
ar
X

iv
:1

50
3.

01
43

1v
2 

 [
he

p-
ph

] 
 8

 A
ug

 2
01

5

June 23, 2021 1:7 WSPC Proceedings - 9.75in x 6.5in Dvornikov˙Singapore˙2015 page 1

1

Neutrino interaction with background matter in a noninertial frame

Maxim Dvornikov∗

Physics Faculty, National Research Tomsk State University, 36 Lenin Ave., 634050 Tomsk,
Russia;

Pushkov Institute of Terrestrial Magnetism, Ionosphere and Radiowave Propagation
(IZMIRAN), 142190 Troitsk, Moscow, Russia;

Institute of Physics, University of São Paulo, CP 66318, CEP 05315-970 São Paulo, SP, Brazil
∗E-mail: maxdvo@izmiran.ru

We study Dirac neutrinos propagating in rotating background matter. First we derive

the Dirac equation for a single massive neutrino in the noninertial frame, where matter

is at rest. This equation is written in the effective curved space-time corresponding to

the corotating frame. We find the exact solution of the Dirac equation. The neutrino

energy levels for ultrarelativistic particles are obtained. Then we discuss several neutrino

mass eigenstates, with a nonzero mixing between them, interacting with rotating back-

ground matter. We derive the effective Schrödinger equation governing neutrino flavor

oscillations in rotating matter. The new resonance condition for neutrino oscillations

is obtained. We also examine the correction to the resonance condition caused by the

matter rotation.

Keywords: massive and mixed neutrinos, Dirac equation in curved space-time, exact

solution, neutrino oscillations in matter, noninertial effects, rotation

1. Introduction

Nowadays it is commonly believed that neutrinos are massive particles and there

is a nonzero mixing between different neutrino generations. These neutrino prop-

erties result in transitions between neutrino flavors, or neutrino oscillations. It is

also known that various external fields, like electroweak interaction of neutrinos

with background fermions, neutrino electromagnetic interaction, and neutrino in-

teraction with a strong gravitational field, can also influence the process of neutrino

oscillations.

As shown in Ref. 1, noninertial effects in accelerated and rotating frames can af-

fect neutrino propagation and oscillations. The consideration of the reference frame

rotation is particularly important for astrophysical neutrinos emitted by a rapidly

rotating compact star, e.g., a pulsar. For example, the possibility of the pulsar spin

down by the neutrino emission and interaction with rotating matter was recently

discussed in Ref. 2. It should be noted that besides elementary particle physics,

various processes in noninertial frames are actively studied in condensed matter

physics. For instance, the enhancement of the spin current in a semiconductor

moving with an acceleration was recently predicted in Ref. 3.

In the present work we summarize the results of Ref. 4, where the neutrino in-

http://arxiv.org/abs/1503.01431v2
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teraction with background matter in a rotating frame was studied. We assume that

neutrinos can interact with background fermions by means of electroweak forces.

We also take that neutrino mass eigenstates are Dirac particles. In our treatment we

account for the noninertial effects since we find the exact solution of a Dirac equa-

tion for a neutrino moving in the curved space-time with a metric corresponding a

rotating frame.

This work is organized in the following way. In Sec. 2, we start with the brief

description of the neutrino interaction with background matter in Minkowski space-

time. We consider matter moving with a constant velocity and discuss both neu-

trino flavor and mass eigenstates. Then, in Sec. 3, we study background matter

moving with an acceleration. The Dirac equation, including noninertial effects, for

a neutrino interacting with such matter is written down in a frame where matter

is at rest. In Sec. 3.1, we solve the Dirac equation and find the neutrino energy

spectrum for ultrarelativistic neutrinos moving in matter rotating with a constant

angular velocity. Then, in Sec. 4, we apply our results for the description of neutrino

oscillations in rotating background matter. The effective Schrödinger equation gov-

erning neutrino oscillations is derived and the new resonance condition is obtained.

We consider how the matter rotation can affect the resonance in neutrino oscillation

in a realistic astrophysical situation. Finally, in Sec. 5, we summarize our results.

