1(z) +
3

2
G0,1,0(u) + 4G0,1,1(z) +

3

2
G1,0,0(u) +

1

2
G1,1,0(u)

−G1,a1,0(u)− 3Ga1,0,0(u)−Ga1,1,0(u) + 2Ga1,a1,0(u) + ζ3] +O(ε4) . (6.44)

6.8 C36 and C37

This topology has four integrals, of which C36 and C37 are new. The integrals are

~C =
{
C̃36, C̃37, C̃26, C̃12

}
. (6.45)

The corresponding matrix is Ã36,37. The solution reads

C̃36 =ε2 [−G0(z)G0(u) +G1(z)G0(u)− iπ G0(u) +G1(u)G1(z)− iπ G1(z)

+G0,1(u)−G0,1(z) +G1,0(u)−G1,0(z) + 2G1,1(z)]

+ε3 [4 iπ G1(z)G0(u) +G0,0(z)G0(u) + 2G0,1(z)G0(u) + 3G1,0(z)G0(u)

−6G1,1(z)G0(u) +
2π2

3
G0(u) +

π2

6
G0(z)− π2

6
G1(u) + 2 iπ G1(u)G1(z) +

π2

2
G1(z)

−2 iπ G1(z)Ga1(u) + 2G0(z)G0,0(u)− 2G1(z)G0,0(u) + 2 iπ G0,0(u) +G0(z)G0,1(u)

−4G1(z)G0,1(u) + 2 iπ G0,1(u) +G1(u)G0,1(z)− 2Ga1(u)G0,1(z)−G0(z)G0,a1(u)

+G1(z)G0,a1(u)− iπ G0,a1(u) +G0(z)G1,0(u)− 4G1(z)G1,0(u) + 2 iπ G1,0(u)

+G1(u)G1,0(z)− 2Ga1(u)G1,0(z)− 2G1(z)G1,1(u)− 6G1(u)G1,1(z) + 6 iπ G1,1(z)

+4Ga1(u)G1,1(z) +G1(z)G1,a1(u)− 2G0(z)Ga1,0(u) + 2G1(z)Ga1,0(u) + 3G1,0,1(z)

−2 iπ Ga1,0(u) + 2G1(z)Ga1,1(u)− 2G0,0,1(u) +G0,0,1(z)− 2G0,1,0(u)− 2G1,0,1(u)
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−2G0,1,1(u) + 2G0,1,1(z) +G0,a1,1(u)− 2G1,0,0(u) +G1,0,0(z) +G0,1,0(z)− 2G1,1,0(u)

+4G1,1,0(z)− 12G1,1,1(z) +G1,a1,0(u) + 2Ga1,0,1(u) + 2Ga1,1,0(u) +
1

6
iπ3] +O(ε4) ,

(6.46)

C̃37 =ε [−G0(z) +G1(u) +G1(z)− iπ]

+ε2 [G0(z)G1(u)− 2G1(z)G1(u) + 2 iπ G1(u) + 2 iπ G1(z)−G0(z)Ga1(u) +Ga1,1(u)

+G1(z)Ga1(u)− iπ Ga1(u) +G0,0(z) +G1,0(z)− 2G1,1(u)− 2G1,1(z) +
2π2

3
]

+ε3 [−2G1,1(u)G0(z) + 2G1,a1(u)G0(z) +Ga1,1(u)G0(z)−Ga1,a1(u)G0(z)

−π
2

3
G0(z)− π2G1(u)− 4 iπ G1(u)G1(z)− π2G1(z) + 2 iπ G1(z)Ga1(u) + 4G1,1,1(z)

+
2π2

3
Ga1(u)−G1(u)G0,0(z) +Ga1(u)G0,0(z)− 2G1(u)G1,0(z) +Ga1(u)G1,0(z)

+4G1(z)G1,1(u)− 4 iπ G1,1(u) + 4G1(u)G1,1(z)− 2Ga1(u)G1,1(z)− 4 iπ G1,1(z)

−2G1(z)G1,a1(u) + 2 iπ G1,a1(u)− 2G1(z)Ga1,1(u) + 2 iπ Ga1,1(u) +G1(z)Ga1,a1(u)

−iπ Ga1,a1(u)−G0,0,0(z)−G1,0,0(z)− 2G1,1,0(z) + 4G1,1,1(u)− 2G1,a1,1(u)

−2Ga1,1,1(u) +Ga1,a1,1(u) + 2 ζ3] +O(ε4) . (6.47)

6.9 C38 and C39

These integrals arise from diagrams with a massive quark loop inside a gluon propagator.

