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Abstract

Consider n independent Goldstein-Kac telegraph processes X1(t), . . . ,Xn(t), n ≥
2, t ≥ 0, on the real line R. Each the process Xk(t), k = 1, . . . , n, describes a stochastic

motion at constant finite speed ck > 0 of a particle that, at the initial time instant t = 0,

starts from some initial point x0k = Xk(0) ∈ R and whose evolution is controlled by a

homogeneous Poisson process Nk(t) of rate λk > 0. The governing Poisson processes

Nk(t), k = 1, . . . , n, are supposed to be independent as well. Consider the linear form

of the processes X1(t), . . . ,Xn(t), n ≥ 2, defined by

L(t) =
n
∑

k=1

akXk(t),

where ak, k = 1, . . . , n, are arbitrary real non-zero constant coefficients. We obtain a

hyperbolic system of first-order partial differential equations for the joint probability

densities of the process L(t) and of the directions of motions at arbitrary time t > 0.

From this system we derive a partial differential equation of order 2n for the transition

density of L(t) in the form of a determinant of a block matrix whose elements are the

differential operators with constant coefficients. The weak convergence of L(t) to a

homogeneous Wiener process, under Kac’s scaling conditions, is proved. Initial-value

problems for the transition densities of the sum and difference S±(t) = X1(t) ±X2(t)

of two independent telegraph processes with arbitrary parameters, are also posed.
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1 Introduction

The classical Goldstein-Kac telegraph process, first introduced in the works [10] and [14],

describes the stochastic motion of a particle that moves at constant finite speed on the real

line R and alternates two possible directions of motion at random Poisson time instants.

The main properties of this process and its numerous generalizations, as well as some their

applications, have been studied in a series of works [1–9], [11–13], [15,16], [19,20], [22–29], [31].

An introduction to the contemporary theory of the telegraph processes and their applications

in financial modelling can be found in the recently published book [22].

http://arxiv.org/abs/1503.00871v1
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In all of the above mentioned works the main subject of interest was a single particle whose

evolution develops at some finite speed on R. On the other hand, studying a system of several

telegraph particles is of a special importance from the point of view of describing various kinds

of interactions (for the interpretation of different interactions arising in physics, chemistry,

biology, financial markets, see [18, p. 1173]). However, to the best of the author’s knowledge,

there exist only a few works where a system of several telegraph processes is considered. A

closed-form expression for the probability distribution function of the Euclidean distance

between two independent telegraph processes with arbitrary parameters was derived in [18].

The explicit probability distribution for the sum of two independent telegraph processes with

the same parameters, both starting from the origin of R, was obtained in [17].

In this article we continue studying the problems devoted to the evolutions of several

particles moving randomly with finite speed. The subject of our interests is the general

linear form

L(t) =
n
∑

k=1

akXk(t), ak ∈ R, ak 6= 0, k = 1, . . . , n, t ≥ 0, (1.1)

of n independent telegraph processes X1(t), . . . , Xn(t), n ≥ 2, t ≥ 0, that, at the initial

time instant t = 0, simultaneously start from arbitrary initial points x0
k ∈ R, k = 1, . . . , n.

Clearly, linear form (1.1) is a generalization of the sum of two telegraph processes with the

same parameters studied in [17].

The process L(t) defined by (1.1) is of a great interest since it has a quite natural

interpretation as a weighted linear combination of n independent stochastic sources of the

telegraph type. From this point of view, the knowledge of the probabilistic characteristics

of process L(t) enables to study various important problems, such as attaining a given

level by the process or being in a fixed interval. Besides purely mathematical interest, this

interpretation justifies the strong motivation for studying such type of processes.

The paper is organized as follows. In Section 2 we recall some basic properties of the

telegraph process that we will substantially be relying on. In Section 3 we describe the

structure of the distribution of linear form (1.1) and derive a hyperbolic system of first-order

partial differential equations for the joint densities of process (1.1) and of the directions of

motion at arbitrary time t > 0. From this system, a hyperbolic partial differential equation

of order 2n with constant coefficients for the transition probability density of L(t) is given in

Section 4 in the form of a determinant having a nice block structure whose elements are the

commuting first-order differential operators of the system. In Section 5 we prove that, under

Kac’s scaling conditions, the process L(t) weakly converges to a homogeneous Brownian

motion on R. Initial-value problems for the sum and difference S±(t) = X1(t)±X2(t) of two

independent telegraph processes with arbitrary parameters, are posed in Section 6.

2 Some Basic Properties of the Telegraph Process

The Goldstein-Kac telegraph process describes the stochastic motion of a particle that, at

the initial time instant t = 0, starts from the origin x = 0 of the real line R and moves with

some finite constant speed c. The initial direction of the motion (positive or negative) is
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taken at random with equal probabilities 1/2. The motion is controlled by a homogeneous

Poisson process of rate λ > 0 as follows. At every Poisson event occurence, the particle

instantaneously takes on the opposite direction and keeps moving with the same speed c

until the next Poisson event occurs, then it takes on the opposite direction again, and so on.

This random motion was first studied in the works by Goldstein [10] and Kac [14].

Let X(t) denote the particle’s position on R at arbitrary time instant t > 0. Since the

speed c is finite, then at time t > 0 the distribution Pr{X(t) ∈ dx} is concentrated in the

finite interval [−ct, ct] which is the support of this distribution. The density f(x, t), x ∈
R, t ≥ 0, of the distribution Pr{X(t) ∈ dx} has the structure

f(x, t) = fs(x, t) + fac(x, t),

where fs(x, t) and fac(x, t) are the densities of the singular (with respect to the Lebesgue

measure on the line) and of the absolutely continuous components of the distribution of

X(t), respectively.

The singular component is obviously concentrated at two terminal points ±ct of the

interval [−ct, ct] and corresponds to the case when no one Poisson event occurs until the

moment t and, therefore, the particle does not change its initial direction. Therefore, the

probability of being at time t > 0 at the terminal points ±ct is

Pr {X(t) = ct} = Pr {X(t) = −ct} =
1

2
e−λt. (2.1)

The absolutely continuous component of the distribution of X(t) is concentrated in the

open interval (−ct, ct) and corresponds to the case when at least one Poisson event occurs

before time instant t and, therefore, the particle changes its initial direction. The probability

of this event is

Pr {X(t) ∈ (−ct, ct)} = 1− e−λt. (2.2)

The principal result by Goldstein [10] and Kac [14] states that the density f = f(x, t), x ∈
[−ct, ct], t > 0, of the distribution of X(t) satisfies the hyperbolic partial differential equation

∂2f

∂t2
+ 2λ

∂f

∂t
− c2

∂2f

∂x2
= 0, (2.3)

(which is referred to as the telegraph or damped wave equation) and can be found by solving

(2.3) with the initial conditions

f(x, t)|t=0 = δ(x),
∂f(x, t)

∂t

∣

∣

∣

∣

t=0

= 0, (2.4)

where δ(x) is the Dirac delta-function. This means that the transition density f(x, t) of

the process X(t) is the fundamental solution (i.e. the Green’s function) of the telegraph

equation (2.3).

