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can be tested independently using the measurements of direct CP asymmetries and

branching ratios in three-body charged B decays.
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1. Introduction

The standard model (SM) explanation of CP violation is that it is due to a phase in

the Cabibbo-Kobayashi-Maskawa (CKM) quark mixing matrix. This phase informa-

tion is elegantly encoded in the unitarity triangle, whose interior CP-violating angles

are α, β and γ [1]. Using B decays, a great deal of effort has gone into measuring

these angles in many different ways, along with the sides of the unitarity triangle,

to search for inconsistencies that would indicate the presence of new physics (NP).

Unfortunately, to date no such indications have been seen. This suggests that the NP

is more massive than hoped for (which is consistent with the absence of NP signals

at the LHC), and that the observation of its effects on CP violation in the B system

will require measurements of greater precision.

One interesting procedure for searching for NP involves the CKM phase γ. The

conventional way of measuring γ uses the tree-level decay B− → D(∗)K(∗)− [2–6]. Its

latest value is γ = (71.7+7.1
−7.4)

◦ [7]. However, suppose that γ could be measured using

decays that have significant (gluonic or electroweak) penguin contributions. If NP

is present, it is likely to affect the (loop-level) penguins, in which case the extracted

value of γ would be different from that found using B− → D(∗)K(∗)−. That is, one

can probe NP by comparing the “tree-level” and “loop-level” values of γ. (But note
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that, if there is NP, the “loop-level” value of γ will not be constant. It will generally

vary, depending on which decays are used for its extraction.)

One example of this involves B → πK decays. (In what follows, we briefly

describe the method, but we refer the reader to Ref. [8] for full details.) There

are four such decays: B+ → π+K0, B+ → π0K+, B0
d → π−K+ and B0

d → π0K0.

Using these processes, one can measure nine observables: four branching ratios, four

direct CP asymmetries, and one indirect (mixing-induced) CP asymmetry. However,

assuming flavor SU(3) symmetry, the amplitudes can be written in terms of eight

theoretical parameters: the magnitudes of the diagrams P ′
tc, T

′, C ′, P ′
uc, three relative

strong phases, and the weak phase γ. (The value of the weak phase β is taken from

the measurement of indirect CP violation in B0
d(t) → J/ΨKS [7].) With more

observables than theoretical parameters, one can perform a fit to extract γ. The

value found is γ = (35.3 ± 7.1)◦ [8], which differs from the tree-level value of γ by

3.5σ. While this is intriguing, one must remember that there is also an unknown

theoretical uncertainty due to SU(3) breaking. Before any conclusions can be drawn,

there must be other, independent determinations of loop-level values of γ.

In 1999, R. Fleischer proposed a method for extracting γ from B0
s → K+K−

and B0
d → π+π−, two decays whose amplitudes are related by U-spin (d ↔ s) sym-

metry [9]. Since penguin contributions are important for such decays, this method

would determine a loop-level value of γ. It requires the measurement of the branching

ratios and CP asymmetries, both direct and indirect, of both decays. This method

is unaffected by final-state interactions; its theoretical accuracy is limited only by

the size of U-spin-breaking effects. The factorizable U-spin-breaking corrections are

calculable theoretically in terms of form factors and decay constants [9–11]. How-

ever, the precise value of the nonfactorizable U-spin-breaking correction is unknown,

though it may be sizeable [12].

Recently, the direct and indirect CP asymmetries in B0
s → K+K− were measured

by the LHCb Collaboration [13], and they carried out the above extraction of γ [14].

Allowing for a U-spin-breaking error of 50%, they find γ = (63.5+7.2
−6.7)

◦. However, if

the theoretical error is ≥ 60%, the uncertainty on γ is much larger.

It was pointed out in Ref. [9] that, with an additional dynamical assumption, one

could replace B0
s → K+K− with B0

d → π∓K±, and analyses with this second decay

were carried out in Refs. [10, 11, 15]. However, Ref. [16] finds that the experimental

data suggest that there may be a large nonfactorizable U-spin-breaking correction

between B0
d → π∓K± and B0

d → π+π−. This would lead to a large (unknown)

theoretical error in the extraction of γ using B0
d → π∓K± and B0

d → π+π−.