They appeared in a slightly different version already in the calculation of the two-loop tree

amplitudes in B → ππ [9,10], and analytic results were recently derived in [11] as M28,29. It

turns out that the results of C38,39 can be obtained from the latter reference if one adjusts

the kinematics to the present problem. To be precise, one has to replace

u→ u (1− z) (6.48)

in the expressions in [11]. That is, in the definition of the canonical basis (cf. (3.30) and

(3.31) of [11] and (4.40), (4.41) of the present article), and also in the solution, eqs. (4.64)

and (4.65) of [11]. In particular, the kinematic variable p changes to (z̄ = 1− z)

p =
1−

√
(2− uz̄)2 − 4z̄(1− uz̄)

1− uz̄
. (6.49)

7. Checks

In order to validate the analytic results presented above, we performed several checks of

analytic and numeric nature. Those integrals that possess a closed form in terms of hyper-

geometric functions were analytically expanded in ε using HypExp [45, 46]. Subsequently,

we re-wrote the resulting polylogarithms and HPLs in terms of Goncharov polylogarithms

and compared to the results obtained by the differential equation method.
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For the numerical checks we used a dozen points in the u− z plane. We first evaluated

the Goncharov polylogarithms that appear in our analytic results numerically with the

GiNaC-library [47, 48]. We also derived Mellin-Barnes (MB) representations, partially

using the AMBRE-package [49]. The analytic continuation to ε = 0 and subsequent numerical

integration was carried out by MB.m [50]. This worked for almost all cases, even in the

presence of kinematic thresholds, and yielded agreement to the GiNaC results to 5·10−10 or

better. There are, however, a few cases in which the Monte-Carlo integration implemented

in MB.m failed due to highly oscillating integrands, notably for the integrals C28−30, and

their “mass-flipped” counterparts (where mc ↔ mb and q3 ↔ q4). In these cases, we

relied on the sector decomposition method implemented in SecDec [51, 52], which yielded

agreement with GiNaC at the level of 8 ·10−7 for the highest ε-coefficients in C28−30, and at

the level of 6 · 10−4 for the highest ε-coefficients of their “mass-flipped” counterparts. The

agreement is several orders of magnitude better for the lower coefficients in the ε-expansion.

Another important point to mention is the fact that the GiNaC results were obtained

in the canonical basis, whereas most of the MB representations and the SecDec results

were derived in an “ordinary” basis of un-dotted and singly-dotted master integrals. The

change of basis was then performed using the Laporta reduction. Having calculated the

numerics in two different integral bases constitutes another non-trivial check of our results.

8. Conclusion

We obtained analytic results to all two-loop master integrals that are necessary for the

description of the non-leptonic decay B → Dπ at NNLO in QCD factorisation. They are

expressed in terms of Goncharov polylogarithms of argument u and weights that are either

integer numbers (0 or ±1), or contain the second kinematic varible, z. It is remarkable that

six z-dependent weights are sufficient for writing down the entire set of solutions, including

the “mass-flipped” integrals.

With the master integrals at hand, the bare two-loop part of the hard-scattering kernels

Tij(u) in (1.1) is complete. The remaining task consists of renormalising the ultraviolet

divergences and subtracting infrared divergences via matching from QCD onto soft-collinear

effective theory. Steps towards this goal are outlined in [13]. Having the hard-scattering

kernels Tij(u) written in terms of iterated integrals is an optimal choice for carrying out

the convolution integral with the pion LCDA in (1.1), and it might be feasible to obtain

the NNLO topological tree amplitude in analytic form. In any case our results constitute

an important step towards the phenomenology of B → Dπ decays at NNLO in QCD

factorisation.

