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Lepton number violation and its relation to neutrino masses is investigated in several versions
of the SU(3)c ⊗ SU(3)L ⊗ U(1)x model. Spontaneous and explicit violation and conservation of
the lepton number are considered. In one of the models (the so-called economical one), the lepton
number is spontaneously violated and it is found that the would be Majoron is not present because
it is gauged away, poviding in this way the longitudinal polarization component to a now massive
gauge field.
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I. INTRODUCTION

The colorless and electric neutral charge distinguish
the three left handed neutrinos ν0lL, l = e, µ, τ from the
other fermions of the SU(3)c⊗SU(2)L⊗U(1)Y Standard
Model (SM).The neutrino right handed components ν0clL
are not included in the spectrum of the SM which has
only one scalar Higgs doublet, implying massless neutri-
nos at the tree level. This result holds at all orders in
perturbation theory and also when non perturbative ef-
fects are taken into account due to the existence of an ex-
act baryon minus lepton number (B−L) symmetry, even
if (B+L) is violated by weak sphaleron configurations.
Nevertheless, neutrinos oscillate [1–5] which implies that
at least two of them have small but non zero masses.
Masses for neutrinos require physics beyond the SM

connected either to the existence of ν0clL and/or to the
breaking of the (B−L) symmetry. If right handed neu-
trinos exist, the Yukawa terms leads, after electroweak
symmetry breaking, to Dirac neutrino masses, requiring
Yukawa coupling constants for neutrinos hφν ≤ 10−13.
But ν0clL, singlets under the SM gauge group, can acquire
large Majorana masses and turn on the see-saw mecha-
nism [6–10], an appealing and natural scenery for neu-
trino mass generation.
Alternatively, the left handed neutrinos, members of

the SM lepton doublets ψlL = (νl, l
−)TL , can also ac-

quire a Majorana mass mν which carries weak isospin
I=1 and violates lepton number L by two units, gen-
erated via non renormalizable operators of the form
(ψ̄c

lLφ̃
∗)(φ̃†ψl′L), where φ = (φ+, φ0) is the SM Higgs

doublet and φ̃ = iσ2φ
∗. This dimension five operator

is able to generate type I, type II and type III see-saw
mechanisms by using for heavy fields an SU(2)L singlet
fermion, triplet scalar and triplet fermion respectively (in
this regard, see Ref. [11, 12]).
The mechanism of coupling two standard model lepton

doublets with a Higgs triplet ∆ which in turn develops
non zero Vacuum Expectation Values (VEV), breaking
in this way the lepton number spontaneously, implies in
turn the existence of a Majoron [13], particle ruled out
experimentally by the Z line shape measurements [14,
15] (a singlet Majoron may still survive but with large
constraints [16, 17]).
The variant Zee mechanism [18, 19] can be imple-

mented, when the L=2 Lorentz scalar ψlLCψl′L (with C
the charge conjugation matrix) is coupled to an SU(2)L
charged singlet h+ with L= −2, introducing next a new
scalar doublet φ′ and breaking the L symmetry explicitly
in the scalar potential with a term of the form φφ′h+. In
this way, neutrino Majorana masses are generated by one
loop quantum effects and the unwanted Majoron is not
present.
The second Higgs doublet φ′ can be avoided by intro-

ducing instead a double charged Higgs singlet k++ which
couples to the single charged one by the trilinear cou-
pling k++h−h− and to the right handed charged leptons
singlets l−R via a term of the form l−RCl

′−
R k++, generating

in this way Majorana small masses via two loop quan-
tum effects by what is known as the Zee-Babu mecha-
nism [20, 21].
More examples of generation of neutrino masses via

quantum effects can be found in the systematic study
presented in Ref. [22].
This situation motivates us to perform an extensive

analysis of the lepton number symmetry in the most rel-
evant 3-3-1 models. In particular, we are interested in
the gauging away mechanism of the Majoron that the so
called economical model presents, due to the subtle con-
nection between the lepton number generator L and one
of the SU(3)L generators.
This paper is organized as follows: in Sec. II we re-

view the charge assignment and the gauge boson content
of the 3-3-1 models in general, in Sec. III the four pos-
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sibilities for lepton number violation in the context of
the minimal version of the 3-3-1 model are presented,
in Sec. IV we classify all the 3-3-1 models without ex-
otic electric charges and repeat the analysis presented in
Sec. III, but now for the so called 3-3-1 model with right-
handed neutrinos. Then in Sec. V we do the general
analysis for the 8 different 3-3-1 models without exotic
electric charges with 3 families. In Sec. VI the so called
economical model is studied and finally, our conclusions
are presented in Sec. VII.

