Colorful paths for 3-chromatic graphs

Stéphane Bessy and Nicolas Bousquet

Université Montpellier 2 - CNRS, LIRMM, 161 rue Ada, 34392 Montpellier Cedex 5, France, bessy,bousquet@lirmm.fr

Abstract

In this paper, we prove that every 3-chromatic connected graph, except C_7 , admits a 3-vertex coloring in which every vertex is the beginning of a 3-chromatic path. It is a special case of a conjecture due to S. Akbari, F. Khaghanpoor, and S. Moazzeni, cited in [P.J. Cameron, Research problems from the BCC22, Discrete Math. 311 (2011), 1074–1083], stating that every connected graph G other than C_7 admits a $\chi(G)$ -coloring such that every vertex of G is the beginning of a colorful path (i.e. a path of on $\chi(G)$ vertices containing a vertex of each color). We also provide some support for the conjecture in the case of 4-chromatic graphs.

Keywords: vertex coloring, colorful path, rainbow coloring

1 Introduction

In this paper, we deal with oriented and non-oriented graphs. When it is not specified, graphs are supposed to be non-oriented. Notations not given here are consistent with [\[5\]](#page-11-0). The vertex set of a graph or an oriented graph G is denoted by $V(G)$ and its edge set (or arc set) by $E(G)^{1}$ $E(G)^{1}$ $E(G)^{1}$ Classically, for a vertex x of a graph G, a vertex y with $\{x, y\} \in E(G)$ is called a neighbour of x. The set of all the neighbours of x, denoted by $N_G(x)$, is the neighbourhood of x in G. In the oriented case, an *out-neighbour* (resp. *in-neighbour*) of a vertex x of an oriented graph G is a vertex y with $xy \in E(G)$ (resp. $yx \in E(G)$). Similarly, the set of all the out-neighbours (resp. in-neighbours) of x in G, denoted by N_G^+ $G^+(x)$ (resp. $N_G^ G(G(x))$ is the *out-neighbourhood* (resp. *out-neighbourhood*) of x in G .

In a graph G, we denote by $x_1 \ldots x_{\ell+1}$ the path of length ℓ on the distinct vertices $\{x_1, \ldots, x_{\ell+1}\}$ with edges $\{x_1, x_2\}, \{x_2, x_3\}, \ldots, \{x_\ell, x_{\ell+1}\}.$ We denote also by $x_1 \ldots x_\ell x_1$ the cycle C_ℓ of length ℓ on the distinct vertices $\{x_1, \ldots, x_{\ell}\}\$ with edges $\{x_1, x_2\}, \ldots, \{x_{\ell-1}, x_{\ell}\}, \{x_{\ell}, x_1\}\$. Classically, these notions are extended to oriented graphs, where the arcs $x_i x_{i+1}$ replace the edges $\{x_i, x_{i+1}\}$

¹Throughout the paper, we use the notation xy to indicate the (oriented) arc from x to y, while $\{x, y\}$ designates the (non-oriented) edge between x and y .

(computed modulo ℓ for the oriented cycle C_{ℓ}).

A k-(proper) coloring of a graph G is a mapping $c: V(G) \to \{1, \ldots, k\}$ such that $c(u) \neq c(v)$ if u and v are adjacent in G. The *chromatic number* of G, denoted by $\chi(G)$, is the smallest integer k for which G admits a k-coloring and thus, we say that G is a $\chi(G)$ -chromatic graph. For a k-coloring of a graph G , a *rainbow path* of G is a path whose vertices have all distinct colors. Given a $\chi(G)$ -coloring of G, a rainbow path on $\chi(G)$ vertices is a *colorful path*. In particular a rainbow path is transversal to the set of colors (*i.e.* it has a non empty intersection with every color class). Finding structures transversal to a partition of the ground set is a general problem in combinatorics. Examples arise from Steiner Triple Systems (see [\[8\]](#page-11-1)), systems of representatives (see [\[1\]](#page-11-2)) or extremal graph theory (see [\[10\]](#page-11-3)). Rainbow and colorful paths have been extensively studied in the last few years, see for instance [\[2\]](#page-11-4), [\[3\]](#page-11-5), [\[7\]](#page-11-6), [\[11\]](#page-11-7) and [\[12\]](#page-11-8). In this paper, we concentrate on a conjecture of S. Akbari, F. Khaghanpoor and S. Moazzeni raised in $[2]$ (also cited in $[6]$).

Conjecture 1 (S. Akbari, F. Khaghanpoor and S. Moazzeni [\[2\]](#page-11-4)). Every connected graph G other than C_7 admits a $\chi(G)$ -coloring such that every vertex of G is the beginning of a colorful path.

Conjecture [1](#page-1-0) holds for 1-chromatic graphs and 2-chromatic graphs. Indeed in connected bipartite graphs, every vertex is connected to a vertex of another color. The classical proof of Gallai-Roy Theorem also shows that in any $\chi(G)$ -coloring of a graph G, there exists at least one colorful path (see [\[5\]](#page-11-0), for instance). Furthermore, much more is known concerning this conjecture which, through recent, have already received attention. In [\[3\]](#page-11-5), S. Akbari, V. Liaghat, and A. Nikzad proved that Conjecture [1](#page-1-0) is true for the graphs G having a complete subgraph of size $\chi(G)$. They also proved that every graph G admits a $\chi(G)$ -coloring such that every vertex is the beginning of a rainbow path on $\frac{\chi(G)}{2}$ $\frac{G}{2}$ vertices. This result was improved by M. Alishahi, A. Taherkhani and C. Thomassen in [\[4\]](#page-11-10), who showed that we can obtain rainbow paths on $\chi(G)-1$ vertices.