Let us compare the integrals in the present work to those recently obtained in [11]

during the evaluation of the two-loop penguin amplitude. Both are two-loop problems

with scales u and z. The present integrals are a bit less involved compared to those in

[11], in a sense that the linear combinations that form a canonical master integral are

shorter, the occurring weights are fewer, and the choice of kinematic invariants is less

complicated. The main reason for this is that in the present work the external kinematics

of the final state contains also the second internal mass, notably mc. On the other hand,
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the only five-line integral in [11], a two-point function (M22), is in fact a one-scale integral,

whereas here we encountered several five-line integrals with four external legs which are

genuine two-scale functions. Moreover, most of our integrals are needed to order O(ε4),

whereas in [11] all but two integrals were required only to order O(ε3).

On more general grounds, it will be interesting to investigate how the canonical basis

depends on the number of loops, legs, scales, space-time dimensions, and on the external

kinematics. Every example therefore sharpens our understanding of the patterns that

such bases follow, with the goal of eventually developing an algorithm for their automated

construction.
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A. The matrices Ã

Here we list the matrices Ã for the different topologies. Their entries can all be expressed

in terms of the following nine logarithms,

L1 = ln(u) , L6 = ln(z + u(1− z)) ,
L2 = ln(1− u) , L7 = ln

(
1− u

(
1−
√
z
))

,

L3 = ln(z) , L8 = ln
(
1− u

(
1 +
√
z
))

,

L4 = ln(1− z) , L9 = ln

(
1−
√
z

1 +
√
z

)
. (A.1)

L5 = ln(1− u(1− z)) ,

The matrices Ã now assume the following compact form,

Ã1−12 =



−4L1 − L4 3L3 − 3L4 −2L2 − L3
2 −

L4
2 + L6 −L2 + L3

2 − L4 + L6
2 L2 + L3

2 −
L4
2

−3L4 −4L1 − L3 − L4 L2 − L4
2 −L2 − L4 −2L2 − L4

2 + L5

0 0 2L2 − L3 + 2L4 − 2L6 L3 − L6 0

0 0 −2L1 − 2L4 + 2L6 −4L1 + 2L2 − 2L4 + L6 0

0 0 0 0 2L2 − L3 + 2L4 − 2L5

0 0 0 0 −2L1 − 2L4 + 2L5

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0
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−L2 + L3 − L4
L3
4 −

L6
4 0 L3

4 −
L4
4

3L6
2 −

3L3
2 −L3

2 + L4
4 + L6

4
L6
4 −

L3
4

−L2 − L4 + L5
2

L5
4

3L5
2

L4
4 + L5

4 0 −L4
4

L5
4

0 L6
2 0 0 −2L6 −L6

2 −L6
2

0 L1 − L6
2 0 0 L6

L6
2

L6
2

−L5
L3
2 −

L5
2 2L3 − 2L5

L3
2 −

L5
2 0 0 L3

2 −
L5
2

−4L1 + 2L2 − L3 − 2L4 + L5 −L1 − L3
2 + L5

2 L5 − L3
L5
2 −

L3
2 0 0 L5

2 −
L3
2

0 −2L4 0 0 0 0 L3

0 0 L5 L1 + L4 0 0 0

0 0 −6L5 −4L1 − 4L4 0 0 0

0 0 0 0 L6 − 3L3 L1 − L3 + L4 0

0 0 0 0 6L3 − 6L6 −4L1 + 2L3 − 4L4 0

0 0 0 0 0 0 −L3



,

(A.2)

Ã13−15 =



−2L4 L3 − L4 L2 0 L3 − L4

0 2L2 − L3 + 2L4 − 2L5 −L5
L3
2 −

L5
2 0

0 −2L1 − 2L4 + 2L5 −4L1 + 2L2 − L3 − 2L4 + L5 −L1 − L3
2 + L5

2 0

0 0 0 −2L4 0

0 0 0 −L3
2 2L4 − L3

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

2L4 − 2L3
L4
2 −

L3
2 2L3 − 2L4 0

2L3 − 2L5
L3
2 −

L5
2 0 L3

2 −
L5
2

L5 − L3
L5
2 −

L3
2 0 L5

2 −
L3
2

0 0 0 L3

0 0 −2L3 −L3
2

L5 L1 + L4 0 0

−6L5 −4L1 − 4L4 0 0

0 0 0 0

0 0 0 −L3


,

(A.3)