II. 3-3-1 MODELS

Some interesting extensions of the SM are based on the
local gauge group SU(3)c ⊗ SU(3)L ⊗ U(1)x (3-3-1 for
short) in which the weak sector of the SM is extended to
SU(3)L⊗U(1)x. Several models for this gauge structure
have been constructed so far.
For the 3-3-1 models, the most general electric charge

operator in the extended electroweak sector is

Q = aλ3 +
1√
3
bλ8 + xI3, (2.1)

where λα, α = 1, 2, . . . , 8 are the Gell-Mann matri-
ces for SU(3)L normalized as Tr(λαλβ) = 2δαβ and
I3 = Dg(1, 1, 1) is the diagonal 3×3 unit matrix. a = 1/2
if one assumes that the isospin SU(2)L of the SM is en-
tirely embedded in SU(3)L; b is a free parameter which
defines the different possible models, and the x values are
obtained by anomaly cancellation. For Aα

µ ,the 8 gauge
fields of SU(3)L, x = 0 and thus we may write:

∑

α

λαA
α
µ =

√
2







D0
1µ W+

µ K
(b+1/2)
µ

W−
µ D0

2µ K
(b−1/2)
µ

K
−(b+1/2)
µ K

−(b−1/2)
µ D0

3µ






,

(2.2)

where D0
1µ = A3

µ/
√
2 + A8

µ/
√
6, D0

2µ = −A3
µ/

√
2 +

A8
µ/

√
6, and D0

3µ = −2A8
µ/

√
6. The upper indices on the

gauge bosons stand for the electric charge of the particles,
some of them being functions of the b parameter.

III. THE MINIMAL MODEL

In Ref. [23, 24] it has been shown that, for b = 3/2,
the following fermion structure is free of all the gauge
anomalies: ψT

lL = (ν0l , l
−, l+)L ∼ (1, 3, 0), QT

iL =
(di, ui, Xi)L ∼ (3, 3∗,−1/3), QT

3L = (u3, d3, Y ) ∼
(3, 3, 2/3), where l = e, µ, τ is a family lepton index,
i = 1, 2 for the first two quark families, and the num-
bers after the similarity sign mean 3-3-1 representations.
The right handed fields are ucaL ∼ (3∗, 1,−2/3), dcaL ∼
(3∗, 1, 1/3), Xc

iL ∼ (3∗, 1, 4/3) and Y c
L ∼ (3∗, 1,−5/3),

where a = 1, 2, 3 is the quark family index and there are
two exotic quarks with electric charge −4/3 (Xi) and
other with electric charge 5/3 (Y ). This version is called

minimal in the literature, because its lepton content is
just the one present in the SM.
For this model, the minimal scalar content re-

quired to break the symmetry, giving a realistic mass
spectrum, consists of three triplets and one sextet:
ηT = (η0, η−1 , η

+
2 ) ∼ (1, 3, 0), ρT = (ρ+, ρ0, ρ++) ∼

(1, 3, 1), χT = (χ−, χ−−, χ0) ∼ (1, 3,−1), and

S =





σ0
1 s+1 s−2
s+1 s++

1 σ0
2

s−2 σ0
2 s−−

2



 ∼ (1, 6∗, 0). (3.1)

The scalars have Yukawa couplings to the leptons and
quarks as follows:

Ll
1 = hηll′ηψlLCψl′L + hsll′ψlLSCψl′L + h.c., (3.2)

Lq
1 = huiaQ

T
iLρCu

c
aL + hdiaQ

T
iLηCd

c
aL (3.3)

+ hXijQ
T
iLχCX

c
jL + hd3aQ

T
3Lρ

∗CdcaL

+ hu3aQ
T
3Lη

∗CucaL + hYQT
3Lχ

∗CY c
L + h.c.,

with vacuum expectation values (VEV) given by 〈η0〉 =
v1, 〈ρ0〉 = v2, 〈χ0〉 = v3, 〈σ0

1〉 = v4 and 〈σ0
2〉 = v′4.

One of the main characteristics of this model is the fact
that the lepton number L is not a good quantum number
because both, the charged lepton and its antiparticle are
in the same multiplet; as a consequence, L does not com-
mute with the electroweak extended gauge symmetry.
The assignment of L starts with the SM assign-

ments [25]

L(l−L , νlL) = −L(l+L ) = 1,

L(uaL, u
c
aL, daL, d

c
aL, W

±
µ , D

0
1µ, D

0
2µ, D

0
3µ) = 0;

then, looking to the Yukawa interactions of the SM parti-
cles and imposing L=0 in the covariant derivative implies

L(K++, K+, YL, X
c
iL) = −2

L(K−−, K−, XiL, Y
c
L) = 2.

For the scalars, L is assigned by inspection of the Yukawa
coupling constants and one finds

L(χ−, χ−−, s−−
2 ) = 2,

L(η+2 , ρ
++, σ0

1 , s
+
1 , s

++
1 ) = −2,

L(η0, η−1 , χ
0, ρ+, ρ0, σ0

2 , s
−
2 ) = 0.