2. Neutrino interaction with background matter

In this section we describe the interaction of different neutrino flavors with back-

ground matter in a flat space-time. We discuss a general case of matter moving

with a constant mean velocity and having a mean polarization. Then we consider

the matter interaction of neutrino mass eigenstates, which are supposed to be Dirac

particles.

The interaction of the neutrino flavor eigenstates να, α = e, µ, τ , with back-

ground matter in the flat space-time is described by the following effective La-

grangian5:

Leff = −
∑

α

ν̄αγ
L
µνα · fµ

α , (1)

where γLµ = γµ(1− γ5)/2, γµ = (γ0,γ) are the Dirac matrices, and γ5 = iγ0γ1γ2γ3.

The interaction Lagrangian in Eq. (1) is derived in the mean field approxima-

tion using the effective external currents fµ
α depending on the characteristics of

background matter as6

fµ
α =

√
2GF

∑

f

(

q
(1)
α,f j

µ
f + q

(2)
α,fλ

µ
f

)

, (2)

where GF is the Fermi constant and the sum is taken over all background fermions

f . Here

jµf = nfu
µ
f , (3)
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is the hydrodynamic current and

λµf = nf

(

(ζfuf ), ζf +
uf (ζfuf )

1 + u0f

)

, (4)

is the four vector of the matter polarization. In Eqs. (3) and (4), nf is the invariant

number density (the density in the rest frame of fermions), ζf is the invariant

polarization (the polarization in the rest frame of fermions), and uµf =
(

u0f ,uf

)

is

the four velocity. To derive Eqs. (2)-(4) it is crucial that background fermions have

constant velocity. Only in this situation one can make a boost to the rest frame

of the fermions where nf and ζf are defined. The explicit form of the coefficients

q
(1,2)
α,f in Eq. (2) can be found in Ref. 6.

Nowadays it is experimentally confirmed that the flavor neutrino eigenstates are

the superposition of the neutrino mass eigenstates, ψi, i = 1, 2, . . . ,

να =
∑

i

Uαiψi, (5)

where (Uαi) is the unitary mixing matrix. The transformation in Eq. (5) diago-

nalizes the neutrino mass matrix. Only using the neutrino mass eigenstates we

can reveal the nature of neutrinos, i.e. say whether they are Dirac or Majorana

particles. Despite the great experimental efforts to shed light upon the nature of

neutrinos, this issue still remains open. Here we shall suppose that ψi correspond

to Dirac fields.

The effective Lagrangian for the interaction of ψi with background matter can

be obtained using Eqs. (1) and (5),

Leff = −
∑

ij

ψ̄iγ
L
µψj · gµij , (6)

where

gµij =
∑

α

U∗
αiUαjf

µ
α , (7)

is the nondiagonal effective potential in the mass eigenstates basis.

Using Eq. (6) one obtains that the corresponding Dirac equations for the neu-

trino mass eigenstates are coupled,

[

iγµ∂µ −mi − γLµg
µ
ii

]

ψi =
∑

j 6=i

γLµg
µ
ijψj , (8)

where mi is the mass of ψi. One can proceed in the analytical analysis of Eq. (8)

if we exactly account for only the diagonal effective potentials gµii. To take into

account the r.h.s. of Eq. (8), depending on the nondiagonal elements of the matrix
(

gµij
)

, with i 6= j, one should apply a perturbative method (see Sec. 4 below).



June 23, 2021 1:7 WSPC Proceedings - 9.75in x 6.5in Dvornikov˙Singapore˙2015 page 4

4

3. Massive neutrinos in noninertial frames

In this section we generalize the Dirac equation for a neutrino interacting with a

background matter to the situation when the velocity of the matter motion is not

constant. In particular, we study the case of the matter rotation with a constant

angular velocity. Then we obtain the solution of the Dirac equation and find the

energy spectrum.