The explicit form of the density f(x, t) is given by the formula (see, for instance, [22,

Section 2.5] or [26, Section 0.4]):

f(x, t) =
e−λt

2
[δ(ct− x) + δ(ct+ x)]

+
e−λt

2c

[

λI0

(

λ

c

√
c2t2 − x2

)

+
∂

∂t
I0

(

λ

c

√
c2t2 − x2

)]

Θ(ct− |x|),
(2.5)
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where Θ(x) is the Heaviside step function

Θ(x) =

{

1, if x > 0,

0, if x ≤ 0.
(2.6)

Here I0(z) is the modified Bessel function of order zero (that is, the Bessel function with

imaginary argument) given by the formula

I0(z) =

∞
∑

k=0

1

(k!)2

(z

2

)2k

. (2.7)

The first term in (2.5)

f s(x, t) =
e−λt

2
[δ(ct− x) + δ(ct+ x)] (2.8)

represents the density (as a generalized function) of the singular part of the distribution of

X(t) concentrated at two terminal points ±ct of the interval [−ct, ct], while the second term

in (2.5)

fac(x, t) =
λe−λt

2c

[

λI0

(

λ

c

√
c2t2 − x2

)

+
∂

∂t
I0

(

λ

c

√
c2t2 − x2

)]

Θ(ct− |x|), (2.9)

is the density of the absolutely continuous part of the distribution concentrated in the open

interval (−ct, ct).

Denote by Xx0
(t) the telegraph process starting from arbitrary initial point x0 ∈ R. It is

clear that the transition density of Xx0
(t) emerges from (2.5) by the replacement x 7→ x−x0

and has the form

fx0

(x, t) =
e−λt

2

[

δ(ct− (x− x0)) + δ(ct+ (x− x0))
]

+
e−λt

2c

[

λI0

(

λ

c

√

c2t2 − (x− x0)2
)

+
∂

∂t
I0

(

λ

c

√

c2t2 − (x− x0)2
)]

Θ(ct− |x− x0|).
(2.10)

The support of the distribution of Xx0
(t) is the close interval [x0−ct, x0+ct]. The first term

in (2.10)

fx0

s (x, t) =
e−λt

2

[

δ(ct− (x− x0)) + δ(ct+ (x− x0))
]

(2.11)

is the singular part of the density concentrated at the two terminal points x0 ± ct of the

support, while the second term

fx0

ac (x, t) =
e−λt

2c

[

λI0

(

λ

c

√

c2t2 − (x− x0)2
)

+
∂

∂t
I0

(

λ

c

√

c2t2 − (x− x0)2
)]

Θ(ct− |x− x0|),
(2.12)

is the density of the absolutely continuous part of the distribution of Xx0
(t) concentrated in

the open interval (x0 − ct, x0 + ct).
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The characteristic function of the telegraph process starting from the origin x = 0 with

density (2.5) is given by the formula (see [22, Section 2.4]):

H(α, t) = e−λt

{[

cosh
(

t
√
λ2 − c2α2

)

+
λ√

λ2 − c2α2
sinh

(

t
√
λ2 − c2α2

)

]

1{|α|≤λ

c
}

+

[

cos
(

t
√
c2α2 − λ2

)

+
λ√

c2α2 − λ2
sin
(

t
√
c2α2 − λ2

)

]

1{|α|>λ

c
}
}

,

(2.13)

where 1{·} is the indicator function, α ∈ R, t ≥ 0. Clearly, if the process starts from some

arbitrary point x0 ∈ R and has the transition density (2.10), then its characteristic function

Hx0
(α, t) expresses through (2.13) as follows:

Hx0

(α, t) = eiαx
0

H(α, t), α ∈ R, t ≥ 0. (2.14)

3 Structure of Distribution and System of Equations

Let X
x0
1

1 (t), . . . , X
x0
n

n (t), n ≥ 2, t ≥ 0, be independent Goldstein-Kac telegraph processes on

the real line R that, at the initial time instant t = 0, simultaneously start from the initial

points x0
1, . . . , x

0
n ∈ R, respectively. For the sake of simplicity, we omit thereafter the upper

indices by identifying Xk(t) ≡ X
x0
k

k (t), k = 1, . . . , n, bearing in mind, however, the fact that

the process Xk(t) starts from the initial point x0
k. Each process Xk(t), k = 1, . . . , n, has some

constant finite speed ck > 0 and is controlled by a homogeneous Poisson process Nk(t) of rate

λk > 0, as described above. All these Poisson processes Nk(t), k = 1, . . . , n, are supposed to

be independent as well. Consider the linear form of the processes X1(t), . . . , Xn(t), n ≥ 2,

defined by the equality

L(t) =
n
∑

k=1

akXk(t), ak ∈ R, ak 6= 0, k = 1, . . . , n, t ≥ 0, (3.1)

where ak, k = 1, . . . , n, are arbitrary real non-zero constant coefficients.

To describe the structure of the distribution of L(t), consider the following partition of

the set of indices:

I+ = {i1, . . . , ik} such that ais > 0 for all is ∈ I+, 1 ≤ s ≤ k,

I− = {i1, . . . , im} such that ail < 0 for all il ∈ I−, 1 ≤ l ≤ m, k +m = n.

The support of the distribution Φ(x, t) = Pr{L(t) < x} of process L(t) is the close interval

depending on the coefficients ak, speeds ck and start points x0
k and having the form:

supp L(t) =





n
∑

k=1

akx
0
k − t

(

∑

is∈I+

aiscis −
∑

il∈I−

ailcil

)

,

n
∑

k=1

akx
0
k + t

(

∑

is∈I+

aiscis −
∑

il∈I−

ailcil

)



 .

(3.2)

In particular, if all ak > 0, k = 1, . . . , n, then the set I− is empty and, therefore, support

(3.2) takes the form

supp L(t) =

[

n
∑

k=1

ak(x
0
k − ckt),

n
∑

k=1

ak(x
0
k + ckt)

]

. (3.3)
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At arbitrary time instant t > 0, the distribution Φ(x, t) contains the singular and ab-

solutely continuous components. The singular part of the distribution corresponds to the

case, when no one Poisson event (of any Poisson process Nk(t), k = 1, . . . , n,) occurs by

time instant t. It is concentrated in the finite point set Ms = {q1, . . . , q2n} ⊂ supp L(t) that

contains 2n singularity points (each qj is counted according to its multiplicity):

qj =
n
∑

k=1

akx
0
k + t

n
∑

k=1

aki
j
kck, j = 1, . . . , 2n, (3.4)

where ijk = ±1, k = 1, . . . , n, are the elements of the ordered sequence σj = {ij1, . . . , ijn}, j =
1, . . . , 2n, of length n. The sign of each ijk, (that is, either +1 or −1), is determined by the

initial direction (either positive or negative, respectively) taken by the telegraph process

Xk(t). Emphasize that some qj may coincide in dependence on the particular values of the

start points x0
k, coefficients ak and speeds ck.

Note that both the terminal points of support (3.2) are singular and, therefore, they

belong to Ms, that is,

n
∑

k=1

akx
0
k ± t

(

∑

is∈I+

aiscis −
∑

il∈I−

ailcil

)

∈ Ms.

Other singular points are the interior points of support (3.2). It is easy to see that the

probability of being at arbitrary singularity point qj (taking into account its multiplicity) at

time instant t is

Pr {L(t) = qj} =
e−λt

2n
, j = 1, . . . , 2n, (3.5)

where

λ =
n
∑

k=1

λk. (3.6)

From (3.5) it obviously follows that, for arbitrary t > 0,

Pr {L(t) ∈ Ms} = e−λt. (3.7)

If at least one Poisson event occurs by time instant t, then the process L(t) is located in

the set Mac = supp L(t)−Ms, which is the support of the absolutely continuous part of the

distribution and the probability of being in this set at time instant t > 0 is:

Pr {L(t) ∈ Mac} = 1− e−λt. (3.8)

Define now the two-state direction processes D1(t), . . . , Dn(t), n ≥ 2, t > 0, where

Dk(t), k = 1, . . . , n, denotes the direction of the telegraph process Xk(t) at instant t > 0.

