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SEQUENTIAL MONTE CARLO AS APPROXIMATE SAMPLING:

BOUNDS, ADAPTIVE RESAMPLING VIA ∞-ESS,

AND AN APPLICATION TO PARTICLE GIBBS

JONATHAN H. HUGGINS AND DANIEL M. ROY

Abstract. Sequential Monte Carlo (SMC) algorithms were originally designed
for estimating intractable conditional expectations within state-space models,
but are now routinely used to generate approximate samples in the context of
general-purpose Bayesian inference. In particular, SMC algorithms are often
used as subroutines within larger Monte Carlo schemes, and in this context,
the demands placed on SMC are different: control of mean-squared error is
insufficient—one needs to control the divergence from the target distribution
directly. Towards this goal, we introduce the conditional adaptive resampling
particle filter, building on the work of Gordon, Salmond, and Smith (1993),
Andrieu, Doucet, and Holenstein (2010), and Whiteley, Lee, and Heine (2016).
By controlling a novel notion of effective sample size, the ∞-ESS, we establish
the efficiency of the resulting SMC sampling algorithm, providing an adaptive
resampling extension of the work of Andrieu, Lee, and Vihola (2013). We apply
our results to arrive at new divergence bounds for SMC samplers with adap-
tive resampling as well as an adaptive resampling version of the Particle Gibbs
algorithm with the same geometric-ergodicity guarantees as its nonadaptive
counterpart.
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1. Introduction

Sequential Monte Carlo (SMC) methods are a popular class of algorithms for ap-
proximate inference [Doucet et al., 2000, 2001, Del Moral et al., 2006, Kantas et al.,
2009, Doucet and Johansen, 2010, Künsch, 2013]. In the context of Bayesian infer-
ence, SMC produces a particle approximation to the posterior distribution as well
as an unbiased estimate of the marginal likelihood. Traditionally, particle approxi-
mations were built to estimate conditional expectations, and the analysis of SMC
methods focused on this operator perspective, by bounding the mean squared error
of the resulting estimates.
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Increasingly, SMC methods are being used to produce approximate samples,
usually in the inner loop of other approximate inference algorithm. A key exam-
ple is the class of particle Markov chain Monte Carlo (PMCMC) methods, which
aim to combine the best features of SMC and MCMC approaches by using SMC
as a proposal mechanism for a Metropolis–Hastings (“particle MH”) or approx-
imate Gibbs (“particle Gibbs”) sampler [Holenstein, 2009, Andrieu et al., 2010].
Characterizing the efficiency of PMCMC methods is an active area of investiga-
tion [Andrieu and Roberts, 2009, Andrieu and Vihola, 2014, Andrieu et al., 2013,
Chopin and Singh, 2013, Lindsten et al., 2014, Lee and Latuszynski, 2014].

When SMC methods are employed for sampling, convergence guarantees from
the operator perspective are insufficient. In this work, we take up the sampling per-
spective, and study the distribution of a sample drawn from the SMC particle filter
approximation. Building off the work of Gordon et al. [1993], Andrieu et al. [2010,
2013], and Whiteley et al. [2016], we use conditional filters to derive a minorization
condition, lower bounding the density of the approximate sample’s distribution in
terms of that of the target distribution. The analysis extends to conditional SMC
as well as to adaptive resampling versions. One of our key contributions is a novel
notion of effective sample size, the ∞-ESS, which we use to establish the efficiency
of the adaptive SMC sampling algorithm. Thus, our results are both a sampling
analogue to the operator work of Whiteley et al. [2016] and an adaptive resampling
extension to the sampling work of Andrieu et al. [2013]. We apply our results to
arrive at new divergence bounds for SMC samplers with adaptive resampling as
well as an adaptive resampling version of the Particle Gibbs algorithm with the
same geometric-ergodicity guarantees as its nonadaptive counterpart.

In the remainder of this section we provide an overview of our contributions
for the special case of the the conditional adaptive resampling particle filter: we
introduce the conditional adaptive resampling particle filter, present our main theo-
retical results characterizing its performance, and describe an application to a novel
adaptive resampling Particle Gibbs algorithm.

1.1. (Conditional) adaptive resampling particle filters. We follow a similar
setup and notation to Del Moral [2004]. Let (ξt)t≥1 be an inhomogeneous Markov
chain on the measurable space (E, E) with transition kernels (Mt)t≥2 and initial
distribution M1. Denote expectations with respect to the Markov chain by E[·].
Let gt : E → R+, for t ≥ 1, be a sequence of E-measurable potential functions

on E, let g0 ≡ 1, and write gs:t(xs:t) ,
∏t

τ=s gτ (xτ ). For t = 1, 2, . . . , define the
measure π1:t on E

t given by

π1:t(dx1:t) , γ1:t(dx1:t)/Zt, (1.1)

where

γ1:t(dx1:t) ,

t
∏

s=1

gs(xs)Ms(xs−1, dxs) and Zt , γ1:t(1). (1.2)

(We have written M1(x0, dx1) for M1(dx1).) Equivalently,

π1:t(φ) ,
E [φ(ξ1:t)g1:t(ξ1:t)]

Zt
, φ : Et → R measurable,
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where Zt , E [g1:t(ξ1:t)] is the normalization constant.1

Towards the goal of efficiently approximating π1:t, we introduce a novel sequen-
tial Monte Carlo algorithm: the i-times conditional adaptive resampling particle
filter (ciARPF), which is a generalization of the adaptive resampling particle fil-
ter [Gordon et al., 1993, Künsch, 2013] and the conditional SMC algorithm used
in particle Gibbs [Andrieu et al., 2010]. (In Section 3, we will introduce a further
generalization.) The integer parameter i ≥ 0 determines the number of fixed tra-
jectories y11:t, . . . , y

i
1:t ∈ Et required by the algorithm, which operates by generating

a collection X̃1:N
1:t , {X̃n

1:t}Nn=1 of N > i particles with corresponding nonnega-

tive weights W 1:N
t , {Wn

t }Nn=1. When i = 0, we recover the standard (uncondi-
tional) adaptive resampling particle filter; when i = 1, we recover a generalization
of the conditional SMC algorithm that includes adaptive resampling. For time
s = 1, . . . , t, the measure π1:s is approximated by

πi,N
1:s ,

N
∑

n=1

Wn
s gs(X

n
s )

∑N
k=1W

k
s gs(X

k
s )
δX̃n

1:s
.

The ciARPF algorithm iteratively constructs X̃1:N
1:t and W 1:N

t as follows: The
first i particles are deterministically set to match the fixed trajectories:

Xn
s = yns , X̃n

1:s = yn1:s, s = 1, . . . , t and n = 1, . . . , i.

At time s = 1, the remaining N − i particles Xn
1 , for n = i+1, . . . , N , are sampled

independently and identically from M1. The corresponding (length 1) trajectories
are

X̃n
1:1 = Xn

1 , n = i+ 1, . . . , N.

Furthermore, for all n = 1, . . . , N , Wn
1 = 1.

The remaining particle trajectories are generated as follows: First, we intro-
duce a cutoff parameter η ∈ [0, 1] and an effective sample size (ESS) function
ESS : RN

+ → [1, N ]. The ESS function measures how uniform the current weights

W 1:N
s are. Typically ESS(W 1:N

s ) = 1 indicates that all but one weight is zero and
ESS(W 1:N

s ) = N indicates all the weights are equal.
For each time s = 2, . . . , t:

• If ESS(W 1:N
s−1 ) ≤ ηN , a resampling step is introduced. For n = 1, . . . , N ,

the weights are set to a common value

Wn
s =Ws ,

1

N

N
∑

k=1

W k
s−1gs−1(X

k
s−1)

and, for n = i+ 1, . . . , N , particle n’s “ancestor” at time s, denoted An
s , is

sampled independently, such that An
s = k, for k = 1, . . . , N , with probabil-

ity

W k
s−1gs−1(X

k
s−1)

N Ws

.

1In the state-space setting, the potential gt would be the conditional density (i.e., likelihood)
of the observation vt at time t as a function of unobserved state xt: i.e., gt(xt) = pt(vt | xt).
Then π1:t would be the posterior distribution of the unobserved state sequence given the observed
sequence.
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• If ESS(W 1:N
s−1 ) > ηN , then the algorithm does not resample the particles.

For n = 1, . . . , N , the weights are copied, i.e.,

Wn
s =Wn

s−1gs−1(X
n
s−1),

and, for n = i + 1, . . . , N , a record is made that particle n was its own
ancestor by setting An

s = n.
• Having sampled the ancestors, the algorithm propagates the particles for-

ward. For n = i + 1, . . . , N , Xn
s is sampled from Ms(X

An
s

s−1, ·), and the
corresponding trajectories are set to

X̃n
1:s = 〈X

An
s

1:s−1, X
n
s 〉 .

In the final step of the algorithm, a single particle X̃∗
1:t is sampled from the full

approximation πi,N
1:t , and the algorithm yields an estimate of the normalization

constant Zt,

Ẑt ,
1

N

N
∑

n=1

Wn
t gt(X

n
t ).

Let E
i,N

y
1:i
1:t
[·] denote the expectation operator with respect to the ciARPF, and

write

P i,N (y1:i
1:t, dx1:t) , P i,N

y
1:i
1:t
(dx1:t) , E

i,N
y

1:i
1:t
[δX̃∗

1:t
(dx1:t)]

for the law of X̃∗
1:t when the i fixed trajectories are y1:i

1:t ∈ (Et)i. We can now
describe in more precise terms how the ciARPF kernel P i,N generalizes several

well-known SMC kernels. When i = 0, π0,N
1:t is the standard adaptive SMC particle

approximation of π1:t and X̃∗
1:t is a single sample from the particle approxima-

tion. When i = 1 and resampling is done at every step by taking η = 1, P 1,N

is exactly the conditional SMC kernel used in particle Gibbs samplers [Holenstein,
2009, Andrieu et al., 2010, 2013]. For general η ∈ (0, 1), we obtain a novel adaptive
resampling variant that we study in the sequel. In particular, under mild regularity
conditions, P 1,N defines a Markov kernel with invariant distribution π1:t.

1.2. Controlling ciARPF efficiency with ∞-ESS. We can analyze the quality
of the ciARPF kernel P i,N by quantifying the extent to which high-probability
sets under the target distribution also have high probability under the kernel. The
following theorem establishes a minorization condition for the i-times conditional
filter in terms of the (i+ 1)-times conditional filter:

Theorem 1.1. For all t ≥ 1, i ≥ 0, N > i, and y11:t, . . . , y
i
1:t ∈ Et,

P i,N (y1:i
1:t, S) ≥ (1− i/N)t

∫

S

Zt

E
i+1,N

y
1:i+1

1:t

[Ẑt]
π1:t(dy

i+1
1:t ), S ⊆ Et measurable. (1.3)

The integral appearing in Eq. (1.3) has no simple form in general, but in many
settings we will be able to obtain a lower bound on the integrand that does not de-
pend on the fixed trajectories y1:i+1

1:t . In those cases, the integral is simply replaced
by this uniform lower bound. For i = 0, we are then immediately able to control
numerous measures of divergence between π1:t and P

0,N (i.e., the law of X̃∗
1:t). For

example, in the case of total variation distance, we have the following corollary to
Theorem 1.1:



SEQUENTIAL MONTE CARLO AS APPROXIMATE SAMPLINGS 5

Corollary 1.2. If E1,N
y1:t

[Ẑt/Zt] ≤ Bt,N for all y1:t ∈ Et, then

dTV (π1:t, P
0,N ) ≤ 1−B−1

t,N . (1.4)

For i = 1, a uniform lower bound assumption implies a minorization condition
on the kernel P 1,N (y1:t, dx1:t), which in turn implies fast mixing of the Markov
chain with kernel P 1,N :

Corollary 1.3. If E
2,N
y

1:2
1:t
[Ẑt/Zt] ≤ Bt,N for all y11:t, y

2
1:t ∈ Et, then the Markov

chain with transition kernel P 1,N(y1:t, dx1:t) is uniformly ergodic in total variation
distance and has invariant distribution π1:t. In particular, for all y1:t ∈ Et and
k ≥ 1,

dTV (π̃
k
y1:t

, π1:t) ≤
(

1−B−1
t,N (1− 1/N)t

)k

, (1.5)

where π̃k
y1:t

, δy1:t [P
1,N ]k is the law of the Markov chain, with initial state y1:t,

after k transitions.