Ã16−22 =



2L2 − 2L3 + 2L4 + L5 L5 − L3 −L3 + L5 + L6

−2L2 + 2L3 − 2L4 + L5 −2L2 + L3 − 2L4 + L5 L3 + L5 − L6

−2L1 − 3L2 + 2L3 − 5L4 −L1 + L3 − L4 −2L1 − 2L2 + L3 − 4L4

0 0 0

0 0 0

0 0 0

0 0 0

2L5 − 2L3
L5
2 −

L3
2 0 L5

2 −
L3
2

L3 + 2L5
L3
2 + L5

2 −L5
L3
2 + L5

2

−3L1 − 3L2 + 3L3 − 6L4 −L1
2 − L2 + L3

2 −
3L4

2 L2 + L4 −L1
2 − L2 + L3

2 −
3L4

2

L3 L4 0 0

−6L3 −4L4 0 0

0 0 −2L1 − 2L4 + L5 L1 + L4

0 0 0 0


,

(A.4)
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Ã23−27 =



2L2 − 3L3 + 2L4 + L5 L5 −L3 + L5 + L6

−2L1 − L3 − 2L4 + L5 −4L1 + 2L2 − 2L3 − 2L4 + L5 −L3 + L5 − L6

−3L1 − 2L2 + 3L3 − 5L4 −L2 − L4 −4L1 + L3 − 4L4

0 0 0

0 0 0

0 0 0

0 0 0

L3
2 −

L5
2 0 2L5 − 2L3

L5
2 −

L3
2

L1 + L3
2 −

L5
2 L3 − L5 2L5 − 2L3

L5
2 −

L3
2

L1
2 −

L3
2 + L4

2 L1 − L3 + L4 −6L1 + 6L3 − 6L4 −3L1
2 + 3L3

2 −
3L4

2

−2L4 0 0 L3

0 −2L1 − L3 − 2L4 + L5 0 L1 + L4

0 0 −2L3 0

0 0 0 −L3


,

(A.5)

Ã28−32 =



L2 − L3 − L5 L2 − 2L3 + 2L4 −L1 + L2 − L3 + L5 −L1
2

L2 + 2L4 − L5 L2 L1 − L2 + L5
L1
2

−L2 − 3L5 + 2L7 + 2L8 L2 − 2L7 − 2L8 −L1 + 3L2 − 2L4 + 3L5 − 4L7 − 4L8 −L1
2

0 0 0 −2L4

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

L1 + L3 − L5 −L1 − L3 + L5
L1
2 2L5 − 2L3 0 −L1

2

−L1 L1 −L1
2 2L5 − 2L3 0 L1

2

−L1 − L3 − L5 + 2L7 + 2L8 L1 + 2L5 − 2L7 − 2L8 −L1
2 6L5 − 6L7 − 6L8 2L8 − 2L7

L1
2

0 0 0 0 0 L3

−2L1 − L3 − 2L4 + L5 0 0 0 0 L1 + L4

0 −2L1 − 2L4 + L5 L1 + L4 0 0 0

0 0 0 0 0 0

0 0 −L4
2 L3 − 3L4 L9

L4
2

0 0 −L9
2 −3L9 L4 − L3

L9
2

0 0 0 0 0 −L3



,

(A.6)

Ã33,34 =



0 2L4 0 0 −2L3 0 0

2L4 − 2L3 −L3
L3
2 −L3

2 −2L3 0 L3
2

0 0 −2L4 0 0 0 L3

0 0 0 0 0 0 0

0 0 0 −L4
2 L3 − 3L4 L9

L4
2

0 0 0 −L9
2 −3L9 L4 − L3

L9
2

0 0 0 0 0 0 −L3


, (A.7)
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Ã35 =

−3L1 − L2 − 4L4 + 2L5 L3 − L5 −L1
2

0 L3 L4

0 −6L3 −4L4

 , (A.8)

Ã36,37 =


2L5 − 2L1 − 2L2 − 4L4 L1 + L4 L2 − L3 + L4 0

0 L5 − 2L2 − 2L4 0 L2 − L3 + L4

0 0 L5 − 2L1 − L3 − 2L4 L1 + L4

0 0 0 −L3

.
(A.9)
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