In this paper, we give another evidence for Conjecture [1,](#page-1-0) and prove it for 3-chromatic graphs.

Theorem 2. Every connected 3-chromatic graph G other than C_7 admits a 3-coloring such that every vertex of G is the beginning of a colorful path.

The proof of Theorem [2](#page-1-1) uses an auxiliary oriented graph build from a coloring of the instance graph. This oriented graph was already used in [\[3\]](#page-11-5). In the next section, we recall its definition and strengthen the results known about it to obtain some useful lemmas. In Section [3,](#page-4-0) we use these tools to derive the proof of Theorem [2.](#page-1-1) Finally, in Section [4,](#page-9-0) we conclude the paper with some remarks and open questions. In particular, we prove that Conjecture [1](#page-1-0) is true for 4-chromatic graphs containing a cycle of length four.

2 Preliminaries

In this section, $G = (V, E)$ is a connected graph and c is a proper coloring of G with $\chi(G)$ colors. Here, G is not necessarily 3-chromatic and, for short, we write χ instead of $\chi(G)$. In the following, we will consider modifications of colors and all these modifications have to be understood modulo χ .

As defined in [\[3\]](#page-11-5), the oriented graph D_c has vertex set V and ab is an arc of D_c if $\{a, b\}$ is an edge of G and the color of b equals the color of a plus one (this oriented graph was first introduced in [\[9,](#page-11-11) [13\]](#page-11-12)). A colorful path starting at the vertex x is called a *certifying path for* x. A colorful path $x_1 \ldots x_\chi$ is *forward* (resp. backward) if for every $i \in \{1, \ldots, \chi - 1\}$ we have $c(x_{i+1}) = c(x_i) + 1 \mod \chi$ (resp. $c(x_{i+1}) = c(x_i) - 1 \mod \chi$). Note that a forward (resp. backward) certifying path for a vertex x is an oriented path in D_c on χ vertices starting (resp. ending) at x .

An *initial section* of D_c is a subset X of V such that there is no arc of D_c entering into X (i.e. from $V(G) \setminus X$ to X). The *initial recoloring* of X consists of reducing the color used on each vertex in X by one. We have the following basic facts (which are mentioned in $[3]$, but we recall here their short proofs for the sake of completeness).

Lemma 3 (S. Akbari et al. [\[3\]](#page-11-5)). An initial recoloring of an initial section is still a proper coloring.

Proof. Let c be a coloring of G and X an initial section of D_c . We denote by c' the coloring of G obtained after the initial recoloring of X. Let x and y be two adjacent vertices. If both x and y are not in X, we have $c'(x) = c(x) \neq c(y) = c'(y)$. If both x and y are in X, we have $c'(x) = c(x) - 1 \neq c(y) - 1 = c'(y)$. So, by symmetry we may assume that $x \notin X$ and $y \in X$. Since X is an initial section, there is no arc from x to y in D_c and then we have $c(x) \neq c(y) - 1$. Thus we have $c'(x) = c(x) \neq c(y) - 1 = c'$ $(y).$

We will intensively use Lemma [3](#page-2-0) to prove Theorem [2,](#page-1-1) and so, without refereeing it precisely. Notice that when performing an initial recoloring on an initial section X , we remove from D_c all the arcs leaving X and possibly add some arcs entering into X (the arcs xy with $\{x, y\} \in E(G)$, $x \notin X$, $y \in X$ and $c(x) = c(y) - 2$. Moreover, we do not create any arc leaving X. Indeed suppose by contradiction that an arc xy is created with $x \in X$ and $y \notin X$, then in the original coloring c, we must have $c(x) = c(y)$, contradicting c being proper. The other arcs, standing inside or outside X remain unchanged.

Similarly, a subset X of vertices is a *terminal section* of D_c if there is no arc leaving X (i.e. from X to $V(G) \setminus X$). The terminal recoloring of X consists in adding one to the color of the vertices of X . As for the initial recoloring, this coloring is still proper. Note also that, when performing a terminal recoloring of X , we remove from D_c all the arcs entering into X and possibly add some arcs leaving X (the arcs xy with $\{x, y\} \in E(G)$, $x \in X$, $y \notin X$ and $c(x) = c(y) - 2$.

Using initial and terminal recolorings, we prove some basic facts on the existence of colorful paths. Two colorings c and c' are *identical* on X if $c(x) = c'(x)$ for all $x \in X$.

Lemma 4 (S. Akbari et al. [\[3\]](#page-11-5)). Let c be a χ -coloring of G and X be a subset of vertices of G. There exists a χ -coloring c' of G identical to c on X such that every vertex is the beginning of an oriented path of $D_{c'}$ which ends in X.

Proof. Let c' be a χ -coloring of G identical with c on X. We define $Y_{c'}$ as the set of vertices of G which are the beginning of an oriented path in $D_{c'}$ ending in X. The path can have length

0, *i.e.* X is included in $Y_{c'}$. Now, we choose c' a χ -coloring of G identical with c on X with an associated set $Y_{c'}$ of maximal cardinality. Let us prove that $Y_{c'} = V$. Otherwise, notice that, by definition, $Y_{c'}$ is an initial section of D_c , and so that $V \setminus Y_{c'}$ is a terminal section of D_c . Denote by c_t the terminal recoloring of $V \setminus Y_{c'}$. As $X \subset Y_{c'}$, c_t is also identical to c on X. Moreover, the arcs from $Y_{c'}$ to $V(G) \setminus Y_{c'}$ of $D_{c'}$ are not anymore in D_{c_t} and the only arcs which can be created are arcs from $V(G) \setminus Y_{c'}$ to $Y_{c'}$ in D_{c_t} . If no arc from $V(G) \setminus Y_{c'}$ to $Y_{c'}$ is created, we can repeat the terminal recoloring of $V \setminus Y_{c'}$ until such an arc appears. As G is connected, the process must stop at some step, and at least one arc zz' must appear from $V(G) \setminus Y_{c'}$ to $Y_{c'}$. So, c_t is identical to c on X, and we have $Y_{c'} \cup \{z\} \subseteq Y_{c_t}$ which contradicts the maximality of $Y_{c'}$. $\overline{}$.