In order to apply the corollaries, it remains to bound E
i,N

y
1:i
1:t
[Ẑt/Zt]. Such a bound

was obtained for the nonadaptive conditional SMC kernel in Andrieu et al. [2013].
However, in our general adaptive resampling setting, one must make a careful choice
of effective sample size function. To this end, we introduce a generalized notion
of effective sample size, which includes several existing definitions as special cases.
For p ∈ (1,∞], let p∗ ,

p
p−1 be the conjugate exponent of p (so 1/p+ 1/p∗ = 1).

The p-effective sample size (p-ESS) of the weight vector w1:N ∈ RN
+ is

ESSp(w
1:N ) ,

‖w1:N‖p∗

1

‖w1:N‖p∗
p
.

The following proposition highlights some elementary properties of p-ESS.

Proposition 1.4. The p-ESS has the following properties:

(1) For all p ∈ (1,∞], 1 ≤ ESSp(w
1:N ) ≤ N . The lower bound is achieved if and

only if all but one of the weights is zero. The upper bound is achieved if and
only if all the weights are equal.

(2) For 1 < p < q ≤ ∞, ESSp(w
1:N ) ≥ ESSq(w

1:N ) ≥ N−(1−q∗/p∗)ESSp(w
1:N ),

with equality if and only if K weights are equal and the rest are zero.

Part (1) demonstrates that the p-ESS satisfies basic properties one would expect
of a measure of effective sample size. Part (2) places the family of p-ESS measures
in a linear order: the larger the value of p, the more stringent the notion of effective
sample size.

The standard definition of effective sample size is precisely the 2-ESS.Whiteley et al.
[2016] provided a rigorous justification for the use of 2-ESS from the operator per-
spective: if adaptive resampling is used to guarantee that the 2-ESS does not fall
below ζN , for some fixed parameter ζ ∈ (0, 1], then the error bounds on the op-
erator approximation match those of the nonadaptive sampler with ζN particles.
More formally, let ℑt(y1:t) = yt be the projection onto the t-th component. Under
appropriate regularity conditions, for every bounded measurable φ : E → R and
real r ≥ 1,

sup
t≥1

ESS2(W
1:N
t ) ≥ ζN =⇒ sup

t≥1
E
0,N
[

|π0,N
1:t (φ ◦ ℑt)− π(φ ◦ ℑt)|r

]1/r

≤ a(r)b(φ)√
ζN

,
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where a(r) and b(φ) are explicit functions.

To upper bound E
i,N
y

1:i
1:t
[Ẑt/Zt], however, we will require a lower bound on the

∞-ESS, which by Proposition 1.4(2) is a more stringent notion of effective sample
size than 2-ESS:

Assumption 1.A. There exists ζ ∈ (0, 1] such that ESS∞(W 1:N
s ) ≥ ζN for all

1 ≤ s ≤ t.

For the choice ESS = ESS∞ (i.e., under Assumption 1.A), we can bound the

estimate of the normalization constant. Let Gs,t(xs) , E[gs:t−1(ξs:t−1) | ξs = xs]

for s = 1, . . . , t and G0,t , E[g1:t−1(ξ1:t−1)]. We now arrive at our second main
result:

Theorem 1.5. If Assumption 1.A holds, then for all i, t ≥ 1, N > i, y11:t, . . . , y
i
1:t ∈

Et,

E
i,N
y

1:i
1:t
[Ẑt/Zt] ≤ 1 +

Z−1
t

∑t
s=1

∑i
j=1G0,sGs,t+1(y

i
1:t)− ζi

ζN
+Θ(N−2). (1.6)

Two possible further assumptions both lead to uniform bounds on E
i,N
y

1:i
1:t
[Ẑt].

Assumption 1.B. The potentials satisfy gs , supx∈E gs(x) <∞ for all 1 ≤ s ≤ t.

Assumption 1.C. There exists a constant β > 0 such that for any t, s ∈ N,

sup
x∈E

G0,tGt,t+s(x)

G0,t+s
≤ β.

Corollary 1.6. Under the same conditions as Theorem 1.5, if Assumption 1.B
holds then

E
i,N

y
1:i
1:t
[Ẑt/Zt] ≤ 1 + Z−1

t

t
∏

s=1

gs

[

(

1 +
i

ζN

)t

− 1

]

(1.7)

while if Assumption 1.C holds then

E
i,N
y

1:i
1:t
[Ẑt/Zt] ≤

(

1 +
β

ζN

)t

. (1.8)

Combining Corollaries 1.2 and 1.6 yields the following guarantees for the ARPF
sampler:

Theorem 1.7. If Assumptions 1.A and 1.B hold then

dTV (π1:t, P
0,N ) ≤ tZ−1

t

∏t
s=1 gs

ζN + tZ−1
t

∏t
s=1 gs

+Θ(N−2) (1.9)

while if Assumptions 1.A and 1.C hold then

dTV (π1:t, P
0,N) ≤ βt

ζN + βt
+Θ(N−2). (1.10)
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1.3. Applications to Particle Gibbs. In the language of state-space models,
the setting described so far involves approximating the posterior distribution of a
Markov chain given indirect stochastic observations of the chain’s values. However,
it is often the case that the chain and the potentials are controlled by a global
parameter θ ∈ Θ for which there is a prior distribution ̟(dθ). Replace Ms by
Mθ

s and gs by gθs , then parameterize the other quantities defined previously in

terms of Ms and gs by θ. Let (Y,Y) , (Et,B(Et)). We will suppress much of the
time dependence when possible to make the notation less cluttered. The target
distribution on the product space (Θ× Y,B(Θ× Y )) is

π(dθ × dy) , γ(dθ × dy)/Z, (1.11)

where

γ(dθ × dy) , ̟(dθ)

t
∏

s=1

gθs(ys)M
θ
s (ys−1, dys) and Z , γ(1). (1.12)

Let πθ(dy) and πy(dθ) denote the disintegrations of π along Θ and along Y , respec-
tively.

The particle Gibbs sampler approximates the two-stage Gibbs kernel

Π(θ, y, dϑ× dz) , πy(dϑ)πϑ(dz). (1.13)

In many settings, such as non-linear or non-Gaussian state-space models, it is pos-
sible to sample from πy(dϑ), but difficult to sample from πϑ(dz). The idea is to
replace πϑ(dz) with an SMC-based approximation Πϑ(y, dz) that leaves πϑ(dz)
invariant, leading to a kernel of the form πy(dϑ)Πϑ(y, dz).

We introduce the adaptive resampling particle Gibbs (ARPG) sampler, which

employs the cARPF kernel P 1,N
ϑ,y (dz) to approximate the conditional distribution

πϑ(dz) that would be used in a standard Gibbs sampler. The ARPG kernel is thus
given by

ΠN (θ, y, dϑ× dz) , πy(dϑ)P
1,N
ϑ,y (dz). (1.14)

Theorem 1.1 and Corollaries 1.3 and 1.6 together with the results of Andrieu et al.
[2013] yield guarantees on the ergodicity properties of the cARPF kernel and the
ARPG sampler. Once instances of N are replaced by ζN , the guarantees essentially
match those provided by Andrieu et al. [2013] for the standard PG sampler.

Theorem 1.8. If Assumption 1.A holds, then the cARPF kernel and ARPG sam-
pler have the following properties:

(1) If Assumption 1.B holds then there exists ǫt,N = 1 − Ct/N such that for any
θ ∈ Θ, y ∈ Y , and k ≥ 1,

dTV (δy[P
1,N
θ ]k, πθ) ≤ (1− ǫt,N)k. (1.15)

(2) If Assumption 1.C holds and N ≥ t/C + 1 for any fixed C > 0, then for any
t ≥ 1, Eq. (1.15) holds with

ǫt,N ≥ exp

(

−C
ζ
(2β + ζ)

)

. (1.16)

(3) If either Assumption 1.B or Assumption 1.C holds, then whenever the Gibbs
sampler is geometrically ergodic the ARPG sampler is geometrically ergodic as
well.
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At a high level, the results we have obtained highlight the role of the expected
value of Ẑt in the mixing properties of conditional SMC Markov chains and par-
ticle Gibbs (PG) samplers: In order to show geometric ergodicity for adaptive
resampling particle Gibbs samplers, it suffices to establish bounds on the expected

value of Ẑt under the twice-conditional filter, and the growth of the expectation as
t increases determining how well the particle Gibbs algorithm scales. Similarly, a
bound on the expected value of Ẑt under the once-conditional filter implies a bound
on dTV (π1:t, P

0,N ). Hence, as a slogan, good performance of (adaptive resampling)
particle Gibbs is equivalent to good performance of (adaptive) SMC for sampling.

2. Preliminaries

In this section, we fix some additional notation, introduce a few key additional
definitions, and then present αSMC [Whiteley et al., 2016], a generalization of the
adaptive resampling particle filter described in the introduction.

For a positive integer K, let [K] , {1, 2, . . . ,K}. If xi, . . . , xj are elements of a

sequence, write xi:j , 〈xi, xi+1, . . . , xj〉. We use the following conventions:
∑

∅ = 0,
∏

∅ = 1, and 0/0 = 0.
Let (S,S), (S′,S ′) be measurable spaces. Then K : S × S ′ → R is a kernel if

K(·, B) is a (S,S)-measurable function for all B ∈ S ′ and K(x, ·) is measure on
(S′,S ′) for all x ∈ S. For a measure µ on (S,S) and kernels K,K ′ : S×S → R, let

µK(dy) ,
∫

µ(dx)K(x, dy) and KK ′(x, dz) ,
∫

K(x, dy)K ′(y, dz). We will often
use measures and kernels as operators. For a measurable function φ : S → R, let
µ(φ) , Eξ∼µ[φ(ξ)] =

∫

φ(x)µ(dx) and K(φ)(x) ,
∫

φ(y)K(x, dy). For measures
µ, ν on (S,S), we will write µ ≪ ν to denote that µ is absolutely continuous with
respect to ν, in which case we will write dµ/dν for the ν-almost everywhere (ν-a.e.)
unique function f satisfying µ(A) =

∫

A f dν, for all A ∈ S. When the choice is
clear from context, we may write B(S) for the σ-algebra of the space S.

For probability measures µ and ν on (S,S), the total variation distance between
µ and ν is

dTV (µ, ν) , sup
A∈S
|µ(A) − ν(A)|. (2.1)

If µ≪ ν, then the Kullback–Liebler (KL) divergence is

dKL(µ||ν) , µ(log dµ/dν) (2.2)

and the χ2 divergence is

dχ2(µ||ν) , ν([dµ/dν − 1]2) = µ(dµ/dν)− 1. (2.3)

Finally, we note that, when there is little risk of confusion, we will ignore
measure-theoretic niceties such as the distinction between equality and a.e.-equality.