This means that Dk(t) = +1, if at instant t the process Xk(t) is developing in the positive

direction and Dk(t) = −1 otherwise.

Introduce the joint probability densities of the process L(t) and of the set of directions

{D1(t), . . . , Dn(t)} at arbitrary time instant t > 0 by the relation

fσ(x, t) dx ≡ f{i1,...,in}(x, t) dx = Pr{x < L(t) < x+ dx, D1(t) = i1, . . . , Dn(t) = in}. (3.9)
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The set of functions (3.9) contains 2n densities indexed by all the ordered sequences of the

form σ = {i1, . . . , in} of length n whose elements ik, k = 1, . . . , n, are either +1 or −1.

Our first result is given by the following theorem.

Theorem 1. The joint probability densities (3.9) satisfy the following hyperbolic system

of 2n first-order partial differential equations with constant coefficients:

∂fσ(x, t)

∂t
= −cσ

∂fσ(x, t)

∂x
− λfσ(x, t) +

n
∑

k=1

λk fσ̄(k)(x, t) . (3.10)

where
σ = {i1, . . . , ik−1, ik, ik+1, . . . , in},

σ̄
(k) = {i1, . . . , ik−1,−ik, ik+1, . . . , in},

cσ ≡ c{i1,...,in} =
n
∑

k=1

akikck, (3.11)

and λ is given by (3.6).

Proof. Let ∆t > 0 be some time increment. Let Nk(t, t +∆t), k = 1, . . . , n, denote the

number of the events of k-th Poisson process Nk(t) that have occurred in the time interval

(t, t+∆t). Then, according to the total probability formula, we have:

Pr{L(t +∆t) < x, D1(t+∆t) = i1, . . . , Dn(t+∆t) = in}

=

n
∏

k=1

(1− λk∆t) Pr

{

L(t) + ∆t

n
∑

k=1

akikck < x, D1(t) = i1, . . . , Dn(t) = in

}

+
n
∑

k=1

λk∆t
n
∏

j=1
j 6=k

(1− λj∆t)
1

∆t

t+∆t
∫

t

Pr {L(t) + akck(−ik(τk − t) + ik(t+∆t− τk)) < x,

D1(t) = i1, . . . , Dk−1(t) = ik−1, Dk(t) = −ik, Dk+1 = ik+1, . . . , Dn(t) = in} dτk + o(∆t)

=
n
∏

k=1

(1− λk∆t) Pr {L(t) < x− cσ∆t, D1(t) = i1, . . . , Dn(t) = in}

+

n
∑

k=1

λk

n
∏

j=1
j 6=k

(1− λj∆t)

t+∆t
∫

t

Pr {L(t) < x− akikck(2(t− τk) + ∆t),

D1(t) = i1, . . . , Dk−1(t) = ik−1, Dk(t) = −ik, Dk+1 = ik+1, . . . , Dn(t) = in} dτk + o(∆t).

The first term on the right-hand side of this expression is related to the case when no one

Poisson event has occurred in the time interval (t, t + ∆t), that is, if
n
∑

k=1

Nk(t, t +∆t) = 0.

The second (integral) term concerns the case when a single Poisson event has occurred in

this interval, that is, if
n
∑

k=1

Nk(t, t + ∆t) = 1. Finally, the term o(∆t) is related to the

case when more that one Poisson events have occurred in the interval (t, t +∆t), that is, if
n
∑

k=1

Nk(t, t+∆t) ≥ 2 (one can easily check that all such probabilities have the order o(∆t)).
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Since the probability is a continuous function, then, according to the mean-value theorem

of classical analysis, for any k there exists a time instant τ ∗k ∈ (t, t+∆t), such that

Pr{L(t +∆t) < x, D1(t+∆t) = i1, . . . , Dn(t+∆t) = in}

=
n
∏

k=1

(1− λk∆t) Pr {L(t) < x− cσ∆t, D1(t) = i1, . . . , Dn(t) = in}

+∆t

n
∑

k=1

λk

n
∏

j=1
j 6=k

(1− λj∆t) Pr {L(t) < x− akikck(2(t− τ ∗k ) + ∆t),

D1(t) = i1, . . . , Dk−1(t) = ik−1, Dk(t) = −ik, Dk+1 = ik+1, . . . , Dn(t) = in}+ o(∆t).

In view of the asymptotic formulas

n
∏

j=1

(1− λj∆t) = 1− λ∆t + o(∆t), ∆t

n
∏

j=1
j 6=k

(1− λj∆t) = ∆t + o(∆t),

the latter relation can be rewritten as follows:

Pr{L(t +∆t) < x, D1(t+∆t) = i1, . . . , Dn(t+∆t) = in}
= Pr {L(t) < x− cσ∆t, D1(t) = i1, . . . , Dn(t) = in}
− λ∆t Pr {L(t) < x− cσ∆t, D1(t) = i1, . . . , Dn(t) = in}

+∆t

n
∑

k=1

λk Pr {L(t) < x− akikck(2(t− τ ∗k ) + ∆t),

D1(t) = i1, . . . , Dk−1(t) = ik−1, Dk(t) = −ik, Dk+1 = ik+1, . . . , Dn(t) = in}+ o(∆t).

In terms of densities (3.9) this equality can be represented in the form:

x
∫

−∞

fσ(ξ, t+∆t) dξ =

x−cσ∆t
∫

−∞

fσ(ξ, t) dξ − λ∆t

x−cσ∆t
∫

−∞

fσ(ξ, t) dξ

+∆t
n
∑

k=1

λk

x−akikck(2(t−τ∗
k
)+∆t)

∫

−∞

fσ̄(k)(ξ, t) dξ + o(∆t).

This can be rewritten as follows:

x
∫

−∞

[

fσ(ξ, t+∆t)− fσ(ξ, t)
]

dξ = −





x
∫

−∞

fσ(ξ, t)−
x−cσ∆t
∫

−∞

fσ(ξ, t) dξ





− λ∆t

x−cσ∆t
∫

−∞

fσ(ξ, t) dξ +∆t
n
∑

k=1

λk

x−akikck(2(t−τ∗
k
)+∆t)

∫

−∞

fσ̄(k)(ξ, t) dξ + o(∆t).
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Dividing this equality by ∆t, we can represent it in the form:

x
∫

−∞

1

∆t

[

fσ(ξ, t+∆t)− fσ(ξ, t)
]

dξ = −cσ







1

cσ∆t





x
∫

−∞

fσ(ξ, t)−
x−cσ∆t
∫

−∞

fσ(ξ, t) dξ











− λ

x−cσ∆t
∫

−∞

fσ(ξ, t) dξ +
n
∑

k=1

λk

x−akikck(2(t−τ∗
k
)+∆t)

∫

−∞

fσ̄(k)(ξ, t) dξ +
o(∆t)

∆t
.

Passing now to the limit, as ∆t → 0, and taking into account that τ ∗k → t in this case, we

obtain
x
∫

−∞

∂fσ(ξ, t)

∂t
dξ = −cσfσ(x, t)− λ

x
∫

−∞

fσ(ξ, t) dξ +
n
∑

k=1

λk

x
∫

−∞

fσ̄(k)(ξ, t) dξ.

Differentiating this equality in x, we finally arrive at (3.10).