The main purpose of the present paper is to note that the method of Ref. [9] can

also be applied to charmless B → PPP decays (P is a pseudoscalar meson) whose

amplitudes are related by U spin. The key point is that, by using the Dalitz plots of

the three-body decays, the effect of U-spin breaking may be greatly reduced. If this

is possible – and there is an independent test to see if the procedure works – then

– 2 –



the loop-level value of γ can be determined with little theoretical error. This will

then provide a clean test for NP.

Note that, under flavor SU(3) symmetry, the three final-state particles in charm-

less B → PPP decays are treated as identical, so that the six permutations of these

particles must be considered. There have been a number of papers recently that

use the fully-symmetric final state [17–21], which can be obtained using an isobar

analysis of the Dalitz plot. However, we stress that such an analysis is not needed

for the above method of extracting γ – the full Dalitz plot is used.

Examples of pairs of decays to which this method can be applied are (i) B0
s →

KSπ
+π− (b̄ → d̄) and B0

d → KSK
+K− (b̄ → s̄), and (ii) B0

s → KSK
+K− (b̄ → d̄)

and B0
d → KSπ

+π− (b̄ → s̄). The time-dependent Dalitz plots for B0
d → KSK

+K−

and B0
d → KSπ

+π− were measured by the BaBar and Belle Collaborations [22–25],

and a study of B0
(s) → KSh

+h′− was made by the LHCb Collaboration [26]. For the

B0
s decays, it appears that B0

s → KSπ
+π− is more promising experimentally. The

first observation of this decay was reported in Ref. [26], and a study of the future

prospects for the measurement of its time-dependent Dalitz plot was presented in

Ref. [27]. Hopefully the method will be applied to decays B0
s → KSπ

+π− and

B0
d → KSK

+K− to extract γ.

In Sec. 2, we briefly discuss Dalitz plots and the distinction between the final

states f and f̄ . The U-spin relation between b̄ → d̄ and b̄ → s̄ decays is discussed in

Sec. 3. In Sec. 4, we present the method for extracting γ from a Dalitz-plot analysis

of three-body decays. The subject of U-spin-breaking effects – the theoretical idea

of how they may be reduced in three-body decays, and experimental tests of this

hypothesis – is examined in Sec. 5. We conclude in Sec. 6.

2. Dalitz Plots

Three-body B decays are usually described using a Dalitz plot. Consider the decay

B → P1P2P3, in which each pseudoscalar Pi has momenta pi. One can construct

the three Mandelstam variables sij ≡ (pi + pj)
2, where pi is the momentum of each

Pi. These are not independent, but obey s12 + s13 + s23 = m2
B + m2

1 + m2
2 + m2

3.

The B → P1P2P3 Dalitz plot is a measure of the decay rate as a function of two

Mandelstam variables.

In the present paper we focus on the decays B0
d,s → KS(p1)h

+(p2)h
−(p3) (h =

K, π). At the quark level, the final states f = KSπ
+π− and KSK

+K− are self-

conjugate. However, when the momenta are considered, one has f̄ 6= f . The point

is that the CP conjugate of f = KS(p1)h
+(p2)h

−(p3) is f̄ = KS(p̄1)h
−(p̄2)h

+(p̄3),

where p̄i is pi with the direction of the three-momentum reversed. Note that reversing

the direction of the three momenta does not affect the Mandelstam variables, since

sij = (pi + pj)
2 = (p̄i + p̄j)

2 = s̄ij. Thus, in this case the difference between f and f̄

arises from an exchange of the indices 2 and 3.
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The distinction between f and f̄ must be kept in mind throughout the paper.

Because f is self-conjugate at the quark level, both B0 and B̄0 can decay to it, and

similarly for f̄ . Now, at different points in the analysis we consider the direct CP

asymmetry. However, because f̄ 6= f , there are two of these. One compares B0 → f

and B̄0 → f̄ decays, the other B0 → f̄ and B̄0 → f . Things are similar for the

indirect CP asymmetry, which arises because both B0 and B̄0 can decay to the same

final state. Thus, one indirect asymmetry involves the interference of the amplitudes

for B0 → f and B̄0 → f , while the other involves the interference of A(B0 → f̄) and

A(B̄0 → f̄).

3. U-Spin Relation

In this section we discuss the U-spin relation that is central to our method for ex-

tracting γ. We begin by reviewing the relation for two-body decays.