Notice that Xi and Y are bi-leptoquarks and
K+, K−, K++ and K−− are bi-lepton gauge bosons.
Finally, the physical gauge bosons related to the neutral
currents of the model have L=0.
It is interesting to notice that the above lepton num-

bers of the individual components of each multiplet can
be written as [26]

L =
2λ8√
3
+ LI3, (3.4)

where L is a global symmetry of the Lagrangian
which is not broken by the VEV, and is related to
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the following assignment: L(ψlL) = 1/3, L(QiL) =
2/3, L(Q3L, η, S, ρ) = −2/3, L(χ) = 4/3, L(Xc

iL) =
−2, L(Y c

L) = 2, and L(uca, dca, Aαµ) = 0.
The former analysis shows that since

L(η0, χ0, ρ0, σ0
2) = 0, the only place where the L

number can be spontaneously violated is in σ0
1 , but it

may be explicitly violated in the scalar potential. As a
matter of fact, a term like

VLV = f1ηSη + f2SSS + κ1(χ
†η)(ρ†η) + κ2η

†Sχρ

+ κ3χρSS + h.c., (3.5)

explicitly violates ∆L = ∆L=±2 when all the VEV are
zero, leaving λ8 unbroken. Then, the four possibilities of
lepton number violation in the context of this model are
thus:
(1) VLV = 0 and 〈S〉 = 0. This is the minimal 3-

3-1 Pisano-Pleitez-Frampton model where total lepton
number is conserved and neutrinos are massless particles.
Consecuently, this version of the model is in conflict with
the existence of massive neutrinos.
(2) VLV = 0 but 〈σ0

1〉 6= 0. In this case the lepton num-
ber is spontaneously broken leading to a triplet Majoron.
This case has been analyzed in Ref [27].
(3) VLV 6= 0 and 〈σ0

1〉 = 0. L is violated explicitly
and non zero masses for neutrinos can be generated from
quantum corrections.
(4) The case for VLV 6= 0 and 〈σ0

1〉 6= 0 is also possible,
with a rich phenomenology which may include a light
pseudo Goldstone Majoron [28].

IV. 3-3-1 MODELS WITHOUT EXOTIC

ELECTRIC CHARGES

If one wishes to avoid exotic electric charges as the ones
present in the minimal model, one must choose b = 1/2,
in Eq. (2.1). Following [29, 30] we can find six sets of
fermions which contain the antiparticles of the charged
particles which are

• S1 = [(ν0α, α
−, E−

α );α+;E+
α ]L with quantum num-

bers (1, 3,−2/3); (1, 1, 1) and (1, 1, 1) respectively.

• S2 = [(α−, να, N
0
α);α

+]L with quantum numbers
(1, 3∗,−1/3) and (1, 1, 1) respectively.

• S3 = [(d, u, U);uc; dc;U c]L with quantum num-
bers (3, 3∗, 1/3); (3∗, 1,−2/3); (3∗, 1, 1/3) and
(3∗, 1,−2/3) respectively.

• S4 = [(u, d,D);uc; dc;Dc]L with quantum numbers
(3, 3, 0); (3∗, 1,−2/3); (3∗, 1, 1/3) and (3∗, 1, 1/3)
respectively.

• S5 = [(e−, νe, N
0
1 ); (E

−, N0
2 , N

0
3 ); (N

0
4 , E

+, e+)]L
with quantum numbers (1, 3∗,−1/3);(1, 3∗,−1/3)
and (1, 3∗, 2/3) respectively.

• S6 = [(νe, e
−, E−

1 ); (E+
2 , N

0
1 , N

0
2 ); (N

0
3 , E

−
2 , E

−
3 );

e+;E+
1 ;E+

3 ]L with quantum numbers (1, 3,−2/3);
(1, 3, 1/3); (1, 3,−2/3); (111), (111); and (111) re-
spectively.

The different anomalies for these six sets are [29] found
in Table I.

TABLE I.
Anomalies for 3-3-1 fermion fields structures

Anomalies S1 S2 S3 S4 S5 S6

[SU(3)C ]
2U(1)X 0 0 0 0 0 0

[SU(3)L]
2U(1)X −2/3 −1/3 1 0 0 -1

[Grav]2U(1)X 0 0 0 0 0 0

[U(1)X ]3 10/9 8/9 −12/9 −6/9 6/9 12/9

[SU(3)L]
3 1 −1 −3 3 −3 3

With this table, anomaly-free models, without exotic
electric charges can be constructed for one, two or more
families.
As noted in Ref. [29], there are eight three-family mod-

els that are anomaly free, which are:

• Model A: with right-handed neutrinos
3S2 + S3 + 2S4.