If we discuss a neutrino mass eigenstate propagating in a nonuniformly moving

matter, the expressions for fµ
α in Eqs. (2)-(4) become invalid since they are derived

under the assumption of the unbroken Lorentz invariance. The most straightforward

way to describe the neutrino evolution in matter moving with an acceleration is to

rewrite the Dirac equation for a neutrino in the noninertial frame where matter is

at rest. In this case one can unambiguously define the components of fµ
α . Assuming

that background fermions are unpolarized, we find that in this reference frame

f0
α =

√
2GF

∑

f

q
(1)
α,fnf 6= 0, (9)

with the rest of the effective potentials being equal to zero.

It is known that the motion of a test particle in a noninertial frame is equivalent

to the interaction of this particle with a gravitational field. The Dirac equation for

a massive neutrino moving in a curved space-time and interacting with background

matter can be obtained by the generalization of Eq. (8) (see also Ref. 7),

[iγµ(x)∇µ −m]ψ =
1

2
γµ(x)g

µ
[

1− γ5(x)
]

ψ, (10)

where γµ(x) are the coordinate dependent Dirac matrices, ∇µ = ∂µ +

Γµ is the covariant derivative, Γµ is the spin connection, γ5(x) =

− i
4!E

µναβγµ(x)γν(x)γα(x)γβ(x), E
µναβ = 1√−g

εµναβ is the covariant antisymmet-

ric tensor in curved space-time, and g = det(gµν) is the determinant of the metric

tensor gµν . Note that in Eq. (10) we account for only the diagonal neutrino in-

teraction with matter. That is why we omit the index i in order not to encumber

the notation: m ≡ mi etc. It should be noted that analogous Dirac equation was

discussed in Ref. 8.

We shall be interested in the neutrino motion in matter rotating with the con-

stant angular velocity ω. Choosing the corotating frame we get that only g0 ≡ g0ii
is nonvanishing, cf. Eqs. (7) and (9).

3.1. Neutrino motion in a rotating frame

The interval in the rotating frame is9

ds2 = gµνdx
µdxν = (1 − ω2r2)dt2 − dr2 − 2ωr2dtdφ − r2dφ2 − dz2, (11)

where we use the cylindrical coordinates xµ = (t, r, φ, z). One can check that the

metric tensor in Eq. (11) can be diagonalized, ηab = e µ
a e

ν
b gµν , if we use the following
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vierbein vectors:

e µ
0 =

(

1√
1− ω2r2

, 0, 0, 0

)

,

e µ
1 =(0, 1, 0, 0),

e µ
2 =

(

ωr√
1− ω2r2

, 0,

√
1− ω2r2

r
, 0

)

,

e µ
3 =(0, 0, 0, 1). (12)

Here ηab = diag(1,−1,−1,−1) is the metric in a locally Minkowskian frame.

Let us introduce the Dirac matrices in a locally Minkowskian frame by γā =

eaµγ
µ(x), where eaµ is the inverse vierbein: eaµe

µ
b = δab . Starting from now, we

shall mark an index with a bar to demonstrate that a gamma matrix is defined in a

locally Minkowskian frame. As shown in Ref. 4, γ5(x) = iγ 0̄γ 1̄γ 2̄γ 3̄ = γ 5̄ does not

depend on coordinates.

After the straightforward calculation of the spin connection on the basis of

Eq. (12), the Dirac Eq. (10) can be rewritten as

[D−m]ψ =
1

2

√

1− ω2r2γ 0̄g0(1− γ 5̄)ψ,

D =i
γ 0̄ + ωrγ 2̄√
1− ω2r2

∂0 + iγ 1̄
(

∂r +
1

2r

)

+ iγ 2̄
√
1− ω2r2

r
∂φ + iγ 3̄∂z

− ω

2(1− ω2r2)
γ 3̄γ 5̄. (13)

The analogous Dirac equation was recently derived in Ref. 10. Since Eq. (13) does

not explicitly contain t, φ, and z, its solution can be expressed as

ψ = exp (−iEt+ iJzφ+ ipzz)ψr, (14)

where ψr = ψr(r) is the spinor depending on the radial coordinate, Jz = 1
2 − l (see,

e.g., Ref. 11), and l = 0,±1,±2, . . . .