In particular, Lemma [4](#page-2-1) implies that Conjecture [1](#page-1-0) holds if D_c contains an oriented cycle. Indeed, if C is such a cycle, then C has length a multiple of χ , and so C has length greater or equal than χ . If we apply Lemma [4](#page-2-1) with $X = V(C)$, then we obtain a χ -coloring c' such that every vertex of G is the beginning of an oriented path of $D_{c'}$ ending in $V(C)$. So, extending possibly these paths with some vertices and arcs of C , every vertex of G is the beginning of an oriented path of $D_{c'}$ of length χ . Thus, G satisfies Conjecture [1.](#page-1-0)

As mentioned in [\[3\]](#page-11-5), note that if G contains a clique of size $\chi(G)$, then for every χ -coloring c of G, D_c contains an oriented cycle, and so G verifies Conjecture [1.](#page-1-0)

So, we have to focus on the case where D_c is an oriented acyclic graph. We introduce some notations for this case. Let D be an oriented acyclic graph. The *level partition of* D is the unique partition of $V(D)$ into subsets (V_1, \dots, V_k) such that V_i consists of all sinks of the oriented acyclic graph induced by D on $V \setminus \bigcup_{j=1}^{i-1} V_j$. As each V_i is the set of sinks of an acyclic induced oriented subgraph of D , it is in particular an independent set. The *height of a vertex* x, denoted by $h_D(x)$, is the index of the level x belongs to in the level partition of D. And, the height of the partition is the maximal height of a vertex (i.e. k in our notations, here).

Now, we introduce notations for an oriented acyclic graph D_c associated with a χ -coloring c of G. Assuming that D_c is acyclic, we denote by (V_1^c, \dots, V_k^c) its level partition. Note that by construction, if xy is an arc of D_c with $x \in V_i$ and $y \in V_j$ we have $i > j$ and $i - j = 1 \mod \chi$. We define the *height of c* as the height of this level partition. It is also the number of vertices in a longest oriented path of D_c . We denote it by $h(c)$, and to shorten notations, we write $h_c(x)$ instead of $h_{D_c}(x)$ to indicate the height of a vertex in the level partition of D_c .

Finally, a χ -coloring c is a nice coloring of G if D_c is an oriented acyclic graph with a unique sink. Given a nice coloring c, every vertex of D_c is the beginning of an oriented path which ends at this unique sink. An *in-branching* is an orientation of a tree in which every vertex has out-degree 1, except one vertex, called the root of the in-branching. It is well-known that, for a fixed vertex x of a digraph D , every vertex is the beginning of an oriented path ending at x if, and only if, D has a spanning in-branching rooted at x (see [\[5\]](#page-11-0) Chap. 4 for instance). Thus, c is nice if, and only if, D_c has a spanning in-branching. So, if we apply Lemma [4](#page-2-1) with a set X containing a unique vertex v, we obtain a coloring c where every vertex is the beggining of a path ending in v, or equivalently where D_c has an in-branching rooted at v. If v is not a sink of D_c , then D_c contains an oriented cycle. Otherwise D_c has a unique sink v, and then c is a nice coloring. Thus we have the following.

Corollary 5. Either G admits a χ -coloring c such that D_c contains an oriented cycle, or for every vertex v of G, there is a nice χ -coloring of G with v as unique sink.

Note that, given a nice coloring c of G , the vertices belonging to a same level of the level partition of D_c receive the same color by c. Indeed, V_1^c only contains the unique sink r of D_c , and, as every vertex in V_i^c has an out-neighbour in V_{i-1}^c , an easy induction shows that $c(x) = c(r) - i + 1 \mod \chi$ for every $x \in V_i$.

Now, we can establish the following lower bound on the height of D_c , for a nice coloring c of G.

Lemma 6. Let c be a nice χ -coloring of G. We have $h(c) \geq 2\chi - 1$.

Proof. Assume by contradiction that $h(c) \leq 2\chi - 2$ for a nice coloring c of G. Denote by r the unique sink of D_c (which forms the level V_1^c), and consider the set $X = V^c_X \cup V^c_{X+1} \cup \cdots \cup V^c_{h(c)}$. This set X is not empty (otherwise G would have a partition in less then χ independent sets) and is an initial section of D_c . When performing the initial recoloring of X, the color $c(r) + 1$ disappears. Indeed, only the vertices of V_χ^c used this color before the recoloring, and no vertex of X uses it after the recoloring. So, we obtain a $(\chi - 1)$ -proper coloring of G, a contradiction. \Box

As a consequence, in a nice coloring of G, there exists a backward certifying path for the sink of D_c . As, by Lemma [5,](#page-4-1) every vertex of G can be the sink of D_c for a nice coloring c, or we find an oriented cycle in D_c , it means that for every vertex x, there exists a coloring of G containing a colorful path with end x, what was already proved in $[11]$.