Recall that (ξt)t≥1 is an inhomogeneous Markov chain on (E, E) with transition
kernels (Mt)t≥2 and initial distribution M1, and that E[·] denotes expectation with
respect to the Markov chain. We will write M1(x0, ·) for M1(·) when convenient
and, for all t ≥ 1 and xt−1 ∈ E, we will assume that Mt(xt−1, ·) has a density with
respect to some common σ-finite dominating measure (which we denote by dx).
We will abuse notation and write Mt(xt−1, xt) for the density of Mt(xt−1, ·) as xt.
Recall that, for each t ≥ 1, gt : E → R+ denotes a E-measurable potential function,

with g0 ≡ 1. Finally, recall that gs:t(xs:t) ,
∏t

τ=s gτ (xτ ).
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2.1. Target distributions. We now introduce some additional target distribu-
tions. (We will also repeat the definition of γ1:t and π1:t for completeness.)

Let φ1:t : E
t → R and φt : E → R denote generic measurable functions. For each

t ≥ 1, the unnormalized predictive and updated measures are defined, respectively,
by

γ′1:t(φ1:t) , E [φ1:t(ξ1:t)g1:t−1(ξ1:t−1)] and γ1:t(φ1:t) , E [φ1:t(ξ1:t)g1:t(ξ1:t)]

with corresponding marginal versions

γ′t(φt) , E [φt(ξt)g1:t−1(ξ1:t−1)] and γt(φt) , E [φt(ξt)g1:t(ξ1:t)] .

Our ultimate goal is to approximate the normalized predictive and updated mea-
sures along with their marginal versions:

π1:t(φ1:t) ,
γ1:t(φ1:t)

Zt
, η1:t(φ1:t) ,

γ′1:t(φ1:t)

Z ′
t

, (2.4)

πt(φt) ,
γt(φt)

Zt
, and ηt(φt) ,

γ′t(φt)

Z ′
t

, (2.5)

where Zt , γt(1) and Z
′
t , γ′t(1) are normalization constants.

2.2. The αSMC algorithm. In the introduction, adaptation in the particle fil-
ter was implemented via a simple multinomial resampling step, triggered when the
effective sample size fell below a fixed threshold. For the remainder of the article,
we will consider a more general mechanism for adaptation captured by the αSMC
algorithm introduced by Whiteley et al. [2016]. The αSMC algorithm can pro-
duce sequential importance sampling (SIS), sampling importance resampling (SIR,
also known as the bootstrap filter), and numerous other SMC variants as special
cases. Not only does the αSMC formulation aid in analyzing adaptive resampling
strategies, it provides a useful framework for devising novel adaptive schemes with
attractive computational properties, such as admitting parallelization even on re-
sampling steps. In the remainder of this section, we outline the (unconditional)
αSMC algorithm. In the following section, we introduce a novel i-times conditional
version of αSMC, which will include the ciARPF as a special case.

The αSMC algorithm, which is given as Algorithm 1, provides a flexible resam-
pling mechanism: at each time t, a stochastic matrix αt−1 is chosen from a set AN

of N ×N matrices. We denote the value in the n-th row and k-th column of αt−1

by αnk
t−1. The αSMC estimators are

π0,N
1:t ,

N
∑

n=1

Wn
t gt(X

n
t )

∑N
k=1W

k
t gt(X

k
t )
δX̃n

1:t
, π0,N

t ,

N
∑

n=1

Wn
t gt(X

n
t )

∑N
k=1W

k
t gt(X

k
t )
δXn

t
,

η0,N1:t ,

N
∑

n=1

Wn
t

∑N
k=1W

k
t

δX̃n
1:t
, and η0,Nt ,

N
∑

n=1

Wn
t

∑N
k=1W

k
t

δXn
t
,

and the estimators of the normalization constants Zt and Z
′
t are

Ẑt ,
1

N

N
∑

n=1

Wn
t gt(X

n
t ) and Ẑ ′

t ,
1

N

N
∑

n=1

Wn
t .

Expectations with respect the law of the αSMC algorithm are written as E0,N [·].
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Algorithm 1 αSMC

for n = 1, . . . , N do
Sample Xn

1 from M1

Set X̃n
1:1 ← Xn

1

Set Wn
1 ← 1

end for
for t = 2, 3, . . . do
Select αt−1 from AN according to some function of X1:N

1:t−1 and A1:N
1:t−2

for n = 1, . . . , N do

Set Wn
t ←

∑N
k=1 α

nk
t−1W

k
t−1gt−1(X

k
t−1)

Sample An
t−1 from Multi

(

〈

αnk
t−1W

k
t−1gt−1(X

k
t−1)

Wn
t

〉N

k=1

)

Sample Xn
t from Mt(X

An
t−1

t−1 , ·)
Set X̃n

1:t ←
〈

X
An

t−1

1:t−1, X
n
t

〉

end for
end for

SIS, SIR, and the standard adaptive algorithm are obtained as special cases of
αSMC as follows. SIS is recovered when αt−1 = IN , the N × N identity matrix,
while SIR is recovered when αt−1 = 11/N , the N ×N matrix with all entries equal
to 1/N . The adaptive particle filter (APF) algorithm is obtained by setting αt−1

to 11/N if ESS2(W
1:N
t−1 ) ≤ ζN and to IN otherwise, where ζ ∈ (0, 1] is fixed.

3. Conditional αSMC

It is useful both algorithmically and analytically to generalize αSMC in such a
way that one or more particle trajectories is fixed ahead of time. The result, which
we will refer to as conditional αSMC, is a strict generalization of the conditional
adaptive particle filter given in the introduction. We will use conditional αSMC
to study the properties of (unconditional) αSMC, to design novel adaptive particle
Gibbs algorithms, and to analyze their mixing properties.

For this section, fix t ≥ 1, i ≥ 0, and N > i. The i-times conditional αSMC
(ciαSMC) process (or simply the cαSMC process when i = 1) is defined on the
space (EN × [N ]N × [N ]i)t−1 × EN × [N ] × [N ]i, and is essentially equivalent to
αSMC with the first i particle trajectories, but not their lineages, fixed a priori.
If f1:i ∈ [N ]i are indices of the first i particles, let D(f1:i) ,

∏

j 6=j′ 1(f
j 6= f j′)

be the function that indicates whether the indices are distinct. As in αSMC, the
matrix αt−1 ∈ AN is a function of X1:N

1:t−1 and A1:N
1:t−2. We have x1:N

1:t ∈ (EN )t,

f1:i
1:t ∈ ([N ]i)t, a1:N

1:t−1 ∈ ([N ]N )t−1, and a∗t ∈ [N ], and use the notation

wn
1 , 1, wn

t ,

N
∑

k=1

αnk
t−1w

k
t−1gt−1(x

k
t−1), (3.1)

and

rn(k|w1:N
s−1,x

1:N
1:s−1) ,

αnk
s−1w

k
s−1gs−1(x

k
s−1)

wn
s

. (3.2)
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Algorithm 2 Conditional αSMC

Require: Fixed trajectory y1:t
Sample F 1

1 uniformly from {1, . . . , N}
for n = 1, . . . , N do
if n = F 1

1 then
Set Xn

1 ← y1
else
Sample Xn

1 from M1

end if
Set X̃n

1:1 ← Xn
1

Set Wn
1 ← 1

end for
for t = 2, 3, . . . do
Select αt−1 from AN according to some function of X1:N

1:t−1 and A1:N
1:t−2

Sample F 1
t from Multi

(

〈

α
kF 1

t−1

t−1

〉N

k=1

)

for n = 1, . . . , N do

Set Wn
t ←

∑N
k=1 α

nk
t−1W

k
t−1gt−1(X

k
t−1)

if n = F 1
t then

Set An
t−1 ← F 1

t−1

Set Xn
t ← yt

else

Sample An
t−1 from Multi

(

〈

αnk
t−1W

k
t−1gt−1(X

k
t−1)

Wn
t

〉N

k=1

)

Sample Xn
t from Mt(X

An
t−1

t−1 , ·)
end if

Set X̃n
1:t ←

〈

X
An

t−1

1:t−1, X
n
t

〉

end for
end for

Sample A∗
t from Multi

(

〈

Wk
t gt(X

k
t )∑N

n=1
Wn

t gt(Xn
t )

〉N

k=1

)

For fixed trajectories y11:t, . . . , y
i
1:t ∈ Et, the law of the ciαSMC process is given by

P
i,N

y
1:i
1:t
[X1:N

1 ∈ dx1:N1 , F 1:i
1 = f1:i

1 ] , Ci1D(f1:i
1 )

i
∏

j=1

1

N
δyj

1

(dx
fj
1

1 )
N
∏

n/∈f1:i
1

M1(dx
n
1 ), (3.3)

for s = 2, . . . , t,

P
i,N
y

1:i
1:t
[X1:N

s ∈ dx1:Ns , A1:N
s−1 = a1:Ns−1, F

1:i
s = f1:i

s |

X1:N
1:s−1 = x1:N

1:s−1,A
1:N
1:s−2 = a1:N

1:s−2, F
1:i
s−1 = f1:i

s−1]

, CisD(f1:i
s )

i
∏

j=1

α
fj
s f

j
s−1

s−1 δyj
s
(dx

fj
s

s )1(a
fj
s

s−1 = f j
s−1)

×
∏

n/∈f1:i
s

rn(a
n
s−1|w1:N

s−1,x
1:N
1:s−1)Ms(x

an
s−1

s−1 , x
n
s )

(3.4)
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and

P
i,N
y
1:i
1:t
[A∗

t = a∗t |X1:N
1:t = x1:N

1:t ,A
1:N
1:t−1 = a1:N

1:t−1] ,
w

a∗
t

t gt(x
a∗
t

t )
∑N

n=1 w
n
t gt(x

n
t )
. (3.5)

The Cis terms are normalization constants that ensure the expressions are valid

probabilities. Let X̃∗
1:t , X

A∗
t

1:t , let E
i,N
y

1:i
1:t
[·] denote the expectation operator with

respect to the ciαSMC, and write

P i,N (y1:i
1:t, dx1:t) , P i,N

y
1:i
1:t
(dx1:t) , E

i,N
y

1:i
1:t
[δX̃∗

1:t
(dx1:t)]

for the law of X̃∗
1:t.

The normalization constants Cis arise because the lineages f1:i
1:t of the fixed tra-

jectories y1:i
1:t are kept distinct. The ciαSMC kernel enforces distinct lineages for

the fixed trajectories since in general yj1:t 6= yj
′

1:t for j 6= j′ and, from an algorithmic
standpoint, allowing overlapping lineages could lead to a substantial increase in
complexity, both in terms of implementation and computation. The distinct lin-
eage requirement is enforced by the D(f1:i

s ) terms. Since there is at most one fixed
trajectory when i = 0 or 1, C0s = C1s = 1 for all s ∈ [t].

Algorithm 2 provides pseudocode to sample from the law of the cαSMC process,
which is a necessary part of the particle Gibbs sampler described in Section 6.
Sampling from the law of the ciαSMC process for i > 1 is more delicate, but
unnecessary since these are only used for analytical purposes.

