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Abstract

We argue that the SM in the Higgs phase does not suffer form a “hierarchy
problem” and that similarly the “cosmological constant problem” resolves
itself if we understand the SM as a low energy effective theory emerging
from a cut-off medium at the Planck scale. We discuss these issues under
the condition of a stable Higgs vacuum, which allows to extend the SM up
to the Planck length. The bare Higgs boson mass then changes sign below
the Planck scale, such the the SM in the early universe is in the symmet-
ric phase. The cut-off enhanced Higgs mass term as well as the quartically
enhanced cosmological constant term trigger the inflation of the early uni-
verse. Reheating follows by the heavy Higgses decaying predominantly into
top–anti-top pairs, which at this stage are sill massless. Preheating is sup-
pressed in SM inflation as in the symmetric phase bosonic decay channels
are absent at tree level. The coefficients of the shift between bare and renor-
malized Higgs mass m2

H0 − m2
H = δm2 =

Λ2

Pl

16π2 C(µ) as well as of the shift
between bare and renormalized vacuum energy density ρΛ0 − ρΛ = δρvac =

Λ4

Pl

(16π2)2
X(µ) exhibit close-by zeros C(µ) = 0 at about µ0 ≈ 1.4×1016 GeV or

µ′

0 ≈ 7.7×1014 GeV after Wick rearrangement C(µ) → C ′(µ) = C(µ)+λ(µ)
and X(µ) = 1

8
(2C(µ) + λ(µ)) = 0 at µCC ≈ 3.1 × 1015 GeV. The zero

of C(µ) triggers the electroweak phase transition with C(µ) < 0 in the low
energy Higgs phase and C(µ) > 0 in the symmetric phase above the transi-
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tion point. Since inflation tunes the total energy density to take the critical
value of a flat universe Ωtot = ρtot/ρcrit = ΩΛ + Ωmatter + Ωradiation = 1 it is
obvious that ΩΛ today is of order Ωtot given that 1 > Ωmatter,Ωradiation > 0
which saturate the total density to about 26% only, the dominant part be-
ing dark matter(21%). Obviously, the SM Higgs system initially provides
a huge dark energy density and the resulting inflation is taming the origi-
nally huge cosmological constant to the small value observed today, whatever
its initial value was, provided it was large enough to trigger inflation. While
laboratory experiments can access physics of the broken phase only, the sym-
metric phase above the Higgs transition point is accessible though physics
of the early universe as it manifests in cosmological observations. The main
unsolved problem in our context remains the origin of dark matter.

Keywords: Higgs vacuum stability, hierarchy problem, cosmological
constant problem, inflation
PACS: 14.80.Bn, 11.10.Gh, 12.15.Lk, 98.80.Cq

1. Introduction

The discovery of the Higgs boson [1, 2] by the ATLAS [3] and CMS [4]
experiments at CERN revealed a very peculiar value for the Higgs boson
mass, just in a very narrow window which allows to extrapolate the SM way
up to the Planck scale [5]. ATLAS and CMS results therefore may “revolu-
tion” particle physics in an unexpected way, namely showing that the SM has
higher self-consistency (conspiracy) than expected and previous arguments
for the existence of new physics may turn out not to be compelling. Also
the absence so far of any new physics signal at the LHC may indicate that
commonly accepted expectations may not be satisfied. On the one hand it
seems to look completely implausible to assume the SM to be essentially valid
up to Planck energies, on the other hand the high tide of speculations about
physics beyond the SM have been of no avail. One also has to keep in mind
that precision tests of the SM already revealed a test in depth of its quantum
structure, besides large corrections form the running fine structure constant
α(s), the running of the strong coupling αs(s) and the large top Yukawa
y2t (s) effect as contributing to the ρ = GNC/Gµ(0) parameter, subleading
corrections amount to a 10 σ deviation form the SM leading order effects
predictions. Thus the SM is on very solid grounds better than everything
else we ever had.
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On the other hand the view that the SM is a low energy effective theory of
some cutoff system at the Planck energy scaleMPl appears to be consolidated.
A crucial point is that MPl providing the scale for the low energy expansion
in powers E/MPl is exceedingly high, very far from what we can see! A di-
mension 6 operator at LHC energies is suppressed by (ELHC/ΛPl)

2 ≈ 10−30 .
This seems to motivate a change in paradigm from the view that the world
looks simpler the higher the energy to a more natural scenario which un-
derstands the SM as the “true world” seen from far away, with symmetries
emerging from not resolving the details.

The methodological approach for constructing low energy effective theo-
ries we have learned from Ken Wilson’s [6, 7, 8] investigations of condensed
matter systems and his insight that critical long distance phenomena are gov-
erned by emergent quantum field theories. As I will argue in the following,
cut-offs in particle physics are important to understand early cosmology [8],
such as inflation, reheating, baryogenesis and all that [9, 10, 11, 12, 13]. As in
condensed matter physics the connection between macroscopic long distance
physics (at laboratory scales) and the microscopic underlying cut-off system
(high energy events as they were natural in the early universe) turn out to
have a physical meaning.