But, we can be more precise. Let c be a nice coloring of G , we denote by B_c the set of vertices of G which have no certifying path. We have seen that the sink of D_c is not in B_c . Moreover, in the level partition (V_1^c, \dots, V_k^c) of D_c , every vertex in V_i^c has an out-neighbour in V_{i-1}^c , and then, every vertex in V_i^c with $i \geq \chi$ has a forward certifying path. Then, we obtain the following.

Lemma 7. Let c be a nice coloring of G. We have $B_c \subseteq V_2^c \cup V_3^c \cup \cdots \cup V_{\chi-1}^c$.

Now, we pay attention to 3-chromatic graphs.

3 Colorful paths for 3-chromatic graphs

In this section, we focus on the special case $\chi = 3$ and prove Theorem [2.](#page-1-1) Note that, when considering a 3-coloring c of a 3-chromatic graph G , every edge of G appears as an arc of the oriented graph D_c (indeed, for any edge x, y of G, we have $c(x) - c(y) \in \{-1,1\}$). Furthermore, when we perform an initial recoloring on an initial section X of D_c , all the arcs leaving X become arcs entering into X.

Lemma 8 (S. Akbari et al. [\[3\]](#page-11-5)). Conjecture [1](#page-1-0) is true for every odd cycle except C_7 .

Proof. For the sake of completeness, we just give the coloring yielding the result. Let $C =$ $v_0v_1 \ldots v_kv_k'v_{k-1}' \ldots v_2'v_1'v_0$ be an odd cycle different from C_7 . We define the 3-coloring c of C

by $c(v_0) = 3$, $c(v_i) = c(v'_i) = i \mod 3$ for $1 \le i \le k - 1$, $c(v_k) = k \mod 3$ and $c(v'_k) = k + 1$ mod 3. Now, it is easy to check that if $k \neq 3$ (i.e. $C \neq C_7$), then every vertex is the beginning of a colorful path. \Box

In the following we assume by contradiction that Theorem [2](#page-1-1) is not true and consider a minimal counter-example G (subject to its number of vertices) distinct from C_7 . The only consequence of the minimal cardinality of G we use is given by the following claim.

Claim 8.1. The graph G does not contain any twins, that is, there is no two vertices x and y in G with $N_G(x) = N_G(y)$.

Proof. Assume that G has two vertices x and y with $N_G(x) = N_G(y)$. First, notice that $G \setminus \{y\}$ is 3-chromatic, as we can extend every coloring of $G \setminus \{y\}$ to G by coloring y with the color of x. Now, if $G \setminus \{y\} = C_7$, then in the coloring of G given Figure [1](#page-5-0) every vertex is the beginning of a colorful path. So, $G \setminus \{y\}$ is different from C_7 . Since G is a minimum counterexample,

Figure 1: A coloring of the 'twinned C_7 ' in which every vertex is the beginning of a colorful path.

there is a proper coloring c of $G \setminus \{y\}$ such that every vertex is the beginning of a colorful path. Extending the coloring c to y with $c(y) = c(x)$ provides a certifying path for y since x has one. So, G would not be a counter-example to Theorem [2,](#page-1-1) a contradiction. \Box

Now, let c be a nice coloring of G , which exists by Corollary [5.](#page-4-1) As previously noticed, the associated oriented graph D_c is acyclic since G is a counter-example to Theorem [2.](#page-1-1) We can describe precisely the structure of D_c as follows. By Lemma [7,](#page-4-2) the set B_c of vertices which do not have a certifying path is a subset of V_2 , the second level in the level partition of D_c . So, if we denote by r_c the unique sink of D_c , every vertex of B_c has a unique out-neighbour which is r_c . Moreover, every vertex b of B_c is not the end of an oriented path of length two in D_c . Thus, either b is a source of D_c or all its in-neighbours are sources of D_c , and by construction of D_c these in-neighbours belong to levels V_i^c with $i = 0 \mod 3$. Finally, D_c has height at least five by Lemma [6](#page-4-3) and so, at least one vertex of V_2 is the beginning of a backward certifying path. In particular, we know that B_c is a proper subset of V_2 . Figure [2](#page-6-0) depicts the situation.

Consider the following special initial recoloring of D_c . For a vertex b of B_c , the previous argument ensures that $\{b\} \cup N_D^ \overline{D}_c(b)$ is an initial section of D_c . The switch recoloring on b is

Figure 2: An illustrative example of oriented graph D_c . The vertices colored black, gray and white respectively receive value 3, 2 and 1 by c.

the initial recoloring on $\{b\} \cup N_D^ \overline{D}_c(b)$. By Lemma [3,](#page-2-0) this coloring is proper, and moreover, it satisfies the following properties.

Claim 8.2. Let b be a vertex of B_c and denote by c' the switch recoloring on b. The oriented $graph\ D_{c'}$ has the following properties:

- (a) c' is a nice coloring of G, the unique sink of $D_{c'}$ is b and so $V_1^{c'} = \{b\}.$
- (**b**) $V_2^{c'} = \{r_c\} \cup N_{D_1}^{-}$ $D_{c}(b)$, $V_{3}^{c'} = V_{2}^{c} \setminus \{b\}$ and for every $i = 4, ..., h(c) + 1$, if $i = 1 \mod 3$ we have $V_i^{c'} = V_{i-1}^c \setminus N_{D_i}^ \overline{D}_c(b)$ and if $i \neq 1 \mod 3$ we have $V_i^{c'} = V_{i-1}^c$.
- (c) If $V_{h(c)}^c \setminus N_{D_c}^ \overline{D}_c(b) \neq \emptyset$ then $h(c') = h(c) + 1$.
- (d) If $V_{h(c)}^c \subseteq N_{D_c}^ D_c(b)$ then $h(c') = h(c)$.
- (e) $B_{c'}$ is a subset of $N_{D}^ \overline{D}_c(b)$, i.e. r_c has a certifying path in $D_{c'}$.