In Eq. (13) one can neglect terms ∼ (ωr)2. Indeed, if we study a neutrino in

a rotating pulsar, then r . 10 km and ω . 103 s−1. Thus (ωr)2 . 1.1 × 10−3 is a

small parameter. Therefore Eq. (13) can be transformed to

[

iγ 1̄
(

∂r +
1

2r

)

− γ 2̄
(

Jz
r

− ωrE

)

+ γ 0̄
(

E − g0

2

)

− γ 3̄pz

+
g0

2
γ 0̄γ 5̄ − ω

2
γ 3̄γ 5̄ −m

]

ψr = 0, (15)

where we keep only the terms linear in ω. It should be noted that the term ∼ ωγ 3̄γ 5̄

in Eq. (15) is equivalent to the neutrino interaction with matter moving with an

effective velocity.
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The solution of Eq. (15) can be presented in the form4, ψL
r = (0, η)T and

ψR
r = (ξ, 0)T, where

η =

(

−iC1IN,s

C2IN−1,s

)

, ξ =

(

C3IN,s

−iC4IN−1,s

)

. (16)

Here N = 0, 1, 2, . . . , s = N − l, IN,s = IN,s(ρ) is the Laguerre function, and

ρ = Eωr2. The explicit form of the Laguerre function can be found, e.g., in Ref. 4.

To derive Eq. (16) we use the Dirac matrices in the chiral representation12.

In the important case when ω ≪ g0, the coefficients Ci, i = 1, . . . , 4, in Eq. (16)

are expressed in the following way4:

C2
1 ≈EAω

2π

EA − pz − g0

EA − g0
, C2

3 ≈ ω

2π
(ES + pz) ,

C2
2 ≈EAω

2π

EA + pz − g0

EA − g0
, C2

4 ≈ ω

2π
(ES − pz) . (17)

It should be noted that the solutions presented in Eqs. (16) and (17) satisfy the

normalization condition,
∫

ψ†
N,s,pz

(x)ψN ′,s′,p′

z
(x)

√−gd3x = δNN ′δss′δ (pz − p′z) . (18)

Here ψ and ψr are related by Eq. (14).

The energy levels in Eq. (17) are

[

EA − 2Nω − g0
]2

=(2Nω)2 + 4Nωg0 +
(

pz −
ω

2

)2

,

[ES − 2Nω]
2
=(2Nω)2 +

(

pz +
ω

2

)2

, (19)

where EA and ES are the energies of active and sterile neutrinos respectively. Com-

paring the expression for ES ≈ 2Nω+
√

(2Nω)2 + p2z with the energy of a neutrino

in an inertial nonrotating frame
√

p2
⊥ + p2z, where p⊥ is the momentum in the

equatorial plane, we can identify 2Nω inside the square root as |p⊥|. It should be

also noted that the term 2Nω, which additively enters to both EA and ES , is due

to the noninertial effects for a Dirac fermion in a rotating frame13.

We can also get the corrections to the energy levels due to the nonzero mass,

EA,S → EA,S + E
(1)
A,S . On the basis of Eq. (16) and (17) one finds the expression

for E
(1)
A,S in the limit ω ≪ g0,

E
(1)
A =

m2

2 (EA − 2Nω − g0)
, E

(1)
S =

m2

2 (ES − 2Nω)
. (20)

If we discuss neutrinos moving along the rotation axis, then 2Nω ≪ |pz|. Using

Eq. (19) we get the energy levels of active neutrinos in this case

EA = |pz|+ g0
(

1 +
2Nω

|pz|

)

+ 2Nω +
2(Nω)2

|pz|
+

m2

2|pz|
, (21)
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where we also keep the mass correction in Eq. (20). One can see in Eq. (21) that

|pz|+g0+ m2

2|pz | corresponds to the energy of a left-handed neutrino interacting with

background matter in a flat space-time. The rest of the terms in Eq. (21) are the

corrections due to the matter rotation.