In this context naturalness arguments play an important role. The SM’s
naturalness problems and fine-tuning problems have been made conscious
by G. ’t Hooft [14] long time ago as a possible problem in the relationship
between macroscopic phenomena which follow from microscopic laws (a con-
densed matter system inspired scenario), soon later the “hierarchy problem”
had been dogmatized as a kind of fundamental principle. In fact the hi-
erarchy problem of the SM seems to be the key motivation for all kind of
extensions of the SM. It is therefore important to reconsider the “problem”
in more detail.

One of my key points concerns the different meaning a possible hierarchy
problem has in the symmetric and in the broken phase of the SM. In order
to understand the point we have to remember why we need the Higgs in
the SM. The Higgs is necessary to get a renormalizable low energy effective
electroweak theory [15]. Interestingly, one scalar particle is sufficient to solve
the renormalizability problems arising form each of many different massive
fields in the SM, of which each causes the problem independently of the
others. The point is that this one particle has to exhibit as many new forces
as there are individual massive states [16]. All required new interactions are
in accordance with the SM symmetry structure in the symmetric phase as
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we know. The taming of the high energy behavior of course requires the
Higgs boson to have a mass in the ballpark of the other given heavier SM
states, if it would be much heavier it would not serve its purpose in the
low energy regime. Note that the Higgs boson has to cure the unphysical
mass effects for the given gauge boson masses MW , MZ and fermion masses
Mf

1, via adequate Higgs exchange forces, where the coupling strength is
proportional to the mass of the massive field coupled. A very heavy Higgs
eventually would decouple and thus miss to restore renormalizability of the
massive vector-boson gauge theory. Interestingly, in the symmetric phase
the SM gauge-boson plus chiral fermions sector is renormalizable without the
Higgs-boson and Yukawa sectors and scalars are not required at all to cure
the high energy behavior, because it is renormalizable on its own structure.
Therefore, in the symmetric phase the mass-degenerate Higgs fields in the
complex Higgs doublet can be as heavy as we like. Since unprotected by any
symmetry, naturally we would expect the Higgses indeed to be very heavy.
Indeed, the “origin” of the Higgs mass is very different in the broken phase,
where the mass is generated by the Higgs mechanism [1, 2] also for the Higgs
itself (m2

H = 1
3
λ v2), and in the symmetric phase, where is is dynamically

generated by the Planck medium, as we will argue below. Therefore, the
usual claim that the SM requires to be extended in such a way that quadratic
divergences are absent has no foundation. Purely formal arguments based
on perturbative counterterm adjustments do not lead any further.

The hierarchy problem in particular addresses the presence of quadratic
ultraviolet (UV) divergences related with the SM Higgs mass term. Infinities
in physical theories are the result of idealizations and show up as singularities
in a formalism or in models. UV singularities in general plague the precise
definition as well as concrete calculations in quantum field theories (QFT). A
closer look usually reveals infinities to parametrize our ignorance or mark the
limitations of our understanding or knowledge. One particular consequence
of UV divergences in local QFTs is that a vacuum energy is ill-defined as it
is associated with quartically divergent quantum fluctuations.

This is another indication which tells us that local continuum QFT has its
limitation and that the need for regularization is actually the need to look at
the true system behind it. In fact the cut-off system is more physical and does
not share the problems with infinities which result from the idealization. In

1We denote on-shell masses by capital, MS masses by lower case letters as in Ref. [8]
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any case the framework of a renormalizable QFT, which has been extremely
successful in particle physics up to highest accessible energies, is not able
to give answers to the questions related to vacuum energy and hence to all
questions related to dark energy, accelerated expansion and inflation of the
universe.

It is thus natural to consider the Standard Model to be what we observe
as the low energy effective SM (LEESM), the renormalizable tail of the real
cutoff system sitting at the Planck scale. As a consequence all properties
required by renormalizability, gauge symmetries, chiral symmetry, anomaly
cancellation naturally emerge as a consequence of the low energy expansion.
The infinite tower of higher order operators becomes invisible, and only a
few operators are effectively observable, which makes the world look much
simpler. In reality infinities are replaced by eventually very large but finite
numbers, and I will show that sometimes such huge effects are needed to
understand the real world. I will argue that cutoff enhanced effects are
responsible for triggering the Higgs mechanism not very far below the Planck
scale and the inflation of the early universe.

The Planck medium, the ether, is characterized by a fundamental cutoff
ΛPl or equivalently the Planck mass MPl which derive from the basic fun-
damental constants, the speed of light c characterizing special relativity, the
Planck constant ~ intrinsic to quantum physics and Newton’s constant GN

the key parameter of gravity. Unified they provide an intrinsic length ℓPl,
the Planck length, which also translates into the Planck time tPl and the
Planck temperature TPl.

The history of our universe we can trace back 13.7 billion years close to the
Big Bang, when the expansion of the universe was ignited in a “fireball”, an
extremely hot and dense state when all structures and at the end all atoms,
nuclei and nucleons were disintegrated to a world of elementary particles only.
Besides the missing cold dark matter (DM), one of the last piece which was
missing in the SM, the Higgs boson, now seems to provide a new milestone
in our understanding of the dynamics of the very early universe.