Remark 3.1. To recover the ciARPF described in the introduction, let αt−1 = 11/N

if ESS(W 1:N
t−1 ) ≤ ζN and let αt−1 = IN otherwise. Then note that by the symmetry

of 11/N and IN , instead of sampling them, we can set the lineage for the j-th fixed

trajectory to j: that is, set f j
s = j for all j ∈ [i] and s ∈ [t]. ▽

4. Main Results

We are now ready to undertake our study of the i-times conditional αSMC kernel
P i,N (y1:i

1:t, dx1:t). Specifically, our aim is to understand the conditions under which
the ciαSMC kernel is close to π1:t(dx1:t). Formally, we will establish a minorization

condition for the i-times conditional filter in terms of the expected value of Ẑt under
the (i+1)-times conditional filter. The remainder of the section presents conditions

under which the expected value of Ẑt can be bounded. One of the key assumptions
is that adaptation controls the ∞-ESS.

Of particular interest are the cases i = 0, which corresponds to the αSMC filter,
and i = 1, which corresponds to the conditional αSMC kernel. The former provides
approximate samples from π1:t. The latter can be used to define a Markov chain
with invariant distribution π1:t, producing an adaptive resampling particle Gibbs
sampler. We consider both these applications in, respectively, Sections 5 and 6.

4.1. A minorization condition for the ciαSMC kernel. For the remainder of
the article, we will work under the following assumption:

Assumption 4.D. For all N ≥ 1, all α ∈ AN are doubly stochastic.

Remark 4.1. Assumption 4.D is the same as Assumption (B++) in [Whiteley et al.,
2016], although there, the condition is stated as assuming each α admits the uniform
distribution as an invariant measure. ▽
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Let

κN , max
n6=m,α∈AN

N
∑

k=1

αknαkm and κ′N , max{κN , 1/N}. (4.1)

Our first main result provides control over how much the measure P i,N

y
1:i
1:t

differs from

π1:t. The theorem gives a stronger result when i = 0 and gives a simpler result
when i = 1, by expressing the lower bound on P 1,N (y1:t, S) in terms the more
transparent quantity κ′N instead of the normalization terms C2s . For example, if
AN = {IN} then κN = 0, while if AN = {11/N}, then κN = 1/N , so in either case
κ′N = 1/N .

Theorem 4.2. If Assumption 4.D holds, then for all t ≥ 1, i ≥ 0, N > i, S ⊆ Et

measurable, and y11:t, . . . , y
i
1:t, x1:t ∈ Et,

P i,N (y1:i
1:t, S) ≥

∫

S

Zt

E
i+1,N
y

1:i
1:t,x1:t

[Ẑt

∏t
s=1 Ci+1

s /Cis]
π1:t(dx1:t). (4.2)

In particular, in the case of i = 0, we have

dP 0,N

dπ1:t
(x1:t) = E

1,N
x1:t

[

Zt

Ẑt

]

≥ Zt

E
1,N
x1:t [Ẑt]

(4.3)

and in the case of i = 1, we have

P 1,N(y1:t, S) ≥
∫

S

Zt(1− κ′N )t

E
2,N
y1:t,x1:t [Ẑt]

π1:t(dx1:t). (4.4)

Remark 4.3. By identical arguments, Theorem 4.2 also holds in the marginal and
predictive cases. In the predictive cases, however, Ẑ ′

t and Z
′
t replace, respectively, Ẑt

and Zt. In the predictive case, under Assumption 4.D, Ẑ ′
t = Ẑt−1 and Z

′
t = Zt−1, so

later results pertaining to E
i,N
y
1:i
1:t
[Ẑt], such as Proposition 4.4 and Theorem 4.7, apply

to Z ′
t as well. The fact that Z ′

t = Zt−1 follows immediately from the definitions.

To show that Ẑ ′
t = Ẑt−1, apply Assumption 4.D:

Ẑ ′
t = N−1

∑

n

Wn
t = N−1

∑

n

∑

k

αnk
t−1W

k
t−1g

k
t−1 = N−1

∑

k

W k
t−1g

k
t−1 = Ẑt−1. ▽

We will prove Theorem 4.2 in two parts: first for the case of i = 0, then for
i ≥ 1. For the i = 0 case (corresponding to vanilla αSMC), we begin by writing
the joint density of the αSMC process as

ψ(x1:N
1:t ,a

1:N
1:t−1)

,

(

N
∏

n=1

M1(x
n
1 )

)(

t
∏

s=2

N
∏

n=1

rn(a
n
s−1|w1:N

s−1,x
1:N
1:s−1)Ms(x

an
s−1

s−1 , x
n
s )

)

.
(4.5)

Under Assumption 4.D, the density of the cαSMC process with law P1,N
y1:t

[X1:N
1:t ,A

1:N
1:t−1, F

1
1:t]

can be written in the following “collapsed” form, by implicitly identifying x
f1
t

1:t with
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y1:t:

ψ̃(x1:N
1:t ,a

1:N
1:t−1, f

1
1:t)

=
ψ(x1:N

1:t ,a
1:N
1:t−1)

∏t
s=2 Isα

f1
s f

1
s−1

s−1

NM1(x
f1
1

1 )
∏t

s=2 rf1
s
(f1

s−1|w1:N
s−1,x

1:N
1:s−1)Ms(x

f1
s−1

s−1 , x
f1
s

s )
(4.6)

=
1

N

∏

n6=f1
1

M1(x
n
1 )

t
∏

s=2



Isα
f1
s f

1
s−1

s−1

∏

n6=f1
s

rn(a
n
s−1|w1:N

s−1,x
1:N
1:s−1)Ms(x

an
s−1

s−1 , x
n
s )



 ,

where Is , 1(a
f1
s

s−1 = f1
s−1).

Proof of Theorem 4.2, i = 0 case. Consider the density

π̃1:t(x
1:N
1:t ,a

1:N
1:t−1, f

1
1:t) , π1:t(x

f1
t

1:t)ψ̃(x
1:N
1:t ,a

1:N
1:t−1, f

1
1:t). (4.7)

Then

ψ(x1:N
1:t ,a

1:N
1:t−1)gt(x

f1
t

t )w
f1
t

t

π̃1:t(x1:N
1:t ,a

1:N
1:t−1, f

1
1:t)
∑N

n=1 gt(x
n
t )w

n
t

=
M1(x

f1
1

1 )
∏t

s=2 rf1
s
(f1

s−1|w1:N
s−1,x

1:N
1:s−1)Ms(x

f1
s−1

s−1 , x
f1
s

s )gt(x
f1
t

t )w
f1
t

t

π1:t(x
f1
t

1:t)
∏t

s=2 Isα
f1
s f

1
s−1

s−1 N−1
∑N

n=1 gt(x
n
t )w

n
t

=
M1(x

f1
1

1 )
∏t

s=2 α
f1
s f

1
s−1

s−1 w
f1
s−1

s−1 gs−1(x
f1
s−1

s−1 )Ms(x
f1
s−1

s−1 , x
f1
s

s )gt(x
f1
t

t )w
f1
t

t

π1:t(x
f1
t

1:t)
∏t

s=2 w
f1
s

s
∏t

s=2 Isα
f1
s f

1
s−1

s−1 N−1
∑N

n=1 gt(x
n
t )w

n
t

=

∏t
s=1 gs(x

f1
s

s )Ms(x
f1
s−1

s−1 , x
f1
s

s )

π1:t(x
f1
t

1:t)N
−1
∑N

n=1 gt(x
n
t )w

n
t

∏t
s=2 Is

=
Zt

Ẑt

1
∏t

s=2 Is
,

Using the convention that 0/0 = 0, it follows that

P 0,N (dx1:t)

=
∑

a
1:N
1:t−1

,a∗
t

∫

{

ψ(x1:N
1:t ,a

1:N
1:t−1)

gt(x
a∗
t

t )w
a∗
t

t
∑N

n=1 gt(x
n
t )w

n
t

δxat
1:t
(dx1:t)

}

dx1:N
1:t

=
∑

a
1:N
1:t−1

,f1
1:t

∫

{

ψ(x1:N
1:t ,a

1:N
1:t−1)gt(x

f1
t

t )w
f1
t

t

∏t
s=2 Is

π̃1:t(x1:N
1:t ,a

1:N
1:t−1,f

1:i
1:t)
∑N

n=1 gt(x
n
t )w

n
t

× π̃1:t(x1:N
1:t ,a

1:N
1:t−1, f

1
1:t)δxft

1:t
(dx1:t)

}

dx1:N
1:t

=
∑

a
1:N
1:t−1

,f1
1:t

∫

{

Zt

Ẑt

π̃1:t(x
1:N
1:t ,a

1:N
1:t−1, f

1
1:t)δxft

1:t
(dx1:t)

}

dx1:N
1:t

=

{

∑

a
1:N
1:t−1

,f1
1:t

∫

Zt

Ẑt

ψ̃(x1:N
1:t ,a

1:N
1:t−1, f

1
1:t)δx1:t(dx

ft
1:t)dx

−f1
t

1:t

}

π1:t(dx1:t).
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The result follows from Lemma A.1. �

We defer the proof of Theorem 4.2 in the i ≥ 1 case to Appendix A.2.

4.2. Bounding Ẑt under the ciαSMC kernel. In order to apply Theorem 4.2,

we must be able to control the quantity E
i,N
y

1:i
1:t
[Ẑt]. As an initial step toward this

goal, we consider the SIR case:

Assumption SIR. For all s ∈ [t− 1], αs = 11/N .

For SIR, we can rewrite Ei,N
y

1:i
1:t
[Ẑt] in an equivalent but more explicit form (Propo-

sition 4.4). Our goal will then be to provide general conditions under which E
i,N

y
1:i
1:t
[Ẑt]

can be rewritten in a similar manner (Theorem 4.7).

Recall that G0,t , E[g1:t−1(ξ1:t−1)] and Gs,t(xs) , E[gs:t−1(ξs:t−1) | ξs = xs] for
s ∈ [t] and xs ∈ E. For t ≥ 1, 1 ≤ ℓ ≤ s ≤ t+ 1, let

Tt,ℓ,s , {〈τ1, . . . , τℓ〉 : t− s+ 1 < τ1 < · · · < τℓ = t+ 1} (4.8)

and, for τ ∈ Tt,ℓ,s, define

Cℓ(τ , y1:t) ,

ℓ−1
∏

i=1

Gτi,τi+1
(yτi). (4.9)

We will sometimes write Cy
ℓ (τ ) or C

τ

ℓ (y1:t) instead of Cℓ(τ , y1:t). The following is
a straightforward generalization of [Andrieu et al., 2013, Proposition 9].

Proposition 4.4. If Assumption SIR holds, then for all t ≥ 1, i ≥ 1, N ≥ i,
y11:t, . . . , y

i
1:t ∈ Et,

E
i,N

y
1:i
1:t
[Ẑt] =

1

N t

t+1
∑

ℓ=1

(N − i)t+1−ℓ
∑

τ∈Tt,ℓ,t+1

G0,τ1

ℓ−1
∏

m=1

i
∑

j=1

Gτm,τm+1
(yjτm). (4.10)

In particular, in the case of i = 1, we have

E
1,N
y1:t

[Ẑt] =
1

N t

t+1
∑

ℓ=1

(N − 1)t+1−ℓ
∑

τ∈Tt,ℓ,t+1

G0,τ1Cℓ(τ , y1:t). (4.11)

In order to obtain a version of Proposition 4.4 for the general ciαSMC case,
we will require that the algorithm enforce a lower bound on a carefully chosen
notion of effective sample size called ∞-ESS. The ∞-ESS is a member of a family
of effective sample size measures we call p-ESS, which also includes two commonly
used definitions as special cases.

