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Abstract

An analysis is given of the decay µ → e + γ in an MSSM extension with a vectorlike generation. Here

mixing with the mirrors allows the possibility of this decay. The analysis is done at the one loop level with

the exchange of charginos and neutralinos and of sleptons and mirror sleptons in the loops. A one loop

analysis with W and Z boson exchange and mirror leptons and neutrinos is also considered. The effects of

CP violating phases from the new sector on the decay µ→ eγ are analyzed in detail. The constraints arising

from the current upper limit on the branching ratio B(µ → eγ) from the MEG experiment of 2.4 × 10−12

(at 90% CL) on the parameter space of SUSY models and on vectorlike models are explored. Further, the

MEG experiment is likely to improve the upper limit by an order of magnitude in the coming years. The

improved limits will allow one to probe a much larger domain of the parameter space of the extended models.
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1 Introduction

Lepton flavor violation provides a new window for physics beyond the standard model. Since there is no

CKM type matrix in the charged leptonic sector, flavor violations involving charged leptons arise via loop

corrections which in particular can produce charged lepton flavor violating processes such as `±i → `±j γ.

Recently the MEG experiment [1] has put the most stringent bound thus far on the lepton flavor violating

decay µ→ eγ so that

B(µ→ e+ γ) < 2.4× 10−12 at 90% CL (MEG) . (1)

In this work we explore the implications of a new leptonic vector generation for the µ→ e+ γ decay. Specif-

ically we consider an additional generation of leptons and their mirrors that mix with the three ordinary

generations of leptons. Inclusion of a vectorlike generation brings in new sources of CP violation which enter

in µ → eγ decay. These arise from diagrams where one has charginos and sneutrinos and neutralinos and

charged sleptons in the loops. Additionally one has diagrams with W and neutrinos and Z and charged

leptons in the loops. Such diagrams can produce observable effects and thus the experimental upper limit

constrains the parameter space of models. Specifically we will show that the µ → eγ process can allow one

to probe new physics arising from the MSSM extension. The reason for considering a vectorlike leptonic

generation is the following: First vectorlike generations naturally appear in a variety of grand unified models,

string models and D brane models and some of these can survive down to low scales[2]. Second a vectorlike

generation is anomaly free so the good properties of the model as a quantum field theory are protected.

In previous works [3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13] we have considered the effects of an extra vectorlike

generation on a number of processes and here we extend the analysis to discuss µ→ eγ decay which is one

of most stringently constrained lepton flavor violating process. We also investigate the effect of CP phases

on the decay µ → eγ. Vectorlike multiplets have also been used by other authors (see, e.g., [14, 15, 16]).

Further, µ → eγ decay has been analyzed in several previous works (see, e.g., [17, 18, 19, 20, 21, 22, 23]).

However, none of the previous works explore the class of models discussed here.

The outline of the rest of the paper is as follows: In section 2 we define the model with an extra vectorlike

leptonic generation and specify the nature of mixings between the extra vectorlike generation and the three

ordinary generations. In section 3 we give the interactions of the leptons and mirror leptons with the

charginos and the neutralinos in the mass diagonal basis. In section 4 we give an analysis of the interactions

of the leptons and their mirrors with the W and Z bosons. An analytic analysis of µ→ eγ decay is given in

section 5 which includes charginos and neutralinos in the loops as well as W and Z bosons in the loops. A

numerical analysis of the µ → eγ branching ratio is given in section 6. Here it is shown that the vectorlike
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generation gives a significantly large contribution which allows one to probe and constrain the extended

model. It is known that CP phases can have a large effect on SUSY loop corrections (for a review see [24])

and thus the effect of CP phases on the decay µ → eγ is also analyzed. Conclusions are given in section 7.

Details of the scalar mass squared matrices are given in section 8.

2 Extension of MSSM with a Vector Multiplet

In this section we extend MSSM to include a vectorlike generation which consists of an ordinary fourth

generation of leptons, quarks and their mirrors. As mentioned in section 1 vectorlike multiplets arise in

a variety of unified models some of which could be low lying. In the analysis below we will assume an

extended MSSM with just one vector multiplet. Before proceeding further we define the notation and give

a very brief description of the extended model and a more detailed description can be found in the previous

works mentioned above. Thus the extended MSSM contains a vectorlike multiplet. To fix notation the three

generations of leptons are denoted by

ψiL ≡
(
νiL
liL

)
∼ (1, 2,−1

2
) ; lciL ∼ (1, 1, 1) ; νciL ∼ (1, 1, 0) ; i = 1, 2, 3 (2)

where the properties under SU(3)C ×SU(2)L×U(1)Y are also exhibited. The last entry in the braces such

as (1, 2,−1/2) is the value of the hypercharge Y defined so that Q = T3 + Y . These leptons have V − A

interactions. We can now add a vectorlike multiplet where we have a fourth family of leptons with V − A

interactions whose transformations can be gotten from Eq.(2) by letting i run from 1 to 4. A vectorlike

lepton multiplet also has mirrors and so we consider these mirror leptons which have V + A interactions.

The quantum numbers of the mirrors are given by

χc ≡
(
EcL
N c
L

)
∼ (1, 2,

1

2
) ; EL ∼ (1, 1,−1) ; NL ∼ (1, 1, 0). (3)

Interesting new physics arises when we allow mixings of the vectorlike generation with the three ordinary

generations. Here we focus on the mixing of the mirrors in the vectorlike generation with the three genera-

tions. Thus the superpotential of the model allowing for the mixings among the three ordinary generations

and the vectorlike generation is given by
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W = −µεijĤi
1Ĥ

j
2 + εij [f1Ĥ

i
1ψ̂

j
Lτ̂

c
L + f ′1Ĥ

j
2 ψ̂

i
Lν̂

c
τL + f2Ĥ

i
1χ̂

cjN̂L + f ′2H
j
2 χ̂

ciÊL

+ h1H
i
1ψ̂

j
µLµ̂

c
L + h′1H

j
2 ψ̂

i
µLν̂

c
µL + h2H

i
1ψ̂

j
eLê

c
L + h′2H

j
2 ψ̂

i
eLν̂

c
eL]

+ f3εijχ̂
ciψ̂jL + f ′3εijχ̂

ciψ̂jµL + f4τ̂
c
LÊL + f5ν̂

c
τLN̂L + f ′4µ̂

c
LÊL + f ′5ν̂

c
µLN̂L

+ f ′′3 εijχ̂
ciψ̂jeL + f ′′4 ê

c
LÊL + f ′′5 ν̂

c
eLN̂L , (4)

where ˆ implies superfields, ψ̂L stands for ψ̂3L, ψ̂µL stands for ψ̂2L and ψ̂eL stands for ψ̂1L. In eq. (4) we have

suppressed terms such as ec4EL etc for simplicity. Their inclusion will not change our analysis substantially.