I think questions concerning the early universe can be addressed only in
the LEESM “extension” of the SM as such, given by a local QFT supplied
by cutoff effects in a minimal way. As we know, in a renormalizable QFT
all renormalized quantities as a function of the renormalized parameters and
fields in the limit of a large cut-off are finite and devoid of any cut-off relicts!
Here, it is adequate to remember the Bogoliubov-Parasyuk renormalization
theorem which states that renormalized Green’s functions and matrix ele-
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ments of the scattering matrix (S-matrix) are free of ultraviolet divergences.
It implies that in the low energy world cut-off effects are not accessible to
experiments and a “problem” like the hierarchy problem is not a statement
which can be checked to exist as a observable conflict.

To my knowledge the only non-perturbative definition of a renormalizable
local quantum field theory is the possibility to put in on a lattice. This
again may be taken as an indication that the need for a cut-off actually is
an indication that the cutoff exists in the real(er) world. In this sense the
lattice QFT is the true(er) system than its continuum tail. Of course, there
are many ways to introduce a cut-off and actually we cannot know what the
cutoff system looks truly. This is not a real problem if we are interested in
the long range patterns mainly, the only thing we have to care is that the
underlying system is in the universality class of the SM.

2. The hierarchy problem revisited

The hierarchy problem cannot be addressed within the renormalizable
and renormalized SM, which is what we can confront with experiments. In
this framework all independent parameters are free and have to be supplied
by experiment.

In the LEESM “extension” of the SM bare parameter turn into physical
parameters of the underlying cut-off system as the “true world” at short dis-
tances. Then the hierarchy problem is the problem of “tuning to criticality”
which concerns the relevant operators of dimension < 4, in particular the
mass terms. In the symmetric phase of the SM, where there is only one mass
(the others are forbidden by the known chiral and gauge symmetries), the
one in the potential of the Higgs doublet field, the fine tuning to criticality
has the form

m2
0(µ1 = MPl) = m2(µ2 = MH) + δm2(µ1, µ2) ; δm2 =

Λ2
Pl

16π2
C(µ) (1)

with a coefficient typically C = O(1). To keep the renormalized mass m at
some small value, which can be seen at low energy, the bare m2

0 has to be
adjusted to compensate the huge number δm2 such that about 35 digits must
be adjusted in order to get the observed value around the electroweak scale.
Is this a real problem?

One thing is apparent: our fine-tuning relation exhibits quantities at very
different scales, the renormalized one at low energy and the bare one at the
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Planck scale. In the LEESM both are observable, in principle. In fact, if
we consider a renormalization condition like (1), our presumed fine-tuning
relation, if we want to test it experimentally, it is not possible to test it
by low energy experiments only. Low energy experiments only allow us to
test relations between measurable renormalized quantities. While in a renor-
malizable theory, relations between measurable quantities are devoid of any
cutoff effects, this changes when we perform high energy experiments at a
scale sensitive to the cutoff. Although such experiments are not possible
with down to earth accelerators, the expansion of the universe has provided
us a scan from Planck energies down the 3 ◦K of the Cosmic Microwave
Background (CMB) [17] radiation. Thus, in the early universe a relation
like (1) has a direct physical meaning. In the SM at low energies we are in
the broken phase, where mH0 ≈ δmH is huge negative, when looked at in a
formal perturbative bookkeeping. However, this is not something we can test
by observation. If we want to test it we have to go to the short distance scale,
which however automatically flips the sign of δm2

H and we automatically end
up in the symmetric phase, where the relation gets a different meaning. The
key observation is that the running SM parameters conspire in such a way
that the Higgs mass counterterm as well as the vacuum energy counterterm
exhibit a zero, which provides a matching point between the bare short dis-
tance world and the renormalized low energy world. While the low energy
world is what we access by laboratory experiments, the high energy world
is what has shaped the early universe with the observable consequences we
see in cosmology, specifically in the CMB, Baryogenesis, Nucleosynthesis and
structure formation. We thus are able to learn more about the short distance
structure by making use of the early universe as a natural accelerator.

In the Higgs phase, there is no hierarchy problem [18] (see also [19]). It
is true that in the relation m2

H0 = m2
H + δm2

H both m2
H0 and δm2

H are many
many orders of magnitude larger thanm2

H . However, in the broken phase one
automatically obtains m2

H ∝ v2(µ0), which is O(v2) not O(M2
Pl), irrespective

of what the, at this scale unobservable, objects of the bare theory are. Thus,
in the broken phase the Higgs is naturally light. That the Higgs mass likely
is O(MPl) in the symmetric phase is what promotes the Higgs to a candidate
for the inflaton.