• Model B: with exotic electrons
3S1 + 2S3 + S4

• Model C: with unique lepton generation one (three
different lepton families)
S1 + S2 + S3 + 2S4 + S5

• Model D: with unique lepton generation two
S1 + S2 + 2S3 + S4 + S6

• Model E: hybrid one (two different lepton struc-
tures)
S3 + 2S4 + 2S5 + S6

• Model F: hybrid two
2S3 + S4 + S5 + 2S6

• Model G: carbon copy one (three identical families
as in the SM)
3(S4 + S5)

• Model H: carbon copy two
3(S3 + S6)

A. The 3-3-1 model with right-handed neutrinos

Introduced in Ref. [31, 32], it has the following 3-3-1
anomaly free fermion structure:

ψT
lL = (l−, ν0l , N

0
l )L ∼ (1, 3∗,−1/3), l+L ∼ (1, 1, 1),

QT
iL = (ui, di, Di)L ∼ (3, 3, 0),

QT
3L = (d3, u3, U)L ∼ (3, 3∗, 1/3),
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where l = e, µ, τ is a family lepton index, N0
lL stands for

electrically neutral Weyl state, and i = 1, 2 for the first
two quark families. The right handed quark fields are

ucaL ∼ (3∗, 1,−2/3), dcaL ∼ (3∗, 1, 1/3),

Dc
iL ∼ (3∗, 1, 1/3), U c

L ∼ (3∗, 1,−2/3),

where again a = 1, 2, 3 is the quark family index
and there are two exotic quarks with electric charge
−1/3 (Di) and other with electric charge 2/3 (U).
The minimal scalar content required to break the sym-

metry, giving a realistic mass spectrum, consists now of
only three triplets [31, 32]:

ρT = (ρ01, ρ
+
2 , ρ

+
3 ) ∼ (1, 3∗, 2/3),

ηT = (η−1 , η
0
2 , η

0
3) ∼ (1, 3∗,−1/3),

χT = (χ−
1 , χ

0
2, χ

0
3) ∼ (1, 3∗,−1/3), (4.1)

with VEV given by 〈ρ0〉T = (v1, 0, 0), 〈η0〉T = (0, v2, 0),
and 〈χ0〉T = (0, 0, V ).
A careful analysis of the Yukawa terms for the lepton

sector

LY
lep = hell′ρ

∗ψlLCl
+′
L + hll′ρψlLCψl′L, (4.2)

shows that N0
lL, the third component of the fermion

triplet (1, 3∗,−1/3), must be identified with ν0clL, the an-
tiparticle of ν0lL. As a consequence, L is not a good quan-
tum number in the context of this model, because L does
not commute with the symmetry SU(3)L ⊗ U(1)X .
Doing a similar analysis that the one presented for the

minimal model, we obtain the following lepton number
assignments [33]

L(l−L , ν
0
lL) = −L(l+L , ν

0c
lL) = 1, (4.3)

L(uaL, u
c
aL, daL, d

c
aL, W

±
µ , D

0
1µ, D

0
2µ, D

0
3µ) = 0;

L(K+, K0, UL, D
c
iL) = −L(K−, K

0
, DiL, U

c
L) = −2,

L(χ−
1 , χ

0
2) = −L(ρ+3 , η

0
3) = 2,

L(ρ01, ρ
+
2 , η

−
1 , η

0
2 , χ

0
3) = 0.

Notice that the new quarksDi and U are bileptoquarks

and K+, K−, K0 and K
0
are bi lepton gauge bosons.

Again, Eq. (3.4) can be used to write the previous lep-
ton number assignment using now the following L val-
ues: L(ψlL) = 1/3, L(QiL) = 2/3, L(Q3L, η, ρ) =
−2/3, L(χ) = 4/3, L(Dc

iL) = −2, L(U c
L) = 2, L(l+L ) =

−1, and L(ucaL, dcaL, Aαµ) = 0, values in agreement with
the one presented in Ref. [33].
For this model, the quark mass spectrum was analyzed

in Ref. [33], using only the following lepton number con-
servation Yukawa potential:

LY
LNC = hUχ∗Q3LCU

c
L + hDijχQiLCD

c
jL (4.4)

+hdaρ
∗Q3LCd

c
aL + huiaρQiLCu

c
aL

+h3aη
∗Q3LCu

c
aL + hiaηQiLCd

c
aL + h.c.,

which conserves both the global numbers L and L. But
the most general Yukawa potential for quarks must also
include the following terms

LY
LNV = huaχ

∗Q3LCu
c
aL + hdiaχQiLCd

c
aL (4.5)