Definition 4.5. For parameter p ∈ [1,∞], let p∗ ,
p

p−1 be the conjugate exponent

of p (so 1/p+1/p∗ = 1). The p-effective sample size (p-ESS) of the weight vector
w1:N ∈ RN

+ is

ESSp(w
1:N ) ,







(

‖w1:N‖1

‖w1:N‖p

)p∗

p > 1

‖w1:N‖1
∏

N
n=1

(wn)w
n/‖w1:N‖1

p = 1.
(4.12)

⊳

The following proposition highlights some elementary properties of p-ESS and
subsumes Proposition 1.4 (see Appendix A.3 for a proof).
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Proposition 4.6. The p-ESS has the following properties:

(1) For all p ∈ [1,∞], 1 ≤ ESSp(w
1:N ) ≤ N . The lower bound is achieved if and

only if all but one of the weights is zero. The upper bound is achieved if and
only if all the weights are equal.

(2) For 1 < p < q ≤ ∞, ESSp(w
1:N ) ≥ ESSq(w

1:N ) ≥ N−(1−q∗/p∗)ESSp(w
1:N ),

with equality if and only if K weights are equal and the rest are zero.
(3) The 1-ESS satisfies

ESS1(w
1:N ) = lim

p↓1
ESSp(w

1:N ) = ESSent(w
1:N ) , eH(w1:N ), (4.13)

where H(w1:N ) , −∑n
wn

‖w1:N‖1
log wn

‖w1:N‖1
is the entropy.

Parts (1) and (2) generalize their counterparts in Proposition 1.4 to all p ∈ [0, 1],
including the case p = 1. Part (3) shows that the 1-ESS corresponds to the entropic
ESS, which is a common choice of ESS in applications [Cornebise et al., 2008].

In order to obtain a bound on E
i,N
y

1:i
1:t
[Ẑt], we will require a lower bound on the

∞-ESS of the weights, as formalized in Assumption 1.A. Our development follows
that of Whiteley et al. [2016], who used the 2-ESS lower bound guarantee to bound
the L2 norm of the weights in terms of their L1 norm. Similarly, we will use the
∞-ESS lower bound guarantee to bound the sup-norm of the weights in terms of
their L1 norm. Specifically, under Assumption 1.A, we have

ζN ≤ ESS∞(W 1:N
s ) =

‖W 1:N
s ‖1

‖W 1:N
s ‖∞

=
‖W 1:N

s ‖1
supnW

n
s

, (4.14)

and so, for all n ∈ [N ] and s ∈ [t], Wn
s ≤

‖W 1:N
s ‖1

ζN . We can use this upper bound on

Wn
s to prove a result that is very similar to Proposition 4.4, but permits an arbitrary

adaptation scheme satisfying Assumptions 1.A and 4.D. (See Appendix A.4 for a
proof):

Theorem 4.7. If Assumptions 1.A and 4.D hold, then for all t ≥ 1, i ≥ 1, N ≥ i,
y11:t, . . . , y

i
1:t ∈ Et,

E
i,N
y
1:i
1:t
[Ẑt] (4.15)

≤ 1

N(ζN)t−1

t+1
∑

ℓ=1

∑

τ∈Tt,ℓ,t+1

(ζN)t+1−ℓ

(

N − i
ζN

)1(τ1>1)

G0,τ1

ℓ−1
∏

m=1

i
∑

j=1

Gτm,τm+1
(yjτm).

In particular, in the case of i = 1, we have

E
1,N
y1:t

[Ẑt] ≤
1

N(ζN)t−1

t+1
∑

ℓ=1

∑

τ∈Tt,ℓ,t+1

(ζN)t+1−ℓ

(

N − 1

ζN

)1(τ1>1)

G0,τ1C
y
ℓ (τ ).

(4.16)

The gap between Proposition 4.4 and Theorem 4.7 is that most of the factors of
N − i in the former are replaced by factors of N in the latter. Luckily we are inter-
ested in the i = 1, 2 cases, so we expect the differences between the two quantities
to be fairly small. The following result, which is immediate upon expanding the
left-hand sides of Eqs. (4.10) and (4.15) and keeping only Ω(1/N) terms, formalizes
this intuition:
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Corollary 4.8. If Assumption SIR holds, then for all i, t ≥ 1, N > i, y11:t, . . . , y
i
1:t ∈

Et,

E
i,N

y
1:i
1:t
[Ẑt/Zt] = 1 +

Z−1
t

∑t
s=1

∑i
j=1G0,sGs,t+1(y

i
1:t)− ti

N
+Θ(N−2). (4.17)

If Assumptions 1.A and 4.D hold, then for all i, t ≥ 1, N > i, y11:t, . . . , y
i
1:t ∈ Et,

E
i,N
y

1:i
1:t
[Ẑt/Zt] ≤ 1 +

Z−1
t

∑t
s=1

∑i
j=1G0,sGs,t+1(y

i
1:t)− ζi

ζN
+Θ(N−2). (4.18)

4.3. Quantitative bounds. Recall Assumptions 1.B and 1.C, either of which can
be used in conjunction with Theorem 4.7 to obtain uniform, quantitative bounds

on E
i,N

y
1:i
1:t
[Ẑt] by following the approach of Andrieu et al. [2013]:

Assumption 1.B. The potentials satisfy gs , supx∈E gs(x) <∞ for all 1 ≤ s ≤ t.
Assumption 1.C. There exists a constant β > 0 such that for any t, s ∈ N,

sup
x∈E

G0,tGt,t+s(x)

G0,t+s
≤ β.

Assumption 1.C is implied by a standard “strong mixing” condition which is
often employed in SMC analyses (e.g., [Del Moral, 2004, Whiteley et al., 2016]).
See Andrieu et al. [2013] for details.

Proposition 4.9. If αs = 11/N for s ∈ [t− 1] and Assumption 1.B holds, then for

all t ≥ 1, i ≥ 1, N ≥ i, y11:t, . . . , yi1:t ∈ Et,

E
i,N
y

1:i
1:t
[Ẑt/Zt] ≤ 1 +

[

Z−1
t

t
∏

s=1

gs − 1

]

[

1−
(

1− i

N

)t
]

. (4.19)

If Assumptions 1.A, 1.B and 4.D hold, then for all t ≥ 1, i ≥ 1, N ≥ i, y11:t, . . . , yi1:t ∈
Et,

E
i,N

y
1:i
1:t
[Ẑt/Zt] ≤ 1 + Z−1

t

t
∏

s=1

gs

[

(

1 +
i

ζN

)t

− 1

]

. (4.20)

Proof. The proof Eq. (4.19) is a straightforward generalization of that for [Andrieu et al.,
2013, Proposition 12] with some additional bookkeeping for i (instead of 2) fixed
trajectories. As for Eq. (4.20), we have

E
i,N

y
1:i
1:t
[Ẑt] ≤

t+1
∑

ℓ=1

∑

τ∈Tt,ℓ,t+1

(ζN)−ℓ+1G0,τ1

ℓ−1
∏

m=1

i
∑

j=1

Gτm,τm+1
(yjτm)

≤ Zt +

t
∏

s=1

gs

t+1
∑

ℓ=2

(

t

ℓ− 1

)

iℓ−1(ζN)−ℓ+1

= Zt +

t
∏

s=1

gs

t
∑

ℓ=1

(

t

ℓ

)

(ζN/i)−ℓ

= Zt +

t
∏

s=1

gs

[

(

1 +
i

ζN

)t

− 1

]

.

(4.21)

�
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Proposition 4.10. If αs = 11/N for s ∈ [t − 1] and Assumption 1.C holds, then

for all t ≥ 1, i ≥ 1, N ≥ i, y11:t, . . . , yi1:t ∈ Et,

E
i,N
y

1:i
1:t
[Ẑt/Zt] ≤

(

1 +
i(β − 1)

N

)t

. (4.22)

If Assumptions 1.A, 1.C and 4.D hold, then for all t ≥ 1, i ≥ 1, N ≥ i, y11:t, . . . , yi1:t ∈
Et,

E
i,N

y
1:i
1:t
[Ẑt/Zt] ≤

(

1 +
iβ

ζN

)t

. (4.23)

Proof. The proof of Eq. (4.22) is a simple generalization of that for [Andrieu et al.,
2013, Proposition 14]. As for Eq. (4.23), observe that for s ∈ [t + 1], G0,t+1 =

G0,t+1
G0,t+1

G0,s
= G0,sηs(Gs,t+1), so we can write for ℓ ∈ [t], τ ∈ Tt,ℓ,t+1,

Zt = G0,t+1 = G0,τk

ℓ−1
∏

i=1

ητi(Gτi,τi+1
). (4.24)

Combined with Assumption 1.C and writing Ḡs,t , supx∈E Gs,t(x),

t+1
∑

ℓ=1

(ζN)−ℓ+1
∑

τ∈Tt,ℓ,t+1

G0,τ1

ℓ−1
∏

i=1

i
∑

j=1

Gτm,τm+1
(yjτm)

≤ Zt + Zt

t+1
∑

ℓ=2

(ζN)−ℓ+1
∑

τ∈Tt,ℓ,t+1

G0,τ1

G0,τ1

ℓ−1
∏

i=1

i
∑

j=1

Ḡτi,τi+1

ητi(Gτi,τi+1
)

= Zt

t+1
∑

ℓ=1

(

t

ℓ− 1

)

(ζN)−ℓ+1(iβ)ℓ−1

= Zt

(

1 +
iβ

ζN

)t

.

(4.25)

�

To compare Eqs. (4.19) and (4.20), consider the Θ(1/N) terms, which are, re-
spectively,

ti[Z−1
t

∏t
s=1 gs − 1]

N
and

tiZ−1
t

∏t
s=1 gs

ζN
.

Thus, up to a −ti term and a factor of 1/ζ, the two bounds are of the same leading
order in 1/N . The −it is likely an artifact of the analysis while the 1/ζ term
accounts for there being only ζN “effective particles.” The differences between
Eqs. (4.22) and (4.23) are identical.

5. Bounding the Divergence of SMC Samplers

Recall that P 0,N (dx1:t) is the distribution of X̃∗
1:t ∼ π0,N

1:t , a single sample from

the αSMC estimator of π1:t. Equivalently, P 0,N (dx1:t) = E0,N [π0,N
1:t ](dx1:t) ,

E0,N [π0,N
1:t (dx1:t)] is the expected value of the random measure π0,N

1:t . As a first
application of our results from Section 4, we consider bounding the distance be-
tween the measures π1:t and P 0,N . That is, for some divergence d(µ||ν) between
measures, can we bound d(π1:t||P 0,N )? To the best of our knowledge, there has
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been minimal investigation of this question, with [Del Moral, 2004, Chapter 8] a
notable exception. For example, under Assumption SIR, the bound

dKL(P
0,N ||πt) ≤

c

N
, (5.1)

can be extracted as a special case of a more general propagation-of-chaos result
[Del Moral, 2004, Theorem 8.3.2].

Let F1 be the set of functions f : R+ → R that are monotonically increasing or
decreasing and satisfy f(1) = 0. We consider the class of monotonic divergences of
the form

di,f (µ1||µ2) , µi

(

f ◦ dµ1

dµ2

)

, i ∈ {1, 2}, f ∈ F1. (5.2)

Table 1 lists some common divergences that can be written this way.
The following result characterizes the divergence between π1:t and P 0,N , only

assuming that f is concave.