One indeed can avoid artificial large numbers to show up by choosing
µ0 as a renormalization point, where δm2 = 0 and m2(µ0) = m2

0(µ0) and
after the EW phase transition and corresponding vacuum rearrangement
m2

H(µ0) = 2m2(µ0) = 1
3
λ(µ0)v

2(µ0) and then get the physical Higgs mass
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by standard RG running and matching. Certainly not the most practical
way to implement MH as a physical input parameter. The point is that in
principle it is possible circumvent fine-tuning. We also note that unlike in
regularized renormalizable QFT thinking, m2

0 is not a given basic parameter
to be adjusted by renormalization. In the LEESM the bare mass m2

0(µ) as
an effective mass, dynamically generated in the Planck medium, is obviously
also a running mass. Not far below the scale µ0 the universe undergoes the
EW phase transition (a point of no-analyticity) and the Higgs mass is gener-
ated by a different mechanism: the Higgs mechanism, the Higgs mass being
given now by m2

H = 1
3
λ v2 after vacuum rearrangement [20]. In the broken

phase the hierarchy problem is a pseudo problem.
In the broken phase, characterized by the non-vanishing Higgs field vac-

uum expectation value (VEV) v(µ) 6= 0, all the masses are determined by
the well known mass-coupling relations

m2
W (µ2) =

1

4
g2(µ2) v2(µ2) ; m2

Z(µ
2) =

1

4
(g2(µ2) + g′2(µ2)) v2(µ2) ;

m2
f (µ

2) =
1

2
y2f(µ

2) v2(µ2) ; m2
H(µ

2) =
1

3
λ(µ2) v2(µ2) . (2)

Here we consider the parameters in the MS renormalization scheme, µ is the
MS renormalization scale, which we have to identify with the energy scale of
the physical processes or equivalently with the corresponding temperature in
the evolution of the universe. The RG equation for v2(µ2) follows from the
RG equations for masses and massless coupling constants using one of these
relations. As a key relation we use [21]

µ2 d

dµ2
v2(µ2) = 3µ2 d

dµ2

[

m2
H(µ

2)

λ(µ2)

]

≡ v2(µ2)

[

γm2 − βλ

λ

]

, (3)

where γm2 ≡ µ2 d
dµ2 lnm

2 and βλ ≡ µ2 d
dµ2λ . We write the Higgs potential as

V = m2

2
H2 + λ

24
H4, which fixes our normalization of the Higgs self-coupling.

When the m2-term changes sign and λ stays positive, we know we have a
first order phase transition. Funny enough, the Higgs get its mass from
its interaction with its own condensate! and thus gets masses in the same
way and in the same ballpark as the other SM species. As mentioned be-
fore the Higgs mass cannot by much heavier than the other heavier particles
if renormalizability is to be effective at low and moderate energies. The
interrelations (2) also show that for fixed v, as determined by the Fermi con-
stant Gµ = 1/(

√
2 v2), the Higgs cannot get too heavy if perturbation theory
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should remain applicable. An extreme point of view claims that naturalness
requires all particles to have masses O(MPl) i.e. v = O(MPl). This would
mean that the symmetry is not restored at the cutoff scale and the notion of
spontaneous symmetry breaking (SSB) would be obsolete as a concept! The
SM’s successful structure relies on a symmetric Lagrangian, and a ground
state which breaks the symmetry of the Lagrangian. The ground state is
not residing at the cutoff scale and breaks the symmetry in such a way that
the UV structure is not affected. In view that v ≡ 0 above the EW phase
transition point, why should it be natural to expect that v jumps from 0 to
O(MPl) during the phase transition. We also note that as v → 0 all masses
vanish, with the exception of the Higgs mass which acquires a large value in
the symmetric phase (see below).

The Higgs VEV v is an order parameter resulting form long range
collective behavior and can be as small as we like. Prototype is the mag-
netization M as a function of temperature T in a ferromagnetic spin system,
where M = M(T ) and actually M(T ) ≡ 0 for T > Tc and furthermore
M(T ) → 0 as T <→Tc. For a direct non-perturbative check in case of the SM,
one would put the SM in the unitary gauge on a lattice and simulate its long
range properties. The Higgs boson VEV is then a well defined physical order
parameter. Difficulties related to Elitzur’s theorem [22] thus can be avoided.

Small v/MPl ≪ 1 just means we are close to just below a 2nd order phase
transition point, which is not unnatural if we take into consideration that
long range behavior of condensed matter systems are effective quantum field
theories in a vicinity of second order phase transition points [6].

In the mass renormalization relation (1) the renormalized mass measures
the distance from the critical bare mass m0c for which the renormalized m
is zero: thus m2 = m2

0 − m2
0c. A particle is seen at low energy only if it is

light. In the symmetric phase (short distance regime) is is natural to have
both m2

0 and δm2 large, but why m2
0 ≈ δm2 to such high precision?

At very high energy we see the bare system and the Higgs field is a
collective field which acquires its effective mass via radiative effects m2

0 ≈
δm2 near below MPl. In particle physics a radiatively induced mass in known
from the Coleman-Weinberg mechanism [23], now in the symmetric phase
and applied to the Planck medium. Such mechanism, which is natural in
this context, eliminates a possible fine-tuning problem at all scales. There
are many examples in condensed matter systems, like the effective mass of
the photon in the superconducting phase (Meissner effect) or the effective
mass of the effective field which encodes the spin-singlet electron (Cooper)
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pairs in the Ginzburg-Landau model [24] of superconductivity. The latter
directly corresponds to the Abelian Higgs model.