3.1 Two-body decays

Consider a pair of B → PP decays whose amplitudes are related by U-spin reflection

(d ↔ s). (This discussion follows Ref. [28].) One is a b̄ → d̄ decay, the other b̄ → s̄.

There are five such pairs [16]: (B0
d → π+π−, B0

s → K+K−), (B0
s → π+K−, B0

d →

π−K+), (B+ → K+K̄0, B+ → π+K0), (B0
d → K0K̄0, B0

s → K̄0K0), (B0
d → K+K−,

B0
s → π+π−).

The b̄ → d̄ amplitude can be written

Ad = AuV
∗
ubVud + AcV

∗
cbVcd + AtV

∗
tbVtd

= (Au − At)V
∗
ubVud + (Ac −At)V

∗
cbVcd

≡ V ∗
ubVudTd + V ∗

cbVcdPd . (3.1)

In the above, the Ai each represent a linear combination of diagrams, and we have

used the unitarity of the CKM matrix (V ∗
ubVud + V ∗

cbVcd + V ∗
tbVtd = 0) to write the

second line. Td and Pd are simply the quantities that are multiplied by the given CKM

matrix elements – they do not represent individual “tree” and “penguin” diagrams.

The b̄ → s̄ amplitude can be written similarly:

As = V ∗
ubVusTs + V ∗

cbVcsPs . (3.2)

The CP-conjugate amplitudes Ād and Ās are obtained from the above by chang-

ing the signs of the weak phases:

Ād = VubV
∗
udTd + VcbV

∗
cdPd , Ās = VubV

∗
usTs + VcbV

∗
csPs . (3.3)

We then have

|Ad|
2 − |Ād|

2 = 4 Im(V ∗
ubVudVcbV

∗
cd) Im(TdP

∗
d ) ,

|As|
2 − |Ās|

2 = 4 Im(V ∗
ubVusVcbV

∗
cs) Im(TsP

∗
s ) . (3.4)
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Now, the unitarity of the CKM matrix implies [29]

Im(V ∗
ubVusVcbV

∗
cs) = −Im(V ∗

ubVudVcbV
∗
cd) , (3.5)

and in the U-spin limit we have

Td = Ts , Pd = Ps . (3.6)

U-spin symmetry therefore leads to a relation between the b̄ → d̄ and b̄ → s̄ decays:

|Ad|
2 − |Ād|

2 = −
[
|As|

2 − |Ās|
2
]
. (3.7)

In general, there are four observables in the b̄ → d̄ and b̄ → s̄ processes: the

branching ratios Bd and Bs, and the direct CP asymmetries ACP
d and ACP

s . Eq. (3.7)

implies that these are not independent, but obey [9, 28]

−
ACP

s

ACP
d

τ(B0
d)Bs

τ(B0
s )Bd

= 1 . (3.8)

Thus, there are only three independent observables.

3.2 B0
d,s

→ KSh
+h− decays

We now turn to B0
d,s → KSh

+h− decays. For definitiveness, we focus on the pair

(B0
s → KSπ

+π− (b̄ → d̄), B0
d → KSK

+K− (b̄ → s̄)), but the results can be equally

applied to (B0
s → KSK

+K− (b̄ → d̄), B0
d → KSπ

+π− (b̄ → s̄)).

As discussed in Sec. 2, one must pay attention to the momenta of the final-state

particles. Let us define fd ≡ KS(p1)π
+(p2)π

−(p3) and f̄d ≡ KS(p1)π
+(p3)π

−(p2), and

similarly for fs and f̄s. Now consider Ad = A(B0
s → fd) and As = A(B0

d → fs). The

decay amplitudes Ad and As are again given by Eqs. (3.1) and (3.2), respectively,

and are repeated below for convenience:

Ad = V ∗
ubVudTd + V ∗

cbVcdPd , As = V ∗
ubVusTs + V ∗

cbVcsPs . (3.9)

As these are three-body decays, Td,s and Pd,s are all momentum-dependent. This

means that Td takes different values at different points of the Dalitz plot, and similarly

for Ts and Pd,s. For the CP-conjugate amplitudes, we have

Ād = VubV
∗
udT̄d + VcbV

∗
cdP̄d , Ās = VubV

∗
usT̄s + VcbV

∗
csP̄s . (3.10)

Because the final states in the CP-conjugate decays are not the same as in the decays

(p2 and p3 are exchanged), Td 6= T̄d, and similarly for Ts and Pd,s.