The mass terms for the neutrinos, mirror neutrinos, leptons and mirror leptons arise from the term

L = −1

2

∂2W

∂Ai∂Aj
ψiψj + H.c. , (5)

where ψ and A stand for generic two-component fermion and scalar fields. After spontaneous breaking of

the electroweak symmetry, (〈H1
1 〉 = v1/

√
2 and 〈H2

2 〉 = v2/
√

2), we have the following set of mass terms

written in the 4-component spinor notation so that

− Lm = ξ̄TR(Mf )ξL + η̄TR(M`)ηL + H.c., (6)

where the basis vectors in which the mass matrix is written is given by

ξ̄TR =
(
ν̄τR N̄R ν̄µR ν̄eR

)
,

ξTL =
(
ντL NL νµL νeL

)
,

η̄TR =
(
τ̄R ĒR µ̄R ēR

)
,

ηTL =
(
τL EL µL eL

)
, (7)

and the mass matrix Mf is given by

Mf =


f ′1v2/

√
2 f5 0 0

−f3 f2v1/
√

2 −f ′3 −f ′′3
0 f ′5 h′1v2/

√
2 0

0 f ′′5 0 h′2v2/
√

2

 . (8)

We define the matrix element (22) of the mass matrix as mN so that

mN = f2v1/
√

2. (9)

The mass matrix is not hermitian and thus one needs bi-unitary transformations to diagonalize it. We define

the bi-unitary transformation so that
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Dν†
R (Mf )Dν

L = diag(mψ1
,mψ2

,mψ3
,mψ4

). (10)

Under the bi-unitary transformations the basis vectors transform so that
ντR
NR
νµR
νeR

 = Dν
R


ψ1R

ψ2R

ψ3R

ψ4R

 ,


ντL
NL
νµL
νeL

 = Dν
L


ψ1L

ψ2L

ψ3L

ψ4L

 . (11)

In ψ1, ψ2, ψ3, ψ4 are the mass eigenstates for the neutrinos, where in the limit of no mixing we identify ψ1

as the light tau neutrino, ψ2 as the heavier mass eigenstate, ψ3 as the muon neutrino and ψ4 as the electron

neutrino. A similar analysis goes to the lepton mass matrix M` where

M` =


f1v1/

√
2 f4 0 0

f3 f ′2v2/
√

2 f ′3 f ′′3
0 f ′4 h1v1/

√
2 0

0 f ′′4 0 h2v1/
√

2

 . (12)

In general f3, f4, f5, f
′
3, f
′
4, f
′
5, f
′′
3 , f

′′
4 , f

′′
5 can be complex and we define their phases so that

fk = |fk|eiχk , f ′k = |f ′k|eiχ
′
k , f ′′k = |f ′′k |eiχ

′′
k ; k = 3, 4, 5 . (13)

We introduce now the mass parameter mE defined by the (22) element of the mass matrix above so that

mE = f ′2v2/
√

2. (14)

Next we consider the mixing of the charged sleptons and the charged mirror sleptons. The mass squared

matrix of the slepton - mirror slepton comes from three sources: the F term, the D term of the potential and

the soft SUSY breaking terms. Using the superpotential of Eq. (4), the mass terms arising from it after the

breaking of the electroweak symmetry are given by the Lagrangian

L = LF + LD + Lsoft , (15)

where LF is deduced from Fi = ∂W/∂Ai, and −LF = VF = FiF
∗
i is given in the appendix, while the LD is

given by

−LD =
1

2
m2
Z cos2 θW cos 2β{ν̃τLν̃∗τL − τ̃Lτ̃∗L + ν̃µLν̃

∗
µL − µ̃Lµ̃∗L + ν̃eLν̃

∗
eL − ẽLẽ∗L

+ ẼRẼ
∗
R − ÑRÑ∗R}+

1

2
m2
Z sin2 θW cos 2β{ν̃τLν̃∗τL + τ̃Lτ̃

∗
L + ν̃µLν̃

∗
µL + µ̃Lµ̃

∗
L

+ ν̃eLν̃
∗
eL + ẽLẽ

∗
L − ẼRẼ∗R − ÑRÑ∗R + 2ẼLẼ

∗
L − 2τ̃Rτ̃

∗
R − 2µ̃Rµ̃

∗
R − 2ẽRẽ

∗
R}. (16)
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For Lsoft we assume the following form

−Lsoft = M2
τ̃Lψ̃

i∗
τLψ̃

i
τL +M2

χ̃χ̃
ci∗χ̃ci +M2

µ̃Lψ̃
i∗
µLψ̃

i
µL +M2

ẽLψ̃
i∗
eLψ̃

i
eL +M2

ν̃τ ν̃
c∗
τLν̃

c
τL +M2

ν̃µ ν̃
c∗
µLν̃

c
µL

+M2
ν̃e ν̃

c∗
eLν̃

c
eL +M2

τ̃ τ̃
c∗
L τ̃

c
L +M2

µ̃µ̃
c∗
L µ̃

c
L +M2

ẽ ẽ
c∗
L ẽ

c
L +M2

Ẽ
Ẽ∗LẼL +M2

Ñ
Ñ∗LÑL

+ εij{f1AτHi
1ψ̃

j
τLτ̃

c
L − f ′1AντHi

2ψ̃
j
τLν̃

c
τL + h1AµH

i
1ψ̃

j
µLµ̃

c
L − h′1AνµHi

2ψ̃
j
µLν̃

c
µL

+ h2AeH
i
1ψ̃

j
eLẽ

c
L − h′2AνeHi

2ψ̃
j
eLν̃

c
eL + f2ANH

i
1χ̃

cjÑL − f ′2AEHi
2χ̃

cjẼL + H.c.} . (17)

Here MẽL,Mν̃e etc are the soft masses and Ae, Aνe etc are the trilinear couplings. The trilinear couplings

are complex and we define their phases so that

Ae = |Ae|eiαAe , Aνe = |Aνe |eiαAνe , · · · . (18)

From these terms we construct the scalar mass square matrices. These are exhibited in section 8.