3. Running SM parameters trigger the Higgs mechanism

We remind that all dimensionless couplings satisfy the same renormal-
ization group (RG) equations in the broken and in the unbroken phase and
are not affected by any power cutoff dependencies. The evolution of SM
couplings in the MS scheme up to the Planck scale has been investigated in
Refs. [5, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34] recently, and has been extended
to include the Higgs VEV and the masses in Refs. [35, 8]. Except for g′,
which increases very moderately, all other couplings decrease and stay posi-
tive up to the Planck scale. This strengthens the reliability of perturbative
arguments and reveals a stable Higgs potential up to the Planck scale [35, 8].
While most analyses [26, 27, 28, 31, 34] are predicting that for the given
Higgs mass value vacuum stability is nearby only (meta-stability), and ac-
tually fails to persist up to the Planck scale, our evaluation of the matching
conditions yields initial MS parameters at the Z boson mass scale which
evolve preserving the positivity of λ. Thereby the critical parameter is the
top quark Yukawa coupling, for which we find a slightly lower value. My
MS input at MZ is [8] g3 = 1.2200, g2 = 0.6530, g1 = 0.3497, yt = 0.9347
and λ = 0.8070. At MPl I get g3 = 0.4886, g2 = 0.5068, g1 = 0.4589,
yt = 0.3510 and λ = 0.1405. In view of the fact that the precise meaning
of the experimentally extracted value of the top quark mass is not free of
ambiguities, usually it is identified with the on-shell mass Mt (see e.g. [35]
and references therein), it may be premature to claim that instability of the
SM Higgs potential is a proven fact already. I also think that the imple-
mentation of the matching conditions is not free of ambiguities, while the
evolution of the couplings over many orders of magnitude is rather sensitive
to the precise values of the initial couplings. Accordingly, all numbers pre-
sented in this article depend on the specific input parameters adopted, as
specified in Ref. [35, 8]. In case the Higgs self-coupling has a zero λ(µ2) = 0,
at some critical scale µc below MPl, we learn from Eq. (3), or more directly

from v(µ2) =
√

6m2(µ2)/λ(µ2)
λ→+0→ ∞ that the SM looses it meaning above

this singular point oft non-analyticity.
Running couplings can affect dramatically the quadratic divergences and

the interpretation of the hierarchy problem. Quadratic divergences have been
investigated at one loop in Ref. [36] (see also [37, 38, 39]), at two loops in
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Refs. [40, 42, 41]. At n loops the quadratic cutoff dependence is of the form

δm2
H =

Λ2

16π2
Cn(µ) (4)

where the n-loop coefficient only depends on the gauge couplings g′, g, g3,
the Yukawa couplings yf and the Higgs self-coupling λ. Neglecting the nu-
merically insignificant light fermion contributions, the one-loop coefficient
function C1 may be written as

C1 = 2 λ+
3

2
g′

2
+

9

2
g2 − 12 y2t (5)

and is uniquely determined by dimensionless couplings. The latter are not
affected by quadratic divergences such that standard RG equations apply.
Surprisingly, as first pointed out in Ref. [42], taking into account the running
of the SM couplings, the coefficient of the quadratic divergences of the bare
Higgs mass correction can vanish at some scale. In contrast to our evaluation
Hamada et al. actually find the zero to lie above the Planck scale. In our
analysis, relying on matching conditions for the top quark mass analyzed
in [35], we get a scenario where λ(µ2) stays positive up to the Plank scale
and looking at the relation between the bare and the renormalized Higgs
mass we find C1 and hence the Higgs mass counterterm to vanish at about
µ0 ∼ 1.4 × 1016 GeV, not very far below the Planck scale. The next-order
correction, first calculated in Refs. [40, 41] and confirmed in [42] read

C2 = C1 +
ln(26/33)

16π2
[18 y4t + y2t (−

7

6
g′

2
+

9

2
g2 − 32 g2s)

−87

8
g′

4 − 63

8
g4 − 15

4
g2g′

2
+ λ (−6 y2t + g′

2
+ 3 g2)− 2

3
λ2] , (6)

numerically does not change significantly the one-loop result. The same
results apply for the Higgs potential parameter m2, which corresponds to
m2=̂1

2
m2

H in the broken phase. For scales µ < µ0 we have δm
2 large negative,

which is triggering spontaneous symmetry breaking by a negative bare mass
m2

0 = m2 + δm2, where m again denotes the renormalized mass. At µ = µ0

we have δm2 = 0 and the sign of δm2 flips, implying a phase transition to
the symmetric phase. Finite temperature effects, which must be included
in a realistic scenario, turn out not do to change the gross features of our
scenario [8].
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4. The SM cosmological constant and dark energy

It is crucial that in the early universe both terms in the Higgs potential
are positive in order to condition slow-roll inflation during long enough time.
In fact the quadratically and quartically cutoff enhanced terms in the Higgs
potential enforce the condition 1

2
φ̇2 ≪ V (φ) and given the Higgs boson

pressure pφ = 1
2
φ̇2−V (φ) and the Higgs energy density ρφ = 1

2
φ̇2+V (φ), we

arrive at the equation of state w = p/ρ ≈ −1 characteristic for dark energy
and the equivalent cosmological constant (CC) (see e.g. [43, 44, 46, 45] and
references therein). A first measurement of the dark energy equation of state
w = −1.13+0.13

−0.10, has been obtained by the Planck mission [47] recently.
A key point is that in the LEESM scenario the vacuum energy is a calcu-

lable quantity. In the symmetric phase SU(2) symmetry implies that Φ+Φ is
a singlet such that the invariant vacuum energy is given just by simple Higgs
loops [20]

〈0|Φ+Φ|0〉 = 1

2
〈0|H2|0〉 ≡ 1

2
Ξ ; Ξ =

Λ2
Pl

16π2
. (7)

A Wick type of rearrangement of the Lagrangian then provides a CC
represented by V (0) = 〈V (φ)〉 = m2

2
Ξ+ λ

8
Ξ2 and a mass shiftm′2 = m2+ λ

2
Ξ.