We then have [30]

|Ad|
2 − |Ād|

2 = 2 Im(V ∗
ubVudVcbV

∗
cd) Im(TdP

∗
d + T̄ ∗

d P̄d) ,

|As|
2 − |Ās|

2 = 2 Im(V ∗
ubVusVcbV

∗
cs) Im(TsP

∗
s + T̄ ∗

s P̄s) . (3.11)
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In the U-spin limit we have Td = Ts, Pd = Ps, T̄d = T̄s, P̄d = P̄s, and the U-spin

relation of Eq. (3.7) is reproduced. However, since the amplitudes themselves are

now momentum dependent, this relation holds at each point in the Dalitz plots.

As in the two-body case, the U-spin relation implies a relation among the ob-

servables, similar to Eq. (3.8). This relation involves B0 → f and B̄0 → f̄ decays,

and can be written as

−
aCP
s

aCP
d

τ(B0
d)bs

τ(B0
s )bd

= 1 . (3.12)

Here, aCP
q and bq are, respectively, the direct CP asymmetry and branching ratio

defined locally, i.e., at a particular Dalitz-plot point. They are both momentum-

dependent quantities.

The analysis can be repeated for the case where Ad = A(B0
s → f̄d) and As =

A(B0
d → f̄s). Here we have

Ad = V ∗
ubVudT̄d + V ∗

cbVcdP̄d , As = V ∗
ubVusT̄s + V ∗

cbVcsP̄s . (3.13)

and

Ād = VubV
∗
udTd + VcbV

∗
cdPd , Ās = VubV

∗
usTs + VcbV

∗
csPs . (3.14)

Once again, the U-spin relation of Eq. (3.7) is reproduced. And there is a relation

like Eq. (3.12) among the observables. This relation involves B0 → f̄ and B̄0 → f

decays.

The point here is that, for three-body decays, there are two U-spin relations

among the observables. These involve the same momentum-dependent hadronic pa-

rameters.

4. Extraction of γ

Here we present the details of how γ can be extracted from a U-spin analysis of

B0
d,s → KSh

+h− decays. We begin with a review of the method for two-body decays.

4.1 Two-body decays

The method proposed by Fleischer for extracting γ from B0
s → K+K− and B0

d →

π+π− [9] works as follows. The amplitude for the b̄ → d̄ decay (B0
d → π+π−) is given

in Eq. (3.1), which can be written

Ad = |V ∗
ubVud|e

iγTd − |V ∗
cbVcd|Pd , (4.1)

where we have used |Vcd| = −Vcd. The amplitude for the b̄ → s̄ decay (B0
s → K+K−)

can be written similarly:

As = |V ∗
ubVus|e

iγTs + |V ∗
cbVcs|Ps . (4.2)
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In the U-spin limit, we have Td = Ts ≡ T and Pd = Ps ≡ P . Assuming that the

magnitudes of the CKM matrix elements are known, Ad and As each contain the

same four unknown parameters: |T |, |P |, their relative strong phase, and γ.

Above [Eq. (3.8)], it was noted that the branching ratios and the direct CP

asymmetries of these two decays are not independent. Thus, γ cannot be extracted

from the measurements of these observables alone, since there are more unknown

theoretical parameters (four) than observables (three). However, if the indirect CP

asymmetries in both B0
d → π+π− and B0

s → K+K− are also measured, and values

for the B0
d-B̄

0
d and B0

s -B̄
0
s mixing phases (β and βs, respectively) are taken from

independent measurements, there will be more observables (five) than unknowns,

which will allow γ to be extracted.

4.2 B0
d,s

→ KSh
+h− decays

A similar logic can be applied to three-body decays. However, care must be taken

in identifying the observables to be used, and in establishing how these observables

depend on the unknown theoretical parameters.

The point is the following. If a final state f is self-conjugate at the quark level,

both B0 and B̄0 can decay to it. In the case of two-body decays, the fact that f

is self-conjugate implies that f̄ = f , so that the two decays B0, B̄0 → f must be

considered. However, as noted in Sec. 2, for three-body decays, a self-conjugate f

still has f̄ 6= f , since f and f̄ correspond to different points of the Dalitz plot. In this

case, the analysis must consider the four decays B0, B̄0 → f, f̄ . The time dependence

of two-body decays has been analyzed in Refs. [31,32]. Below we adapt this analysis

to three-body decays.