Proof. Denote by N the set $N_D^ \overline{D}_c(b)$. The oriented graph $D_{c'}$ is obtained from D_c by reversing all the arcs from $\{b\} \cup N$ to $V \setminus (\{b\} \cup N)$. The vertex r_c is the unique sink of $D_c[V \setminus (\{b\} \cup N)]$ and b is the unique sink of $D_c[\{b\} \cup N]$. Since $r_c b$ is an arc of $D_{c'}$, b is the unique sink of $D_{c'}$ which proves (a) .

Now, we will prove that $V_2^{c'} = \{r_c\} \cup N$ and $V_{i-1}^c \setminus (\{b\} \cup N) \subseteq V_i^{c'}$ $i_i^{c'}$ for $i = 3, ..., h(c) + 1$. We call (\star) this property. Assuming that (\star) is true, each part of the partition $({b}, {r_c} \cup$ $N, V_2^c \setminus (\{b\} \cup N), V_3^c \setminus (\{b\} \cup N), \ldots, V_{h(c)}^c \setminus (\{b\} \cup N))$ of G will be respectively included in the corresponding part of the partition $(V_1^{c'}$ $V^{c'}_{1},\ldots,V^{c'}_{h(c)}$ $\mathcal{L}_{h(c')}^{cc'}$). So, the two partitions will be equal, and using that $N_D^ _{D_c}^-(b) \subseteq \bigcup \{V_i^c : i = 0 \mod 3\}$ we have (b). The proof of (\star) runs by induction on *i*. Let start with the case $i = 2$. As r_c is the unique out-neighbour of *b* in D_c , we have $d_D^ D_{c'}(b) = \{r_c\} \cup N$. In $D_{c'}$, the vertex b is the unique out-neighbour of r_c . In $D_{c'}$, the vertex b is also the unique out-neighbour of the vertices of N . Indeed, N is an independent set of G with no in-neighbour in D_c . Moreover, when we perform the switch recoloring on b, we invert

all the arc leaving N except the one with head b. So, we have $V_2^{c'} = \{r_c\} \cup N$. Now, assume that for some integer $i \in \{3, \ldots, h(c) + 1\}$ the property (\star) is true for all j with $j < i$. Let x be a vertex of $V_{i-1}^c \setminus (\{b\} \cup N)$. The out-neighbours of x in D_c are in $\cup_{k=1}^{i-2} V_k^c$. All these vertices are in $\cup_{k=1}^{i-1} V_k^{c'}$ $k_k^{c'}$ by induction hypothesis. The other possible out-neighbours of x are vertices of $\{b\} \cup N$ which are in $V^{c'}_1 \cup V^{c'}_2$ Z_2^c as previously shown. Therefore, the height of x is at most i in $D_{c'}$. Let y be an out-neighbour of x in D_c such that $y \in V_{i-2}^c$. Since y is not a source in D_c we have $y \notin N$, and as $y \neq b$ (otherwise, x would be in N), we have by induction hypothesis $y \in V_{i-}^{c'}$ $\sum_{i=1}^{rc'}$. So, the height of x is exactly i and $x \in V_c^{c'}$ $\mathcal{I}_i^{c'}$, which finally proves (\star) and (\mathbf{b}) .

In particular, (b) directly implies (c). It also implies (d) easily. Indeed, assume that $V_{h(c)}^c \subseteq$ N, then as $V_{h(c)}^c \cap N \neq \emptyset$ we have $h(c) = 0 \mod 3$. Thus, by (b), we have $V_{h(c)+1}^{c'} = V_{h(c)}^c \setminus N = \emptyset$ and $V_{h(c)}^{c'} = V_{h(c)-1}^{c} \neq \emptyset$. So we obtain $h(c') = h(c)$.

To prove (e), as we know that $B_{c'}$ is a subset of $V_2^{c'}$ $\mathcal{L}_2^{cc'}$, which is $\{r_c\} \cup N$ by (b), we just have to check that r_c is the end of a certifying path in $D_{c'}$. Let $P = x_4x_3x_2x_1$ be an oriented path of length 3 in D_c with $x_1 = r_c$ and $x_i \in V_i^c$ for $i = 1, 2, 3, 4$. Such a path exists since the height of c is at least 5 by Lemma [6.](#page-4-3) As x_3 is not a source in D_c , we have $x_3 \notin N$. As x_2 is certified in c by the path $x_4x_3x_2$, we also have $x_2 \neq b$. So, the oriented path $x_3x_2x_1$ still exists in $D_{c'}$ and is a certifying path in $D_{c'}$ for r_c . So, (e) is proved.

Before going on the main proof, let us establish the following technical result.

Claim 8.3. Let c be a nice coloring of G and assume that there exists at least one arc from $V_{h(c)}^c$ to B_c in D_c . If $X \subseteq V^c_{h(c)} \cup V^c_{h(c)-1}$ is an initial section of D_c , then every vertex of $D_c \setminus (X \cup B_c)$ has a certifying path lying in $D_c \setminus X$.