+hDi ρ
∗Q3LCD

c
iL + hUi ρQiLCU

c
L

+hUη∗Q3LCU
c
L + hDijηQiLCD

c
jL + h.c.,

which explicitly violates the global numbers L and L.
This avoids the possible existence of a Majoron in the
context of this model.
The Yukawa Lagrangian for the neutral leptons ex-

tracted from (4.2), and in the basis (ν1, ν2, ν3, ν
c
1, ν

c
2, ν

c
3),

produces the following tree level neutrino mass matrix

M =



















0 0 0 0 a b

0 0 0 −a 0 c

0 0 0 −b −c 0

0 −a −b 0 0 0

a 0 −c 0 0 0

b c 0 0 0 0



















, (4.6)

where the entries are Dirac masses at the SM scale, times
Yukawa couplings, with eigenvalues (0, 0,±mν,±mν)

where mν =
√
a2 + b2 + c2 which stands for three Dirac

neutrinos, one massless and two degenerated. The model
is viable only for very small Yukawa couplings constants
and radiative corrections able to remove the degeneracies
(analysis done to a limited extent in Ref. [33]).
In general χ0

2 and η03 can have a VEV different from
zero which could imply spontaneous symmetry breaking
of the lepton number L. But L can also be broken explic-
itly in the scalar potential by terms of the form

V ′
LV = µχ†η + η†χ(κ1|ρ|2 + κ2|η|2 + κ3|χ|2)

+ κ4|χ†η|2 + κ5(η
†ρ)(ρ†χ) + h.c., (4.7)

which again satisfy ∆L = ∆L = ±2 when all the VEV
are zero, leaving λ8 to be broken explicitly.
As in the minimal model there are four different cases:

(1) V ′
V L = 0, 〈χ0

2〉 = 〈η03〉 = 0. The total lepton number
is conserved and the neutrinos can pick up only Dirac
type masses.
(2) V ′

V L = 0, 〈χ0
2〉 6= 0 and/or 〈η03〉 6= 0. The lepton

number L is now spontaneously violated. This case has
been analyzed in Ref. [34] where a CP odd Majoron was
found.
(3) V ′

V L 6= 0, 〈χ0
2〉 = 〈η03〉 = 0. L is explicitly violated

and again, non zero masses for neutrinos can be gener-
ated by quantum effects.
(4) Again, V ′

V L 6= 0, 〈χ0
2〉 6= 0 and/or 〈η03〉 6= 0 is also

possible, leading to a phenomenology with the presence
of a light pseudo Goldstone Majoron.

V. THE NEUTRAL SECTOR

To present the kind of analysis we are aimed to, let us
concentrate on Model D to start with.
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The lepton fields for this particular model are included
in the structure S1+S2+S6 which contains 21 two com-
ponent spinors, including seven neutral Weyl states. Let
us write them in the following way:

ψ1L = (ν1, l
−
1 , E

−
0 )L ∼ (1, 3,−2/3),

l+1L ∼ (1, 1, 1), E+
0L ∼ (1, 1, 1)

ψ2L = (l−2 , ν2, N
0
0 )L ∼ (1, 3∗,−1/3), l+2L ∼ (1, 1, 1),

ψ3L = (ν3, l
−
3 , E

−
1 )L ∼ (1, 3,−2/3),

l+3L ∼ (1, 1, 1), E+
1L ∼ (1, 1, 1)

ψ4L = (E+
2 , N

0
1 , N

0
2 )L ∼ (1, 3, 1/3),

ψ5L = (N0
3 , E

−
2 , E

−
3 )L ∼ (1, 3,−2/3), E+

3L ∼ (1, 1, 1),

with the 3-3-1 quantum numbers given in parenthesis.

Using the scalars of (4.1) with the VEV as stated,
the mass matrix for the neutral sector in the basis
(ν1, ν2, ν3, N

0
0 , N

0
1 , N

0
2 , N

0
3 ) is now of the form:

Mn =

























0 0 0 0 A −a 0

0 0 0 0 M 0 0

0 0 0 0 B −b 0

0 0 0 0 0 M 0

A M B 0 0 0 G

−a 0 −b M 0 0 −d
0 0 0 0 G −d 0

























, (5.1)

where theM value is related to a GUT mass scale coming
from the bare mass term ψ2LCψ4L + h.c; A,B and C
are mass terms at the TeV scale V , and a, b and c are
mass terms at the electroweak scale v ∼ v1 ∼ v2. The
diagonalization of the former mass matrix produces two
Dirac massive spinors with masses at the GUT scale and
three Weyl massless states that we can associate with the
detected solar and atmospheric oscillating neutrinos.
So, up to this point the model has the potential to

be consistent with the neutrino phenomenology. But the
question is if the three Weyl states remain massless or if
they may pick up small radiative masses in the context
of the model, or a simple extension of it, something out
of the reach of the analysis presented here.