In the presence of B0-B̄0 mixing, the BL and BH states (L is light, H is heavy)

are mixtures of B0 and B
0
. The physical time-dependent neutral B-meson states

can then be expressed as
∣∣B0

phys(t)
〉
= f+(t)

∣∣B0
〉
+

q

p
f−(t)

∣∣∣B0
〉

,
∣∣∣B0

phys(t)
〉
=

p

q
f−(t)

∣∣B0
〉
+ f+(t)

∣∣∣B0
〉

. (4.3)

Here B0
phys(t) (B

0

phys(t)) is the state that is a B0 (B
0
) at t = 0. In the above,

q/p = e−2iφM , where φM is the weak phase of the mixing (the B0
d-B̄

0
d and B0

s -B̄
0
s

mixing phases are β and βs, respectively), and

f+(t) = e−i(m−iΓ/2)t cos(∆µt/2) , f−(t) = e−i(m−iΓ/2)ti sin(∆µt/2) , (4.4)

with

m = (mH +mL)/2 , ∆m = mH −mL ,

Γ = (ΓH + ΓL)/2 , ∆Γ = ΓH − ΓL ,

∆µ = ∆m− i∆Γ/2 . (4.5)
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The decay amplitudes are then given by

〈
f |B0

phys(t)
〉
=

〈
f |B0

〉
(f+(t) + λf−(t)) ,

〈
f |B0

phys(t)
〉
=

q

p

〈
f |B

0
〉 (

f+(t)λ̄+ f−(t)
)
,

〈
f |B

0

phys(t)
〉
=

p

q

〈
f |B0

〉
(f−(t) + λf+(t)) ,

〈
f |B

0

phys(t)
〉
=

〈
f |B

0
〉 (

f−(t)λ+ f+(t)
)
, (4.6)

where

x ≡

〈
f |B

0
〉

〈f |B0〉
, x ≡

〈
f |B0

〉
〈
f |B

0
〉 , λ ≡

q

p
x , λ ≡

p

q
x̄ . (4.7)

In Ref. [31] the assumption is made that ∆Γ = 0. In Ref. [32] it is noted that

∆Γ is nonzero in B0
s decays. Our expressions below therefore allow for a nonzero

∆Γ.

The decay rates are proportional to the squares of the amplitudes, which take

the form

|M|2(B0
phys(t) → f) =

1

2
|A|2e−Γt

[
(1− |x|2) cos(∆mt) + (1 + |x|2) cosh(∆Γt/2)

−2 Im(λ) sin(∆mt) + 2Re(λ) sinh(∆Γt/2)
]
,

|M|2(B
0

phys(t) → f) =
1

2
|A|2e−Γt

[
−(1− |x|2) cos(∆mt) + (1 + |x|2) cosh(∆Γt/2)

+2 Im(λ) sin(∆mt) + 2Re(λ) sinh(∆Γt/2)
]
,

|M|2(B0
phys(t) → f) =

1

2
|A|2e−Γt

[
−(1− |x|2) cos(∆mt) + (1 + |x|2) cosh(∆Γt/2)

+2 Im(λ) sin(∆mt) + 2Re(λ) sinh(∆Γt/2)
]
,

|M|2(B
0

phys(t) → f) =
1

2
|A|2e−Γt

[
(1− |x|2) cos(∆mt) + (1 + |x|2) cosh(∆Γt/2)

−2 Im(λ) sin(∆mt) + 2Re(λ) sinh(∆Γt/2)
]
, (4.8)

where A ≡ 〈f |B0〉, A ≡
〈
f |B

0
〉
, and we have used |q/p| = 1.

With the squares of the amplitudes in hand, we can now obtain expressions

for the observables. Before doing so, there is one point that must be mentioned.