Proposition 5.1. Let Rt(y1:t) , E1,N
y1:t

[Ẑt/Zt] and St , Z−1
t

∑t
s=1G0,sπ1:t(Gs,t+1)−

ζ. If Assumption 4.D holds, then for all concave f ∈ F1,

d1,f (π1:t||P 0,N ) ≤ f(π1:t(Rt)).

In particular, if Assumption SIR holds, then

dKL(π1:t||P 0,N) ≤ log

(

1 +
St − t
N

+Θ(N−2)

)

dχ2(π1:t||P 0,N) ≤ St − t
N

+Θ(N−2)

while if Assumptions 1.A and 4.D hold, then

dKL(π1:t||P 0,N ) ≤ log

(

1 +
St − ζ
ζN

+Θ(N−2)

)

dχ2 (π1:t||P 0,N ) ≤ St − ζ
ζN

+Θ(N−2).

Proof. The general statement follows by applying Jensen’s inequality to Eq. (5.2),
then using Theorem 4.2. The special cases correspond to using the KL divergence
(version 1) and χ2 distance rows of Table 1 and applying Corollary 4.8. �

Similar results for (sequential) importance sampling are included in Appen-
dix A.5.

We can also consider the divergence between π1:t and P 0,N when E1,N
y1:t

[Ẑt] is
uniformly bounded:

Proposition 5.2. If Assumption 4.D holds and E1,N
y1:t

[Ẑt/Zt] ≤ Bt,N for all y1:t ∈
Et, then for all increasing f ∈ F1

di,f (π1:t||P 0,N ) ≤ f(Bt,N)

and for all decreasing f ∈ F1,

di,f (P
0,N ||π1:t) ≤ f(B−1

t,N ).
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Table 1. Divergences of the form Eq. (5.2). The operator (a)+

gives the positive part of a ∈ R.

Name Symbol i f
KL divergence (version 1) dKL 1 a 7→ log a
KL divergence (version 2) dKL 2 a 7→ − log a
χ2 distance dχ2 1 a 7→ a− 1
total variation distance (version 1) dTV 2 a 7→ (a− 1)+

total variation distance (version 2) dTV 2 a 7→ (1− a)+

In particular,

dKL(π1:t||P 0,N ) ≤ logBt,N

dχ2 (π1:t||P 0,N ) ≤ Bt,N − 1

dTV (π1:t, P
0,N) ≤ Bt,N − 1

Bt,N
≤ Bt,N − 1.

Proof. The general statements follow immediately from Eq. (5.2) and Theorem 4.2.
The special cases correspond to using the KL divergence (version 1), χ2 distance,
and total variation distance (version 2) rows of Table 1. The second total variation
inequality holds since Bt,N ≥ 1. �

The bounds in Proposition 5.2 for KL divergence, χ2 distance, and total vari-
ation distance are asymptotically equivalent if Bt,N → 1 as N → ∞. Combining
Proposition 5.2 with, for example, Proposition 4.10, yields quantitative bounds for
SIR and αSMC:

Corollary 5.3. If Assumptions 1.C and SIR hold, then

dKL(π1:t||P 0,N ) ≤ t(β − 1)

N
(5.3)

dχ2(π1:t||P 0,N ) ≤ t(β − 1)

N
+O(N−2) (5.4)

dTV (π1:t, P
0,N ) ≤ t(β − 1)

N + t(β − 1)
+O(N−2). (5.5)

If Assumptions 1.A, 1.C and 4.D hold, then

dKL(π1:t||P 0,N) ≤ tβ

ζN
(5.6)

dχ2(π1:t||P 0,N) ≤ tβ

ζN
+O(N−2) (5.7)

dTV (π1:t, P
0,N) ≤ tβ

ζN + tβ
+O(N−2). (5.8)

6. The α-Particle Gibbs Sampler

As a second application of our results from Section 4, we consider the mixing
properties of particle Gibbs with adaptive resampling. Recall from Section 1.3 that
we introduce a global parameter θ ∈ Θ with prior distribution ̟(dθ). Replace
Ms by Mθ

s and gs by gθs , then parameterize the other quantities defined previously
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in terms of Ms and gs by θ. The target distribution on the product space (Θ ×
Y,B(Θ× Y )), Y , Et, is

π(dθ × dy) , γ(dθ × dy)/Z, (6.1)

where

γ(dθ × dy) ,

t
∏

s=1

gθs(ys)M
θ
s (ys−1, dys)̟(dθ) and Z , γ(1). (6.2)

Particle Gibbs samplers have kernels of the form πy(dθ)Πθ(y, dz), where Πθ(y, dz)
is an SMC-based kernel with invariant distribution πθ. The standard PG sampler
employs the iterated conditional SMC (i-cSMC) kernel [Andrieu et al., 2013]: that

is, Πθ = P 1,N
θ,y and require Assumption SIR to hold.

We now introduce the novel α-particle Gibbs (αPG) sampler, which employs the

iterated conditional αSMC (i-cαSMC) kernel P 1,N
θ,y , so Πθ = P 1,N

θ,y . In Appendix A.6
we prove that the i-cαSMC kernel is reversible with respect to πθ and hence has
invariant distribution πθ.

The first step to proving mixing results for the i-cαSMC kernel and the αPG
sampler is to use Theorem 4.2 to obtain a sufficient condition for the i-cαSMC
transition kernel to satisfy a minorization condition.

Proposition 6.1. If Assumption 4.D holds and E
2,N
θ,y1:2 [Ẑt/Zt] ≤ Bt,N for all θ ∈ Θ

and y1, y2 ∈ Y , then

P 1,N
θ,y (y, dx) ≥ εt,Nπθ(dx), (6.3)

where εt,N ,
(1−κ′

N )t

Bt,N
.

The constant ǫt,N , which determines mixing speed, can be found explicitly using
the quantitative bounds from Section 4.3. For example, using Assumption 1.C we
obtain the following:

Corollary 6.2. If Assumptions 1.A, 1.C and 4.D hold, then for all y ∈ Y ,

P 1,N
θ,y (y, dx) ≥ εt,Nπθ(dx), (6.4)

where

εt,N ,

(

1− κ′N
1 + 2β

ζN

)t

. (6.5)

Furthermore, if ζN ≥ 2βt
C(1−κ′

N )−κ′
N t for some constant C > 0, then

ǫt,N ≥ e−C . (6.6)

In particular, assuming κ′N ≤ B/N for some constant B ≥ 1, if N ≥ t/C+B, then

ǫt,N ≥ exp
(

−C
ζ
(2β + ζB)

)

. (6.7)
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Proof. The first part follows from Propositions 6.1 and 4.10. For the second part,
we then have

ǫt,N ≥
(

1 + 2β
ζN

1− κ′N

)−t

=

(

1 +
1

1− κ′N

(

2β

ζN
+ κ′N

))−t

(6.8)

≥
(

1 +
C

t

)−t

≥ e−C . (6.9)

The final part follows after noting that if κ′N ≤ B/N , then

1

1− κ′N

(

2β

ζN
+ κ′N

)

≤ 1

1−B/N

(

2β

ζN
+B/N

)

=
1

N −B

(

2β

ζ
+B

)

. (6.10)

�

Remark 6.3. In the case of the i-cSMC kernel, Corollary 6.2 is almost as tight as
[Andrieu et al., 2013, Corollary 14]: the former result replaces β − 1 with β. ▽

The minorization condition Eq. (6.3) implies uniform ergodicity and a number
of other types of convergence guarantees for the i-cSMC process. The following
generalizes [Andrieu et al., 2013, Theorem 1], which applies only to the i-cSMC
kernel and the PG sampler.

Theorem 6.4. Assume that Assumptions 1.A and 4.D hold.

I. Let N ≥ 2, and consider the i-cαSMC process with kernel P = P 1,N
θ .

1. P is reversible with respect to π and defines a positive operator,
2. If the potentials are bounded then there exists ǫt,N = 1−Ct/N such that

(i) for all y ∈ Y , P (y, dz) ≥ ǫt,Nπθ(dz),
(ii) for every measure ν ≪ πθ and k ≥ 1,

dχ2(νP k||πθ) ≤ dχ2(ν||πθ)(1− ǫt,N )k, (6.11)

(iii) for every y ∈ Y and k ≥ 1,

dTV (δyP
k, πθ) ≤ (1− ǫt,N )k, (6.12)

3. If Assumption 1.C also holds and there is a constant B > 0 such that
κ′N ≤ B/N , then for every C > 0, there exists εB,C,ζ > 0 such that for
N ≥ t/C +B and all t > 1,

ǫt,N ≥ εB,C,ζ > 0. (6.13)

II. If there exists β ≥ 1 such that, for all t, s ∈ N,

π- ess sup
θ,x

Gθ
0,tG

θ
t,t+s(x)

Gθ
0,t+s

≤ β, (6.14)

or if

π- ess sup
θ

∏t
s=1 g

θ
s

γθ(1)
<∞, (6.15)

then the αPG chain is geometrically ergodic whenever the Gibbs sampler is
geometrically ergodic.

Proof. Part I.1 follows from Lemma A.4. Parts I.2-3 follow from Proposition 6.1,
Corollary 6.2, and [Andrieu et al., 2013, Proposition 31]. Part II follows from
[Andrieu et al., 2013, Section 7]. �
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Remark 6.5. Part I.3 means that if Assumption 1.C holds, then scaling N linearly
with t ensures a uniform convergence rate, as measured by χ2-divergence or total
variation distance. ▽

Appendix A. Additional Proofs

A.1. Technical Lemma.

Lemma A.1. Let X and Y be random elements in Borel spaces (S,S) and (T, T ),
respectively, let ψ : S × T → R+ be a measurable, and let µ be the distribution of
X. If

ν = E[ψ(X,Y )δX ], (A.1)

then ν ≪ µ and

dν

dµ
(X) = E[ψ(X,Y ) |X ] a.s. (A.2)

Proof. Because S is Borel, there exists an f satisfying f(X) = E[ψ(X,Y ) |X ] a.s.
It follows from the chain rule of conditional expectation and then some elementary
manipulations that, for all A ∈ S,

ν(A) = E[f(X)δX(A)] = E[f(X)1A(X)] =

∫

A

f(x)µ(dx),

and so f is a version of the Radon–Nikodym derivative dν/dµ. �

A.2. Proof of Theorem 4.2, i ≥ 1 case. First observe that we can write the
ciαSMC kernel as

P i,N (y1:i
1:t, dx1:t) = E

i,N
y

1:i
1:t

[

δX̃∗
1:t
(dx1:t)

]

(A.3)

= E
i,N
y

1:i
1:t

[

∑

k1:t∈[N ]t Ik1:t(X
1:N
1:t ,A

1:N
1:t , dx1:t)

]

, (A.4)

where

Ik1:t(x
1:N
1:t ,a

1:N
1:t , dx1:t) , δ

x̃
kt
1:t
(dx1:t)1(kt = a∗t )

t−1
∏

s=1

1(ks = aks+1

s ). (A.5)

Next note that

N
∑

k1=1

1(x̃kt
1:t ∈ S)Pi,N

y
1:i
1:t
[X1:N

1 ∈ dx1:N1 , F 1:i
1 = f1:i

1 ] (A.6)