A. General analysis for 3 families

Analysis similar to the previous one have been car-
ried through for the neutral fermion sector of the eight
anomaly-free lepton structures enumerated in Sec. IV.
The results are presented in Table II.
According to this Table, only models B and D fulfill

the natural condition of having 3 tree-level zero mass
neutrinos, which may pick up non zero masses via ra-
diative corrections, with or without the adition of new
ingredients. Some other structures may become realistic
if new fields are added, and/or if some Yukawa coupling

TABLE II : Tree level neutrinos sectors

Model Number of Weyl Massless Dirac States

neutral states Weyl states at the EW scale

A: 6 2 2

B: 3 3 0

C: 8 0 3

D: 7 3 0

E: 14 0 3

F: 13 0 1

G: 12 0 3

H: 15 0 4

constants are fine tuned to very small values, and/or if
discreet symmetries which forbids Yukawa terms are im-
posed, etc..
Let us see this in the following example.

B. The 3-3-1 model with exotic electrons

To see what kind of new ingredients are needed in or-
der to provide masses to the neutral fields in these 3-3-1
models without exotic electric charges, let us briefly view
the situation for model B which was introduced in the lit-
erature for the first time in Ref. [35]. The neutral fermion
sector for this model has been studied in some detail in
Refs. [36, 37], but the approach here is simpler.
The anomaly free fermion structure for this model

is [35]:

ψT
lL = (ν0l , l

−, E−
l )L ∼ (1, 3,−2/3),

l+L ∼ (1, 1, 1), E+
lL ∼ (1, 1, 1),

QT
iL = (di, ui, Ui)L ∼ (3, 3∗, 1/3),

QT
3L = (u3, d3, D) ∼ (3, 3, 0),

ucaL ∼ (3∗, 1,−2/3), U c
iL ∼ (3∗, 1,−2/3),

dcaL ∼ (3∗, 1, 1/3), Dc
L ∼ (3∗, 1, 1/3),

where l = e, µ, τ is a lepton family index, E−
l stands for

three exotic electron fields, i = 1, 2 for the first two quark
families, a = 1, 2, 3 is again the quark family index, and
there are two exotic quarks with electric charge 2/3 (Ui)
and other one with electric charge −1/3 (D). This model
does not contain right handed neutrino fields.
The gauge boson and scalar sectors for this model

are exactly the same ones that for the model with right
handed neutrinos [31]; but the big differences are that
now, the lepton number L is a good quantum number
of the model and the gauge bosons does not carry lep-
ton number at all, neither the exotic quarks. The scalars
(η, ρ, χ) introduced have also L=0, the lepton number
cannot be broken spontaneously and, as a consecuence,
the neutrinos remain massless even with the inclussion of
the radiative corrections.
In what follows and in order to simplify matters and

make this model more predictable, we consider only the
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⊗

×

λV v1

χ+

1 φ−

3

ν0
lL

l′−
L

vhe

l′l′ l′+
L

ν0
lL

he

ll′
he

l′l

FIG. 1. Generation of the neutrino masses via the one loop
radiative mechanism in the 3-3-1 model with exotic electrons.

set of two scalar triplets χ and ρ instead of the set of
three triplets proposed in the original paper [35], or the
much more complex structure introduced in Ref. [36].
Also, let us take the VEV to be 〈χ〉T = (0, v, V ) and
〈ρ〉T = (v1, 0, 0) (as in the Economical 3-3-1 model [38]
which is going to be studied next). The Yukawa couplings
of the leptons to this scalars are now

Ll
2 =

∑

l,l′

[(ψT
lL.χ)C(h

e
ll′ l

′+
L + hEll′E

+
l′L)] + h.c., (5.2)

which for l, l′ = e, µ, τ saturates all the entries of the
6 × 6 charged lepton mass matrix and allows tree-level
masses only for charged leptons, eventhough there are
in (5.2) external legs with neutrino fields of the form

ν0lLχ
−
1 C(h

e
ll′ l

′+
L + hEll′E

+
l′L) + h.c.. The possible inclusion

of the scalar η does not change this situation at all.
Masses for neutrinos can be obtained only by enlarg-

ing the model. For this purpose one can introduce a new
scalar triplet φ = (φ++

1 , φ+2 , φ
+
3 ) ∼ (1, 3, 4/3) which cou-

ples to the spin 1/2 leptons via a term in the Lagrangian
of the form

Ll
3 = ǫnmp

∑

l,l′

hνll′φ
nψm

lLCψ
p
l′L + h.c., (5.3)

=
∑

ll′

hνll′ [φ
++
1 (l−LE

−
l′L − l′−L E−

lL)

+ φ+2 (E
−
lLνl′L − E−

l′LνlL) + φ+3 (νlLl
′−
L − νl′Ll

−
L )] + h.c.,

which implies lepton number values L(φ++
1 , φ+2 , φ

+
3 ) =

−2 in order to have it conserved in Ll
3. Notice that the

expression above also provides several external legs with
neutrino fields which can be used to generate masses to
the neutral fermions via quantum effects.
Since 〈φ〉 = (0, 0, 0), the new scalar fields are not able

to break spontaneously the lepton number. But the point
is that the lepton symmetry is now explicitly broken in
the Lagrangian by a term in the scalar potential of the
form λ(φ.χ)(ρ∗.χ) which violates lepton number by two
units and turns on the Zee radiative mechanism in the
context of this 3-3-1 model with exotic electrons. As a
matter of fact, all the previous ingredients allow us to
draw the diagram in Fig. 1 in the context of the field
structure presented so far.
Although the scalar sector has three independent fields

(χ, ρ, φ), its VEV structure is simpler that the one pro-
posed in the original paper [35].