3 Interactions with charginos and neutralinos

In this section we discuss the interactions in the mass diagonal basis involving charged leptons, sneutrinos

and charginos. Thus we have

−Lτ−ν̃−χ− =

2∑
i=1

8∑
j=1

τ̄α(CLαijPL + CRαijPR)χ̃ciν̃j + H.c., (19)

such that

CLαij = g(−κτU∗i2Dτ∗
R1αD̃

ν
1j − κµU∗i2Dτ∗

R3αD̃
ν
5j − κeU∗i2Dτ∗

R4αD̃
ν
7j

+ U∗i1D
τ∗
R2αD̃

ν
4j − κNU∗i2Dτ∗

R2αD̃
ν
2j) (20)

CRαij =g(−κντVi2Dτ∗
L1αD̃

ν
3j − κνµVi2Dτ∗

L3αD̃
ν
6j − κνeVi2Dτ∗

L4αD̃
ν
8j + Vi1D

τ∗
L1αD̃

ν
1j

+ Vi1D
τ∗
L3αD̃

ν
5j + Vi1D

τ∗
L4αD̃

ν
7j − κEVi2Dτ∗

L2αD̃
ν
4j), (21)

with

(κN , κτ , κµ, κe) =
(mN ,mτ ,mµ,me)√

2mW cosβ
, (22)

(κE , κντ , κνµ , κνe) =
(mE ,mντ ,mνµ ,mνe)√

2mW sinβ
. (23)
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and

U∗MCV = diag(mχ̃−1
,mχ̃−2

). (24)

Next we discuss the interactions in the mass diagonal basis involving charged leptons, sleptons and

neutralinos. Thus we have

−Lτ−τ̃−χ0 =

4∑
i=1

8∑
j=1

τ̄α(C
′L
αijPL + C

′R
αijPR)χ̃0

i τ̃j + H.c., (25)

such that

C
′L
αij =

√
2(ατiD

τ∗
R1αD̃

τ
1j − δEiDτ∗

R2αD̃
τ
2j − γτiDτ∗

R1αD̃
τ
3j + βEiD

τ∗
R2αD̃

τ
4j + αµiD

τ∗
R3αD̃

τ
5j

− γµiDτ∗
R3αD̃

τ
6j + αeiD

τ∗
R4αD̃

τ
7j − γeiDτ∗

R4αD̃
τ
8j) (26)

C
′R
αij =

√
2(βτiD

τ∗
L1αD̃

τ
1j − γEiDτ∗

L2αD̃
τ
2j − δτiDτ∗

L1αD̃
τ
3j + αEiD

τ∗
L2αD̃

τ
4j + βµiD

τ∗
L3αD̃

τ
5j

− δµiDτ∗
L3αD̃

τ
6j + βeiD

τ∗
L4αD̃

τ
7j − δeiDτ∗

L4αD̃
τ
8j), (27)

where

αEi =
gmEX

∗
4i

2mW sinβ
, βEi = eX ′1i +

g

cos θW
X ′2i

(
1

2
− sin2 θW

)
, (28)

γEi = eX
′∗
1i −

g sin2 θW
cos θW

X
′∗
2i , δEi = − gmEX4i

2mW sinβ
, (29)

and

ατi =
gmτX3i

2mW cosβ
, αµi =

gmµX3i

2mW cosβ
, αei =

gmeX3i

2mW cosβ
, (30)

δτi = − gmτX
∗
3i

2mW cosβ
, δµi = − gmµX

∗
3i

2mW cosβ
, δei = − gmeX

∗
3i

2mW cosβ
, (31)

and where

βτi = βµi = βei = −eX
′∗
1i +

g

cos θW
X
′∗
2i

(
−1

2
+ sin2 θW

)
, (32)

γτi = γµi = γei = −eX ′1i +
g sin2 θW
cos θW

X ′2i . (33)

Here X ′ are defined by

X ′1i = X1i cos θW +X2i sin θW , (34)

X ′2i = −X1i sin θW +X2i cos θW , (35)
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where X diagonalizes the neutralino mass matrix and is defined by the relation

XTMχ̃0X = diag(mχ0
1
,mχ0

2
,mχ0

3
,mχ0

4
) . (36)

4 Interaction of leptons and mirrors with W and Z bosons

In addition to the computation of the supersymmetric loop diagrams, we compute the contributions arising

from the exchange of the W and Z bosons and the leptons and the mirror leptons in the loops. The relevant

interactions needed are given below. For the W boson exchange the interactions that enter are given by

−LτWψ = W †ρ

4∑
i=1

4∑
α=1

ψ̄iγ
ρ[CWLiαPL + CWRiαPR]τα + H.c. , (37)

where

CWLiα =
g√
2

[Dν∗
L1iD

τ
L1α +Dν∗

L3iD
τ
L3α +Dν∗

L4iD
τ
L4α] , (38)

CWRiα =
g√
2

[Dν∗
R2iD

τ
R2α] . (39)

For the Z boson exchange the interactions that enter are given by

− LττZ = Zρ
∑4
α=1

∑4
β=1 τ̄αγ

ρ[CZLαβPL + CZRαβPR]τβ , (40)

where

CZLαβ =
g

cos θW
[x(Dτ†

Lα1D
τ
L1β +Dτ†

Lα2D
τ
L2β +Dτ†

Lα3D
τ
L3β +Dτ†

Lα4D
τ
L4β)

−1

2
(Dτ†

Lα1D
τ
L1β +Dτ†

Lα3D
τ
L3β +Dτ†

Lα4D
τ
L4β)] , (41)

and

CZRαβ =
g

cos θW
[x(Dτ†

Rα1D
τ
R1β +Dτ†

Rα2D
τ
R2β +Dτ†

Rα3D
τ
R3β +Dτ†

Rα4D
τ
R4β)

−1

2
(Dτ†

Rα2D
τ
R2β)] , (42)

where x = sin2 θW .
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Figure 1: The diagrams that allow the decay of µ→ e+ γ via supersymmetric loops involving the chargino
(top left) and the neutralino (top right) and via W loop (bottom left) and Z loop (bottom right) with
emission of the photon from the charged particle inside the loop.

5 The analysis of µ→ e+ γ Branching Ratio

The decay µ → e + γ is induced by one-loop electric and magnetic transition dipole moments, which arise

from the diagrams of Fig.5. For an incoming muon of momentum p and a resulting electron of momentum

p′, we define the amplitude

< e(p′)|Jα|µ(p) >= ūe(p
′)Γαuµ(p) , (43)

where

Γα(q) =
Fµe2 (q)iσαβq

β

mµ +me
+
Fµe3 (q)σαβγ5q

β

mµ +me
+ ..... (44)

with q = p′ − p and where mf denotes the mass of the fermion f . The branching ratio of µ→ e+ γ is given

by

B(µ→ e+ γ) =
24π2

G2
Fm

2
µ(mµ +me)2

{|Fµe2 (0)|2 + |Fµe3 (0)|2} , (45)

where the form factors Fµe2 and Fµe3 arise from the chargino, neutralino and vector bosons contributions as

follows

Fµe2 (0) = Fµe2χ+ + Fµe2χ0 + Fµe2W + Fµe2Z , (46)

Fµe3 (0) = Fµe3χ+ + Fµe3χ0 + Fµe3W + Fµe3Z . (47)
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It is also useful to define Bm and Be as follows

Bm(µ→ e+ γ) =
24π2

G2
Fm

2
µ(mµ +me)2

|Fµe2 (0)|2 , (48)

Be(µ→ e+ γ) =
24π2

G2
Fm

2
µ(mµ +me)2

|Fµe3 (0)|2 , (49)

where Bm is the branching ratio from the magnetic dipole operator and Be is the branching ratio from

the electric dipole operator. We discuss now the individual contributions to Fµe2 Fµe3 supersymmetric and

non-supersymmetric loops.