Although we have referred to measurements at different points of the Dalitz plot,

in practice it is only possible to make measurements in bins, i.e., over areas of the

Dalitz plot centred at different points. The observables will then involve integrals

over the Mandelstam variables representing these bins.
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Using the first two equations of Eq. (4.8), we can now construct the time-

dependent CP-averaged rate and the CP asymmetry for the final state f :

Γ(t) =
1

2
(Γ(B0

phys(t) → f) + Γ(B
0

phys(t) → f)) ,

=
1

2

∫∫

bin

ds12ds23 |A|
2e−Γt

[(
1 + |x|2

)
cosh(∆Γt/2)

+ 2Re(λ) sinh(∆Γt/2))] , (4.9)

ACP (t) =
Γ(B0

phys(t) → f)− Γ(B
0

phys(t) → f)

Γ(B0
phys(t) → f) + Γ(B

0

phys(t) → f)
,

=

∫∫
bin

ds12ds23 |A|
2 [(1− |x|2) cos(∆mt)− 2Im(λ) sin(∆mt)]

∫∫
bin

ds12ds23 |A|2 [(1 + |x|2) cosh(∆Γt/2) + 2Re(λ) sinh(∆Γt/2)]
.(4.10)

In Γ(t), one does not distinguish B0
phys(t) and B

0

phys(t) decays, whereas one does in

ACP (t). Thus, as usual, the measurement of the CP asymmetry requires tagging.

A comment should be made about Eq. (4.10). The direct CP asymmetry com-

pares B0 → f and B̄0 → f̄ decays. Because f̄ = f in two-body decays, there

one refers to the coefficient of cos(∆mt) as the direct CP asymmetry. However, in

three-body decays, because f̄ 6= f , the situation is different. Here the coefficient of

cos(∆mt) compares B0 → f and B̄0 → f decays, and so it is not actually a CP

asymmetry.

In the above definitions there appear to be four observables, namely the coeffi-

cients of cos(∆mt), cosh(∆Γt/2), sin(∆mt), and sinh(∆Γt/2), as can be determined

from Γ(t) and the numerator of ACP (t). However, these coefficients are not all inde-

pendent, as can be seen in the following identity:

|A|2(1 + |x|2)− |A|2(1− |x|2) = 2|A|2|x|2 = 2|A|2|λ|2 ,

= 2|A|2
(
Re(λ)2 + Im(λ)2

)
. (4.11)

There are therefore only three independent observables.

One can perform a similar analysis using the last two equations of Eq. (4.8). In

this way one constructs the time-dependent CP-averaged rate and the CP asymmetry

for the final state f̄ . There are again three independent observables. Thus, for a

given B0
d,s → KSh

+h− decay, there are a total of six observables: three each for the

final states f and f̄ .

We now turn to the question of the number of unknown theoretical parameters,

focusing on the decay pair B0
s → KSπ

+π− (b̄ → d̄) and B0
d → KSK

+K− (b̄ → s̄).

Consider first the b̄ → d̄ decay. The amplitudes for the various B0, B̄0 → f, f̄

decays are given in Eqs. (3.9), (3.10), (3.13) and (3.14). There are eight unknown

parameters: |Td|, |Pd|, |T̄d|, |P̄d|, their three relative strong phases, and γ. With only

six observables, γ cannot be extracted.

– 9 –



This can be remedied by also considering the U-spin conjugate b̄ → s̄ decay

B0
d → KSK

+K−. Its B0, B̄0 → f, f̄ amplitudes are also given in Eqs. (3.9), (3.10),

(3.13) and (3.14). Here too there are eight unknown parameters: |Ts|, |Ps|, |T̄s|,

|P̄s|, their three relative strong phases, and γ. However, in the U-spin limit, we have

Td = Ts ≡ T and Pd = Ps ≡ P . Thus, the two decays are described by the same

eight unknown parameters. (As before, it is assumed that the B0
d-B̄

0
d and B0

s -B̄
0
s

mixing phases are taken from independent measurements.) But there are now twelve

observables, six for each of B0
s → KSπ

+π− and B0
d → KSK

+K−. On the other hand,

it was noted in Sec. 3.2 that there are two U-spin relation among the branching ratios

and direct CP asymmetries of the b̄ → d̄ and b̄ → s̄ decays. Still, this leaves ten

independent observables, which is more than the number of unknown parameters.

Thus, assuming again that the magnitudes of the CKM matrix elements are known,

γ can be extracted.

It must be mentioned that this method introduces a new systematic error. We

have argued above that since the number of observables is greater than the number of

unknowns, γ can be extracted. But this only works if all the observables are functions

of the same unknowns. And because the measurements must be made using bins of

the Dalitz plot, this does not hold exactly. Writing A x =
〈
f |B

0
〉
= Ã, from Eqs.