Neutrino masses in the context of the model analyzed
in this section, were studied for the first time in Ref. [39].
The main difference between that paper and this one is
that in Ref. [39], and in order to implement the Zee-
Babu mechanism [18, 20] for generating neutrino mass
terms, a double charged Higgs scalar SU(3)L singlet
k++ ∼ (1, 1, 2) was used instead of our φ scalar triplet,
which is the new and main ingredient of our analysis.
So, both papers address to the same problem from two
different points of view.

VI. THE ECONOMICAL 3-3-1 MODEL

The model was introduced for the first time [38, 40]
and the quark and lepton content corresponds to the 3-
3-1 model with right-handed neutrinos presented above;
but the scalar sector is modified, becoming minimal in
the sense that only two scalar triplets (with a modified
VEV structure) are used in order to break the symmetry.
They are:

ρT = (ρ01, ρ
+
2 , ρ

+
3 ) ∼ (1, 3∗, 2/3),

χT = (χ−
1 , χ

0
2, χ

0
3) ∼ (1, 3∗,−1/3),

with the VEV given now by: 〈ρ〉T = (v1, 0, 0), and
〈χ〉T = (0, v, V ).
The lepton number L and the global symmetry L are

as given for the model with right-handed neutrinos, and
Eq.(3.4) and the lepton number assignment in (4.3) still
holds.
This model has been the subject of several recent stud-

ies [40–42] and it has the peculiarity that the lepton
number L is spontaneously broken due to the fact that
L(χ0

2) = 2.
Since the scalar sector is very simple now, the model

is highly predictable. As a matter of fact, the full scalar
potential consist only of the following six terms [38]:

V (χ, ρ) = µ2
1|χ|2 + µ2

2|ρ|2 + κ1|χ†χ|2 + κ2|ρ†ρ|2
+ κ3|χ|2|ρ|2 + κ4|χ†ρ|2 + h.c.. (6.1)

A simple calculation shows that both, L and the lep-
ton number L are conserved by V (χ, ρ) and also by the
full Lagrangian, except for some of the following Yukawa
interactions which induce masses for the fermions

LY = LY
LNC + LY

LNV

LY
LNC = hUχ∗Q3LCU

c
L + hDijχQiLCD

c
jL

+hdaρ
∗Q3LCd

c
aL + huiaρQiLCu

c
aL (6.2)

+hell′ρ
∗ψlLCl

′+
L + hll′ρψlLCψl′L + h.c.

LY
LNV = huaχ

∗Q3LCu
c
aL + hdiaχQiLCd

c
aL (6.3)

+hDi ρ
∗Q3LCD

c
iL + hUi ρQiLCU

c
L + h.c.,

where the subscripts LNC and LNV indicates lepton
number conserving and lepton number violating term re-
spectively. As a matter of fact, LY

LNV violates explicitly
L and L by two units.
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After spontaneous breaking of the gauge symmetry the
scalar potential develops the following lepton number vi-
olating terms:

VLNV = v[
√
2Hχ(κ1|χ|2 + κ3|ρ|2)]

+vκ4[ρ
−
1 (χ

†ρ) + ρ+1 (ρ
†χ)], (6.4)

where we have defined as usual χ0
2 = v+(Hχ+ iAχ)/

√
2.

Hχ and Aχ are the so called CP even and CP odd (scalar
and pseudo scalar) components, and for simplicity we
are taking real VEV (CP violation through the scalar
exchange has not been considered here).
Notice that the lepton number violating part in (6.4) is

trilinear in the scalar fields, and as expected, VLNV = 0
for v = 0. From the former expression we can identify
Aχ as the only candidate for a Majoron in this model.
The minimization of the scalar potential has been done

in full detail in Ref. [38] (reproduced also in the second
paper in Ref. [40]). For that purpose two more definitions

were introduced: ρ01 = v1 + (Hρ + iAρ)/
√
2 and χ0

3 =

V + (H ′
χ + iA′

χ)/
√
2. An outline of the main results in

Ref. [38], important for our present discussion, are:

• The three CP odd pseudo scalars Aχ, A
′
χ and Aρ,

the would be Goldstone bosons, are eaten up by

Z, Z ′ and (K0+K
0
)/
√
2, the real part of the neu-

tral bi lepton gauge boson.