4. Flavor oscillations of Dirac neutrinos in rotating matter

In this section we study the evolution of the system of massive mixed neutrinos

in rotating matter. We formulate the initial condition for this system and derive

the effective Schrödinger equation which governs neutrino flavor oscillations. Then

we find the correction to the resonance condition owing to the matter rotation and

estimate its value for a millisecond pulsar.

We can generalize the results of Sec. 3 to include different neutrino eigenstates.

The interaction of neutrino mass eigenstates with background matter is nondiago-

nal, cf. Eq. (6). Therefore the generalization of Eq. (13) for several mass eigenstates

ψi reads

[D −mi]ψi =
1

2
γ 0̄g0i (1− γ 5̄)ψi +

1

2
γ 0̄
∑

j 6=i

g0ij(1− γ 5̄)ψj , (22)

where g0i ≡ g0ii and g
0
ij are the time components of the matrix

(

gµij
)

given in Eq. (7),

mi is the mass of ψi, and D can be found in Eq. (13). As in Sec. 3, we omitted the

term (ωr)2 ≪ 1 in Eq. (22). Note that Eq. (22) is a generalization of Eq. (8) for a

system of the neutrino mass eigenstates moving in a rotating frame.

We shall study the evolution of active ultrarelativistic neutrinos and neglect

neutrino-antineutrino transitions. In this case we can restrict ourselves to the anal-

ysis of two component spinors. The general solution of Eq. (22) has the form,

ηi(x) =
∑

N,s

∫

dpz√
2π
a
(i)
N,s,pz

eipzz+iJzφuN,s,pz
(r)e−iEit, (23)

where uN,s,pz
are the basis spinors and a

(i)
N,s,pz

= a
(i)
N,s,pz

(t) are the c-number func-

tions. The energy levels Ei are given in Eq. (21) with m → mi. Here we omit

the subscript A in order not to encumber the notation. Our goal is to find the

coefficient a
(i)
N,s,pz

= a
(i)
N,s,pz

(t). We neglect the small ratio ω/g0i in Eq. (23).

Considering the system of two neutrino mass eigenstates, i = 1, 2, parameterized

with one mixing angle θ, and choosing the appropriate initial condition4, on the

basis of Eq. (22) we get the effective Schrödinger equation for Ψ̃T = (a1, a2),

i
dΨ̃

dt
=

(

0 g012 exp [i (E1 − E2) t]

g012 exp [i (E2 − E1) t] 0

)

Ψ̃. (24)

Here we omitted all the indexes of ai besides i = 1, 2. It is convenient to introduce

the modified effective wave function Ψ = U3Ψ̃, where U3 = diag
(

eiΩt/2, e−iΩt/2
)

,

Ω = E1 − E2. Using Eq. (24), we get for Ψ

i
dΨ

dt
=

(

Ω/2 g012
g012 −Ω/2

)

Ψ. (25)
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Note that Eq. (25) has the form of the effective Schrödinger equation one typically

deals with in the study of neutrino flavor oscillations in background matter.

If the transition probability for να ↔ νβ is close to one, i.e. Pνβ→να =

|〈να(t)|νβ(0)〉|2 ≈ 1, flavor oscillations of neutrinos are said to be at resonance.

Using Eqs. (5), (9), (21), and (25), the resonance condition can be written as,

(

f0
α − f0

β

)

(

1 +
2Nω

|pz|

)

+
∆m2

2|pz|
cos 2θ = 0, (26)

where ∆m2 = m2
1 −m2

2 is the mass squared difference.

Let us consider electroneutral background matter composed of electrons, pro-

tons, and neutrons. If we study the νe → να oscillation channel, where α = µ, τ ,

we get that f0
να = − 1√

2
GFnn and f0

νβ ≡ f0
νe =

√
2GF

(

ne − 1
2nn

)

, where ne and nn

are the densities of electrons and neutrons. Using Eq. (26), we obtain that

√
2GFne

(

1 +
2Nω

|pz|

)

=
∆m2

2|pz|
cos 2θ. (27)

At the absence of rotation, ω = 0, Eq. (27) is equivalent to the Mikheyev-Smirnov-

Wolfenstein resonance condition in background matter14.