Proof. As X is an initial section of D_c , every forward certifying path starting at a vertex of $D_c \setminus X$ lies in $D_c \setminus X$. Thus every vertex of $D_c \setminus (X \cup V_2^c \cup \{r_c\})$ has a (forward) certifying path in $D_c \setminus X$. We have $X \cap V_3^c = \emptyset$ since $h(c) \geq 5$ and $X \subseteq V_{h(c)}^c \cup V_{h(c)-1}^c$. Thus there exists a path on three vertices starting in V_3^c , ending on r_c and lying in $D_c \setminus X$. This path is a backward certifying path for r_c . To conclude, let z be a vertex of $V_2^c \setminus B_c$. As $z \notin B_c$, z is certified in D_c by a backward path $P = vwx$ on three vertices. By construction we have $h_c(z) = 2 \mod 3$ and then $h_c(w) = 0 \mod 3$ and $h_c(v) = 1 \mod 3$. Note that, since there is an arc from $V_{h(c)}^c$ to B_c , we have $h_c(y) = 0 \mod 3$ for every vertex y of $V_{h(c)}^c$ and then $h_c(y') = 2 \mod 3$ for every vertex y' of $V_{h(c)-1}^c$. Since $h_c(w) = 0$, if $w \in X$ then w must be in $V_{h(c)}^c$, which is impossible since w is not a source. So w is not contained in X. Moreover since $h_c(v) = 1 \mod 3$ and X only contains vertices y satisfying $h_c(y) \in \{0,2\}$ mod 3, we have $v \notin X$. Thus vwz is a certifying backward path in $D_c \setminus (X \cup B_c)$.

From now on, we consider a nice coloring of G with maximal height among all the nice colorings of G. This choice implies that if we perform a switch coloring in c, case (c) of Claim [8.2](#page-6-1) cannot occur. The next claim establishes some properties on the structure of the last levels of D_c for such nice colorings of G .

Claim 8.4. Let c be a nice coloring of G with maximal height. Then the graph G induces a complete bipartite graph on $V_{h(c)}^c \cup B_c$ with bipartition $(V_{h(c)}^c, B_c)$ and also on $V_{h(c)}^c \cup V_{h(c)-1}^c$ with bipartition $(V_{h(c)}^c, V_{h(c)-1}^c)$.

Proof. We know that B_c , $V_{h(c)}^c$ and $V_{h(c)-1}^c$ form three independent sets of G. By maximality of $h(c)$, for every vertex b of B_c a switch recoloring on b produces case (d) of Claim [8.2,](#page-6-1) so we have $V_{h(c)}^c \subseteq N_{D_c}^ \overline{D}_c(b)$. Thus G induces a complete bipartite graph on $V_{h(c)}^c \cup B_c$ with bipartition $(V_{h(c)}^c, \overrightarrow{B_c}).$

Now let us prove that G induces a complete bipartite graph on $V_{h(c)}^c \cup V_{h(c)-1}^c$ with bipartition $(V_{h(c)}^c, V_{h(c)-1}^c)$. By contradiction assume that there exist vertices $x \in V_{h(c)}^c$ and $y \in V_{h(c)-1}^c$ such that $\{x, y\} \notin E(G)$. First we will prove that y has an in-neighbour in $V_{h(c)}^{c}$. Indeed, we consider a vertex b in B_c and remark that y has no out-neighbour which is also an in-neighbour of b. Otherwise let y' be such a vertex and denote by i its level, ie. $y' \in V_i^c$. As $yy' \in E(D_c)$ we would have $h(c) - 1 = i - 1 \mod 3$ and as $y'b \in E(D_c)$ we would have $i = 2 - 1 \mod 3$. So we would get $h(c) = 2 \mod 3$ a contradiction to $h(c) = 0 \mod 3$, previously noticed. So the only neighbours of y which are in-neighbours of b in D_c are in-neighbours of y and lie in $V_{h(c)}^c$. Now we apply a switch recoloring on b to obtain the coloring c' . By assumption G is not a counter-example to Theorem [2,](#page-1-1) and then $B_{c'}$ contains at least one vertex z. By Claim [8.2](#page-6-1) (e), we know that $B_{c'} \subseteq N_{D}^ \overline{D}_c(b)$. Moreover, Claim [8.2](#page-6-1) (b) ensures that $V_{h(c)}^{c'}$ $\frac{r_c'}{h(c')} = V_{h(c)-1}^c$ (because $h(c) = 0 \mod 3$. Thus y belongs to $V_{h(c)}^{c'}$ $h(c')$, and by maximality of $h(c) = h(c')$ the first part of the claim implies that yz is an arc of $D_{c'}$. Thus z was an in-neighbour of b in D_c and is a neighbour of y. By the previous remark we know that $z \in V_{h(c)}^c$ and z is an in-neighbour of y in D_c .

Now, in D_c , we know that y has at least one non neighbour in $V^c_{h(c)}$ (the vertex x) and also at least one in-neighbour in $V^c_{h(c)}$. We denote by Y the set $N_{D_c}^ \overline{D}_c(y)$, which is contained in $V_{h(c)}^c$, and apply an initial recoloring on the initial section $\{y\} \cup Y$ to obtain the coloring c'. Let us prove that every vertex of G has a certifying path in $D_{c'}$. First, every vertex of $V_{h(c)}^c \cup \{y\} \cup B_c =$ $(V_{h(c)}^c \setminus Y) \cup B_c \cup Y \cup \{y\}$ has a certifying path. Indeed for every vertex $z \in V_{h(c)}^c \setminus Y$ (which is non empty since it contains x), for every vertex $b \in B_c$ and for every vertex z' of Y (which is non empty by the previous paragraph), the oriented path $zbz'y$ exists in $D_{c'}$. Moreover, the oriented graph $D_c \setminus (Y \cup \{y\})$ is unchanged by the recoloring. So it is possible to apply Claim [8.3](#page-7-0) with $X = Y \cup \{y\}$ to conclude that every vertex of $D_c \setminus (Y \cup \{y\} \cup B_c)$ has also a certifying path in $D_c \setminus (Y \cup \{y\}) = D_{c'} \setminus (Y \cup \{y\}).$

In all, every vertex of G has a certifying path in $D_{c'}$, a contradiction to the fact that G is a counter-example to Theorem [2.](#page-1-1)

The final claim gives more precision on the in-neighbourhood of the vertices of B_c in D_c .