Since the principal part of system (3.10) is strictly hyperbolic, then system (3.10) itself

is hyperbolic. The theorem is thus completely proved. �

Remark 1. Note that system (3.10) consists of 2n first-order partial differential equations,

however the equation for each density fσ(x, t) contains (besides this function itself) only n

other densities fσ̄(k)(x, t), k = 1, . . . , n. This means that each density fσ(x, t) indexed by

some ordered sequence σ = {i1, . . . , in} is expressed in terms of n densities fσ̄(k)(x, t), k =

1, . . . , n, whose indices σ̄
(k) = {i1, . . . , ik−1,−ik, ik+1, . . . , in}, k = 1, . . . , n, differ from the

index σ = {i1, . . . , ik−1, ik, ik+1, . . . , in} in a single element only. In other words, the equation

for arbitrary density fσ(x, t) in (3.10) with index σ = {i1, . . . , in} links it only with those

densities whose indices are located from σ at distance 1 in the Hamming metric.

4 Governing Equation

Let Ξn = {σ1, . . . ,σ2n} denote the ordered set consisting of 2n sequences, each being of

length n and having the form σk = {i(k)1 , i
(k)
2 , . . . , i

(k)
n }, i

(k)
j = ±1, j = 1, . . . , n, k =

1, . . . , 2n, n ≥ 2. The order in Ξn may be arbitrary, but fixed. For our purposes

it is convenient to choose and fix the lexicographical order of the sequences in Ξn =
{

σk = {i(k)1 , i
(k)
2 , . . . , i

(k)
n }, i(k)j = ±1, j = 1, . . . , n, k = 1, . . . , 2n

}

, that is, the order

σ1 = {−1,−1, . . . ,−1,−1},
σ2 = {−1,−1, . . . ,−1,+1},
σ3 = {−1,−1, . . . ,+1,−1},
σ4 = {−1,−1, . . . ,+1,+1},
. . . . . . . . . . . . . . . . . . . . . . . .

σ2n = {+1,+1, . . . ,+1,+1}.
Note that this lexicographical order is isomorphic to the binary one by the identification

−1 7→ 0 and +1 7→ 1, however, for the sake of visuality, we keep just the lexicographical

order.
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Let ρ(·, ·) : Ξn × Ξn → {0, 1, . . . , n} be the Hamming metric. For arbitrary element

σk ∈ Ξn, k = 1, . . . , 2n, define a subset Mk ⊂ Ξn by the formula:

Mk = {σs ∈ Ξn : ρ(σs,σk) = 1}, k = 1, . . . , 2n.

Identifying the notations fk(x, t) ≡ fσk
(x, t), ck ≡ cσk

, k = 1, . . . , 2n, system (3.10) can be

represented in the following ordered form:

∂fk(x, t)

∂t
= −ck

∂fk(x, t)

∂x
− λfk(x, t) +

∑

{m : σm∈Mk}

λm fm(x, t), k = 1, . . . , 2n. (4.1)

The main subject of our interest is the sum of functions (3.9)

p(x, t) =
2n
∑

k=1

fk(x, t), (4.2)

which is the transition probability density of the process L(t) defined by (3.1).

Introduce into consideration the column-vector of dimension 2n

f = f(x, t) = (f1(x, t), f2(x, t), . . . , f2n(x, t))
T

and the diagonal (2n × 2n)-matrix differential operator

Dn = diag{Ak, k = 1, . . . , 2n}, (4.3)

where Ak, k = 1, . . . , 2n, are the differential operators

Ak =
∂

∂t
+ ck

∂

∂x
, k = 1, . . . , 2n.

Define the scalar (2n × 2n)-matrix Λn = ‖ξsm‖, s,m = 1, . . . , 2n, with the elements

ξsm =















λ, if s = m,

−λk, if ρ(σs,σm) = 1 and i
(s)
k 6= i

(m)
k ,

0, otherwise,

s,m = 1, . . . , 2n. (4.4)

In other words, the matrix Λn has the following structure. All the diagonal elements are

equal to λ. At the intersection of the s-th row and the m-th column (corresponding to the

sequences σs = {i(s)1 , i
(s)
2 , . . . , i

(s)
n } and σm = {i(m)

1 , i
(m)
2 , . . . , i

(m)
n }, such that the Hamming

metric between them is 1), the element −λk is located, where k is the position number of

the non-coinciding elements in these sequences σs and σm. Note that, since the Hamming

metric between these sequences is 1, such position number k is unique. All other elements

of the matrix are zeros. From this definition it follows that each row or column of matrix

Λn contains (n + 1) non-zero elements and 2n − (n + 1) zeros. The sum of all the elements

of every row or column of matrix Λn is zero in view of the definition of λ given by (3.6).

In these notations the system (4.1) can be represented in the matrix form

[Dn +Λn] f = 0, (4.5)
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where 0 = (0, 0, . . . , 0) is the zero vector of dimension 2n.

Theorem 2. The transition probability density p(x, t) of the process L(t) given by (4.2)

satisfies the following hyperbolic partial differential equation of order 2n with constant coef-

ficients

{Det [Dn +Λn]} p(x, t) = 0, (4.6)

where Det [Dn +Λn] is the determinant of the matrix differential operator [Dn +Λn] .

Proof. The proof immediately emerges by applying the Determinant Theorem [19, the

Theorem], [20, Theorem 1] (see also [17, Theorem 2]) to system (4.5). According to this De-

terminant Theorem, in order to extract the governing equation from a system of first-order

differential equations with commuting differential operators, one only needs to compute the

determinant of this system whose elements are the commuting differential operators (more-

over, this theorem is also true in the case when the determinant is replaced by a polylinear

form defined on an arbitrary commutative ring over the field of complex numbers). Since

the differential operators Ak, k = 1, . . . , 2n, commute with each other, this Determinant

Theorem is applicable to our case.

The hyperbolicity of equation (4.6) follows from the hyperbolicity of system (3.10) (or

(4.5)). The theorem is proved. �

Remark 2. Derivation of a general analytical formula for the determinant Det [Dn +Λn]

is a fairly difficult algebraic problem which lies apart of the purposes of this article. Nev-

ertheless, this problem can considerably be simplified, if we notice that, from the form of

system (3.10), it follows that matrix Dn +Λn has the block structure

Dn +Λn =

(

D
(1)
n−1 +Λn−1 En−1

En−1 D
(2)
n−1 +Λn−1

)

, (4.7)

where the blocks in (4.7) are composed of the following (2n−1 × 2n−1)-matrices:

D
(1)
n−1 = diag{Ak, k = 1, . . . , 2n−1}, D

(2)
n−1 = diag{Ak, k = 2n−1 + 1, . . . , 2n}, (4.8)

the (2n−1 × 2n−1)-matrix Λn−1 is defined similarly (4.4) (but taking into account its dimen-

sion), and En−1 = −λ1En−1, where En−1 is the unit matrix of dimension (2n−1×2n−1). Since

the matrix En−1 commute with [D
(2)
n−1 + Λn−1] (and, of course, with [D

(1)
n−1 + Λn−1] ), then

applying the well-known Schur’s formulas for the even-order determinants of block matrices

to (4.7), we obtain:

Det [Dn +Λn] = Det
[

(D
(1)
n−1 +Λn−1)(D

(2)
n−1 +Λn−1)− λ2

1En−1

]

. (4.9)

Formula (4.9) reduces computation of a determinant of dimension (2n × 2n) to the compu-

tation of a determinant of dimension (2n−1 × 2n−1). It is also useful to note that, in view

of definition (4.4), for arbitrary n ≥ 2, the relation Dn + Λn = [Dn +Λn]
T holds. In other

words, the matrix Dn +Λn coincides with its transposed matrix.