Let us evaluate the contribution of the matter rotation to the resonance condition

in Eq. (27) for a neutrino emitted inside a rotating pulsar. We make a natural

assumption that for a corotating observer neutrinos are emitted in a spherically

symmetric way from a neutrinosphere. That is we should take that l ≈ 0 and

N ≈ s. Then the trajectory of a neutrino is deflected because of the noninertial

effects and the interaction with background matter. The radius R of the trajectory

can be found from

R2 = 2|pz|ω
∫ ∞

0

r2|uN,s,pz
(r)|2rdr ≈ 2N

|pz|ω
, (28)

where we take into account that N ≫ 1.

We shall assume that R ∼ R0, where R0 = 10 km is the pulsar radius. In this

case neutrinos escape a pulsar. Taking that ω = 103 s−1 and using Eq. (28), we get

that the correction to the resonance condition in Eq. (27) is 2Nω
|pz| ≈ (R0ω)

2 ≈ 10−3.

The obtained correction to the effective number density is small but nonzero. This

result corrects our previous statement2 that a matter rotation does not contribute

neutrino flavor oscillations.

5. Conclusion

In conclusion we notice that we have studied the evolution of massive mixed neu-

trinos in nonuniformly moving background matter. The interaction of neutrinos

with background fermions is described in frames of the Fermi theory (see Sec. 2).

A particular case of the matter rotating with a constant angular velocity has been

studied in Sec. 3.1. We have derived the Dirac equation for a weakly interacting



June 23, 2021 1:7 WSPC Proceedings - 9.75in x 6.5in Dvornikov˙Singapore˙2015 page 9

9

neutrino in a rotating frame and found its solution in case of ultrarelativistic neu-

trinos, cf. Eqs. (16) and (17). The energy spectrum obtained in Eqs. (19) and (20)

includes the correction owing to the nonzero neutrino mass.

We have used the Dirac equation in a noninertial frame, cf. Eq. (10), as a main

tool for the study of the neutrino motion in matter moving with an acceleration.

To develop the quantum mechanical description of such a neutrino we have chosen

a noninertial frame where matter is at rest. In this frame the effective potential of

the neutrino-matter interaction is well defined. However, the wave equation for a

neutrino turns out to be more complicated since one has to deal with noninertial

effects.

In Sec. 4 we have generalized our results to include various neutrino generations

as well as mixing between them. We have derived the effective Schrödinger equation

which governs neutrino flavor oscillations. We have obtained the correction to the

resonance condition in background matter owing to the matter rotation. Studying

neutrino oscillations in a millisecond pulsar, we have obtained that the effective

number density changes by 0.1% owing to the matter rotation.

Despite the obtained correction is small, we may suggest that our results can

have some implication to the explanation of great linear velocities of pulsars. It

was suggested in Ref. 15 that an asymmetry in neutrino oscillations in a magne-

tized pulsar can explain a great linear velocity of the compact star. An evidence

for the alignment of the angular and the linear velocity vectors of pulsars was re-

ported in Ref. 16. Therefore we may suggest that neutrino flavor oscillations in a

rapidly rotating pulsar can contribute to its linear velocity. It should be noted that

neutrino spin-flavor oscillations, including noninertial effects, in a rapidly rotating

magnetized star were studied in Ref. 17 in the context of the explanation of high

linear velocities of pulsars.

Finally, we mention that the Dirac equation for a fermion, electroweakly inter-

acting with the rotating background matter, was recently solved18. The vierbein

vectors, different from these in Eq. (12), were used in Ref. 18. Comparing the

energy levels obtained in Ref. 18 with the results of the general analysis13, one

concludes that the vierbein used in Ref. 18 is more appropriate for the description

of ultrarelativistic particles like neutrinos.
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