(4.9) and (4.10) we have

BR ∝

∫∫

bin

ds12ds23 (|A|
2 + |Ã|2) ,

ACP
dir ∝

∫∫

bin

ds12ds23 (|A|
2 − |Ã|2) ,

ACP
indir ∝

∫∫

bin

ds12ds23 Im[(q/p)A∗Ã] . (4.12)

If we define
∫∫

bin

ds12ds23 |A|
2 ≡ |A′|2 ,

∫∫

bin

ds12ds23 |Ã|
2 ≡ |Ã′|2 , (4.13)

we see that both BR and ACP
dir are functions of A′ and Ã′. However, ACP

indir is not.

We must make the approximation that
∫∫

bin

ds12ds23 Im[(q/p)A∗Ã] ≃ Im[(q/p)A′∗Ã′] , (4.14)

and this introduces a systematic error. The above holds exactly for a single point

of the Dalitz plot. Thus, the smaller the bins are, the better is the approximation,

leading to a smaller systematic error. On the other hand, smaller bins lead to larger

statistical errors. The bin size must therefore be chosen to minimize the total error.
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5. U-Spin Breaking

As noted earlier, the method of combining measurements of decays related by U

spin to extract γ was originally proposed in the context of two-body decays [9].

Here, there is a theoretical error due to unknown U-spin-breaking effects. This same

difficulty arises when applying the method to three-body decays. In this section we

examine the question of U-spin breaking as pertains to three-body decays.

The method described in the previous section for extracting γ involves combining

measurements of pairs of three-body decays related by U-spin, such as B0
s → KSπ

+π−

(b̄ → d̄) and B0
d → KSK

+K− (b̄ → s̄). This method applies at a particular pair

of Dalitz-plot points (bins). By repeating this analysis for all points, this provides

multiple measurements of γ. These can then be averaged over the entire Dalitz plot,

reducing the statistical error.

In the presence of U-spin breaking, the extracted value of γ, γext, will differ from

its true value, γtrue. Now, there are several different U-spin-breaking parameters.

However, these parameters are all momentum dependent. Thus, their effect on the

extracted value of γ will vary from point to point on the Dalitz plot. That is, if

γext − γtrue = N , (5.1)

it is likely that N > 0 at some points, and N < 0 at others. In this case, averaging

over all Dalitz-plot points will also reduce the effect of U-spin breaking, so that

(γext)avg will approach γtrue. If this occurs, the main theoretical error of the method

will be significantly reduced.

Still, while this is a nice idea, how can we be certain that it is happening?

Fortunately, there is a way of experimentally testing whether or not this behaviour

is present in three-body decays. In Eq. (3.12) it was shown that there is a relation

among the observables of two decays related by U-spin reflection. Writing

−
aCP
s

aCP
d

τ(B0
d)bs

τ(B0
s )bd

− 1 = n′ , (5.2)

we have n′ = 0 in the U-spin limit. By measuring bd,s and aCP
d,s , and constructing the

above ratio at each Dalitz-plot point, it is possible to experimentally determine if an

average over all points leads to n′ → 0.

The above test requires a Dalitz analysis. A simpler test of U-spin breaking can

be obtained by separately integrating the numerator and denominator of Eq. (5.2)

over the kinematically-allowed regions of the Dalitz plots (denoted by DP):

−
τ(B0

d)

τ(B0
s )

∫∫
DP

ds12ds23a
CP
s bs

∫∫
DP

ds12ds23aCP
d bd

− 1 = −
ACP

s

ACP
d

τ(B0
d)Bs

τ(B0
s )Bd

− 1 = N ′ . (5.3)
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Unlike n′, which is defined using momentum-dependent quantities, N ′ depends only

on integrated quantities, and hence does not depend on final-state momenta. Once

again, we have N ′ = 0 in the U-spin limit.

The above tests can be carried out using the measurements of B0
d,s → KSh

+h−

decays. However, it is not necessary to wait until these are made. Other pairs of

three-body decays related by U spin are (i) B+ → π+K+K− (b̄ → d̄) and B+ →

K+π+π− (b̄ → s̄), and (ii) B+ → π+π+π− (b̄ → d̄) and B+ → K+K+K− (b̄ → s̄).