For our values of the MS input parameters the zero in the Higgs mass counter
term gets shifted as µ0 ≈ 1.4× 1016 GeV → µ′

0 ≈ 7.7× 1014 GeV . We notice
that the SM predicts huge CC at MPl: ρφ ≃ V (φ) ∼ 2.77M4

Pl ∼ 6.13 ×
1076 GeV4 exhibiting a very weakly scale dependence (running couplings)
and we are confronted with the question how to get ride of this huge quasi-
constant? An intriguing structure again solves the puzzle. The effective CC
counterterm has a zero, which again is a point where renormalized and bare
quantities are in agreement:

ρΛ0 = ρΛ +
M4

Pl

(16π2)2
X(µ) (8)

withX(µ) ≃ 1
8
(2C(µ)+λ(µ)) which has a zero close to the zero of C(µ) when

2C(µ) = −λ(µ). Note that C(µ) = −λ(µ) is the shifted Higgs transition
point.

Again we find a matching point between low energy and high energy
world: ρΛ0 = ρΛ where the memory of the quartic Planck scale enhancement
gets lost, as it should be as we know that the low energy phase does not
provide access to cutoff effects.
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At the Higgs transition as soon as m′2 < 0 for µ < µ′

0 the vacuum
rearrangement of Higgs potential takes place. As a result at the minimum
φv of the potential we should get V (0) + V (φv) ∼ (0.002 eV)4 about the
observed value of today’s CC. How can this be? Indeed, at the zero of X(µ)
we have ρΛ0 = ρΛ and one may expect that like the Higgs boson mass another
free SM parameter is to be fixed by experiment here. One might expect ρΛ
to be naturally small, since the Λ4

Pl term is nullified at the matching point.
Note that the huge cutoff prefactors act as amplifiers of small changes in
the effective SM couplings. But how small we should expect the low energy
effective CC to be? In fact, in the LEESM scenario neither the Higgs mass
nor the CC are really free parameters in the low energy world. The Higgs
mass, more precisely the Higgs self coupling, has to be constrained to a
window where the Higgs potential remains stable up to the Planck scale, and
the CC which triggers inflation gets tuned down by inflation to lie in the
ballpark of the critical density of a flat universe.

5. Inflation and reheating

In contrast to standard scenarios of modeling the evolution of the early
universe, SM cosmology is characterized by the fact that almost everything is
known, within uncertainties of the parameters and perturbative approxima-
tions. In LEESM cosmology the form of the potential is given by the bare SM
Higgs potential V (φ) = m2

2
φ2+ λ

24
φ4, the parameters are known, calculable in

terms of the low energy parameters, the only unknown is the magnitude of the
Higgs field. The latter must be large – trans-Planckian – in order to get the
required number of e-folds N (expansion factor a(te)/a(ti) = expH (te−ti) =
expN , where a(t) is the Friedmann-Robertson-Walker radius of the universe,
ti the begin of inflation and te the end of inflation and H the Hubble con-
stant). For our set of MS input parameters we require φ0 = φ(µ = MPl) ≈
4.5MPl. At start the slow-roll condition V (φ) ≫ 1

2
φ̇2 is well satisfied, by the

fact that in the symmetric phase the mass term as well as V (0) = 〈V (φ)〉 are
huge. Because of the large initial field strength φ0, however, the interaction
term is actually dominating for a short time after the initial Planck time tPl.
The field equation φ̈+ 3Hφ̇ = −V ′(φ) then predicts a dramatic decay of the
field, φ(t) = φ0 e

E0 (t−t0) with E0 =
√
2λ/(3

√
3ℓ) ≈ 4.3 × 1017 GeV , Vint ≫

Vmass and shortly after E0 = m2/(3ℓ
√

V (0)) ≈ 6.6× 1017 GeV , Vmass ≫ Vint

[ℓ2 = 8πGN/3], such that in almost no time, still under slow-roll conditions,
the mass term dominates and for what follows the field equation is a damped
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harmonic oscillator. The universe thus undergoes an epoch of Gaussian in-
flation [48] before the oscillations set in. In the symmetric phase the four
Higgses are very heavy and rather unstable. The Higgses decay predom-
inantly (largest Yukawa couplings) into as yet massless top–anti-top pairs
and lighter fermion–anti-fermion pairs H → tt̄, bb̄, · · · thereby reheating the
young universe which just had been cooled down dramatically by inflation.
Preheating is suppressed in SM inflation as in the symmetric phase bosonic
decay channels like H → WW and H → ZZ are absent at tree level. The
CP violating decays H+ → td̄ [rate ∝ ytyd Vtd]H

− → bū [rate ∝ ybyu Vub]
likely are important for baryogenesis. After the electroweak phase transition
which closely follows the Higgs transition where m2 in the Higgs potential
changes sign, the now heavy top quarks decay into normal matter as driven
by CKM [49] couplings and phase space. At these scales the B+L violating
dimension 6 operators [50, 51, 52] can still play a key role for baryogenesis
and together with decays like t → de+ν provide CP violating reactions dur-
ing a phase out of thermal equilibrium. For details see [8, 18, 20]. For a very
different model of Higgs inflation, which has barely something in comment
with our LEESM scenario, see [53, 54, 55, 56].