Clearly, this approach can be extended recurrently to the determinants of lower di-

mensions with final obtaining an explicit (but complicated) formula for the determinant

Det [Dn +Λn], however this is not our purpose here.
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Remark 3. In the particular case n = 2, we obtain the (4× 4)-determinant

Det [D2 +Λ2] =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

A1 + λ −λ2
... −λ1 0

−λ2 A2 + λ
... 0 −λ1

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

−λ1 0
... A3 + λ −λ2

0 −λ1
... −λ2 A4 + λ

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

(4.10)

In the case n = 3, the following (8× 8)-determinant emerges:

Det [D3 +Λ3] =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

A1 + λ −λ3 −λ2 0
... −λ1 0 0 0

−λ3 A2 + λ 0 −λ2
... 0 −λ1 0 0

−λ2 0 A3 + λ −λ3
... 0 0 −λ1 0

0 −λ2 −λ3 A4 + λ
... 0 0 0 −λ1

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

−λ1 0 0 0
... A5 + λ −λ3 −λ2 0

0 −λ1 0 0
... −λ3 A6 + λ 0 −λ2

0 0 −λ1 0
... −λ2 0 A7 + λ −λ3

0 0 0 −λ1
... 0 −λ2 −λ3 A8 + λ

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

(4.11)

From (4.10) and (4.11) we clearly see the nice block structure of matrix Dn +Λn, as it was

noted in (4.7). It is also seen that the diagonal blocks of determinant (4.11) are structurally

similar to (4.10). Such determinants can, therefore, be evaluated by applying the recurrent

formula (4.9). Note that if we take some other order of the sequences {σk, k = 1, . . . , 2n},
(this corresponds to some pairwise changes of rows and columns in matrix Dn + Λn), the

determinant Det [Dn +Λn] keeps the same value.

Remark 4. To obtain the fundamental solution of partial differential equation (4.6) we

should solve it with the initial conditions

p(x, t)|t=0 = δ

(

x−
n
∑

k=1

akx
0
k

)

,
∂kp(x, t)

∂tk

∣

∣

∣

∣

t=0

= 0, k = 1, . . . , 2n − 1, (4.12)

where δ(·) is the Dirac delta-function. The first condition in (4.12) expresses the obvious fact

that, at the initial time moment t = 0, the density of process L(t) is entirely concentrated

at the start point
n
∑

k=1

akx
0
k.

To pose the initial-value problem for the transition density p(x, t) of process L(t) we

need to find the respective initial conditions. To do this, we may use the known formulas

(2.13) and (2.14) for the characteristic function of the telegraph process. Since the telegraph

processes Xk(t), k = 1, . . . , n, are independent, then, in view of (2.13) and (2.14), the

characteristic function of their linear form L(t) is given by the formula:

HL(α, t) = exp

(

−λt + iα
n
∑

k=1

akx
0
k

) n
∏

k=1

H̃k(akα, t), α ∈ R, t ≥ 0, (4.13)
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where

H̃k(ξ, t) =

[

cosh

(

t
√

λ2
k − c2kξ

2

)

+
λk

√

λ2
k − c2kξ

2
sinh

(

t
√

λ2
k − c2kξ

2

)

]

1{

|ξ|≤
λk

ck

}

+

[

cos

(

t
√

c2kξ
2 − λ2

k

)

+
λk

√

c2kξ
2 − λ2

k

sin

(

t
√

c2kξ
2 − λ2

k

)

]

1{

|ξ|>
λ
k

ck

}.

(4.14)

In particular, setting t = 0 in (4.13) we get the formula

HL(α, 0) = exp

(

iα

n
∑

k=1

akx
0
k

)

and its inverting yields the first initial condition in (4.12). To obtain other initial conditions,

we should differentiate (in t) characteristic function (4.13) the respective number of times,

then inverting (in α) the result of such differentiation and setting then t = 0.

Remark 5. From the hyperbolicity of equation (4.6) and initial conditions (4.12) (more

precisely, from the first inital condition of (4.12)) it follows that the fundamental solution

f(x, t) of equation (4.6) is a generalized function and, therefore, the differential operator

Det [Dn +Λn] in (4.6) is treated, for any fixed t > 0, as the differential operator acting in the

space of generalized functions S ′. The elements of S ′ are called the tempered distributions.

Such interpretation becomes more visual if we note that solving the initial-value problem

(4.6)-(4.12) is equivalent to solving the inhomogeneous equation

{Det [Dn +Λn]} f(x, t) = δ(t) δ

(

x−
n
∑

k=1

akx
0
k

)

, (4.15)

where the generalized function on the right-hand side of (4.15) represents the weighted

sum of the instant point-like sources concentrated, at the initial time moment t = 0, at

the point
n
∑

k=1

akx
0
k. In such form of writing the initial-value problem (4.15), the operator

Det [Dn +Λn] : S ′ → S ′ is the differential operator acting from S ′ to itself. From this

point of view, solving the differential equation (4.6) with initial conditions (4.12) means

finding a generalized function f(x, t) ∈ S ′ such that the differential operator Det [Dn +Λn]

transforms it into the generalized function δ(t)δ

(

x−
n
∑

k=1

akx
0
k

)

∈ S ′. Since the initial-

value problem (4.6)-(4.12) is well-posed (due to the hyperbolicity of equation (4.6)), such

generalized function f(x, t) exists and is unique in S ′ for any fixed t > 0. Therefore, the

fundamental solution f(x, t) of the linear form L(t) defined by (3.1) is the Green’s function

of the initial-value problem (4.6)-(4.12).

The same concerns the initial-value problem for the transition probability density p(x, t)

and the respective initial conditions are determined as described in Remark 4 above. Such

initial-value problem can also be represented in the form of a inhomogeneous partial differ-

ential equation similar to (4.15), but with another generalized function on its right-hand side

determined by the initial conditions for the transition density p(x, t).
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5 Limit Theorem

In this section we examine the limiting behaviour of the linear form L(t) defined by (3.1)

when the parameters of the telegraph processes tend to infinity in such a way that the

following Kac’s scaling conditions fulfil:

λk → +∞, ck → +∞,
c2k
λk

→ ̺k, ̺k > 0, k = 1, . . . , n. (5.1)

It is well known that, under condition (5.1), each the telegraph process Xk(t) weakly con-

verges to the homogeneous Wiener process Wk(t) with zero drift and diffusion coefficient

σ2
k = ̺k starting from the initial point x0

k ∈ R. Therefore, it is quite natural to expect that

the process L(t) converges to the linear form

W (t) =

n
∑

k=1

akWk(t)

of the Wiener processes Wk(t), k = 1, . . . , n. In the following theorem we prove this fact.

Theorem 3. Under Kac’s scaling conditions (5.1) the weak convergence L(t) ⇒ W (t)

takes place, where W (t) is the homogeneous Wiener process with the expectation and diffusion

coefficient given, respectively, by the formulas:

EW (t) =

n
∑

k=1

akx
0
k, σ2

W =

n
∑

k=1

̺ka
2
k. (5.2)

Proof. Consider the characteristic function HL(α, t) of the linear form L(t) given by

(4.13):

HL(α, t) = exp

(

−λt+ iα

n
∑

k=1

akx
0
k

) n
∏

k=1

H̃k(akα, t), α ∈ R, t ≥ 0,

where, remind, λ =
n
∑

k=1

λk and functions H̃k(akα, t) are given by the formula (see (4.14)):

H̃k(akα, t)

=

[

cosh

(

t
√

λ2
k − c2ka

2
kα

2

)

+
λk

√

λ2
k − c2ka

2
kα

2
sinh

(

t
√

λ2
k − c2ka

2
kα

2

)

]

1{

|akα|≤
λk

c
k

}

+

[

cos

(

t
√

c2ka
2
kα

2 − λ2
k

)

+
λk

√

c2ka
2
kα

2 − λ2
k

sin

(

t
√

c2ka
2
kα

2 − λ2
k

)

]

1{

|akα|>
λk

c
k

},

k = 1, . . . , n.