In Ref. [33], group theory is used to write the factor n′ of Eq. (5.2) for these decay

pairs in terms of U-spin-breaking parameters. These parameters take into account

all U-spin-breaking effects, such as differences in the masses of the π and K mesons,

differences in the properties of the resonances contributing to the decays (e.g., ρ,

φ), etc. It is found that, to first order, n′ is proportional to a linear combination

of such parameters. That is, in the presence of U-spin breaking, n′ 6= 0. However,

the U-spin-breaking parameters are momentum-dependent. Using the same logic as

before, it would not be surprising to find n′ > 0 at some points and n′ < 0 at others.

If so, the average over all Dalitz-plot points will reduce the effect of U-spin breaking

in the above relation.

These B+ decays have recently been measured by LHCb [34, 35]. In Ref. [30],

the U-spin relation of Eq. (5.3) is tested using data integrated over the Dalitz plot.

We have updated these results with more recent data from Refs. [36]. The updated

results are shown in Table 1. Unfortunately, at present the results are simply not

precise enough to draw any conclusions. When the data improve, we will have a

better idea of whether averaging (or integrating) over the Dalitz plot reduces the

effect of U-spin breaking.

Asymmetry ratio U-spin LHCb

prediction result

ACP (B+ → π+K+K−)/ACP (B+ → K+π+π−) −10.2± 1.5 −4.9± 2.0

ACP (B+ → π+π+π−)/ACP (B+ → K+K+K−) −2.2± 0.2 −1.6± 0.5

Table 1: U-spin predictions for asymmetry ratios compared with LHCb measurements.

Finally, another source of U-spin breaking arises from the fact that π± and K±

do not have the same mass, and similarly for B0
d and B0

s . This results in a difference

between the kinematically-allowed phase space for a decay and that for its U-spin

partner. Due to this difference, there will be regions of the Dalitz plots where the

observables defined in Sec. 4 can be obtained only for one of the two decays being

compared. These regions must be excluded from the analysis, since our method for

extracting γ works only for those regions of the Dalitz plots where the two decays

have overlapping kinematically-allowed regions.
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6. Conclusions

In 1999, R. Fleischer proposed a method for extracting γ using a pair of two-body

decays whose amplitudes are related by U-spin symmetry (d ↔ s) [9]. It involves

combining the measurements of the branching ratios and CP asymmetries, both

direct and indirect, of the two decays. These decay amplitudes include penguin

diagrams, which may receive important (loop-level) contributions from new physics.

If so, the value of γ extracted using this method will disagree with its current value,

which is obtained using tree-level decays.

In the present paper we adapt this method to charmless B → PPP decays (P

is a pseudoscalar meson), specifically B0
d,s → KSh

+h− (h = K, π). Time-dependent

Dalitz analyses of the three-body decays can be used to measure the branching

fractions and CP asymmetries. Note that it is not necessary to perform an isobar

amplitude analysis of the Dalitz plot. We show that there are more observables

than unknown theoretical parameters, so that γ can be extracted by fitting to the

observables. The decay amplitudes for three-body decays depend on the momenta

of the final-state particles. The method applies to each point of the Dalitz plot, and

thus constitutes many independent measurements of γ.

The main source of theoretical error in the extraction of γ, which also applies

to the method with two-body decays, is U-spin breaking. However, three-body de-

cays offer the potential to reduce this error. The U-spin-breaking effects are also

momentum-dependent. As such, the difference between the extracted value of γ and

its true value may well vary, in both magnitude and sign, from point to point in the

Dalitz plot. If this is the case, then averaging over the Dalitz plot will reduce the

error due to U-spin breaking.

It is possible to test experimentally whether or not this behaviour is present

in three-body decays. In the U-spin limit, there is a relation among the branching

ratios and direct CP asymmetries of the two decays that are related by U spin. This

applies to the decays B+ → π+K+K− (b̄ → d̄) and B+ → K+π+π− (b̄ → s̄), and

B+ → π+π+π− (b̄ → d̄) and B+ → K+K+K− (b̄ → s̄), all of which have been

measured. Unfortunately, the current data on these decays still has large errors, so

that it is unclear whether U-spin breaking is small when averaged over the Dalitz

plot. Future precision data in these channels will be able to clearly show the size of

this U-spin breaking.
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