Claim 8.5. For a coloring c of G with maximal height, every vertex b of B_c satisfies $N_D^ \bar{D}_{c}(b) =$ $V_{h(c)}^c$.

Proof. Let b be a vertex of B_c . By Claim [8.4](#page-8-0) we know that $V_{h(c)}^c \subseteq N_G^ _{G}^{-}(b)$. So assume that b has an in-neighbour $u \notin V_{h(c)}^c$, and consider the initial recoloring of the initial section $V_{h(c)}^c \cup V_{h(c)-1}^c$

of D_c . We denote by c' the obtained coloring of G , and let us prove that there is a certifying path in c' for every vertex of the graph G. Let z, z', b' be respectively vertices of $V_{h(c)}^c, V_{h(c)-1}^c$ and B_c . By Claim [8.4](#page-8-0) both $(V_{h(c)}^c, V_{h(c)-1}^c)$ and $(B_c, V_{h(c)}^c)$ induce complete bipartite graphs in G, and then $b'zz'$ is an oriented path in $D_{c'}$. So, it is a backward certifying path for z' and a forward certifying path of b'. Moreover, ubz is also an oriented path of $D_{c'}$, and then a certifying backward path for z. So every vertex of $B_c \cup V^c_{h(c)} \cup V^c_{h(c)-1}$ has a certifying path in $D_{c'}$. To conclude we notice that the oriented graph $D_c \setminus (V_{h(c)}^c \cup V_{h(c)-1}^c)$ is unchanged by the recoloring. So we apply Claim [8.3](#page-7-0) with $X = V_{h(c)}^c \cup V_{h(c)-1}^c$ and conclude that every vertex of $D_c \setminus (V_{h(c)}^c \cup V_{h(c)-1}^c \cup B_c)$ has a certifying path in $D_c \setminus (V_{h(c)}^c \cup V_{h(c)-1}^c) = D_{c'} \setminus (V_{h(c)}^c \cup V_{h(c)-1}^c)$. In all, every vertex of G has a certifying path in $D_{c'}$, a contradiction to the fact that G is a counter-example to Theorem [2.](#page-1-1)

Now, it is possible to conclude the proof of Theorem [2](#page-1-1) by applying repeated switch colorings on vertices of B_c . More precisely, let c be a coloring of G with maximal height. By Claim [8.5,](#page-8-1) the in-neighbourhood of every vertex b of B_c is exactly $V_{h(c)}^c$, and its out-neighbourhood is ${r_c}$. So, as G has no twins by Claim [8.1,](#page-5-1) it means that B_c contains only one vertex which is linked to r_c and to all the vertices of $V_{h(c)}^c$. Then, we consider the following partition of G: $\mathcal{U}_c = (U_1^c, \ldots, U_{h(c)+1}^c) = (V_1^c, B_c, V_{h(c)}^c, V_{h(c)-1}^c, \ldots, V_3^c, V_2^c \setminus B^c)$. By the previous remark, we have $|U_1^c| = |U_2^c| = 1$ and the neighbourhood of the unique vertex of U_2^c is included in $U_1^c \cup U_3^c$. Now, if we apply a switch coloring on the unique vertex of B_c and obtain a coloring c' , properties (b) and (d) of Claim [8.2](#page-6-1) imply that $U_i^{c'} = U_{i+1}^c$ for $i = 1, \ldots, h(c)$ and $U_{h(c)+1}^{c'} = U_1^c$. As c is also a nice coloring of G with maximal height, we also have that $|U_2^{c'}|$ $|C_2^c| = |U_3^c| = 1$ and that the neighbourhood of the unique vertex of $U_2^{c'} = U_3^c$ is $U_1^{c'} \cup U_3^{c'} = U_4^c \cup U_2^{c'}$. By repeating switch colorings, a direct induction shows that, for every i , U_i^c contains exactly one vertex, and the neighbourhood of this vertex is $U_{i-1}^c \cup U_{i+1}^c$. So, the graph G is a cycle, a contradiction to Lemma [8.](#page-4-4)

4 Concluding remarks

Notice that we can derive a polynomial time algorithm from the proof of Theorem [2.](#page-1-1) Indeed, one can verify that all the proofs of the lemmas and the claims provide algorithms in order to improve B^c at each step or find a coloring for which every vertex admits a colorful path. So, given a 3-chromatic graph G different from C_7 and a 3-coloring of G , we can find in polynomial time a 3-coloring of G for which every vertex of G is the beginning of a colorful path.

Besides, it seems that the methods used in the proof of Theorem [2](#page-1-1) cannot be immediately generalized to graphs with higher chromatic number. We can nevertheless state the following weaker result for 4-chromatic graphs.

Lemma 9. Every 4-chromatic graph G containing a cycle of length 4 admits a 4-coloring such that every vertex of G is the beginning of a colorful path.

Proof. Let c be a 4-coloring of a 4-chromatic graph G. Denote by $H = x_1x_2x_3x_4x_1$ a (non necessarily induced) cycle of length 4 of G. Recall that Lemma [4](#page-2-1) ensures that the conclusion holds if D_c contains a circuit. If the four colors appear on H , then up to a permutation on colors, we can assume that $c(x_i) = i$ for $i = 1, 2, 3, 4$. So, H appear as an oriented cycle in D_c and we are done. So we can assume that H is colored with two or three colors. Let us prove that in both cases, either there is a oriented cycle in D_c or the number of colors appearing on H in a 4-coloring of G can be increased.