From conditions (5.1) it follows that

cmk
λm−1
k

→
{

̺k, if m = 2,

0, if m ≥ 3,
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for arbitrary k = 1, . . . , n. Then the following asymptotic (under conditions (5.1)) formula

holds:

t
√

λ2
k − c2ka

2
kα

2 = λkt

√

1− c2k
λ2
k

a2kα
2

= λkt

[

1− 1

2

c2k
λ2
k

a2kα
2 − 1 · 1

2 · 4

(

c2k
λ2
k

a2kα
2

)2

− 1 · 1 · 3
2 · 4 · 6

(

c2k
λ2
k

a2kα
2

)3

− . . .

]

= λkt−
1

2

c2k
λk

a2kα
2t− 1

8

c4k
λ3
k

a4kα
4t− 1

16

c6k
λ5
k

a6kα
6t− . . .

∼ λkt−
̺ka

2
kα

2

2
t.

Therefore, taking into account that, under conditions (5.1), (λk/ck) → +∞, (c2k/λ
2
k) → 0,

for any k = 1, . . . , n, we arrive at the following asymptotic formulas:

1{

|akα|≤
λk

ck

} → 1, 1{

|akα|>
λk

ck

} → 0,

cosh

(

t
√

λ2
k − c2ka

2
kα

2

)

∼ cosh

(

λkt−
̺ka

2
kα

2

2
t

)

,

λk
√

λ2
k − c2ka

2
kα

2
sinh

(

t
√

λ2
k − c2ka

2
kα

2

)

∼ sinh

(

λkt−
̺ka

2
kα

2

2
t

)

.

Thus,

H̃k(akα, t) ∼ cosh

(

λkt−
̺ka

2
kα

2

2
t

)

+ sinh

(

λkt−
̺ka

2
kα

2

2
t

)

= exp

(

λkt−
̺ka

2
kα

2

2
t

)

,

and the following asymptotic formula holds:

n
∏

k=1

H̃k(akα, t) ∼ exp

[

λt− 1

2

(

n
∑

k=1

̺ka
2
k

)

α2t

]

(under conditions (5.1)).

Therefore, we finally obtain (under conditions (5.1)) the convergence

lim
ck,λk→+∞
(c2

k
/λk)→̺k

HL(α, t) = exp

[

iα

n
∑

k=1

akx
0
k −

1

2

(

n
∑

k=1

̺ka
2
k

)

α2t

]

, k = 1, . . . , n,

and the function on the right-hand side of this limiting relation is the characteristic function

of the homogeneous Wiener process with the expectation and diffusion coefficient given,

respectively, by formulas (5.2). From this convergence of characteristic functions, the weak

convergence L(t) ⇒ W (t) follows. The theorem is proved. �

Remark 6. One can prove a more strong result concerning the pointwise convergence of

the distribution of the linear form L(t) to the distribution of W (t) ( that is, convergence

at every point of the support of L(t)), but this requires a much more complicated analysis

based on the theory of Cauchy problems in the space of generalized functions.
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6 Sum and Difference of Two Telegraph Processes

In this section we apply the results obtained above for studying the sum and difference

S±(t) = X1(t)±X2(t) (6.1)

of two independent telegraph processes X1(t) and X2(t).

The sum of two independent telegraph processes on the real line R, both with the same

parameters c1 = c2 = c, λ1 = λ2 = λ, that simultaneously start from the origin 0 ∈ R, was

thoroughly studied in [17] and the explicit probability distribution of this sum was obtained.

It was also shown that the shifted time derivative of the transition density satisfies the

telegraph equation with doubled parameters 2c and 2λ. A functional relation connecting

the distributions of the difference of two independent telegraph processes with arbitrary

parameters and of the Euclidean distance between them, was given in [18, Remark 4.4].

The results of the previous sections enable us to consider the generalizations of these

models and to study the behaviour of the sum and difference of two independent telegraph

processes X1(t), X2(t) that, at the initial time moment t = 0, simultaneously start from two

arbitrary initial points x0
1, x

0
2 ∈ R and are developing with arbitrary constant velocities c1

and c2, respectively. The motions are controlled by two independent Poisson processes of

arbitrary rates λ1 and λ2, respectively, as described above.

The coefficients of linear form (6.1) are a1 = 1, a2 = 1 for the sum S+(t) and a1 =

1, a2 = −1 for the difference S−(t), respectively. Therefore, according to (3.3), the supports

of the distributions of S±(t) are the intervals

supp S±(t) = [(x0
1 ± x0

2)− (c1 + c2)t, (x
0
1 ± x0

2) + (c1 + c2)t]. (6.2)

The lexicographically-ordered set of sequences in this case is

σ1 = (−1,−1), σ2 = (−1,+1), σ3 = (+1,−1), σ4 = (+1,+1),

and according to (3.4), the support of the sum S+(t) has, therefore, the following singularity

points:
q+1 = (x0

1 + x0
2)− (c1 + c2)t, (terminal point of the support),

q+2 = (x0
1 + x0

2)− (c1 − c2)t, (interior point of the support),

q+3 = (x0
1 + x0

2) + (c1 − c2)t, (interior point of the support),

q+4 = (x0
1 + x0

2) + (c1 + c2)t, (terminal point of the support).

(6.3)

By setting x0
1 = x0

2 = 0, c1 = c2 = c, λ1 = λ2 = λ, we arrive at the model studied in [17]

with the support supp S+(t) = [−2ct, 2ct]. In this case formulas (6.3) produce the three

singularity points, namely, ±2ct (the terminal points of the support) and 0 (the interior

point of multiplicity 2).

Similarly, the support of the difference S−(t) has the following singularity points:

q−1 = (x0
1 − x0

2)− (c1 − c2)t, (interior point of the support),

q−2 = (x0
1 − x0

2)− (c1 + c2)t, (terminal point of the support),

q−3 = (x0
1 − x0

2) + (c1 + c2)t, (terminal point of the support),

q−4 = (x0
1 − x0

2) + (c1 − c2)t, (interior point of the support).

(6.4)
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Note that if both the processes X1(t) and X2(t) start from the same initial point x0
1 =

x0
2 = x0 ∈ R and have the same speed c1 = c2 = c, then the support of the difference

S−(t) takes the form supp S−(t) = [−2ct, 2ct] with the three singularity points 0,±2ct (the

interior singularity point 0 has multiplicity 2). We see that in this case difference S−(t)

has the same support and the same singularity points like the sum S+(t) of two telegraph

processes with the same speed c1 = c2 = c that simultaneously start from the origin 0 ∈ R.

In view of (3.5),

Pr
{

S±(t) = q±j
}

=
e−λt

4
, j = 1, 2, 3, 4,

where λ = λ1 + λ2.

According to (3.11), for the sum S+(t) the coefficients c
+
k ≡ c

+
σk
, k = 1, 2, 3, 4, are:

c
+
1 = −(c1 + c2), c

+
2 = −(c1 − c2), c

+
3 = c1 − c2, c

+
4 = c1 + c2.

Then operators A+
k , k = 1, 2, 3, 4, take the form:

A+
1 =

∂

∂t
− (c1 + c2)

∂

∂x
, A+

2 =
∂

∂t
− (c1 − c2)

∂

∂x
,

A+
3 =

∂

∂t
+ (c1 − c2)

∂

∂x
, A+

4 =
∂

∂t
+ (c1 + c2)

∂

∂x
.