The chargino contribution Fµe2χ+ is given by

Fµe2χ+ =

2∑
i=1

8∑
j=1

[
mµ(mµ +me)

64π2m2
χ̃i+

{CL4ijCL∗3ij + CR4ijC
R∗
3ij}F1

(
M2
ν̃j

m2
χ̃i+

)

+
(mµ +me)

64π2mχ̃i+
{CL4ijCR∗3ij + CR4ijC

L∗
3ij}F2

(
M2
ν̃j

m2
χ̃i+

)]
, (50)

where

F1(x) =
1

3(x− 1)4
{−2x3 − 3x2 + 6x− 1 + 6x2 lnx} (51)

and

F2(x) =
1

(x− 1)3
{3x2 − 4x+ 1− 2x2 lnx} . (52)

The neutralino contribution Fµe2χ0 is given by

Fµe2χ0 =

4∑
i=1

8∑
j=1

[
−mµ(mµ +me)

192π2m2
χ̃i0

{C ′L4ijC ′L∗3ij + C ′R4ijC
′R∗
3ij }F3

(
M2
τ̃j

m2
χ̃i0

)

− (mµ +me)

64π2mχ̃i0
{C ′L4ijC ′R∗3ij + C ′R4ijC

′L∗
3ij }F4

(
M2
τ̃j

m2
χ̃i0

)]
, (53)

where

F3(x) =
1

(x− 1)4
{−x3 + 6x2 − 3x− 2− 6x lnx} (54)

and

F4(x) =
1

(x− 1)3
{−x2 + 1 + 2x lnx} . (55)

The contributions from the W exchange Fµe2W is given by

Fµe2W =

4∑
i=1

mµ(mµ +me)

32π2m2
W

[CWLi4C
W∗
Li3 + CWRi4C

W∗
Ri3 ]FW

(
m2
ψi

m2
W

)

+
mψi(mµ +me)

32π2m2
W

[CWLi4C
W∗
Ri3 + CWRi4C

W∗
Li3 ]GW

(
m2
ψi

m2
W

)
, (56)
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where the form factors are given by

FW (x) =
1

6(x− 1)4
[
4x4 − 49x3 + 18x3 lnx+ 78x2 − 43x+ 10

]
(57)

and

GW (x) =
1

(x− 1)3
[
4− 15x+ 12x2 − x3 − 6x2 lnx

]
. (58)

The contribution Fµe2Z from the Z exchange is given by

Fµe2Z =
4∑

β=1

mµ(mµ +me)

64π2m2
Z

[CZLβ4C
Z∗
Lβ3 + CZRβ4C

Z∗
Rβ3]FZ

(
m2
τβ

m2
Z

)

+
mτβ (mµ +me)

64π2m2
Z

[CZLβ4C
Z∗
Rβ3 + CZRβ4C

Z∗
Lβ3]GZ

(
m2
τβ

m2
Z

)
, (59)

where

FZ(x) =
1

3(x− 1)4
[
−5x4 + 14x3 − 39x2 + 18x2 lnx+ 38x− 8

]
(60)

and

GZ(x) =
2

(x− 1)3
[
x3 + 3x− 6x lnx− 4

]
. (61)

The chargino contribution Fµe3χ+ is given by

Fµe3χ+ =

2∑
i=1

8∑
j=1

(mµ +me)mχ̃i+

32π2M2
ν̃j

{CL4ijCR∗3ij − CR4ijCL∗3ij}F5

(
m2
χ̃i+

M2
ν̃j

)
, (62)

where

F5(x) =
1

2(x− 1)2
{−x+ 3 +

2 lnx

1− x
} . (63)

The neutralino contribution Fµe3χ0 is given by

Fµe3χ0 =

4∑
i=1

8∑
j=1

(mµ +me)mχ̃i0

32π2M2
τ̃j

{C ′L4ijC ′R∗3ij − C ′R4ijC ′L∗3ij }F6

(
m2
χ̃i0

M2
τ̃j

)
, (64)

where

F6(x) =
1

2(x− 1)2
{x+ 1 +

2x lnx

1− x
} . (65)

The W boson contrition Fµe3W is given by

Fµe3W = −
4∑
i=1

mψi(mµ +me)

32π2m2
W

[CWLi4C
W∗
Ri3 − CWRi4CW∗Li3 ]I1

(
m2
ψi

m2
W

)
, (66)
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where the functions CWL and CWR are given in section 4 and the form factor I1 is given by

I1(x) =
2

(1− x)2

[
1− 11

4
x+

1

4
x2 − 3x2 lnx

2(1− x)

]
. (67)

And finally, the Z exchange diagram contribution Fµe3Z is given by

Fµe3Z =

4∑
β=1

(mµ +me)

32π2

mτβ

m2
Z

[CZL4βC
Z∗
R3β − CZR4βC

Z∗
L3β ]I2

(
m2
τβ

m2
Z

)
, (68)

where the form factor I2 is given by

I2(x) =
2

(1− x)2

[
1 +

1

4
x+

1

4
x2 +

3x lnx

2(1− x)

]
. (69)

6 Estimate of size of B(µ→ eγ)

In this section we give a numerical analysis for the branching ratio B(µ → eγ) . The analysis is done in

an MSSM extension with soft breaking parameters taken at the electroweak scale. Thus no renormalization

group running of GUT scale parameters is needed. The parameters entering the analysis are summarized in

the appendix. The scalar mass and trilinear coupling parameters are m0 and A0 in the slepton mass squared

matrix. The corresponding ones in the sneutrino mass squared matrix are mν̃
0 and Aν̃0 where

m2
0 = M̃2

τL = M̃2
E = M̃2

τ = M̃2
χ = M̃2

µL = M̃2
µ = M̃2

eL = M̃2
e

mν̃
0 = M̃2

N = M̃2
ντ = M̃2

νµ = M̃2
νe

A0 = Aτ = Aµ = Ae = AE

Aν̃0 = Aντ = Aνµ = Aνe = AN (70)

The branching ratio B(µ→ eγ) arises as a consequence of mixing induced by the parameters f3, f
′
3, f
′′
3 and

f4, f
′
4, f
′′
4 where f ’s are complex parameters and their arguments are the CP violating phases. The branching

ratio B(µ→ eγ) is a sensitive function of both the magnitudes as well as the phases of the mixing parameters

f . We discuss the dependence of B(µ→ eγ) on these below.