6. Remark on Trans-Planckian Higgs fields

If the SM Higgs is the inflaton, sufficient inflation requires trans-Planckian
magnitude Higgs fields at the Planck scale. At the cutoff scale the low energy
expansion obviously gets obsolete and likely we cannot seriously argue with
field monomials and the operator hierarchy appearing in the low energy ex-
pansion. What is important is that the field is decaying very fast. Formally,
given a truncated series of operators in the potential, the highest power is
dominating in the trans-Planckian regime. One then expects that for some
time the φ4 term of the potential is dominating, the decay of the field is then
exponential, for higher dimensional operators it is faster than exponential,
such that the field very rapidly reaches the Planck- and sub-Planck regime.
This means that the mass term is dominating after a very short period and
before the kinetic term becomes relevant and slow-roll inflation ends. So fears
that in low energy effective scenarios with trans-Planckian fields higher order
operators would mess up things are not in any sense justified2. Obviously,

2The constructive understanding of LEETs we have learned from Ken Wilson’s renor-
malization semi-group, based on integrating out short distance fluctuations. This produces
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without the precise knowledge of the Planck physics, very close to the Planck
scale we never will be able to make a precise prediction of what is happening.
This however seems not to be a serious obstacle to quantitatively describe
inflation and its properties as far as they can be accessed by observation.
The LEESM scenario in principle predicts not only the form of the effective
potential not far below the Planck scale but also its parameters and the only
quantity not fixed by low energy physics is the magnitude of the field at the
Planck scale. We also have shown that taking into account the running of
the parameters is mandatory for understanding inflation and reheating and
all that.

Trans-Planckian fields are not unnatural in a low energy effective scenario
as the Planck medium exhibits a high temperature and temperature fluctu-
ations make higher excitations not improbable. While the Planck medium
will never be accessible to direct experimental tests, a phenomenological ap-
proach to constrain its effective properties is obviously possible, especially
by CMB data [57].

In the extremely hot Planckian medium, the Hubble constant in the radia-
tion dominated state with effective number g∗(T ) = gB(T )+

7
8
gf(T ) = 102.75

of relativistic degrees of freedom is given by H = ℓ
√
ρ ≃ 1.66 (kBT )

2
√
102.75

M−1
Pl , at Planck time Hi ≃ 16.83MPl such that a Higgs field of size φi ≃

4.51MPl, is not unexpectedly large and could as well also be bigger.
Often it is argued that trans-Planckian field are unnatural in particular

in a LEET scenario [58]. I cannot see any argument against strong fields and
LEET arguments (ordering operators with respect to a polynomial expansion
and their dimension) completely loose their sense when E/ΛPl >∼ 1.

Provided the Higgs field decays fast enough towards the end of inflation
we expect the mass term to be dominant such that a Gaussian fluctuation
spectrum prevails. The quasi-constant cosmological constant V (0) at these
times mainly enters the Hubble constantH and does not affect the fluctuation
spectrum.

all kinds, mostly of irrelevant higher order interactions. A typical example is the Ising
model, which by itself seen as the basic microscopic system has simple nearest neighbor
interactions only and by the low energy expansion develops a tower of higher order opera-
tors, which at the short distance scale are simply absent altogether. Such operators don’t
do any harm at the intrinsic short distance scale.
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7. The self-organized cosmological constant

In principle, like the Higgs mass in the LEESM, also ρΛ is expected to be
a free parameter to be fixed by experiment. This we would expect in a stan-
dard Einstein-Friedman cosmology not exhibiting a large CC term. However,
the situation is different if an inflaton exists providing an appropriate CC.
Inflation is fine-tuning the total energy density to unity Ωtot = 1, in units of
the critical density defined as a boarder density between a positively curved
universe exhibiting sufficient mass to stop matter to escape for ever and a
negative curved universe with too little mass to stop the expansion. Thus
inflation means that the universe after the inflation phase has a particular
energy density ρ0 = ρEdS of a flat Einstein-de Sitter universe. This is re-
markable as the value is fixed irrespective of the initial energy density. If
there is too much “mass” space adjusts itself such that the same universal
density is reached after the inflation epoch. This also solves the cosmological
constant problem of the SM. The typical problem is that in general one gets a
CC which is way too big and this looks to be a tremendous fine-tuning prob-
lem. For the SM this concerns the contribution to the vacuum density via the
Higgs VEV in the broken phase, as well as the contributions from spontaneous
breakdown of chiral symmetry, which are much to big and even of wrong sign.
However, if inflation is at work, the final vacuum density is fixed, whatever
the initial density has been. Given that Ωtot = ΩΛ + ΩDM +ΩBM + Ωrad = 1
with 1 > ΩDM > ΩBM > Ωrad > 0 we know that ΩΛ must be of order Ωtot.
As a non-vanishing ρΛ0 is needed to provide inflation in any case, it is not
unlikely that the other components contributing to the total energy density
do not saturate the bound. This means that the fine-tuning is dynamically
enforced by inflation and the value Λobs = ΩΛ × κ ≃ 1.6517 × 10−56 cm−2