• Out of the three CP even scalars, (vH ′
χ −

VHχ)/
√
v2 + V 2 becomes a would be Goldstone

boson eaten up by i(K0 −K
0
)/
√
2, the imaginary

part of the neutral bi lepton gauge boson which
picks up L=2 via Hχ. The other two CP even
scalars become the SM Higgs boson and one extra
Higgs boson with a heavy mass of order V respec-
tively.

• In the charged scalar sector (ρ±2 , χ
±
1 , ρ

±
3 ) there are

four would be Goldstone bosons, two of them are
(V χ±

2 −v1ρ±3 )/
√

V 2 + v21 with L= ±2, eaten up by
K±, and other two with L=0 eaten up by W±.

• Two charged scalars remains as physical states.

Counting degrees of freedom tells us that there are in χ
and ρ twelve ones namely: three CP even, three CP odd
and six charged ones. Eight of them are eaten up by the

eight gauge bosons W±, K±,K0, K
0
, Z, and Z ′. Four

scalars remains as physical states, one of them being the
SM Higgs scalar.
Since L is explicitly broken in the context of this model,

the most outstanding result in our analysis is that the
would be pseudo Goldstone Majoron Aχ, the only CP
odd electrically neutral scalar with L=2, has been eaten

up by (K0+K
0
)/
√
2, the real part of the bi lepton gauge

boson. A clever way to avoid an unwanted Majoron!
A variant of this model was considered in Ref. [43]

where the fermion mass spectrum was studied with the
inclusion of a Z2 discrete symmetry which excludes the

LNV interactions in the Yukawa potential in equation
(6.3). For this variant of the model, L is conserved
through the entire Lagrangian, the lepton number L
is only spontaneous violated by VLNV in Eq.(6.4) and
the would be Majoron Aχ is gauge away, eaten up by

(K0 + K
0
)/
√
2. Notice that being L a good quantum

number, the spontaneous violation of SU(3)L implies the
spontaneous violation of L via Eq. (3.4), something that
it is now allowed because the fermion sector for L is vec-
tor like and thus non-anomalous.
The economical scalar structure presented here, is not

able to reproduce a consistent quark mass spectrum at
tree level. By fortune, a careful analysis combining the
renormalizable Yukawa interactions in (6.2) and (6.3),
and the effective dimension-five operators

LNR =
ǫnmp

Λ

[

χnρmQp
3LC

(

λU3 U
c
L +

3
∑

a=1

λuau
c
aL

)

(6.5)

+ χ∗nρ∗m
2
∑

i=1

Qp
iLC

(

λdiD
c
L +

3
∑

a=1

λdiad
c
aL

)]

,

are able to remove the zero quark masses. But the
implementation of LNR in the former expression requires
the introduction of new and heavy scalar fields.
But there remains the question of the quantum effects.

A careful analysis shows that the conclusion in Ref. [44]
related with the quark mass matrices is true; that is, the
inclusion of all the one-loop diagrams with the proper
Yukawa couplings, still leaves the quark mass matrices
with determinant equal to zero. So, contrary to what
is stated in Refs. [40] and [45], the one-loop diagrams
are not able by themselves to provide a consistent mass
spectrum for the quarks in the context of this economical
model. But it does not mean that there is a remanent
U(1) symmetry in the full Lagrangian as it is erroneously
stated in Ref. [44] (in fact, in Ref. [45] it is clearly proved
that such a U(1) symmetry does not exists at all). The
solution to this puzzle and to the controversy raised be-
tween Ref. [44] and [45] lies in the two-loop quantum
effects which provides with a consistent quark mass spec-
trum via Babu type mechanisms [20]. But this analysis
lies outside the scope of this paper and it will be pre-
sented elsewhere.
To conclude this section, let us mention that the ver-

sion of this economical 3-3-1 model developed in the con-
text of the model with right handed neutrinos, can be
extended to any one of the eight 3 family models pre-
sented in section (IV).

VII. CONCLUSSIONS

The main motivation of our study was to investigate
the neutrino mass spectrum in the framework of the local
gauge structure SU(3)c ⊗ SU(3)L ⊗ U(1)x.
Summarizing: we have carried out an extensive analy-

sis of the lepton number symmetry in the context of the
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best known versions of the 3-3-1 model. It is interest-
ing to remark that in one of these versions, namely the
so called economical model, one explicitly find the quite
unusual situation of the gauging away of the would be
Majoron, poviding in this way the longitudinal polariza-
tion component to a now massive gauge field.

This rare but quite unusual mechanism, is related to
the fact that the lepton number generator L is connected
with the λ8 generator of SU(3)L, as shown in Eq. (3.4).
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