Fig. 2 exhibits the variation of B(µ → eγ) as a function of the CP violating phases χ′3 (left panel) and

χ′′3 (right panel). As the two panels of Fig.2 show B(µ → eγ) is a sensitive function of these phases and

can vary by an order of magnitude or more as the phases vary. The solid horizontal line gives the current

experimental upper limit on B(µ → eγ) from the MEG experiment [1]. A very similar analysis holds when

we vary the CP phases χ4 and χ′4 as exhibited in Fig.3. Figure 4 gives the relative strength of the magnetic
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and the electric dipole transition operators to B(µ→ eγ) . Thus the left panel of Fig.4 exhibits the relative

strength of the contributions from the magnetic dipole operator and the electric dipole moment operator

as a function of the CP phase χ′′4 . The right panel of Fig.4 exhibits the dependence of the electron EDM

de as a function of χ′′4 where the solid horizontal line gives the current upper limit on de from the ACME

Collaboration [25]. Thus the right panel delineates the allowed regions of the parameter space, i.e., regions

consistent with the experimental upper limit constraint on de. The left panel of Fig.5 exhibits the variation

of B(µ → eγ) as a function of χ′′3 for different values of the mixing parameter |f ′′3 | while the right panel of

Fig.5 gives the electric dipole moment of the electron with the horizontal solid line giving the experimental

upper limit on it. A comparison of the left and the right panels show the regions of χ′′3 consistent with the

current experimental upper limits on B(µ → eγ) and on de and accessible with reasonable improvement in

the sensitivity of experiment in the future.

In table1 we illustrate numerically the relative strengths of the magnetic and the electric dipole transition

operators to B(µ → eγ) . Here we also show that the analysis is consistent with the current upper limits

on the B(τ → µγ), on de and the data on the neutrino masses. Thus the current experimental limit on

B(τ → µγ) is B(τ → µγ) < 4.4 × 10−8 (BaBar) [26] and B(τ → µγ) < 4.5 × 10−8 (Belle) [27]. Since the

theoretical prediction of B(τ → µγ) in this case is smaller by several orders of magnitude than the current

experimental limit this decay mode is not of imminent interest in this case. In table 2 we give a numerical

analysis of the form factors F2 and F3 and their sub pieces arising from the supersymmetric and the non-

supersymmetric loops. Also listed are Bm and Be as well as de and the neutrino masses. One finds that

typically the magnetic dipole contributions dominate the electric dipole contributions. The neutrino mass

results of table 1 and table 2 are consistent with the constraint on the sum of the neutrino masses from

cosmology, i.e.,
∑
imνi < 0.44eV (95% CL) [28] and with the data on neutrino oscillations which give the

neutrino mass squared differences so that [29]

∆m2
31 ≡ m2

3 −m2
1 = 2.4+0.12

−0.11 × 10−3 eV 2 , (71)

∆m2
21 ≡ m2

2 −m2
1 = 7.65+0.23

−0.20 × 10−5 eV 2. (72)

Fig. (6) exhibits a variation of B(µ→ eγ) as a function of the mirror masses mE and mN . All points of the

four curves of Fig. (6) are consistent with the constraints set on the neutrino masses by eq. (71) and (72).

We note that in the analysis of Fig. (2)- Fig.(4) the mass parameters are typically low. For instance in the

analysis of Fig.4 we have used |µ| = 310 GeV, M1 = 180 GeV and M2 = 140 GeV and our vectorlike masses

are chosen so that mE = mN = 150, 200, 250, 300. Such a choice may be close to the LHC exclusion plots

based on LHC RUN I data and could be close to being probed with more data. We should note that the LHC

particle searches are very model dependent as can be seen from the analyses of [31, 32]. For instance in the
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ATLAS analysis of [32] the lightest chargino mass is excluded up to 700 GeV, 380 GeV, 345 GeV or 148 GeV

for a massless neutralino depending on the allowed decay channels. These results would be even more model

dependent if the neutralino is assumed massive with a varying mass. Thus while the current limits from

LHC do not directly apply to our analysis, the choice of low mass parameters point to the possibility that

they could be probed in RUN II of the LHC. It would thus be very interesting to carryout a signal analysis

of this model specifically, for instance, for multilepton searches. Such an analysis, however, is beyond the

scope of this paper.

7 Conclusion

In this work we have given an analysis of µ → eγ decay with inclusion of a vectorlike leptonic generation

where mixings appear between leptons and mirror leptons as well as between sleptons and mirror sleptons.

The decay µ → eγ arises from diagrams with charginos and sneutrinos and mirror sneutrinos, and neu-

tralinos, sleptons and mirror sleptons in the loops. Additionally electroweak loops are included where W,

Z and leptons and mirror leptons and neutrinos are exchanged. An analytic analysis of these contributions

is given in section 5 while a detailed numerical analysis is given in section 6. Here it is shown that the

current experimental limits from the MEG experiment put constraints on the parameter space of models.

Further, the size of the new contributions are such that improvement in experiment will either reveal new

physics or the improved experimental results will be able to probe large parts of the parameter space of the

extended MSSM model. Thus the MEG experiment is continuing to collect data and is expected to explore

the µ→ e+ γ decay down to a branching ratio sensitivity of a few times 10−13 in the next few years. This

will allow a further probe of this new class of MSSM extensions.

Acknowledgments: PN’s research is supported in part by the NSF grant PHY-1314774.

8 Appendix: The scalar mass squared matrices

For convenience we collect here all the contributions to the scalar mass squared matrices arising from the F

terms. They are given by

Lmass
F = Lmass

C + Lmass
N , (73)
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where Lmass
C gives the mass terms for the charged sleptons while LmassN gives the mass terms for the sneutrinos.