=

N
∑

k1=1

1(x̃kt
1:t ∈ S)Ci1D(f1:i

1 )

i
∏

j=1

1

N
δyj

1

(dx
fj
1

1 )

N
∏

n/∈f1:i
1

M1(dx
n
1 ) (A.7)

≥ N Ci1
Ci+1
1

N
∑

k1=1

∫

E

1(x̃kt
1:t ∈ S)Ci+1

1 D(f1:i
1 , k1)

i
∏

j=1

1

N
δyj

1

(dx
fj
1

1 )
1

N
δx1

(dxk1

1 )

×
N
∏

n/∈f1:i
1

,k1

M1(dx
n
1 )M1(dx1)

(A.8)
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≥ N Ci1
Ci+1
1

N
∑

k1=1

∫

E

1(x̃kt
1:t ∈ S)Pi+1,N

y
1:i
1:t,x1:t

[X1:N
1 ∈ dx1:N1 , F 1:i

1 = f1:i
1 , F i+1

1 = k1]M1(dx1)

(A.9)

For the remainder of the proof, to keep notation compact when writing laws, in-
stead of writing, e.g., X1:N

s ∈ x1:Ns or F 1:i
s = f1:i

s , whenever a random variable is
instantiated to be (the differential) of the lowercase version of itself, we will write
only the random variable: for example, X1:N

s or F 1:i
s . Now, for s = 2, . . . , t,

N
∑

ks=1

1(x̃kt
1:t ∈ S)1(ks−1 = aks

s−1)P
i,N

y
1:i
1:t
[X1:N

s , A1:N
s−1, F

1:i
s |X1:N

1:s−1,A
1:N
1:s−2, F

1:i
s−1](A.10)

,

N
∑

ks=1

1(x̃kt
1:t ∈ S)1(ks−1 = aks

s−1)CisD(f1:i
s )

i
∏

j=1

α
fj
s f

j
s−1

s−1 δyj
s
(dx

fj
s

s )1(a
fj
s

s−1 = f j
s−1)

×
∏

n/∈f1:i
s

rn(a
n
s−1|w1:N

s−1,x
1:N
1:s−1)Ms(x

an
s−1

s−1 , x
n
s )

(A.11)

≥
N
∑

ks=1

Cis
Ci+1
s α

ksks−1

s−1

∫

E

1(x̃kt
1:t ∈ S)Ci+1

s D(f1:i
s , ks)

i
∏

j=1

α
fj
s f

j
s−1

s−1 δyj
s
(dx

fj
s

s )1(a
fj
s

s−1 = f j
s−1)

× αksks−1

s−1 δxs(dx
ks
s )1(ks−1 = aks

s−1)

×
∏

n/∈f1:i
s ,ks

rn(a
n
s−1|w1:N

s−1,x
1:N
1:s−1)Ms(x

an
s−1

s−1 , x
n
s )

× rks(ks−1|w1:N
s−1,x

1:N
1:s−1)Ms(x

ks−1

s−1 , dxs)

(A.12)

=

N
∑

ks=1

Cis
Ci+1
s α

ksks−1

s−1

∫

E

1(x̃kt
1:t ∈ S)rks(ks−1|w1:N

s−1,x
1:N
1:s−1)Ms(x

ks−1

s−1 , dxs) (A.13)

P
i+1,N
y
1:i
1:t,x1:t

[X1:N
s , A1:N

s−1, F
1:i
s , F i+1

s = ks |X1:N
1:s−1,A

1:N
1:s−2, F

1:i
s−1, F

i+1
s−1 = ks−1]

Using Eqs. (A.9) and (A.14), we have (note that the terms such as those involving
a0 should be ignored)

∑

k1:t∈[N ]t

1(x̃kt
1:t ∈ S)1(kt = a∗t )

t
∏

s=2

1(ks−1 = aks
s−1)P

i,N
y

1:i
1:t
[X1:N

1:t ,A
1:N
1:t ,F

1:i
1:t]
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=
∑

k1:t∈[N ]t

1(x̃kt
1:t ∈ S)1(kt = a∗t )P

i,N

y
1:i
1:t
[A∗

t |X1:N
1:t ,A

1:N
1:t−1]P

i,N

y
1:i
1:t
[X1:N

1 , F 1:i
1 ]

×
t
∏

s=2

1(ks−1 = aks
s−1)P

i,N

y
1:i
1:t
[X1:N

s , A1:N
s−1, F

1:i
s |X1:N

1:s−1,A
1:N
1:s−2, F

1:i
s−1]

(A.14)

≥
∑

k1:t∈[N ]t

∫

Et

N 1(x̃kt
1:t ∈ S)1(kt = a∗t )

(
∏t

s=1 Ci+1
s /Cis)(

∏t−1
s=1 α

ksks−1

s−1 )

w
a∗
t

t gt(x
a∗
t

t )
∑N

n=1 w
n
t gt(x

n
t )

×
t
∏

s=2

rks(ks−1|w1:N
s−1,x

1:N
1:s−1)Ms(x

ks−1

s−1 , dxs) (A.15)

×
t
∏

s=2

P
i+1,N

y
1:i
1:t,x1:t

[X1:N
s , A1:N

s−1, F
1:i
s , F i+1

s = ks |X1:N
1:s−1,A

1:N
1:s−2, F

1:i
s−1, F

i+1
s−1 = ks−1]

× P
i+1,N
y
1:i
1:t,x1:t

[X1:N
1 ∈ dx1:N1 , F 1:i

1 = f1:i
1 , F i+1

1 = k1]M1(dx1)

=
∑

k1:t∈[N ]t

∫

Et

N 1(x1,t ∈ S)
(
∏t

s=1 Ci+1
s /Cis)

∑N
n=1 w

n
t gt(x

n
t )

P
i+1,N
y
1:i
1:t,x1:t

[X1:N
1:t ,A

1:N
1:t−1,F

1:i
1:t, F

i+1
1:t = k1:t]γ1:t(dx1:t)

(A.16)

=

∫

S

∑

k1:t∈[N ]t

Zt

Ẑt

∏t
s=1 Ci+1

s /Cis
P
i+1,N

y
1:i
1:t,x1:t

[X1:N
1:t ,A

1:N
1:t−1,F

1:i
1:t, F

i+1
1:t = k1:t]π1:t(dx1:t),

(A.17)

from which Eq. (4.2) follows.
To prove Eq. (4.4), first note that under Assumption 4.D, the normalization

constants for the c2αSMC process are given by

C21 ,
N

N − 1
(A.18)

and, for s = 2, . . . , t,

C2s ,

(

1−
N
∑

k=1

α
kf1

s−1

s−1 α
kf2

s−1

s−1

)−1

. (A.19)

Thus, C2s ≤ 1
1−κN

for s = 2, . . . , t and hence C2s ≤ 1
1−κ′

N
for all s ∈ [t].

A.3. Proof of Proposition 4.6. For (1), the fact that ESS1(w
1:N ) = ESSent(w

1:N )
is a straightforward algebraic manipulation. To prove the limit equality, observe
that, using the Taylor series for xp and log(1 + x), we have

lim
p→1

(

‖w1:N‖p1
∑N

n=1(w
n)p

)1/(1−p)

(A.20)

= lim
p→1

(

∑∞
k=0 ‖w1:N‖1(p− 1)k logk(‖w1:N‖1)/k!
∑N

n=1

∑∞
k=0 w

n(p− 1)k logk(wn)/k!

)1/(1−p)

(A.21)
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= lim
x→∞

(

∑∞
k=0 ‖w1:N‖1x−k logk(‖w1:N‖1)/k!
∑N

n=1

∑∞
k=0 w

nx−k logk(wn)/k!

)x

(A.22)

= lim
x→∞

(

exp(log(1 +
∑∞

k=1 x
−k logk(‖w1:N‖1)/k!))

exp(log(1 +
∑∞

k=1

∑N
n=1 w

n‖w1:N‖−1
1 x−k logk(wn)/k!))

)x

(A.23)

= lim
x→∞

exp(x
∑∞

m=1(−1)m+1[
∑∞

k=1 x
−k logk(‖w1:N‖1)/k!]m)

exp(x
∑∞

m=1(−1)m+1[
∑∞

k=1

∑N
n=1 w

n‖w1:N‖−1
1 x−k logk(wn)/k!]m)

(A.24)

= lim
x→∞

exp(log(‖w1:N‖1) + Θ(x−1))

exp
(

log
(

∏N
n=1(w

n)wn/‖w1:N‖1

)

+Θ(x−1)
) (A.25)

=
‖w1:N‖1

∏N
n=1(w

n)wn/‖w1:N‖1

. (A.26)

To prove the remaining parts, we make repeated use of the following:

Fact. For 1 ≤ r < s ≤ ∞, and any vector w1:N ∈ RN
+ , ‖w1:N‖s ≤ ‖w1:N‖r ≤

N1/r−1/s‖w1:N‖s, with the lower (upper) bound achieved if and only if w1:N has
one non-zero entry (w1:N has all equal entries).

For (2), apply the Fact with r = 1, s = p > 1, and note that in this case
1/r− 1/s = 1− 1/p = 1/p∗. We then have 1 ≤ ‖w1:N‖1/‖w1:N‖p ≤ N1/p∗ , proving
the result for p > 1. For p = 1, the result follows from part (1) and elementary
properties of the entropy.

For (3), in the case that p > 1, note that

‖w1:N‖q∗−p∗

1 ≥ N (q∗−p∗)/q∗‖w1:N‖q∗−p∗
q = N1−p∗/q∗‖w1:N‖q∗−p∗

q

= N−p∗(1/p−1/q)‖w1:N‖q∗−p∗
q ,

(A.27)

where the final equality follows since

1− p∗/q∗ = 1− p∗(1 − 1/q) = 1− p∗ + p∗/q = −p∗/p+ p∗/q. (A.28)

We conclude that
(‖w1:N‖1
‖w1:N‖p

)p∗

≥ ‖w1:N‖p∗

1

Np∗(1/p−1/q)‖w1:N‖p∗
q

(A.29)

≥ ‖w1:N‖p∗

1

Np∗(1/p−1/q)‖w1:N‖p∗
q

‖w1:N‖q∗−p∗

1

N−p∗(1/p−1/q)‖v‖q∗−p∗
q

(A.30)

=

(‖w1:N‖1
‖w1:N‖q

)q∗

(A.31)

≥
(‖w1:N‖1
‖w1:N‖p

)q∗

(A.32)

=

(‖w1:N‖p
‖w1:N‖1

)p∗−q∗ (‖w1:N‖1
‖w1:N‖p

)p∗

(A.33)

≥ N−(p∗−q∗)/p∗

(‖w1:N‖1
‖w1:N‖p

)p∗

, (A.34)

where the first, third, and fourth inequalities follow from the Fact and the second
follows from Eq. (A.27).
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The case of p = 1 follows from the p > 1 case and part (1).

A.4. Proof of Theorem 4.7. We prove the result for i = 1. The general case
follows from straightforward modifications.