(6.5)

Similarly, for the difference S−(t) the coefficients c
−
k ≡ c

−
σk
, k = 1, 2, 3, 4, are:

c
−
1 = −(c1 − c2), c

−
2 = −(c1 + c2), c

−
3 = c1 + c2, c

−
4 = c1 − c2,

and, therefore, the operators A−
k , k = 1, 2, 3, 4, become

A−
1 =

∂

∂t
− (c1 − c2)

∂

∂x
, A−

2 =
∂

∂t
− (c1 + c2)

∂

∂x
,

A−
3 =

∂

∂t
+ (c1 + c2)

∂

∂x
, A−

4 =
∂

∂t
+ (c1 − c2)

∂

∂x
.

(6.6)

The initial-value problems for the transition densities of processes (6.1) are given by the

following theorem.

Theorem 4. The transition probability densities p±(x, t) of processes (6.1) are the solu-

tions of the initial-value problems

{(

∂

∂t
+ (λ1 + λ2)

)2 [
∂2

∂t2
+ 2(λ1 + λ2)

∂

∂t
− 2(c21 + c22)

∂2

∂x2
− (λ1 − λ2)

2

]

+

[

(c21 − c22)
∂2

∂x2
+ (λ2

1 − λ2
2)

]2}

p±(x, t) = 0,

(6.7)

p±(x, t)|t=0 = δ
(

x− (x0
1 ± x0

2)
)

,
∂p±(x, t)

∂t

∣

∣

∣

∣

t=0

= 0,

∂2p±(x, t)

∂t2

∣

∣

∣

∣

t=0

= (c21 + c22) δ
′′
(

x− (x0
1 ± x0

2)
)

,

∂3p±(x, t)

∂t3

∣

∣

∣

∣

t=0

= −2(λ1c
2
1 + λ2c

2
2) δ

′′
(

x− (x0
1 ± x0

2)
)

,

(6.8)



18

where δ′′(x) is the second generalized derivative of Dirac delta-function.

Since equation (6.7) is hyperbolic, then, for arbitrary t > 0, the solutions p±(x, t) of

initial-value problems (6.7)-(6.8) exist and are unique in the class of generalized functions

S ′.

Proof. To begin with, we establish initial conditions (6.8). According to (4.13), the

characteristic functions of the processes S±(t) are

H±(α, t) = exp
(

−(λ1 + λ2)t+ iα(x0
1 ± x0

2

)

H̃1(α, t)H̃2(α, t), α ∈ R, t ≥ 0,

where functions H̃1(α, t), H̃2(α, t) are given by (4.14). Differentiating H± = H±(α, t) in t,

after some calculations we obtain:

H±(α, t)|t=0 = exp
(

iα(x0
1 ± x0

2)
)

,
∂H±

∂t

∣

∣

∣

∣

t=0

= 0,

∂2H±

∂t2

∣

∣

∣

∣

t=0

= −(c21 + c22)α
2eiα(x

0
1±x0

2),
∂3H±

∂t3

∣

∣

∣

∣

t=0

= 2(λ1c
2
1 + λ2c

2
2)α

2eiα(x
0
1±x0

2).

Inverting these functions in α yields initial conditions (6.8).

Let us now derive the governing equation for the transition density of the sum S+(t).

To simplify the notations, we identify operators Ak ≡ A+
k , k = 1, 2, 3, 4, by omitting the

upper index, bearing in mind, however, that we deal with the operators A+
k presented by

(6.5). Thus, according to Theorem 2, we should evaluate determinant (4.10) with operators

Ak given by (6.5). To do this, we apply formula (4.9) to determinant (4.10). We have:

Det [D2 +Λ2] =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

A1 + λ −λ2
... −λ1 0

−λ2 A2 + λ
... 0 −λ1

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

−λ1 0
... A3 + λ −λ2

0 −λ1
... −λ2 A4 + λ

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

= Det









A1 + λ −λ2

−λ2 A2 + λ









A3 + λ −λ2

−λ2 A4 + λ



− λ2
1





1 0

0 1









=

∣

∣

∣

∣

∣

∣

(A1 + λ)(A3 + λ)− (λ2
1 − λ2

2) −λ2(A1 + A4 + 2λ)

−λ2(A2 + A3 + 2λ) (A2 + λ)(A4 + λ)− (λ2
1 − λ2

2)

∣

∣

∣

∣

∣

∣

,

(6.9)

where, remind, λ = λ1 + λ2. In view of (6.5),

A1 + A4 = 2
∂

∂t
, A2 + A3 = 2

∂

∂t

and, therefore, we have:
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Det [D2 +Λ2]

=

∣

∣

∣

∣

∣

∣

(A1 + λ)(A3 + λ)− (λ2
1 − λ2

2) −2λ2(
∂
∂t
+ λ)

−2λ2(
∂
∂t
+ λ) (A2 + λ)(A4 + λ)− (λ2

1 − λ2
2)

∣

∣

∣

∣

∣

∣

=
[

(A1 + λ)(A3 + λ)− (λ2
1 − λ2

2)
][

(A2 + λ)(A4 + λ)− (λ2
1 − λ2

2)
]

− 4λ2
2

(

∂

∂t
+ λ

)2

= (A1 + λ)(A2 + λ)(A3 + λ)(A4 + λ)− (λ2
1 − λ2

2) [(A1 + λ)(A3 + λ) + (A2 + λ)(A4 + λ)]

+ (λ2
1 − λ2

2)
2 − 4λ2

2

(

∂

∂t
+ λ

)2

.

(6.10)

According to (6.5), we have

(A1 + λ)(A3 + λ) =

[

(

∂

∂t
+ λ

)2

− (c21 − c22)
∂2

∂x2

]

− 2c2
∂

∂x

(

∂

∂t
+ λ

)

,

(A2 + λ)(A4 + λ) =

[

(

∂

∂t
+ λ

)2

− (c21 − c22)
∂2

∂x2

]

+ 2c2
∂

∂x

(

∂

∂t
+ λ

)

.

Therefore,

(A1 + λ)(A2 + λ)(A3 + λ)(A4 + λ) =

[

(

∂

∂t
+ λ

)2

− (c21 − c22)
∂2

∂x2

]2

− 4c22
∂2

∂x2

(

∂

∂t
+ λ

)2

=

[

(

∂

∂t
+ λ

)2

− (c21 + c22)
∂2

∂x2

]2

− 4c21c
2
2

∂4

∂x4
,

(6.11)

and

(A1 + λ)(A3 + λ) + (A2 + λ)(A4 + λ) = 2

[

(

∂

∂t
+ λ

)2

− (c21 − c22)
∂2

∂x2

]

. (6.12)

Substituting (6.11) and (6.12) into (6.10) we obtain

Det [D2 +Λ2] =

[

(

∂

∂t
+ λ

)2

− (c21 + c22)
∂2

∂x2

]2

− 4c21c
2
2

∂4

∂x4

− 2(λ2
1 − λ2

2)

[

(

∂

∂t
+ λ

)2

− (c21 − c22)
∂2

∂x2

]

+ (λ2
1 − λ2

2)
2 − 4λ2

2

(

∂

∂t
+ λ

)2

=

[

(

∂

∂t
+ λ

)2

− (c21 + c22)
∂2

∂x2

]2

− 4c21c
2
2

∂4

∂x4

− 2(λ2
1 + λ2

2)

(

∂

∂t
+ λ

)2

+ 2(λ2
1 − λ2

2)(c
2
1 − c22)

∂2

∂x2
+ (λ2

1 − λ2
2)

2
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=

(

∂

∂t
+ λ

)2
[

(

∂

∂t
+ λ

)2

− 2(λ2
1 + λ2

2)

]

+
[

(c21 + c22)
2 − 4c21c

2
2

] ∂4

∂x4

− 2(c21 + c22)

(

∂

∂t
+ λ

)2
∂2

∂x2
+ 2(λ2

1 − λ2
2)(c

2
1 − c22)

∂2

∂x2
+ (λ2

1 − λ2
2)

2

=

(

∂

∂t
+ λ

)2 [
∂2

∂t2
+ 2λ

∂

∂t
− (λ1 − λ2)

2

]

+ (c21 − c22)
2 ∂4

∂x4

− 2(c21 + c22)

(

∂

∂t
+ λ

)2
∂2

∂x2
+ 2(λ2

1 − λ2
2)(c

2
1 − c22)

∂2

∂x2
+ (λ2

1 − λ2
2)

2

=

(

∂

∂t
+ λ

)2 [
∂2

∂t2
+ 2λ

∂

∂t
− 2(c21 + c22)

∂2

∂x2
− (λ1 − λ2)

2

]

+

[

(c21 − c22)
∂2

∂x2
+ (λ2

1 − λ2
2)

]2

,

proving equation (6.7) for the transition density p+(x, t) of the sum S+(t).