For Lmass
C we have

−Lmass
C =

(
v22 |f ′2|2

2
+ |f3|2 + |f ′3|2 + |f ′′3 |2

)
ẼRẼ

∗
R +

(
v22 |f ′2|2

2
+ |f4|2 + |f ′4|2 + |f ′′4 |2

)
ẼLẼ

∗
L

+

(
v21 |f1|2

2
+ |f4|2

)
τ̃Rτ̃

∗
R +

(
v21 |f1|2

2
+ |f3|2

)
τ̃Lτ̃
∗
L +

(
v21 |h1|2

2
+ |f ′4|2

)
µ̃Rµ̃

∗
R

+

(
v21 |h1|2

2
+ |f ′3|2

)
µ̃Lµ̃

∗
L +

(
v21 |h2|2

2
+ |f ′′4 |2

)
ẽRẽ
∗
R +

(
v21 |h2|2

2
+ |f ′′3 |2

)
ẽLẽ
∗
L

+

{
− f1µ

∗v2√
2

τ̃Lτ̃
∗
R −

h1µ
∗v2√
2

µ̃Lµ̃
∗
R −

f ′2µ
∗v1√
2

ẼLẼ
∗
R +

(
f ′2v2f

∗
3√

2
+
f4v1f

∗
1√

2

)
ẼLτ̃

∗
L

+

(
f4v2f

′∗
2√

2
+
f1v1f

∗
3√

2

)
ẼRτ̃

∗
R +

(
f ′3v2f

′∗
2√

2
+
h1v1f

′∗
4√

2

)
ẼLµ̃

∗
L +

(
f ′2v2f

′∗
4√

2
+
f ′3v1h

∗
1√

2

)
ẼRµ̃

∗
R

+

(
f ′′∗3 v2f

′
2√

2
+
f ′′4 v1h

∗
2√

2

)
ẼLẽ

∗
L +

(
f ′′4 v2f

′∗
2√

2
+
f ′′∗3 v1h

∗
2√

2

)
ẼRẽ

∗
R + f ′3f

∗
3 µ̃Lτ̃

∗
L + f4f

′∗
4 µ̃Rτ̃

∗
R

+f4f
′′∗
4 ẽRτ̃

∗
R + f ′′3 f

∗
3 ẽLτ̃

∗
L + f ′′3 f

′∗
3 ẽLµ̃

∗
L + f ′4f

′′∗
4 ẽRµ̃

∗
R −

h2µ
∗v2√
2

ẽLẽ
∗
R +H.c.

}
. (74)

We define the scalar mass squared matrix M2
τ̃ in the basis (τ̃L, ẼL, τ̃R, ẼR, µ̃L, µ̃R, ẽL, ẽR). We label the

matrix elements of these as (M2
τ̃ )ij = M2

ij where the elements of the matrix are given by

M2
11 = M̃2

τL +
v21 |f1|2

2
+ |f3|2 −m2

Z cos 2β

(
1

2
− sin2 θW

)
,

M2
22 = M̃2

E +
v22 |f ′2|2

2
+ |f4|2 + |f ′4|2 + |f ′′4 |2 +m2

Z cos 2β sin2 θW ,

M2
33 = M̃2

τ +
v21 |f1|2

2
+ |f4|2 −m2

Z cos 2β sin2 θW ,

M2
44 = M̃2

χ +
v22 |f ′2|2

2
+ |f3|2 + |f ′3|2 + |f ′′3 |2 +m2

Z cos 2β

(
1

2
− sin2 θW

)
,

M2
55 = M̃2

µL +
v21 |h1|2

2
+ |f ′3|2 −m2

Z cos 2β

(
1

2
− sin2 θW

)
,

M2
66 = M̃2

µ +
v21 |h1|2

2
+ |f ′4|2 −m2

Z cos 2β sin2 θW ,

M2
77 = M̃2

eL +
v21 |h2|2

2
+ |f ′′3 |2 −m2

Z cos 2β

(
1

2
− sin2 θW

)
,

M2
88 = M̃2

e +
v21 |h2|2

2
+ |f ′′4 |2 −m2

Z cos 2β sin2 θW .
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M2
12 = M2∗

21 =
v2f
′
2f
∗
3√

2
+
v1f4f

∗
1√

2
,M2

13 = M2∗
31 =

f∗1√
2

(v1A
∗
τ − µv2),M2

14 = M2∗
41 = 0,

M2
15 = M2∗

51 = f ′3f
∗
3 ,M

2∗
16 = M2∗

61 = 0,M2∗
17 = M2∗

71 = f ′′3 f
∗
3 ,M

2∗
18 = M2∗

81 = 0,

M2
23 = M2∗

32 = 0,M2
24 = M2∗

42 =
f ′∗2√

2
(v2A

∗
E − µv1),M2

25 = M2∗
52 =

v2f
′
3f
′∗
2√

2
+
v1h1f

∗
4√

2
,

M2
26 = M2∗

62 = 0,M2
27 = M2∗

72 =
v2f
′′
3 f
′∗
2√

2
+
v1h2f

′′∗
4√

2
,M2

28 = M2∗
82 = 0,

M2
34 = M2∗

43 =
v2f4f

′∗
2√

2
+
v1f1f

∗
3√

2
,M2

35 = M2∗
53 = 0,M2

36 = M2∗
63 = f4f

′∗
4 ,

M2
37 = M2∗

73 = 0,M2
38 = M2∗

83 = f4f
′′∗
4 ,

M2
45 = M2∗

54 = 0,M2
46 = M2∗

64 =
v2f
′
2f
′∗
4√

2
+
v1f
′
3h
∗
1√

2
,

M2
47 = M2∗

74 = 0,M2
48 = M2∗

84 =
v2f
′
2f
′′∗
4√

2
+
v1f
′′
3 h
∗
2√

2
,

M2
56 = M2∗

65 =
h∗1√

2
(v1A

∗
µ − µv2),M2

57 = M2∗
75 = f ′′3 f

′∗
3 ,

M2
58 = M2∗

85 = 0,M2
67 = M2∗

76 = 0,

M2
68 = M2∗

86 = f ′4f
′′∗
4 ,M2

78 = M2∗
87 =

h∗2√
2

(v1A
∗
e − µv2) .

We can diagonalize this hermitian mass squared matrix by the unitary transformation

D̃τ†M2
τ̃ D̃

τ = diag(M2
τ̃1 ,M

2
τ̃2 ,M

2
τ̃3 ,M

2
τ̃4 ,M

2
τ̃5 ,M

2
τ̃6 ,M

2
τ̃7 ,M

2
τ̃8) . (75)
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For Lmass
N we have

− Lmass
N =

(
v21 |f2|2

2
+ |f3|2 + |f ′3|2 + |f ′′3 |2

)
ÑRÑ

∗
R

+

(
v21 |f2|2

2
+ |f5|2 + |f ′5|2 + |f ′′5 |2

)
ÑLÑ

∗
L +

(
v22 |f ′1|2

2
+ |f5|2

)
ν̃τRν̃

∗
τR

+

(
v22 |f ′1|2

2
+ |f3|2

)
ν̃τLν̃

∗
τL +

(
v22 |h′1|2

2
+ |f ′3|2

)
ν̃µLν̃

∗
µL +

(
v22 |h′1|2

2
+ |f ′5|2

)
ν̃µRν̃

∗
µR

+

(
v22 |h′2|2

2
+ |f ′′3 |2

)
ν̃eLν̃

∗
eL +

(
v22 |h′2|2

2
+ |f ′′5 |2

)
ν̃eRν̃

∗
eR

+

{
− f2µ

∗v2√
2

ÑLÑ
∗
R −

f ′1µ
∗v1√
2

ν̃τLν̃
∗
τR −

h′1µ
∗v1√
2

ν̃µLν̃
∗
µR +

(
f5v2f

′∗
1√

2
− f2v1f

∗
3√

2

)
ÑLν̃

∗
τL

+

(
f5v1f

∗
2√

2
− f ′1v2f

∗
3√

2

)
ÑRν̃

∗
τR +

(
h′1v2f

′∗
5√

2
− f ′3v1f

∗
2√

2

)
ÑLν̃

∗
µL +

(
f ′′5 v1f

∗
2√

2
− f ′′∗3 v2h

′
2√

2

)
ÑRν̃

∗
eR

+

(
h′∗2 v2f

′′
5√

2
− f ′′∗3 v1f2√

2

)
ÑLν̃

∗
eL +

(
f ′5v1f

∗
2√

2
− h′1v2f

′∗
3√

2

)
ÑRν̃

∗
µR

+ f ′3f
∗
3 ν̃µLν̃τ∗L + f5f

′∗
5 ν̃µRν̃

∗
τR −

h′2µ
∗v1√
2

ν̃eLν̃
∗
eR

+ f ′′3 f
∗
3 ν̃eLν̃

∗
τL + f5f

′′∗
5 ν̃eRν̃

∗
τR + f ′′3 f

′∗
3 ν̃eLν̃

∗
µL + f ′5f

′′∗
5 ν̃eRν̃

∗
µR +H.c.