[κ = 8πGN

3c2
] is actually not far from the critical total energy density of the

flat universe ρ0,crit = ρEdS =
3H2

0

8πGN

= 1.878× 10−29 h2 gr/cm3 where H0 is the

present Hubble constant, and h = 0.67±0.02 its value in units of 100 km s−1

Mpc−1. Today’s dark energy density is ρ0Λ = ΩΛ ρ0,crit, with ΩΛ = 0.74(3).
While Ωrad and very likely ΩBM are essentially SM predictions if we include
the B + L violating dimension 6 four-fermion operators, ΩDM is the only
missing piece which remains an open problem and definitely requires addi-
tional beyond the SM physics. This also concerns contributions from quark
and possible gluon condensates, which we do not explicitly consider here.

So the solution of the cosmological constant problem is a dynamical con-
sequence of inflation and overlarge looking values at earlier epochs in the
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Figure 1: The Higgs potential effective m
2 [left] and the dark energy density [right] in

Planck mass units as a function of the energy scale µ in the SM. Below the matching point
µCC, where ρΛ ≃ 1.6× 10−47 in Plank mass units, we show a scaled up ρΛ × 1013 value of
the present dark energy density µ

4
Λ
with µΛ ≃ 0.002 eV.

evolution of the universe just means that the CC is a time-dependent dynam-
ical quantity. Provided the SM for the specific conspiring input parameters
yields a stable Higgs potential, inflation and the CC itself are SM ingredi-
ents leading to a highly self-consistent conspiracy which shapes the universe.
Fig. 1 shows the development of the quadratically and the quartically en-
hanced terms in the symmetric phase of the SM, and its matching to the
low energy world. This scenario only seems to be natural if the running of
the SM couplings is not affected by physics beyond the SM in a substantial
way. This LEESM scenario does not exclude the existence of new physics,
however, possible new effects should be natural in the low energy effective
framework. Still axions are a very good candidate to solve the strong CP
problem and eventually provide the missing dark matter. Similarly, it would
be natural that the right-handed singlet neutrinos are Majorana fermions,
which naturally would exhibit a large Majorana mass and trigger a sea-saw
mechanism which would explain the lightness of the neutrinos. Also an un-
broken confining SU(4) sector could be there forming bound mesons which
could constitute the missing dark matter. Like normal baryonic matter is
essentially hadronic binding energy, bound in fermions, also dark matter
could be condensed energy, bound in bosons. In contrast a supersymmetric
or grand unified extension of the SM would not fit into the picture. Sur-
prisingly also a fourth family would completely deteriorate our scenario. I
think two points are very much in favor of a change of the game; Higgs vac-
uum stability or very close to stability and why should we need two different
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scalar field, one for the Higgs mechanism and one as an inflaton, if one can
do what we need? I agree that it is against any reasonable expectation to
believe that the SM should hold up to the Big Bang. However, fact is that
also cosmological and astrophysical observations have not given any definite
hint for non-SM physics with the big exception of dark matter.

8. Summary

The Higgs has two different functions in our world: 1) it has to render the
effective low energy electroweak theory (massive vector-boson and fermion
sector) renormalizable. In the broken low energy phase the Higgs acquires
the vacuum condensate which provides masses to all massive fields including
the Higgs boson itself. Key point are the many new Higgs-exchange forces
necessary to render the low energy amplitudes renormalizable. 2) in the sym-
metric phase the four very heavy Higgses generate a huge dark energy, which
causes inflation. After inflation has ended and we are out of equilibrium the
Higgses are decaying predominantly into the heaviest fermions pairs which
provides the reheating of the inflated universe. The universe cooling further
down then pushes the universe into the Higgs phase, where the particles ac-
quire their masses. The predominating heavy quarks decay into the light ones
which later form the baryons and normal matter. This scenario is possible
because of the quadratically enhanced Higgs boson mass and the quartically
enhanced dark energy, which show up in the symmetric phase of the SM be-
fore the Higgs transition. The existence of such relevant operator effects in
my opinion are supported by observation, in particular by observed inflation
patterns, meaning that the hierarchy as well as the cosmological constant
“problems” reflect important properties of the SM needed to understand the
evolution of the early universe (for different opinions see [59, 60, 61, 62, 63]).
Consolidation of our bottom-up path to physics near the Planck scale will
sensibly depend on progress in high precision physics around the EW scale v.
Especially, Higgs and a top-pair factories will play a key role in this context.

A final remark concerning the testability of our Higgs inflation scenario:
any discovery of physics beyond the SM which has its motivation in the pre-
sumed hierarchy problem of the SM, like a super symmetric extension, extra
dimensions etc., would spoil the delicate balance of SM effective couplings,
on which our scenario relies. Also Grand Unified Theory extensions or even
such straight forward extensions like a fourth fermion family, would likely
rule out the Higgs as an inflaton and as the source of the dark energy.
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