First assume that only two colors of c appear in H . Up to a permutation on colors, we can assume that x_1, x_3 are colored with 1 and that x_2, x_4 are colored with 2. For a vertex y of G, we denote by $S_D^ D_c(y)$ the set of vertices of G which are the beginning of an oriented path in D_c with end y. Notice that $S_D^ \overline{D}_c(y)$ is always an initial section of D_c . Consider the set $S_D^ D_c(x_1)$. If it contains x_2 or x_4 , it means that D_c has an oriented cycle. So, we assume that $x_2 \notin S_D^ D_c(x_1)$ and $x_4 \notin S_D^ D_c(x_1)$. If $x_3 \notin S_D^ \overline{D}_c(x_1)$, then we perform an initial recoloring on $S_D^ \overline{D}_c(x_1)$ and in the resulting coloring, H receives three colors. Indeed x_2 , x_3 and x_4 do not belong to $S_D^ _{D_c}^{\leftarrow}(x_1)$ and still have the same color (i.e. respectively 2, 1 and 2), and x_1 receive now color 4. Otherwise there is a directed path in D_c from x_3 to x_1 . But, by symmetry there also exists a directed path from x_1 to x_3 , which provides an oriented cycle in D_c .

Assume now that H receives three colors by c. Up to permutation on colors, we can assume that x_1 is colored with 1, x_2 and x_4 are colored with 2 and x_3 is colored with 3. Consider the set S_D^+ D_c (x₂). If it contains x₃, then D_c has an oriented cycle. So we assume that $x_3 \notin S_D^ D_c(x_2)$. If S_D^+ $\overline{D}_c(x_2)$ does not contain x_4 , then we apply an initial recoloring on it. As $x_1 \in S_D^ \bar{D}_c(x_2), x_1, x_2,$ x_3 and x_4 respectively receive colors 4, 1, 3, 2, and we have a coloring of G with four different colors on H. So, assume that $x_4 \in S_D^ D_c(x_2)$. It means that there exists an oriented path from x_4 to x_2 in D_c . By symmetry, there exists also a directed path from x_2 to x_4 in D_c and D_c contains an oriented cycle. \Box

In particular, if a 3-chromatic graph contains a cycle of length three, it appears as an oriented cycle in D_c for any 3-coloring c, and then Lemma [4](#page-2-1) ensures that Conjecture [1](#page-1-0) holds. If a 4chromatic graph contains a cycle of length four, then Lemma [9](#page-9-1) ensures that Conjecture [1](#page-1-0) holds. In both cases the proofs are simple. It raises the following natural question.

Problem [1](#page-1-0)0. Does Conjecture 1 hold for k-chromatic connected graphs containing a cycle of length k ?

To conclude, note also that in the case of 2 and 3-chromatic graphs, every colorful path is either forward or backward (recall that forward (resp. backward) means that the color of the i -th vertex is the color of the $(i-1)$ -th vertex plus (resp. minus) one). When D_c contains an oriented cycle or in Lemma [9,](#page-9-1) we obtain certifying paths which are all forward or backward. In [\[4\]](#page-11-10), M. Alishahi, A. Taherkhani and C. Thomassen provides paths with $\chi - 1$ vertices intersecting χ – 1 colors which are union of at most 2 increasing paths. It raises the following strengthened conjecture.

Conjecture 11. Every k-chromatic connected graph different from C_7 admits a k-coloring such that every vertex is the end of a forward or backward certifying path.

References

- [1] R. Aharoni, E. Berger, R. Ziv, Independent systems of representatives in weighted graphs. Combinatorica, 27 (3) (2007), 253–267.
- [2] S. Akbari, F. Khaghanpoor and S. Moazzeni. Colorful paths in vertex coloring of graphs. Submitted.
- [3] S. Akbari, V. Liaghat and A. Nikzad. Colorful paths in vertex coloring of graphs. Electron. J. Combin. 18(1) (2011), Paper 17.
- [4] M. Alishahi, A. Taherkhani and C. Thomassen. Rainbow paths with prescribed ends. Electron. J. Combin. 18(1) (2011) Paper 86.
- [5] J.A. Bondy and U.S.R. Murty. Graph Theory, Graduate Texts in Mathematics, 244, Springer, New York (2008).
- [6] P.J. Cameron, Research problems from the BCC22, Dicrete Math. 311 (2011), 1074– 1083.
- [7] T.S. Fung, A colorful path, The Mathematical Gazette 73 (1989), 186–188.
- [8] Z. Furedi and M. Simonovits, Triple systems not containing a Fano configuration. Combinatorics, Probability and Computing $14(4)$ (2005), 467–484.
- [9] D.R. Guichard, Acyclic graph coloring and the complexity of the star chromatic number. J. Graph Theory, 17(2) (1993) 129–134.
- [10] P. Keevash and R. Mycroft, A multipartite Hajnal-Szemerdi Theorem. Combinatorics, Probability and Computing, $22(01)(2013), 97-111$.
- [11] H. Li, A generalization of the Gallai-Roy theorem, Graphs and Combinatorics 17 (2001), 681–685.
- [12] C. Lin, Simple proofs of results on paths representing all colors in proper vertexcolorings. Graphs and Combinatorics 23 (2007), 201–203.
- [13] X. Zhu, Circular chromatic number: a survey. Discrete Math., 229 (2001), 371-410.