}
.

Next we write the mass squared matrix in the sneutrino sector the basis (ν̃τL, ÑL, ν̃τR, ÑR, ν̃µL, ν̃µR, ν̃eL, ν̃eR).

Thus here we denote the sneutrino mass squared matrix in the form (M2
ν̃ )ij = m2

ij where

m2
11 = M̃2

τL +
v22 |f ′1|2

2
+ |f3|2 +

1

2
m2
Z cos 2β,

m2
22 = M̃2

N +
v21 |f2|2

2
+ |f5|2 + |f ′5|2 + |f ′′5 |2,

m2
33 = M̃2

ντ +
v22 |h′1|2

2
+ |f5|2,

m2
44 = M̃2

χ +
v21 |f2|2

2
+ |f3|2 + |f ′3|2 + |f ′′3 |2 −

1

2
m2
Z cos 2β,

m2
55 = M̃2

µL +
v22 |f ′1|2

2
+ |f ′3|2 +

1

2
m2
Z cos 2β,

m2
66 = M̃2

νµ +
v22 |h′1|2

2
+ |f ′5|2,

m2
77 = M̃2

eL +
v22 |h′2|2

2
+ |f ′′3 |2 +

1

2
m2
Z cos 2β,

m2
88 = M̃2

νe +
v22 |h′2|2

2
+ |f ′′5 |2,
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m2
12 = m2∗

21 =
v2f5f

′∗
1√

2
− v1f2f

∗
3√

2
, m2

13 = m2∗
31 =

f ′∗1√
2

(v2A
∗
ντ − µv1) ,

m2
14 = m2∗

41 = 0, m2
15 = m2∗

51 = f ′3f
∗
3 ,m

2
16 = m2∗

61 = 0,

m2
17 = m2∗

71 = f ′′3 f
∗
3 ,m

2
18 = m2∗

81 = 0,

m2
23 = m2∗

32 = 0,m2
24 = m2∗

42 =
f∗2√

2
(v1A

∗
N − µv2),

m2
25 = m2∗

52 = −v1f
∗
2 f
′
3√

2
+
h′1v2f

′∗
5√

2
,

m2
26 = m2∗

62 = 0,m2
27 = m2∗

72 = −v1f
∗
2 f
′′
3√

2
+
h′2v2f

′′∗
5√

2
,

m2
28 = m2∗

82 = 0,m2
34 = m2∗

43 =
v1f
∗
2 f5√
2
− v2f

′
1f
∗
3√

2
,

m2
35 = m2∗

53 = 0,m2
36 = m2∗

63 = f5f
′∗
5 ,

m2
37 = m2∗

73 = 0,m2
38 = m2∗

83 = f5f
′′∗
5 ,

m2
45 = m2∗

54 = 0,m2
46 = m2∗

64 = −h
′∗
1 v2f

′
3√

2
+
v1f2f

′∗
5√

2
,

m2
47 = m2∗

74 = 0,m2
48 = m2∗

84 =
v1f2f

′′∗
5√

2
− v2h

′∗
2 f
′′
3√

2
,

m2
56 = m2∗

65 =
h′∗1√

2
(v2A

∗
νµ − µv1),

m2
57 = m2∗

75 = f ′′3 f
′∗
3 ,m

2
58 = m2∗

85 = 0,

m2
67 = m2∗

76 = 0,m2
68 = m2∗

86 = f ′5f
′′∗
5 ,

m2
78 = m2∗

87 =
h′∗2√

2
(v2A

∗
νe − µv1). (76)

We can diagonalize the sneutrino mass square matrix by the unitary transformation

D̃ν†M2
ν̃ D̃

ν = diag(M2
ν̃1 ,M

2
ν̃2 ,M

2
ν̃3 ,M

2
ν̃4 ,M

2
ν̃5 ,M

2
ν̃6 ,M

2
ν̃7 ,M

2
ν̃8) . (77)
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Figure 2: Left Panel: An exhibition of the dependence of B(µ → eγ) on χ′3 where χ3 = χ′′3 = χ′3. The
B(µ→ eγ) curves (bottom to top at χ′3 = π) are for the cases when |f3| = |f ′3| = |f ′′3 | = 5× 10−5, 7× 10−5,
9 × 10−5, and 11 × 10−5. Right Panel: An exhibition of B(µ → eγ) as a function of the χ′′3 where the
curves (bottom to top at χ′′3 = π) are for the cases |f3| = 5 × 10−5, 7 × 10−5, 9 × 10−5, 11 × 10−5 where
|f3| = |f ′3| = 5× 10−5 and χ3 = χ′3 = 0.3. The common parameters for both panels are tanβ = 5, |µ| = 500,
|M1| = 130, |M2| = 110, mN = 260, mE = 280, m0 = 4×105, mν̃

0 = 5×105, |A0| = |Aν̃0 | = 6×105, α1 = 0.4,
α2 = αµ = 0.5, αA0

= αAν̃0 = 1, |f4| = |f ′4| = 1, |f ′′4 | = 0.1, |f5| = 3× 10−6, |f ′5| = 8× 10−7, |f ′′5 | = 5× 10−6,

χ4 = 1, χ′4 = χ′′4 = 0.5, χ5 = χ′5 = χ′′5 = 1. The solid horizontal line is the upper limit from the MEG
experiment [1]. Here and in the rest of the figures and in the tables all masses are in GeV and phase angles
in radian.