Comparing now operators (6.5) and (6.6), we see that A−
1 = A+

2 , A−
2 = A+

1 , A−
3 =

A+
4 , A−

4 = A+
3 . Therefore, as is easy to see, determinant (4.10) written for operators

A−
k , k = 1, 2, 3, 4, takes the same value like determinant (6.9) for operators A+

k , k = 1, 2, 3, 4.

Thus, equation (6.7) is also valid for the transition density p−(x, t) of the difference S−(t).

This completes the proof of the theorem. �

Remark 7. By setting c1 = c2 = c and λ1 = λ2 = λ in (6.7) we arrive at the fourth-order

equation
(

∂

∂t
+ 2λ

)2(
∂2

∂t2
+ 4λ

∂

∂t
− 4c2

∂2

∂x2

)

p±(x, t) = 0

and this result is weaker in comparison with the third-order equation obtained in [17, formula

(4.3) therein] for the transition density of the sum S+(t) of two independent telegraph

processes, both with the same parameters (c, λ). It is interesting to note that in the product

of these operators, the second one represents the Goldstein-Kac telegraph operator with

doubled parameters (2c, 2λ).

Remark 8. The form of equation (6.7) enables us to make some interesting probabilistic

observations. We see that the first term of equation (6.7) in square brackets represents

a telegraph-type operator (containing also the free term −(λ1 − λ2)
2) which is invariant

with respect to parameters λ1, λ2 and c1, c2. In other words, if we change λ1 for λ2 and

inversely, and/or c1 for c2 and inversely, the first telegraph-type term of equation (6.7)

preserves its form, while the second one can vary its interior signs. From equation (6.7) we

can conclude that the sum and difference S±(t) of two independent telegraph processes are

not the telegraph processes, however they still contain some telegraph-type component. To

show that, we represent equation (6.7) in the following form:
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{(

∂

∂t
+ (λ1 + λ2)

)2 [
∂2

∂t2
+ 2(λ1 + λ2)

∂

∂t
− 2(c21 + c22)

∂2

∂x2

]

−
[

(λ1 − λ2)
∂

∂t
− (c21 − c22)

∂2

∂x2

] [

(λ1 − λ2)
∂

∂t
+ (c21 − c22)

∂2

∂x2
+ 2(λ2

1 − λ2
2)

]}

p±(x, t) = 0.

(6.13)

We see that the first term of (6.13) contains exactly the telegraph operator quite similar to the

classical Goldstein-Kac operator (2.3) with the replacements λ 7→ λ1+λ2 and c2 7→ 2(c21+c22).

The second term of (6.13) represents the product of two heat operators and this fact implies

the presence of a Brownian-type component in the processes S±(t). Notice also that in

this product the first operator in square brackets is exactly the standard heat operator (for

λ1 > λ2 and c1 > c2), while the second one represents an inverse-time heat operator (that

is, with the inverse time replacement t 7→ −t) containing also the free term 2(λ2
1 − λ2

2).

Remark 9. Solving the initial-value problem (6.7)-(6.8) and obtaining the transition

densities p±(x, t) of the sum and difference S±(t) of two independent telegraph processes

with arbitrary parameters is a fairly difficult problem that will be realized in the framework

of another project.

References

[1] Bartlett M. Some problems associated with random velocity. Publ. Inst. Stat. Univ.

Paris, 1957, 6, 261-270.

[2] Bartlett M. A note on random walks at constant speed. Adv. Appl. Prob., 1978, 10,

704-707.

[3] Bogachev L., Ratanov N. Occupation time distributions for the telegraph process. Stoch.

Process. Appl., 2011, 121, 1816-1844.

[4] Cane V.R. Random walks and physical processes. Bul. Intern. Statist. Inst., 1967, 42,

622-640.

[5] Cane V.R. Diffusion models with relativity effects. // In: Perspectives in Probability

and Statistics, Sheffield, Applied Probability Trust, 1975, 263-273.

[6] Di Crescenzo A. On random motion with velocities alternating at Erlang-distributed

random times. Adv. Appl. Probab., 2001, 33, 690-701.

[7] Di Crescenzo A., Martinucci B. A damped telegraph random process with logistic sta-

tionary distributions. J. Appl. Probab., 2010, 47, 84-96.

[8] Foong S.K. First-passage time, maximum displacement and Kac’s solution of the tele-

grapher’s equation. Phys. Rev. A, 1992, 46, 707-710.

[9] Foong S.K., Kanno S. Properties of the telegrapher’s random process with or without

a trap. Stoch. Process. Appl., 2002, 53, 147-173.



22

[10] Goldstein S. On diffusion by discontinuous movements and on the telegraph equation.

Quart. J. Mech. Appl. Math., 1951, 4, 129-156.

[11] Iacus S.M. Statistical analysis of the inhomogeneous telegrapher’s process. Statist.

Probab. Lett., 2001, 55, 83-88.

[12] Iacus S.M., Yoshida N. Estimation for the discretely observed telegraph process. Theory

Probab. Math. Stat., 2009, 78, 37-47.

[13] Kabanov Yu.M. Probabilistic representation of a solution of the telegraph equation.

Theory Probab. Appl., 1992, 37, 379-380.

[14] Kac M. A stochastic model related to the telegrapher’s equation. Rocky Mountain J.

Math., 1974, 4, 497-509.

[15] Kaplan S. Differential equations in which the Poisson process plays a role. Bull. Amer.

Math. Soc., 1964, 70, 264-267.

[16] Kisynski J. On M.Kac’s probabilistic formula for the solution of the telegraphist’s equa-

tion. Ann. Polon. Math., 1974, 29, 259-272.

[17] Kolesnik A.D. The explicit probability distribution of the sum of two telegraph pro-

cesses. Stoch. Dyn., 2015, 15, no.2. (To appear)

[18] Kolesnik A.D. Probability distribution function for the Euclidean distance between two

telegraph processes. Adv. Appl. Probab., 2014, 46, 1172-1193.

[19] Kolesnik A.D. Moment analysis of the telegraph random process. Bull. Acad. Sci.

Moldova, Ser. Math., 2012, 1(68), 90-107.

[20] Kolesnik A.D. The equations of Markovian random evolution on the line. J. Appl.

Probab., 1998, 35, 27-35.

[21] Kolesnik A.D. and Turbin A.F. Infinitesimal hyperbolic operator of the Markov random

evolutions in R
n. Dokl. Akad. Nauk Ukrain., 1991, 1, 11-14. (In Russian)

[22] Kolesnik A.D., Ratanov N. Telegraph Processes and Option Pricing. Springer, 2013,

Heidelberg.
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