For t ≥ 1, let Qt(xt−1, dxt) , gt−1(xt−1)Mt(xt−1, dxt), and for 0 ≤ s < t, let

Qs,t , Qs+1Qs+2 · · ·Qt, (A.35)

so Qt,t+1 = Qt. By convention Qt,t(xt, dyt) = δxt(dyt) and Q0,t(dxt) is a measure,
not a probability kernel. Notice that for s ∈ [t], xs ∈ E, and φt : E → R,

Qs,t(xs)(φt) = E[φt(ξt)gs:t−1(ξs:t−1) | ξs = xs] (A.36)

and Q0,t(φt) = M1Q1,t(φt). Generalizing these identities, we will abuse notation
and write, for s ∈ [t], xs ∈ E, and φs,t : Et−s → R,

Qs,t(xs)(φs,t) , E[φs:t(ξs:t)gs:t−1(ξs:t−1) | ξs = xs] (A.37)

and Q0,t(φ1:t) , M1Q1,t(φ1:t). Note that Gs,t(y) = Qs,t(y)(1) for s ∈ [t − 1] and
G0,t = Q0,t(1).

We will use the abbreviated notation Qk
s,t(·) = Qs,t(·)(Xk

s ) or Qs,t(·)(xks ), Gk
s,t =

Gs,t(X
k
s ) or Gs,t(x

k
s ), G

y
s,t = Gs,t(ys), g

k
s = gs(X

k
s ) or gs(x

k
s ), and g

y
s = gs(ys). The

variables are Xk
s inside expectations and xks outside expectations. Throughout the

proof, when limits of a sum are not specified, the sum is from 1 to N .
Let Fs be the σ-algebra generated by X1:N

1:s , A1:N
1:s−1, and F

1
1:s, where by conven-

tion we let F0 be the trivial σ-algebra. The proof relies on the following lemma.

Lemma A.2. If y1:t ∈ Et, then

(1) for s = 2, . . . , t and any functions φns : E → R, n ∈ [N ],

E
1,N
y1:t

[

∑

n

φns (X
n
s ) | Fs−1

]

=
∑

f1
s

α
f1
s f

1
s−1

s−1 φ
f1
s

s (ys) +
∑

f1
s

∑

n6=f1
s

∑

k

α
f1
s f

1
s−1

s−1

αnk
s−1w

k
s−1

wn
s

Qk
s−1,s(φ

n
s );

(A.38)

(2) for τ ∈ [t− s],

E
1,N
y1:t

[

∑

n

Wn
s G

n
s,s+τ | Fs−1

]

≤ 1

ζN

∑

n

wn
s−1g

n
s−1G

y
s,s+τ +

∑

n

wn
s−1G

n
s−1,s+τ ;

(A.39)

and
(3) for s = 1, . . . , t− 1,

N E
1,N
y1:t

[

Ẑt | Ft−s

]

≤ At−s +Bt−s, (A.40)

where,

At−s , (ζN)−s+1
∑

n

wn
t−sg

n
t−s





s
∑

ℓ=1

∑

τ∈Tt,ℓ,s

(ζN)s−1−ℓGy
t−s+1,τ1

Cy
ℓ (τ )



 (A.41)

Bt−s , (ζN)−s+1
∑

n

wn
t−s





s
∑

ℓ=1

∑

τ∈Tt,ℓ,s

(ζN)s−ℓGn
t−s,τ1C

y
ℓ (τ )



 . (A.42)
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Proof. For (1),

E
1,N
y1:t

[

∑

n

φns (X
n
s ) | Fs−1

]

=
∑

f1
s

∑

a
−f1
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∏
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s

]
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a
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s
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α
f1
s f

1
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φ
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∑
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E
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s−1

s−1

]





=
∑

f1
s

α
f1
s f

1
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s−1 φ
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s
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∑
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s
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s

∑

k

α
f1
s f

1
s−1

s−1

αnk
s−1w

k
s−1gs−1(x

k
s−1)

wn
s

E
[
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=
∑

f1
s

α
f1
s f
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s−1 φ
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s (ys) +
∑
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∑
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s
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s f
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For (2), choosing φns (x) = wn
sGs,s+τ (x), we have

E
1,N
y1:t

[

∑

n

Wn
s G

n
s,s+τ | Fs−1

]

(A.43)

=
∑

f1
s

α
f1
s f

1
s−1

s−1 w
f1
s

s Gy
s,s+τ +

∑
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s
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s f
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(A.44)

= Gy
s,s+τ

∑

f1
s

α
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s f

1
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s−1 w
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s

s +
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f1
s
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∑

k

α
f1
s f
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≤ Gy
s,s+τ

∑

f1
s

α
f1
s f

1
s−1

s−1

‖w1:N
s ‖1
ζN

+
∑

f1
s

∑

n

∑
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α
f1
s f

1
s−1

s−1 αnk
s−1w

k
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s−1,s+τ (A.46)

=
Gy

s,s+τ

ζN

∑

n

wn
s +

∑

n

∑

k

αnk
s−1w

k
s−1G

k
s−1,s+τ (A.47)

=
Gy

s,s+τ

ζN

∑

n

∑

k

αnk
s−1w

k
s−1g

k
s−1 +

∑

k

wk
s−1G

k
s−1,s+τ (A.48)

=
1

ζN

∑

k

wk
s−1g

k
s−1G

y
s,s+τ +

∑

k

wk
s−1G

k
s−1,s+τ , (A.49)

where the inequality follows from Assumption 1.A, and we have repeatedly used
Assumption 4.D.

To show (3), we start by using (2) with s = t and τ = 1:

E
1,N
y1:t

[

∑

n

Wn
t g

n
t | Ft−1

]

=
1

ζN

∑

k

wk
t−1g

k
t−1g

y
t +

ζN

ζN

∑

m

wm
t−1G

m
t−1,t+1 (A.50)

= At−1 +Bt−1, (A.51)

Hence, (3) holds for s = 1. We now assume that the bound holds for some
s ∈ {1, . . . , t − 2} and establish that it also holds for s + 1. Using the inductive
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hypothesis,

N E
1,N
y1:t

[

Ẑt | Ft−s−1

]

= E
1,N
y1:t

[

N E
1,N
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]
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]

(A.52)

≤ E
1,N
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[At−s +Bt−s | Ft−s−1] . (A.53)

Using (2), we have

A , E
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and
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(A.59)

Hence,
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(A.60)
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Summing the parenthesized double sums of the first two terms yields
s
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τ1>t−s+1

(ζN)s−ℓGy
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(A.61)

=

s+1
∑

ℓ=1

∑

τ∈Tt,ℓ,s+1

(ζN)s−ℓGy
t−s,τ1C

y
ℓ (τ ), (A.62)

so the first two terms are equal to At−(s+1). Summing the parenthesized double
sums of the last two terms yields
s
∑

ℓ=1

∑

τ∈Tt,ℓ,s

(ζN)s−ℓGn
t−s−1,t−s+1G

y
t−s+1,τ1

Cy
ℓ (τ ) +

s
∑

ℓ=1

∑

τ∈Tt,ℓ,s

(ζN)s−ℓ+1Gn
t−s−1,τ1C

y
ℓ (τ )

=

s+1
∑

ℓ=1

∑

τ∈Tt,ℓ,s+1

τ1=t−s+1

(ζN)s−ℓ+1Gn
t−s−1,τ1C

y
ℓ (τ ) +

s+1
∑

ℓ=1

∑

τ∈Tt,ℓ,s+1

τ1>t−s+1

(ζN)s−ℓ+1Gn
t−s−1,τ1C

y
ℓ (τ )

(A.63)

=

s+1
∑

ℓ=1

∑

τ∈Tt,ℓ,s+1

(ζN)s−ℓ+1Gn
t−s−1,τ1C

y
ℓ (τ ), (A.64)

so the last two terms are equal to Bt−(s+1). �

Using part (3) of Lemma A.2 with s = t− 1, we have

N E
1,N
y1:t

[

Ẑt

]

≤ E
1,N
y1:t

[A1 +B1] . (A.65)

Therefore,

E
1,N
y1:t

[A1] = (ζN)−t+2
E
1,N
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[

∑

n

gn1

]
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∑
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∑

τ∈Tt,ℓ,t−1
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Cy
ℓ (τ )





(A.66)

= (ζN)−t+2(Gy
1,2 + (N − 1)G0,2)
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(A.67)

and

E
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y1:t
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 (A.68)

= (ζN)−t+2
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∑
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(ζN)t−1−ℓ(Gy
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 .

(A.69)
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Hence, using arguments analogous to those from the proof of Lemma A.2 and the
fact that G0,1 = 1 yields

E
1,N
y1:t

[A1 +B1]

= (ζN)−t+2
t
∑

ℓ=1

∑

τ∈Tt,ℓ,t

(ζN)t−1−ℓGy
1,τ1
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ℓ (τ ) (A.70)

+
N − 1

ζN
(ζN)−t+2

t
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∑
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(ζN)t−ℓG0,τ1C
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ℓ (τ ) (A.71)
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= (ζN)−t+2
t+1
∑

ℓ=1

∑

τ∈Tt,ℓ,t+1

(ζN)t−ℓ

(

N − 1

ζN

)1(τ1>1)

G0,τ1C
y
ℓ (τ ). (A.73)

A.5. Divergence of importance samplers. The key quantity in this section is
the variance of the potentials:

Vt , V
[

Z−1
t g1:t(ξ1:t)

]

= E

[

(

Z−1
t g1:t(ξ1:t)− 1

)2
]

(A.74)

Theorem A.3. If αs = IN for all s ∈ [t− 1], then

dKL(π1:t||P 0,N) ≤ log

(

1 +
Vt
N

)

(A.75)

dχ2(π1:t||P 0,N) ≤ Vt
N
. (A.76)

Proof. By Theorem 4.2 and Jensen’s inequality

dP 0,N

dπ1:t
(x1:t) = E

1,N
x1:t

[

Zt

Ẑt

]

(A.77)

≥ N

E
1,N
x1:t [

∑N
k=1 Z

−1
t g1:t(X̃k

1:t)]
(A.78)

=
N

N − 1 + Z−1
t g1:t(x1:t)

. (A.79)
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By definition of the χ2 divergence,

dχ2(π1:t||π̄S,N
1,t ) = π1:t

(

dπ1:t
dP 0,N

)

− 1 (A.80)

=M1:t

(
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dP 0,N

dπ1:t
dM1:t

)

− 1 (A.81)

≤M1:t

(

N − 1 + Z−1
t g1:t

N
Z−1
t g1:t

)

− 1 (A.82)

=
M1:t(Z

−1
t g1:t)

2 − 1

N
(A.83)

=
V[Z−1

t g1:t(ξ1:t)]

N
. (A.84)

The bound of the KL divergence follows from the elementary inequality dKL(µ||ν) ≤
log(1 + dχ2(µ||ν)). �

A.6. Invariant distribution of the i-cαSMC kernel.

Lemma A.4. P 1,N
θ,y (dz) is reversible with respect to πθ(dz).

Proof. We mostly suppress dependence on θ since θ is fixed. We will show that the
cαSMC kernel is Gibbs sampler for the artificial joint density given in Eq. (4.7),
which we recall is

π̃1:t(x
1:N
1:t ,a

1:N
1:t−1, f

1
1:t) , π1:t(x

f1
t
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1:N
1:t−1, f

1
1:t). (A.85)

In particular, letting ω1:t , (x1:N
1:t ,a

1:N
1:t−1, f

1
1:t), by definition,

P
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1:i
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Furthermore,
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Reversibility now follows easily:

P 1,N
y (dz)π(dy) =

∫

π̃1:t(dz |ω1:t)π̃1:t(dω1:t | y)π(dy)

=

∫

π̃1:t(dz |ω1:t)π̃1:t(dy |ω1:t)π̃1:t(dω1:t)

=

∫

π̃1:t(dy |ω1:t)π̃1:t(dω1:t | z)π(dz)

= P 1,N
z (dy)π(dz).

�
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