Figure 3: Left Panel: Plot of B(µ → eγ) as a function of χ4 when χ′4 = χ′′4 = χ4. The curves from bottom
to top at χ4 = π are for the cases |f4| = |f ′4| = |f ′′4 | = 0.1 , 0.5, 1, and 1.5 and |f3| = |f ′3| = |f ′′3 | = 5× 10−5

and χ3 = χ′3 = χ′′3 = 0.3. The solid horizontal line is the upper limit from the MEG experiment [1]. Right
Panel: An exhibition of the dependence of B(µ→ eγ) on χ′4. The curves from bottom to top at χ

′′

4 = π are
for the cases when |f ′4|=0.3, 0.4, 0.5, and 0.6 and |f4| = |f ′′4 | = 0.4, χ4 = χ′′4 = 1. All other parameters in
both panels are the same as in Fig.2.
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Figure 4: Left Panel: An exhibition of the magnetic contribution Bm (dotted) as given by Eq. (48), the
electric contribution Be (dashed) as given by Eq. (49) to B(µ → eγ) where the solid curve stands for their
sum as a function of χ′′4 when mE = mN = 300. Right Panel: An exhibition of de as a function of χ′′4 .
The curves from top to bottom at χ

′′

4 = π are for values of mE = mN = 150, 200, 250, and 300. The
solid horizontal line is the upper limit on de from the ACME Collaboration [25]. The common parameters
for the two panels are |µ| = 310, |M1| = 180, |M2| = 140, tanβ = 20, m0 = 4 × 105, |A0| = 1.5 × 106,
mν̃

0 = 4×105, |Aν̃0 | = 5.1×106, α1 = 0.4, α2 = 0.2, αµ = 0.7, αA0
= αAν̃0 = 1. The mixings are |f3| = 7×10−4,

|f ′3| = 1×10−4, |f ′′3 | = 2×10−4, |f4| = 3×10−2, |f ′4| = 0.4, |f ′′4 | = 5×10−2, |f5| = 3.8×10−6, |f ′5| = 2.2×10−6,
|f ′′5 | = 3× 10−6, χ3 = χ′3 = χ′′3 = 1, χ4 = 0.3, χ′4 = 0.2, χ5 = χ′5 = χ′′5 = 0.5.

(i) mE = mN = 300 (ii) mE = mN = 150
Bm 1.1× 10−12 8.3× 10−12

Be 1.6× 10−13 1.2× 10−12

B(µ→ eγ) 1.2× 10−12 9.4× 10−12

B(τ → µγ) 4.8× 10−25 8.0× 10−25

de (ecm) 6.3× 10−30 1.3× 10−29

mν3 5.0× 10−11 5.5× 10−11

mν2 8.9× 10−12 9.6× 10−12

mν1 1.1× 10−12 2.5× 10−12

Table 1: An exhibition of the numerical values of Bm, Be, B(µ → eγ) and B(τ → µ + γ) when χ′′4 = 2 for
two values of mE = mN while other parameters are the same as in Fig.4. The values of the electron EDM
de and the neutrino masses mν1 ,mν2 ,mν3 are also exhibited.
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Figure 5: Left Panel: A plot of B(µ→ eγ) as a function of χ′′3 where the curves from bottom to top at χ′′3 = 2
are for values of |f ′′3 | = 7×10−5, 8×10−5, 9×10−5, 1×10−4. The solid horizontal line is the upper limit from
the MEG experiment [1]. Right Panel: Plot of de as a function of χ′′3 for the same values of f ′′3 as in the left
panel. The solid horizontal line is the upper limit on de from the ACME Collaboration [25]. The parameters
used are tanβ = 5, |µ| = 500, |M1| = 130 , |M2| = 110 , mN = 260 , mE = 240 , m0 = 7×104 , mν̃

0 = 5×
104 , |A0| = |Aν̃0 | = 6 × 105 , α1 = 0.4 , α2 = αµ = 0.5, αA0

= αAν̃0 = 1. The mixings are |f3| = 3 ×
10−5 , |f ′3| = 4 × 10−6 , |f4| = |f ′4| = 0.8 , |f ′′4 | = 0.1 , |f5| = 3 × 10−6 , |f ′5| = 7 × 10−6 , |f5′′| = 5 ×
10−6 . Their CP phases are χ3 = 0.3 , χ3

′ = 0.4 , χ4 = 1 , χ′4 = χ′′4 = 0.5 , χ5 = χ′5 = χ5
′′ = 1.

(i) χ′′3 = 0.39 (ii) χ′′3 = 2.1
Fµe2χ+ 2.7× 10−18e−0.74i 2.8× 10−18e−2.1i

Fµe2χ0 3.4× 10−21e0.56i 3.5× 10−21e−0.39i

Fµe2W 5.8× 10−15e−1.5i 6.1× 10−15e0.12i

Fµe2Z 4.0× 10−15e1.4i 4.7× 10−15e−0.15i

Fµe2 (0) 1.9× 10−15e−1.1i 1.1× 10−14e0.0024i

Bm 5.3× 10−14 5.6× 10−13

Fµe3χ+ 2.4× 10−18e3.04i 9.5× 10−19e0.45i

Fµe3χ0 1.3× 10−20e0.53i 1.6× 10−21e−1.1i

Fµe3W 3.3× 10−15e−1.7i 2.3× 10−15e−0.019i

Fµe3Z 1.5× 10−15e1.9i 5.8× 10−16e0.34i

Fµe3 (0) 2.2× 10−15e−2.1i 2.9× 10−15e0.051i

Be 6.6× 10−14 6.7× 10−14

B(µ→ eγ) 1.2× 10−13 1.7× 10−12

B(τ → µγ) 2.5× 10−19 2.5× 10−19

de (ecm) 4.7× 10−29 6.1× 10−30

mν3 4.7× 10−11 4.7× 10−11

mν2 9.1× 10−12 8.8× 10−12

mν1 2.1× 10−12 4.9× 10−13

Table 2: An exhibition of the numerical values of the form factors Fµe2 and Fµe3 and their sub pieces for two
cases: (i) and (ii). For case (i) |f ′′3 | = 10−4 and χ′′3 = 0.39 while for case (ii) |f ′′3 | = 0.7× 10−4 and χ′′3 = 2.1.
All other parameters used in this table are the same as Fig.5. The magnetic and electric transition operators
Bm and Be are also listed as are de and and the neutrino mass eigenstates for each case listed above.
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Figure 6: A plot of B(µ → eγ) as a function of mE = mN where the curves from top to bottom at
mE = mN = 150 are for values of |f4| = 0.1, 0.5, 1, 1.5. The parameters used are |µ| = 500, |M1| = 130,
|M2| = 110, tanβ = 10, m0 = 4 × 104, |A0| = 6 × 105, mν̃

0 = 5 × 104, |Aν̃0 | = 6 × 105, α1 = 0.4, α2 = 0.5,
αµ = 0.5, αA0

= αAν̃0 = 0.6. The mixings are |f3| = 5 × 10−5, |f ′3| = 5 × 10−5, |f ′′3 | = 5 × 10−5, |f ′4| = 0.5,

|f ′′4 | = 5× 10−1, |f5| = 3× 10−6, |f ′5| = 8× 10−7, |f ′′5 | = 5× 10−6, χ3 = χ′3 = χ′′3 = 0.3, χ4 = χ′4 = χ′′4 = 1,
χ5 = χ′5 = χ′′5 = 1.
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